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Testicular cancer (TC) represents one of the most peculiar clinical challenges at present.

In fact, currently treatments are so effective ensuring a 5 years disease-free survival

rate in nearly 95% of patients. On the other hand however, TC represents the most

frequent newly diagnosed form of cancer in men between the ages of 14 and 44

years, with an incidence ranging from <1 to 9.9 affected individuals per 100,000 males

across countries, while the overall incidence is also increasing worldwide. Furthermore,

cancer survivors show a 2% risk of developing cancer in the contralateral testis within

15 years of initial diagnosis. This complex and multifaceted scenario requires a great

deal of effort to understand the clinical base of available evidence. It is now clear that

genetic, environmental and hormonal risk factors concur and mutually influence both the

development of the disease and its prognosis, in terms of response to treatment and the

risk of recurrence. In this paper, themost recent issues describing the relative contribution

of the aforementioned risk factors in TC development are discussed. In addition,

particular attention is paid to the exposure to environmental chemical substances and

thermal stress, whose role in cancer development and progression has recently been

investigated at the molecular level.
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INTRODUCTION

With an overall annual incidence of nearly 1% among all newly diagnosed cancers in males,
testicular cancer (TC) represents the most common tumor in men at the age ranging between
14 and 44 years, which is considered to be the fully working/reproductive age (1, 2). Before the
1970s, the mortality rate for TC was extremely high due to the metastatic degeneration of the
disease, whilst the only two treatments to contain the risk of relapse were the retroperitoneal lymph
node dissection, associated or not with radiotherapy. Thereafter, the development of an effective
chemotherapy changed the “rules of the game.” In fact, the current multidisciplinary approach to
the treatment of TC, comprising surgery and adjuvant chemo- or radiotherapy, results in a 5 years
survival rate of >95%. As a consequence, TC is now considered as a model for a curable cancer (3).

In spite of these indisputable progresses, TC still presents multi-leveled challenges that should
not allow our guard to be lowered:
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- Epidemiological evidence: the annual incidence of TC has
doubled over the past 40 years with an increasing trend over
time, particularly in Caucasianmales (4). Indeed, data from the
African and Asian continents show an incidence lower than
one case every 100,000 males, whilst Scandinavian countries
report the highest rate of newly affected individuals worldwide
(from 9.4 to 9.9 males every 100.000 males). This trend by
ethnicity is further confirmed by data fromUnited States where
TC is found more frequently in white males compared to
African Americans (1.2 vs. 6.9 affected individuals per 100.000
males, respectively) (5, 6).

- Clinical evidence: previous history of TC, even if properly
treated and monitored, represents a major risk factor for a
second contralateral cancer. The overall risk for a secondary
TC is approximately 5% within 5 years from diagnosis, and in
most cases presenting within 2 years from the first diagnosis
(7). In this regard, primary testicular size and the degree of
invasion of the rete testis are considered two major prognostic
factors for relapse (8, 9).

- Therapeutic evidence: in spite of the aforementioned
effectiveness, the treatment of TC itself is frequently associated
with an increased risk of developing long lasting adverse effects
like infertility, hypogonadism, metabolic/cardiovascular
derangements, and osteoporosis, which actually represent
the most relevant life threatening consequences of the TC
therapy (10–12).

For all these reasons, the identification of pathogenic
mechanisms and risk factors involved in testicular carcinogenesis
still represent topics of extremely high clinical interest. Indeed,
the probability of developing TC is the result of a combination of
a number of factors that can be distinguished, in general terms,
into genetic, environmental, and hormonal factors.

GENES

The fact that TC development relies on genetic factors is widely
acknowledged. Despite the fact that 90% of males affected by
TC have no previous familiar cases of this disease, population-
based studies in the late 1990’s-early 2000’s showed that having
a brother with an history of TC increases the risk of the
disease from 8- to 10-fold, compared to the general male
population. On the other hand, having a father affected by TC
increases the relative risk for the male child from four- to 6-
fold (13–15). In 2002, a pioneering study on a population-
based registry, evaluating 9.6 million individuals from the
nationwide Swedish Family-Cancer Database, attempted to
distinguish between the respective genetic, pure-environmental
and childhood-environmental contribution to the development
of cancers, essentially based on epidemiologic considerations
(16). Interestingly, TC resulted as one of the most associated
neoplasms with genetic factors (25%), right after the thyroid
(53%), and endocrine glands in general (28%). In addition,
a recent study on a population-based registry, evaluating
monozygotic and same-sex dizygotic twin individuals disclosed
an esteemed familiar risk of heritability for TC of nearly

40% with a significant portion, however, attributable to shared
environmental conditions (17).

In spite of the clear evidence supporting the genetic
background in TC development, the availability of reliable studies
providing qualitative and quantitative data about the genetic
basis of familial TC still represents a major challenge. In 2006,
a linkage study on 237 pedigreed families, with a history of
one or more cases of TC, identified six regions of interest on
chromosomes 2p23, 3p12, 3q26, 12p13-q21, 18q21-q23, and
Xq27 as susceptibility loci. However, further widenings showed
that no single locus accounted for the majority of the familial
aggregation observed in TC, suggesting at the same time a major
role of multiple susceptibility loci with singular weaker effects
(18). To this regard, significant advances have been provided
by the availability genome wide association studies (GWAS)
that, since the mid-2000’s, progressively increased the number
of susceptibility loci with a predicted effect on TC development
(19–24). In a recent GWAS and meta-analysis, comprising more
than 5,500 cases and 19,000 controls from northern Europe, (25)
identified and confirmed 44 independent TC risk loci (19 newly
discovered and 25 previously reported). Interestingly, through a
complex in situ chromosome conformation-capture analysis in
TC cells, a tentative model of chromatin interactions between
predisposition SNPs and target genes was performed, identifying
three possible pathogenic mechanisms. In particular, 10 of the
risk loci contained genes associated with the transcriptional
regulation of cell development such as GATA4 and GATA1 genes.
These are transcription factors involved in the specification
and differentiation of postnatal testicular development, whose
risk alleles polymorphisms have been previously associated with
tumor progression (26–31). A significant association was also
found for PRDM14 and DMRT1 genes, involved in germ cell
specification-sex determination, and the SALL4 gene through
the disruption of the POU5F1 binding motif (32–35), the latter
associated with the maintenance of pluripotency in embryonic
stem cells (36). In addition, five TC risk loci were associated
with candidate genes with roles inmicrotubule and chromosomal
assembly, particularly the TEX14 gene, involved in kinetochore-
microtubule assembly in the testicular germ cells (37–39),
the WDR73 gene, encoding a key protein for microtubule
organization during interphase (40), and the microtubule
assembly–related genes PMF1, CENPE, and PCNT (41–44).
Furthermore, three TC risk loci subtended a major role of KIT–
MAPK signaling, in agreement with recent evidence showing the
KIT gene as a major somatic driver for TC development (24).
In clinical terms, the 44 identified risk loci for TC accounted
for 34% of the father-to-son familiar risk for TC development,
whilst the top 1% genetic risk at a polygenic risk scores model
had a relative risk of 14% and a 7% lifetime risk of developing
TC (25). However, this pattern is likely to be widened, thanks
to the increasing number of GWAS successively issued. A very
recent meta-analysis of five available GWAS, including the X-
chromosome, identified further 12 risk loci associated with TC,
highlighting the possible involvement of additional cell pathways
in TC, such as germ cell development and pluripotency through
the TFCP2L1 and ZFP42 genes, the kinetochore function through
the ZWILCH gene, the response to DNA damage through the
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TIPIN gene and the mitochondrial function through the TKTL1
and LHPP genes (45).

From this brief summary, it is clear that the pathogenesis
of TC relies on a wide spectrum of genetic factors. Recently,
a great deal of interest has been sparked by the role of gene
copy number variations (CNVs) in cancer development and,
particularly, in TC (46–48). In this regard, our group recently
investigated the involvement of the E2F1 gene CNVs as a TC
risk factor (49). As a member of the E2F protein family, E2F1
is a transcription factor that regulates the transition of the cell
cycle from the G1 phase to the S phase, through an interaction
with the retinoblastoma tumor suppressor (RB) protein (50–
52). Deregulation of E2F1-pRB binding increases the access of
E2F1 to E2F1-binding target genes, containing the E2F-binding
site, and this is thought to increase the susceptibility of tumor
development (53). Importantly, experimental overexpression of
E2F1 in carcinoma cell lines has been associated with increased
cell proliferation through the mTOR signaling pathway (54).
Interestingly, in our study group of the 261 patients with an
history of testicular germ cell tumors and the 165 controls, we
found duplications of the E2F1 gene only in TC patients with
a global prevalence of 6.5 percent. This was associated with
the increased expression of the E2F1 protein only in tumor
tissue specimens obtained from those patients harboring three
copies of E2F1, whilst surrounding non tumor-tissue showed
both lower E2F1 protein expression and downstream-mTOR
phosphorylation (49). These results are highly suggestive of an
involvement of E2F1 CNVs in TGCT susceptibility through the
Akt/mTOR signaling pathway.

It should also be noted that several risk factors clinically
associated with TC development, largely rely on genetic factors.
Cryptorchidism, the failed descent of the testis in the scrotum
through the inguinal canal during the embryonic life, affects 2–
9% of boys born full term and is associated with an almost 9-fold
increased risk of TC, compared to the general population (55, 56).
The migration process of the embryonal testis can be functionally
divided into two sequential phases: the trans-abdominal phase
and the inguino-scrotal phase (57). Data from animal models
disclosed that each phase is finely regulated by specific factors.
In particular, the transabdominal migration of the testis depends
primarily on insulin-like peptide 3 (INSL3) and its receptor,
RXFP2 (58–60), whilst the inguino-scrotal phase largely depends
on androgens signaling (61, 62). Genetic screening in cryptorchid
boys showed, respectively, a 2 and 4% prevalence of mutations in
the INSL3 and RXFP2 genes, more frequently in bilateral forms,
whilst there is less agreement for a causative role of polymorphic
variants (63–65). Interestingly, there is poor association between
mutations of the AR gene and isolated cryptorchidism since the
prevalence in cryptorchid males is generally lower than 2% (63,
66). In addition, expansion sites in the first exon of the AR gene,
also known as poly CAG and GGN repeats, are acknowledged as
a modulator of AR transactivation activity but their causative role
in undescended testis is still under debate (67, 68).

With regards to cryptorchidism, one of the most relevant
causes of this clinical condition is a chromosomal alteration such
as Klinefelter syndrome (KS), affecting ∼1 in every 700 men
(69). KS patients typically present with small testes, infertility,

high levels of gonadotrophins and testosterone (T) at the lower
levels of normality, whilst cryptorchidism presents nearly six
times more frequently than in the general male population (69).
The existing literature relating KS and TC, principally Leydig
cell tumor, is quite abundant and mainly rely on case reports,
however no conclusive association has been provided by the few
available epidemiological studies on larger cohorts (63, 70–84).
Hence, further studies are required to clearly identify the relative
risk of TC associated to KS.

Other genetic causes of isolated cryptorchidism are ascribed
to mutations of the AMH gene or its receptor in the persistent
müllerian duct syndrome described below (85, 86). In addition,
hypospadias, the urethral malformation during embryonal penis
development, is also considered a risk factor for TC (87).
In particular, hypospadias accounts for about 10% of familial
clustering, whilst the estimated heritability of this disease ranges
from 57 to 77% (88, 89).

ENVIRONMENT

The identification of direct environmental causes of TC
development represents a problem with higher complexity. In
fact, most of the acknowledged tumorigenic physical or chemical
agents act indirectly through the disruption of the hormonal
circuits regulating testis function, or by influencing the function
of susceptibility genes (90). However, according to available
literature, exclusive environmental risk factors for TC can be
formally distinguished into four main classes: microbiological,
mechanical, chemical, and physical.

Microbiological
Epidemiological data in 2002 estimated viral infections to be the
causative role of ∼12% of cancers worldwide (91). In particular,
the pathogenic role of infectious agents in testis tumors has
been hypothesized since the late 1980s. Based on epidemiological
similarities between Hodgkin’s disease and TC, Algood et al. (92)
investigated the possible causative role of early exposure to the
Epstein-Barr virus (EBV), through the evaluation of antibodies
to the EBV capsid antigen, in a small group of patients with
an history of stage I germ cell tumors of the testes, receiving
surveillance after orchiectomy (92). Interestingly, 80% of patients
showed elevated titers for anti EBV antibodies compared to
the control subjects, strongly linking cancer disease to previous
viral exposure. In 1994 (93) further investigated the detection
of EBV-DNA in testis specimens from patients with testicular
germ cell tumors, including preinvasive carcinoma in-situ. A
weak positivity for EBV DNA was detected in only six out of
the 20 samples but none of the specimens showed a positive
staining at either anti EBV-immunohistochemistry or in situ-
hybridization techniques, ruling out a direct involvement of
EBV and rather suggesting a putative growth-stimulating role of
EBV-transformed lymphocytes infiltrating in testis stromal tissue
(93). In 2013 Yousif et al. (94) aimed to quantify the possible
association between viral infections and TC through a meta-
analysis. Interestingly, serological markers of exposure to EBV,
Cytomegalovirus, and Parvovirus B19 were associated with TC
with pooled odd ratios (OR) of respectively, 4.80, 1.85, and 2.86.
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Particularly for Human-immunodeficiency virus (HIV), authors
first identified a pooled OR of 1.79 (94). This evidence was
subsequently confirmed by several studies showing a relative risk
ranging from 0.7 to 3.1 [reviewed in Hentrich and Pfister (95)].
However, as for EBV, a clear mechanistic model explaining the
association between TC and HIV is currently under debate.

Mechanical
Despite being poorly acknowledged among typical risk factors
for TC, mechanical, and particularly traumatic events on the
testis, are considered a causal factor of this disease. Indeed,
the experimental model of intra-testicular hematoma induced
by injection of an autologous blood equivalent in rat testis
was associated with a significant and long-lasting alteration of
the testis structure, such as the reduction of the overall testis
volume and the reduction of the seminiferous epithelium size.
All these features resulted in altered testis function such as
the under-representation of the germ cell population within
the seminiferous tubule, altered sperm parameters, and a trend
toward lower testosterone levels (96). Based on this profound
alteration of the testis’ functional architecture, the degeneration
into cancer is rather intuitive, particularly in those situations
of prolonged though subclinical testis trauma. In spite of this
simple model, available evidence linking testis trauma to cancer
are sparse and/or non-conclusive.

An interesting study from Dusek et al. (97) aimed to
quantify the contribution and mutual interactions of very
different types of potential risk factors for TC through
the administration of standardized questionnaires to patients
recruited in two Czech cancer centers, compared to healthy
and age-matched controls (97). Interestingly, in addition to
acknowledged risk factors like cryptorchidism and testis atrophy,
a significant association was found for testicular trauma
resulting with a nearly doubled risk for TC compared to
the controls.

Another example of this model is represented by prolonged
testis-micro traumas in patients practicing sports. In fact,
testicular derangements such as testicular torsion, epididymitis,
and testicular tumors are frequently observed by medical sport
physicians (98). Coldman et al. (99) showed that cycling,
particularly during teenage years, was associated with an almost
doubled risk for TC even after correction for confounding
factors like cryptorchidism or inguinal hernia. Also, horse-riding
resulted in a nearly 3-fold greater risk for TC, which remained
substantially unaltered after correction for confounding factors,
whilst no significant association was reported for motorcycling
or soccer (99). However, subsequent studies failed to identify a
significant association between these sports with TC, suggesting
further investigation (100, 101).

Chemical
Available data on chemicals exerting a direct role as a risk
factor for TC mainly derive from occupational studies. Particular
attention has generally been drawn by the exposure to heavy
metals in extracting and processing plants. Heavy metals,
most frequently absorbed as organometallic compounds, are
known to accumulate in tissues, both disrupting their biological

functions and representing long-term reservoirs, resulting in
prolonged exposure to metal pollutants (102). In particular,
transition series-metals like cadmium (Cd), mercury, and cobalt
are acknowledged as carcinogens from several experimental
studies performed in both animal and cell models (103–105).
However, a direct association between Cd exposure and TC
is still under ascertainment. In 2011, an epidemiological study
for cancer incidence was performed in the Kempen area across
the Dutch-Belgian border, featuring the very long activity of
cadmium and zinc smelters. Compared to the control population,
identified through regional population-based cancer registries,
environmental exposure to Cd showed an increased risk for
female lung cancer, male and female bladder cancer and prostate
cancer but not TC (106). Similarly, another study focused on the
north-east Belgium area investigated the ∼17 years incidence of
cancers, finding an overall increased risk of doubling the 24-h
urinary cadmium excretion, however no significant association
with TC was documented (107). On the other hand, previous
studies performed on metal workers in the Hannover region
of Germany showed a nearly doubled risk of developing TC
compared to the aged matched healthy controls, but no single
chemical emerged at significant levels from the association
analysis (108). In addition, Norwegian metal workers working
with ferrosilicon and silicon furnaces showed a more than
doubled incidence of TC compared with the estimated incidence
in the general Norwegian population according to the age and
historical period (109).

Another class of environmental chemicals associated with TC
is pesticides, as depicted by epidemiological studies disclosing an
increased incidence of TC in agricultural employees (110–112).
However, two great meta-analysis in 1992 and 1998, respectively,
failed to recognize a significant risk due to the exposure to
pesticides in farmers (113, 114). To this regard, opportune
distinctions should be made since substantial difference exists
among countries in terms of chemicals, formulations, and
regulatory principles (90). Furthermore, great differences in
terms of toxicological effects of the different molecule classes
is likely to exist in humans. In fact, organochlorines pesticides
are supposed to act as endocrine disruptors (see below) whilst
pyrethroids are likely to exert a direct effect on the cell
cycle (115, 116).

Physical
Among those physical risk factors theoretically associated with an
increased risk of TC, such as the exposure to ionizing radiations,
ultraviolet light and electrical work, the most clinically valued
is exposure heat stress. As depicted by the external location
of male genitalia, the proper germ cell maturation within the
seminiferous tubule is maintained at 2–8◦C below the body core
temperature (117). Systematic exposure of the testis to over-
physiological temperatures has been associated with several, and
generally reversible, testis derangements such as a reduced sperm
count, motility, mitochondrial function, and even altered sperm
membrane composition (118, 119). As for other environmental
factors, the possible association between heat exposure and TC
was investigated through occupational studies. Early studies
in 1995 performed on TC patients and healthy age-matched
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controls, revealed that occupational exposure to high or extreme
temperatures was associated with an adjusted OR of respectively,
1,2 and 1,7, suggesting external temperature as an independent
risk factor (120). A subsequent study in 2001 confirmed that
the standardized incidence ratio for TC in fire fighters was
3,0 with no increased risk from any other cause of death
(121). However, exposure to milder heat stress like showering
and bathing was not associated with any significant risk for
TC (122).

HORMONES

Exactly like other endocrine tissues in the body, the testis is
both the target and the source of hormones strictly linked in a
feedback-loop regulating pathway (123). In particular, the activity
of the hypothalamus/pituitary/gonadal axis takes place from the
early phases of embryo development, regulating testis descent
and, the adequate location within the scrotal sac and the proper
spermatogenic and endocrine functions, whose systemic effects
are well-known (124). The early disruption of this hormonal
circuit reverberates on testis function in adult life and represents
a major risk factor for TC. Indeed, a tentative mechanistic model
of the neoplastic transformation of germ cells has been developed
by Rajpert-De Meyts et al. (125). This hypothesis is based on the
strict similitude between primordial germ cells and gonocytes
with tumor cells of the carcinoma in situ (CIS), verified at
the molecular level by the shared expression of genes involved
in pluripotency and proliferation, such as NANOG, STELLAR,
DPPA-5, GDF3, K-RAS, and CCND2 (126–129). In this context,
the delayed development of germ cells, associated with long-term
maintenance of embryonic genes, would represent a key event
for the subsequent degeneration into cancer cells (130, 131).
The disruption of the hormonal milieu of germ cells would then
result in misleading signals altering the cell phase-switch toward
mitosis and meiosis, with the consequent risk of a neoplastic
transformation in adult life (125).

The most studied model of hormonal risk factor for TC is the
disorders of sex development (DSD) in 46, XY males, frequently
associated with androgen-insensibility syndrome (AIS), further
distinguished into complete (CAIS), partial (PAIS), or mild
(MAIS) forms (132). As can be guessed from the name of this
pathological condition, its clinical characteristics range from a
female phenotype of CAIS, in spite of an XY karyotype and
normal androgen production, to severe under masculinization
in PAIS, such as female external genitalia or hypospadias or
micropenis, or male infertility and/or gynecomastia in MAIS. A
general feature of the different forms of AIS is the altered function
of the androgen receptor, resulting in a resistance to androgens as
activating ligands. Genetic variants of the AR gene are commonly
acknowledged as being causative of AIS. In particular, 95% of
CAIS are associated with inactivating mutations of AR. In PAIS
however, mutations of the AR gene are detected in <25% of
patients whilst a complementary causative role has been ascribed
to genetic variants of the protein and cofactors that concur to the
AR signaling pathway, such as the deficiency 17β-hydroxysteroid

dehydrogenase (17β-HSD), a key enzyme in steroidogenesis (133,
134). Also, persistent müllerian duct syndrome (PMDS) is a
form of disorder of sex differentiation in 46, XY males caused
by an inactivating mutation of the gene for AMH/MIS (45% of
cases) or its type II receptor (39% of cases) (135). PMDS patients
present genotypically and phenotypically as males with unilateral
or bilateral cryptorchidism and/or an inguinal hernia at infancy
(136). In general, DSD, and in turn AIS, are associated with
and increased risk of TC with an estimated overall prevalence
of nearly 5.5 percent, ranging from 0.8% in CAIS-associated
DSD, 15% in PAIS to 17% in 17β-HSD deficiency (137, 138).
Despite the fact that TC in PMDS has been described in several
case reports, association studies on large cohorts are actually not
available (139–145). Of note, testis retention in the abdomen
represents an association with DSD and represents by itself a risk
factor of TC as previously discussed. Interestingly, the association
between TC and cryptorchidism has been documented in DSD
from both AR mutation and PMDS. Thus, a major pathogenic
role of DSD-associated testis retention in TC cannot be ruled
out (146, 147).

Intriguingly, available data on derangements of the upstream
hypothalamus/pituitary/gonadal axis showed an inconsistent
association with TC. In particular, activating and inactivating
mutations of the LR-receptor (LHR) gene are causative of DSD
forms like isosexual precocious puberty in boys and Leydig
cell hypoplasia, respectively. The latter presents variably from
normal appearing female external genitalia to hypergonadotropic
hypogonadism with microphallus and hypoplastic male external
genitalia (148, 149). However, few available data documented TC
only in patients with isosexual precocious puberty, particularly
for testicular interstitial cell tumor observed in a 9 years
old boy (with no available genetic screening at the time
of the analysis), and two cases of activating mutations
of the LHR gene reporting testicular seminoma in adult
life (150–152).

TESTIS CANCER: SOMETHING IN
BETWEEN GENES, ENVIRONMENT, AND
HORMONES

As for the majority of oncological diseases, TC is the result
of a complex interaction among the aforementioned genetic,
environmental, and hormonal risk factors. To this regard,
testicular dysgenesis syndrome (TDS) is probably the most
reliable and clinically adherent model that describes the actual
pathogenesis of TC (153).

The concept of TDS derives from the observation of
the worldwide increasing incidence of a cluster of male
urinary-genital alterations such as infertility, cryptorchidism,
hypospadias and, indeed, TC. All these clinical conditions share
the common feature of originating during fetal life, during
which the impaired function of Sertoli and/or Leydig cells
alters the proper testis function from germ line development
to hormone production. The combination of these conditions
results in a range of clinical consequences in adult age,

Frontiers in Endocrinology | www.frontiersin.org 5 July 2019 | Volume 10 | Article 408

https://www.frontiersin.org/journals/endocrinology
https://www.frontiersin.org
https://www.frontiersin.org/journals/endocrinology#articles


De Toni et al. Risk Factors for Testis Cancer

spanning from infertility, to disorders of sexual development
and cryptorchidism that, in turn, are risk factors for TC
(154). In addition to the already mentioned genetic factors,
there is a general agreement according to which the failure
of testis nourishing cells is due to environmental factors,
such as the exposure to chemical pollutants with endocrine
disrupting activities (155). This hypothesis was originally
suggested by the wide geographical variation observed for TDS
symptoms in different countries. The most striking evidence,
suggesting the possible influence of anthropogenic factors,
was surely the differential prevalence of TDS-related disorders
observed in two nations at equal latitude and industrialization,
respectively, Denmark, with “higher” prevalence of TDS
symptoms, and Finland with “lower” prevalence of TDS
symptoms (156–159).

The mechanistic hypothesis of the endocrine disruption
in TDS relies on two main pathways. The first one is the
estrogen hypothesis, consisting of the exposure to chemicals
with estrogenic properties that exert a central disruption of
the hypothalamus/pituitary/gonadal axis, reducing in turn T
release from the testis. Diethylstilbestrol (DES) is a clear
example of an endocrine disruptor with estrogen action. Being
an estrogen receptor agonist, DES was frequently prescribed
to pregnant women during the 50s−60s in order to relieve
abortions and pregnancy-related complications. However, males
born from DES-treated mothers showed an increased incidence
of epididymal cysts, altered sperm parameters, cryptorchidism,
and TC (160–162). Similar to DES, the common plastic
additive bisphenol A (BPA) was also acknowledged as a partial
estrogen agonist (163). Exposure to BPA in males has been
associated with increased levels of prolactin, estradiol, and the
sex hormone-binding globulin level (164). Furthermore, higher
levels of BPA in semen were associated with signs of a direct
impairment of spermatogenesis such as poor sperm count and
function (165).

Another suggested mechanism of endocrine disruption
in males is the anti-androgen activity, typically exerted
by phthalates plasticizers (166). Data obtained in cell and
animal models are highly suggestive of direct influence of
phthalates compounds on the endocrine function of Leydig
cells, particularly impairing T and INSL3 production (167–169).
Accordingly, increased prevalence of reduced anogenital distance
(AGD), cryptorchidism, hypospadias, and other genital-urinary
disorders were observed in male subjects from mothers exposed
to this class of chemicals (170).

The list of substances with acknowledged or possible
endocrine disrupting effects is continuously increasing and the
exposure to these environmental agents is currently considered
the major causative factor of the increasing incidence of TC
throughout the last decades. However, equal exposure to the same
disruptor is not univocally associated with the same phenotype
of TDS, highlighting the role of the genetic background in the
establishment of the susceptibility to genital-urinary disorders,
in general, and to TC in particular (171). An interesting example
of how genetic and environmental factors interact, determining
a clinical phenotype, has been provided by our group in a very
recent investigation focused on the E2F1 gene (172). As cited
above, altered E2F1 expression has been significantly associated
to several testis disorders such as spermatogenic impairment,
cryptorchidism, and TC, particular in those cases of increased
gene expression related to supernumerary gene copy numbers
(49). Interestingly, through the use of an engineered NTERA-2
cl.D1 cell model, cultured at over-physiological temperature, the
E2F1 gene expression was up-regulated in a temperature- and
gene-copy number- dependent manner. Altogether, these results
suggest that the clinical condition associated with abnormal E2F1
expression, due to copy number variation, can be worsened even
more by other concomitant environmental conditions, such as
heat stress or an history of cryptorchidism, with a likely impact
on TC development.

TABLE 1 | Genetic factors and related mechanism associated to testis cancer.

Gene Mechanism References

GATA4, GATA1 Specification and differentiation of postnatal testicular development (25–31)

PRDM14, DMRT1 Germ cell specification-sex determination (25, 32–35)

SALL4 Disruption of POU5F1 binding motif; maintenance of pluripotency in embryonic stem cells (25, 36)

TEX14, WDR73, PMF1, CENPE, and PCNT Microtubule and chromosomal assembly; kinetochore-microtubule assembly; microtubule

organization during interphase; microtubule assembly–related genes

(25, 37–44)

KIT KIT–MAPK signaling (25)

FCP2L1, ZFP42 Germ cell development and pluripotency (45)

ZWILCH Kinetochore function (45)

TIPIN Response to DNA damage (45)

TKTL1, LHPP Mitochondrial function (45)

E2F1 Copy number variation (49)

INSL3, RXFP2 Cryptorchidism (55, 56, 63–65)

AR, 17β-HSD Cryptorchidism; steroidogenesis; disorders of sex development (55, 56, 63, 66–68, 133,

134, 137, 138)

AMH, AMH type II receptor Cryptorchidism; disorders of sex development (85, 86, 139–145)

LHR Steroidogenesis (150–152)
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CONCLUSIONS AND FUTURE
PERSPECTIVES

TC is the most prevalent tumor disease in male subjects at
reproductive age, showing a progressive increase throughout the
last four decades. The current model that better explains this
trend, based on clinical and experimental evidence, relies on
the increased exposure to environmental factors, particularly
chemical pollutants with endocrine disrupting activity, that
alters the major hormonal axis that drives testis development
and function from gestational age. The susceptibility to these
alterations further depends on genetic factors that strongly justify
the strong familiarity of TC (Table 1).

A very recent field of investigation that aims to integrate
genetic and environmental factors on the risk for TC is
epigenetics, namely the inheritance of genetic factors that
do not rely on the variation of the genetic sequence but
rather on the regulation of gene expression trough DNA
methylation and histone modification. Very recent investigations
showed that DNA from tumor cells display significant
hypomethylation compared to normal germ cells, evidence
likely due to the over-expression of de-methylating factors
that are generally suppressed after fetal germ cell development
(173). It is a shared opinion that environmental factors largely

govern the balance between methylating and de-methylating
factors (174).

Finally, it should be noted that in spite of the high sensitivity
of TC to chemotherapy, explaining the good prognosis of
treatment, there is still a large population of patients suffering
from drug resistance or inefficient treatment settings among
chemotherapy, radiotherapy, or surveillance (175). In this regard,
some pioneering studies have succeeded in identifying genetic
markers of good responses or tolerability to therapeutic agents,
thus improving the overall outcome of treatments. This is the case
for the identification of genetic variants in the SLC16A5 gene,
which has been significantly associated to ototoxicity induced by
cisplatin (176).

In conclusion, the availability of novel strategies of
investigation are of paramount importance to clarify the
key aspects of TC development, progression and therapy, in
order to further improve the prevention and treatment of a
highly curable disease with an unexplained increasing diffusion.
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