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Summary

Image segmentation aims at identifying regions of interest within an image, by
grouping pixels according to their properties. This task resembles the statistical one
of clustering, yet many standard clustering methods fail to meet the basic require-
ments of image segmentation: segment shapes are often biased toward predetermined
shapes and their number is rarely determined automatically. Nonparametric clus-
tering is, in principle, free from these limitations and turns out to be particularly
suitable for the task of image segmentation. This is also witnessed by several oper-
ational analogies, as, for instance, the resort to topological data analysis and spatial
tessellation in both the frameworks.

We discuss the application of nonparametric clustering to image segmentation and
provide an algorithm specific for this task. Pixel similarity is evaluated in terms
of density of the color representation and the adjacency structure of the pixels is
exploited to introduce a simple, yet effective method to identify image segments as
disconnected high-density regions. The proposed method works both to segment an

image and to detect its boundaries and can be seen as a generalization to color images

KEYWORDS:

1 | INTRODUCTION AND MOTIVATION

In the recent years, the need of analysing large amounts of
image information has become relevant in several contexts and
applications. Daily examples include medical diagnosis based
on X-ray or magnetic resonance images, video surveillance
and geographic information system applications, and image
tagging. A possible goal of image analysis is the one of seg-
mentation, the automatic process of identifying salient regions
and single objects in an image, with the purpose of content
retrieval, object detection or recognition, occlusion boundary,
image compression or editing.

Digital images are created by a variety of input devices,
such as cameras or scanners, and they have usually a fixed
resolution, i.e. they are represented by a fixed number of dig-
ital values, known as pixels. Pixels are the smallest individual

of the class of watershed methods.
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element in an image, holding quantized values that represent
the brightness of a given colour at any specific location of
the image. When an image is segmented, a label is assigned
to each pixel, so that pixels with the same label share similar
characteristics in terms of colour, intensity, or texture.

This task recalls closely the aim of cluster analysis, and
thereby clustering methods have been featured as a standard
tool to segment images. Within this framework, an approach
which naturally lends itself to the task of image segmentation
is known as nonparametric or modal clustering. According
to this formulation, a probability density function is assumed
to underlie the data and clusters are defined as the domains
of attraction of the modes of the density function, estimated
nonparametrically. This correspondence between clusters and
regions around the modes of the data distribution entails sev-
eral reasons of attractiveness. First, the number of clusters is
an intrinsic property of the data generator mechanism, thereby
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well defined, at least conceptually, and its determination is
itself an integral part of the clustering procedure. Addition-
ally, modal regions comply with the geometric intuition about
the notion of clusters, also because they are not bound to any
particular shape. These reasons make nonparametric cluster-
ing particularly suitable for the segmentation of digital images,
as segments shall be allowed to assume arbitrary shapes and
an authomatic determination of the number of segments would
be desirable.

In this work the use of nonparametric clustering for image
segmentation is discussed. Pixel similarity is evaluated in
terms of density of the colour representation and the adjacency
structure of the pixels is exploited to introduce a simple method
to assess the connectedness of the modal density regions.

In the following, an overview about nonparametric clus-
tering is provided along with its connection with methods
for image segmentation. A novel modal-clustering method
specifically conceived for image segmentation is proposed and
discussed, and several applications illustrated.

2 | BACKGROUND

2.1 | Overview of nonparametric clustering

Modal clustering hinges on the assumption that the observed
data (xy, ..., x,) are a sample from a probability density func-
tion f : RY — R*. The modes of f are regarded as the
archetypes of the clusters, which are in turn represented by the
surrounding regions.

The practical identification of the modal regions is usu-
ally performed according to two alternative directions. One
strand of methods looks for an explicit representation of the
modes of the density and associates each cluster to the set of
points along the steepest ascent path towards a mode. Any opti-
mization method can be applied to find the local maxima of
the density, such as, for instance, the mean-shift algorithm,
early proposed by |[Fukunaga and Hostetler| [1975]], and a num-
ber of its variants [[Comaniciu and Meer, 2002, [Yuan et al.,
2012, |Carreira-Perpinan, 2008|]. In this work we consider,
alternatively, a second strand, which associates the clusters to
disconnected density level sets of the sample space, without
attempting the explicit task of mode detection. Specifically,
any section of f, at a given level A, singles out the (upper) level
set

LA ={xeR?: f(x)> 4}, 0<A<maxf

which may be connected or disconnected. In the latter case, it
consists of a number of connected components, each of them
associated with a cluster at the level A.

While there may not exist a single A which catches all the
modal regions, any connected component of L(4) includes at

least one mode of the density and, on the other hand, for each
mode there exists some 4 for which one of the connected com-
ponents of the associated L(A) includes this mode at most.
Hence, all the modal regions may be detected by identifying
the connected components of L(4) for different As. Varying A
along its range gives rise to a hierarchical structure of the high-
density sets, known as the cluster tree. For each 4, it provides
the number of connected components of L(A), and each of its
leaves corresponds to a cluster core, i.e. the largest connected
component of L(4) including one mode only. Figure|l |illus-
trates a simple example of this idea: cluster cores associated
with the highest modes 2 and 3 are identified by the smallest
A larger than A4, while the smallest A larger than A, identifies
the cluster core associated to mode 1. In some sense, the clus-
ter tree provides a tool to inspect data with different degree of
sharpness: clusters 2 and 3 are distinct, but they merge together
to create a lower resolution cluster.

From the operational point of view, a few choices are
required to implement the ideas underlying modal clustering.
Since f is unknown, a nonparametric estimator f is employed
to obtain its representation. A common choice for multidimen-
sional data is the product kernel estimator [see, e.g., |Scott and
Sain, [2005]:
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where x) is the j — th component of x, the univariate kernel
K is usually taken to be a nonnegative function centred at zero
and integrating to one, and a different smoothing parameter A;
is chosen for each component. In fact, for the development of
the method, it does not really matter which specific estimator is
adopted, provided that £ is positive and finite at the observed
points.

A second choice derives from the lack, in multidimensional
sample spaces, of an obvious method to identify the connected
components of a level set. For these reasons the inherent lit-
erature has mainly focused on developing efficient methods
for this task [e.g. |Stuetzle and Nugent, 2010, Menardi and
Azzalini, [2014].

Note that the union of the cluster cores does not produce a
partition of the sample space, as regions at the tails or at the
valleys of f, where the attraction of each mode is low, are
initially left unallocated. However, the availability of a den-
sity measure allows for providing each unallocated observation
with a degree of confidence of belonging to the cluster cores.
Depending on the application, the evaluation of such confi-
dence may be exploited to force the assignment or may result
in the opportunity of fuzzy clustering schemes.
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FIGURE 1 A section of a density function at a level 4, (left), the identified level set (middle panel), formed by two disconnected
regions and the associated cluster tree, with leaves corresponding to the modes. The horizontal line is at the level 4 (right).

2.2 | Related works on image segmentation

Also due to the extensiveness of its applicability, several dif-
ferent methods have been proposed to pursue the task of image
segmentation. These are broadly ascribable to two alterna-
tive routes [see, for a review, [2009]: noncontex-
tual techniques ignore the relationships among the features in
the image and assign the same label to pixels sharing some
global attribute, such as the grey level or the colour bright-
ness. Thresholding, for instance, compares the intensity of each
pixel with a suitable threshold and associates higher values
to the foreground of the image, of main interest, and lower
values to the background. Contextual techniques, conversely,
also account for pixel location or colour gradient. Within this
class, region-based methods mainly rely on the assumption that
the neighbouring pixels within one region have similar value.
Boundary-based methods as edge detection and active con-
tours build on finding pixel differences rather than similarities,
to determine a closed boundary between the foreground and
the background of the image. Watershed segmentation builds
a distance map of a grey-scale image or of its gradient and
considers it as topographic relief, to be flooded from its min-
ima. When two lakes merge, a dam is built, representing the
boundary between two segments.

Within the framework of clustering methods, K—means
clustering is diffusely adopted for image segmentation, per-
haps due to its simplicity. However, a few severe limitations
prevent its effectiveness. First, K—means clustering is known
to produce sub-optimal solutions as it highly depends on
the initialization of the centroids. Additionally, it requires a
prior specification of the number of clusters. In image seg-
mentation this operation is undoubtedly easier than in other
clustering applications. On the other hand, the need of human
intervention vanishes the effort to automate the segmentation

procedure. Finally, K-means is known to be biased toward the
identification of spherical clusters, which can be restrictive in
image data where segments may assume arbitrarily odd shapes.

While nonparametric clustering is rarely mentioned as
the underlying approach to perform image analysis, it fea-
tures some connection with a number of segmentation algo-
rithms. By exploiting some notions from differential geom-
etry, [2015] relies on Morse theory to provide an
elegant formalization of the notion of modal cluster which
closely recalls the ideas underlying watershed segmentation:
intuitively, if the density underlying the data is figured as a
mountainous landscape, and modes are its peaks, clusters are
the 4A Yregions that would be flooded by a fountain emanat-
ing from a peak of the mountain rangeAAZ. Furthermore, the
simple thresholding approach can be interpreted as a naive,
single- A, implementation of the density level set formulation
above mentioned, where grey intensities are employed as a
measure of density. Gradient ascent algorithms in the guise
of mean-shift clustering are also sometimes applied for image
segmentation 2007]). Similar instruments are also
at the basis of active contours models, where a suitable mea-
sure of energy is iteratively minimized by a gradient descent
algorithm to identify the segment contours.

As a further link, even when applied to different goals,
image analysis and nonparametric clustering share several
tools: an example is provided by spatial tessellation as the
Voronoi or Delaunay diagrams, which have been used in non-
parametric clustering to identify density level sets connected
components [Azzalini and Torelli, 2007] and are frequently
employed in image analysis for thinning and skeletonization.
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3 | ANONPARAMETRIC METHOD FOR Algorithm 1 Nonparametric density-based segmentation:
IMAGE SEGMENTATION main steps of the procedure

3.1 | Description of the procedure

Let T = {p,...,p,} be a digital image, where the ordered
set of pixels p; = ((x;,¥;),2;),i = 1,...,n, is described by
the pair (x;, y;) denoting the coordinates of the pixels location,
and by the vector z; denoting the adopted colour model, e.g.
z; = (z?’), zﬁg) , zﬁb)) in the RGB colour representation [Soille,
2013]]. In greyscale images, z; is a scalar quantifying the grey
intensity.

The particularization of nonparametric clustering in the
framework of image analysis requires a density function to be
defined at the pixels. A sensible choice builds f based on the
color coordinates z;. The specification of the (I)) for an RGB
color model is:

7 _ 1 n Z(’)—zfr) Z(“)—zfg) z"’)—sz)
=iz (55 o (55) w (555) @

For example, if the Uniform kernel K(u) = %l{lul<1} is
selected and h; tends to zero, each pixel is provided with
a density proportional to the frequency of its colour within
the image. While of less immediate interpretation, a similar
result holds with different kernel functions or different non-
parametric estimators. As it will be discussed in Section
an alternative would also account for the spatial coordinates of
the pixels.

Once that the colour density has been estimated, the associ-
ated upper level sets

Ly=1{pel: fiz)=1

0<A<maxf

are easily determined for a grid of A values. Next step is
the identification of the connected components of the ﬁ(/l)’ S.
Unlike the above mentioned case of clustering data on R,
where the identification of connected regions is ambiguous, the
notion of connectedness is (almost) univocally determined in
the image framework, due to the spatial structure of the pixels.
This justifies the procedure here proposed, which builds on the
level set formulation of nonparametric clustering but naturally
exploits the adjacency structure of the pixels to identify the
connected components of the modal regions. For a given 4, the
connected components of (1) are approximated as follows:

(i) for each pixel, identify the adjacent pixels forming its
4-neighbourhood, i.e. a central pixel has four connected
neighbours - top, bottom, right and left.

(ii) approximate the connected components of (1) by the
union of adjacent pixels in L(A).

For varying A, the procedure described so far creates K
groups of pixels £, (k = 1,...,K), which we call, in anal-
ogy with the clustering problem, (segment) cores, and it leaves

Require: h = (h,, h,, hy); € All € {TRUE, FALSE} (set
All:= TRUE to assign a label class to all the pixels;)
1: Identify the pixels adjacentto p;,i =1,...,n

)
2 n 1 ZTE
2: ComPUte f(Z) = Z[zl Wghb Hj:{r,g,b} K ( l h; >’

z2€1{z}iz1 m

3: while 0 < 4 < max f do

4 identify L(A) = {p, : f(z,) > A}

5: find the connected components of L) (as the union
of adjacent pixels in L)

6: Ai=A+e€

7: end while

8: Build the hierarchy of the connected components of L.(1)'s
and obtain the cluster tree

9: Denote core pixels as p, and unallocated pixels as p,

10: Assign the label class Z, € {1, ..., K} to each core pixels
pc

11: if All then

12: while {p,} # 0 do

13: for all p, do
14: compute f k(z%}) =
) —

Zc:a:k m =) K (Z hjzc )» kf L...K

15: set ky = argmax,r.(p,) = %

16: if 3 p, such that p, is adjacent to p, and ¢, = k,,
then

17: assign the label class 7, := k to p,

18: end if

19: end for

20: update {p,} and {p.}

21 end while

22: else

23: setZ, =0

24: end if

25: RETURN: 7}, ... .2,

a number of pixels unlabeled. Depending on the application
at hand, we can either decide to force their assignment to the
existing segment cores or to leave these pixels unallocated.
In fact, a peculiar aspect is that the unlabelled points are not
positioned randomly in the image, but are inevitably on the
outskirts of the existing segment cores. As will be illustrated
in the Section 4] unallocated pixels include (or correspond to)
the contours of the segments.

The possible allocation of the unlabelled pixels to the exist-
ing groups is essentially a classification problem that may be
faced according to a wide range of choices. To remain within
the same kind of approach pursued so far, and consistently
with the purpose of identifying segments as connected sets
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of pixels, we propose the following idea to classify an unal-
located pixel p,: compute the K estimated densities f,(z,),
each based on the pixels already assigned to the k" core only
(k=1,..., K); then, set

ko = argmax,ry(p,) = —m“; = 3)
and assign p, to the group with label k; provided that at least
one of the pixels already assigned to the kgh segment core is
adjacent to p,. The operational implementation of this idea
is here performed in a sequential manner, as detailed in the
pseudo-code above along with the main steps of the whole
segmentation procedure.

3.2

Since the procedure illustrated above accounts for both the
colours and the connectivity of the image patterns, it emulates,
in some sense, the behaviour of the human eye, which instinc-
tively, perceives different segments in a picture as either dis-
connected set of pixels or image patterns with a diverse colour
intensity. A simple illustration of this latter aspect is with-
nessed by the greyscale image in Figure Even if the grey
intensities of the foreground (the square) and the background
are similar, the density estimator (2) perfectly distinguishes
the two density levels and the isoline identifies the contours of
the foreground segment. Conversely, with respect to the for-
mer aspect, a major limitation of nonparametric clustering, in
principle inherited by the proposed segmentation procedure,
derives from the definiton of mode itself, which requires a sep-
arating A YgapaAZ between dense patterns. In Figure the
density shows itself like a squared hole, and there is no lower
density area between the background and the foreground. This
prevents L(4) to be a disconnected set for any A, which would
guarantee the identification of two segments. This behaviour is
somewhat paradoxal, as the neater the image, the less ideal the
setting for the procedure to work effectively: within an image,
dripped contours of a segment, indeed, manifest themselves as
small changes of colours at the borders with respect to the inte-
rior. Since the perimeter of a shape is always smaller than its
area, and the density of a pixel is positively associated with the
frequency of its colour, dripped contours would guarantee that
the color density along the contour of a segment is lower than
its inner density, and hence a valley would arise between a seg-
ment and its background. In fact, the considered example has
been built ad hoc by setting the grey intensity for each pixel. In
practice, many images have segment contours not defined with
such neatness, no matter what the image resolution is. This is
especially true with segments having either curve or sloped
contours, since the shades of colours along the border of the
segments allow to prevent a sawtoothed rendering. See Figure
[BJfor an illustration.

| Discussion

When the image does not features itself with dripped con-
tours, it is possible to overcome the issue of lacking valleys
in the density by introducing some blurring of the image. To
this aim, given that the identification of pixel neighbours is
required anyway for the identification of disconnected regions,
a simple strategy is to replace each pixel value with an aver-
age of the values in its neighbourhood (in fact, a quite common
practice prior to thresholding segmentation is to smooth an
image using averaging or median mask. See Dougherty}, 2009,
§10.2.1).

A further, somewhat related, issue concerns the choice of
the density measure. While we choose to build f based on the
color intensities only, an alternative route would consists in
exploiting the whole available information in terms of both the
colour coordinates and the spatial coordinates, i.e.:

f@ = TLK <”h") K <’mh’:5”> K (Z”:f/”> K(52)K (y;—y) )
This way of proceeding would also overcome the above men-
tioned problem of lacking valleys at the borders of the seg-
ments: in (2)), the largest contribution to the density of a generic
pixel is provided by all the pixels having similar colours; con-
versely, if also the spatial coordinates are involved in f, the
density of a generic pixel depends on pixels whith similar
colours and close spatially. Hence, at the borders of a seg-
ment, where part of the adjacent pixels have a different colour,
the density turns out to be lower than the interior pixels (see
Figure [ | for an illustration). While this behaviour is desir-
able for the purpose of segmentation, the interpretation of £ in
terms of colour frequency fails and, indeed, a higher computa-
tional effort is required. Additionally, some empirical work not
included in the manuscript has proven that estimating f via the
(@) results in oversegmenting the image, hence using the only
colour coordinates to estimate density is overall preferable.

In fact, a further aspect concerning the estimation of f needs
to be accounted for, concerning the selection of the smoothing
vector h [see, e.g. Silverman, |1986]. In clustering this is not as
critical as it is in density estimation, since a rough indication
about the high density location may suffice. However, this is
certainly an issue to be tackled, and will represent object of
empirical investigation in the next section.

4 | EMPIRICAL WORK

In this section, some examples are presented to illustrate the
proposed procedure and to evaluate its effectiveness in iden-
tifying the salient regions for varying characteristics of the
image: greyscale and multichannel images are considered; the
latter ones have been selected for featuring either shaded and
neated colours, and possible highlighted contours; both convex
and nonconvex shaped segments have been analyzed. The pro-
cedure is compared with the performance of some competitors:
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FIGURE 2 A simple grey-scale image (left), and the estimate of color density superimposed to the spatial coordinates to the
pixels, represented both as the level set density (middle panel) and as a perspective plot (right panel).

FIGURE 3 A simple grey-scale image (left), and a zoommed detail (middle), showing that when a segment has either curve
or sloped contours, the colour is ripped along the border, to prevent a sawtoothed rendering. Due to this feature, the perspective
plot of the density estimate, based on the (2) highlights a valley at the border of the foreground (right).

as a benchmark methods, K-means clustering is considered, as
well as thresholding based on the Otsu algorithm
2009, §10.2.1]. The former method has been given a head
start by setting the number of clusters to its true number, as it
is intuitively perceived by the author. Admittedly, the choice
is not always obvious, especially for photos or, in general,

shaded-color images. The latter algorithm assumes that the
image contains two classes of pixels -black/white- grossly cor-
responding to two modal regions of the histogram built on the
grey intensities. It calculates the optimum threshold separat-
ing the two classes based on the minimization of the intra-class
variance. Althought it is designed for greyscale images only,

a N

N _J

FIGURE 4 Density estimate superimposed to the greyscale image in Figure when £ is based both on the colours and the
spatial coordinates: level set representation (left panel) and perspective plot (right panel).
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thus requing a prior preprocessing of multi-channel immages,
it has been considered for comparison as it represents a rought,
yet effective, binary variant of the proposed procedure.

A further aim of the empirical work is to investigate the use
of the density function (2) as a tool to identify the main fea-
tures of an image: questions of interest are its ability to detect
edges of the segment and its sensitivity to different amount
of smoothing; for the considered analyses the bandwidth has
been selected to the asymptotically optimal solution for data
following a Normal distribution (in the following, i = hy).
Of course this assumpion does not hold since multi-segment
images have, in principle, a multimodal density. However, this
rule of thumb has resulted quite effective in clustering applica-
tions and has been then used in this analysis as a default. For
the images considered as the most challenging for segmenta-
tion, the sensitivity to different choice of the bandwidth has
been also evaluated.

Additionally, the ability of the cluster tree to identify a hier-
archy of cluster merging that is meaningful with respect to the
image has been tested. Finally, the allocation of low-density
pixels, not belonging to the segment cores has been observed
and commented.

All the empirical work has been performed in the R envi-
ronment [R Core Team) 2018]]. Images have been handled via
the package EBIimage [Pau et al., [2010] while the segmen-
tation routines have been built as suitable adjustments of the
clustering routines available within the package pdfCluster
[[Azzalini and Menardi, [2014]).

The left panels of Figures[5 |6 |[7 ] [8”]display four exam-
ples of greyscale images, selected for the analysis due to
their different characteristics and different degrees of difficulty
in segmentation. Multichannel images are on the other hand
displayed in the left panels of Figures[9 |

Both the benchmark procedures work satisfactorily, in
greyscale and multichannel images. Thresholding is intrin-
secally limited, as it identifies two segments only by con-
struction. It is, nevertheless, able to reconstruct the broad
features of the image, even when it is particularly challeng-
ing. See, e.g. the famous Einstein’s grimace, in Figure[8 | not
easy at all to be segmented, yet very well recognizable even
in the binary reconstruction via thresholding. A self-evident
limitation occurs when similar color shades characterize adja-
cent segments, since the dichotomous choice between black
or white segments unavoidably determine a corrupt recon-
struction of the image. See Figure [5 | for an example of this
behaviour.

Despite its semplicity, K—means behave very well, being
able to reconstruct accurately most of the images where the
segment distiction is unarguable (e.g. Figures[5 |[6 1[0 ][I0).
On the other hand, the procedure requires the number of seg-
ments to be known in advance, and a remarkable head start

has been then granted by providing the true number of seg-
ments as an input. In some applications such number might be
known a priori; consider, for example, the hand X-ray image
(Figure [7"]), where the number of segments can be set based
on anatomy knowledge. If the purpose of medical image seg-
mentation would be to attempt a first automatization of the
diagnostic process, setting the number of segments to its ‘nor-
mal’ value, would prevent detection of fractures or anomalies,
thus going in the opposite direction. A further feature of K-
means is its complete noncontextuality; since distances from
the cluster centroids are computed on the basis of the color
only, disconnected segments might be assigned to the same
cluster just for sharing a similar colour, disregarding the adja-
cency structure. Depending on applications, this characteristic
may be sensible or not. For instance, in Figure [0 ] and
assigning head and body of the subjects to the same segment
is particularly consistent. On the other hand, a complete non-
contextuality may lead to the identification of meaningless
clusters, as it happens for Figure [§ ] whose segmentation by
K—means results in a pixelated image.

The performance of the proposed nonparametric procedure
are generally satisfactory when applied to both multichannel
and greyscale images. The procedure does not result chal-
lenged by the need of distinguishing contours of assorted
segments, both for size and nonconvex shapes, as especially
evidenced by Figure[8 [0 [T | Itis especially able to identify
segments as connected regions characterized by uniformity of
color, but performs well also when applied to image featured
by shaded colors. On the con’s side, the procedure is somewhat
sensitive to perceive color differences even when they are not
distinguishable with the unaided eye at once, thus resulting in
oversegmenting the image. As the method mainly hinges on
the density, which is built on the image colors, it is in principle
framed within the class of the noncontextual algorithms. How-
ever, it takes in some information about the spatial relationship
between the pixels since each segment is, by construction, a
(high density) connected set which is disconnected from the
other segments. This characteristic prevents pixeled segmen-
tations like K—means and, on the other hand does not allow
the identification of unique segments as disconnected regions
sharing the same color (see Figure[0 | where Bart’s body and
head are classified as different segments).

Note that most of the segmented images include a num-
ber of black-coloured regions, corresponding to unallocated
pixels, and tiypically located at the borders of the segments.
These are associated to low-density areas evaluated in the sec-
ond step of the segmentation procedure. In those cases, none
of the pixels already assigned to the segment presenting max-
imum density (EI) is adjacent to the ones under evaluation, i.e.,
their colour is not similar to the colour of any other adjacent
segment. In the analysis, these pixels are left unallocated, to
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FIGURE 5 Original image (I), result of the image segmentation based on K-means clustering (II), Otsu-thresholding (III), pro-
posed procedure (IV). Segments have been assigned arbitrary colors, except for the thresholding segmentation, where segments

are either black or white by construction.

FIGURE 6 Cfr. Figure[5 |

enlighten the low degree of confidence in their classification.
However, the issue can be worked around by either forcing the
assignment to the highest density segment, disregarding spa-
tial adjacency, or creating a further segment. Related to this
aspect, and depending on subject-matter considerations, the
procedure allows the opportunity of not allocating pixels that
are not belonging to the cluster cores. The values of r; pro-
vide a degree of confidence in the allocation, in the guise of
fuzzy clustering schemes. This is especially useful in all the
images where colours are homogeneous and segments well

separated, as unallocated pixels mostly identify the boundaries
of the segments (first panel of Figures[I3 ]to[20 ).

With regard to the cluster tree (second panel of Figures[I3 ]
to[20)), it works effectively with multichannel images in estab-
lishing a hierarchy of cluster-merging which can be associated
to different levels of resolution. In the Bart image, for example,
clusters that are kept separated due to small color differences
(see the face and the neck) are the first to be aggregated through
the cluster tree. The same does not hold for greyscale images,
where the cluster tree usually cannot establish a meaningful

FIGURE 7 Cfr. Figure|s |
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FIGURE 8 Cfr. Figure[5 |
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FIGURE 9 Cfr. Figure[5 |

hierarchy of the segments. On the other hand, in those situa- In general, the density function results an effective tools to
tions also the human eye is challenged to aggregate clusters identify the main features of the images, and density contours
without resorting to subject-matter considerations and on the  work well as edge detectors of the segments. See the third panel
basis of the color only. of Figures[I3 ]to[20 ] In order to understand the sensitivity of

the procedure to different amounts of smoothing, the selected

FIGURE 10 Cfr. Figure[s |
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FIGURE 11

Cfr. Figure

FIGURE 12 Cfr. Figures |

hs have been varied in the range [0.7A y, 1.3h]. Results deriv-
ing from the use of different As are illustrated in the fourth
panel of Figures[I5 | [16 ] [19 ] 20 | and correspond to either
the minimum or the maximum /4 for which the segmentation
changes remarkably with respect to the use of /. In general,
the segmentation is quite robust to variation of 4. This is espe-
cially true for simple images with neet contours. Greyscale
raws, Bart Simpson, and the owl images produce compara-
ble segmentations over the whole range of considered values
(for this reason results are omitted). As expected, more chal-
lenging images tend to be oversegmented for small £ as seen,
for instance, in the fourth panel of Figure [I5 | where under-
smoothing entails the identifications of distinct segments for
the phalanxes. A large value of A, on the other hand, smoothes
the density and results in segment aggregation, as seen in the
last panel of Figures[T6 | [20 ] In fact, this monotonicity in the
number of detected segments for varying A does not always
occur in the application at hand, due to the use of an adaptive,
finite grid of A values to scan the density.

S | CONCLUDING REMARKS

Image segmentation is a complicated task whose implemen-
tation cannot, in general, leave aside subject-matter consider-
ations. All this considered, the proposed procedure is framed
halfway between contextual and noncontextual segmentation

algorithms, and may be then applied to a variety of situations.
It can be either applied fully automatically, or be richly cus-
tomized, depending on the goals of the segmentation. It is
provided with some useful tools that may integrate the output
of segmentation, as an estimate of the density of the pixels,
which may be used to determine the degree of confidence about
the segment allocation, and the cluster tree, which allows for
displaying different levels of resolution of the segmentation
itself.
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