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École Polytechnique, CNRS Université Paris-Saclay
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Abstract. In this paper we prove local smoothing estimates for the Dirac
equation on some non-flat manifolds; in particular, we will consider asymptot-

ically flat and warped products metrics. The strategy of the proofs relies on

the multiplier method.

1. Introduction. The Dirac equation on R1+3 is a constant coefficient, hyperbolic
system of the form

iut +Du+mβu = 0 (1)

where u : Rt ×R3
x → C4, m ≥ 0 is called the mass, the Dirac operator is defined as

D = i−1
n∑
k=1

αk
∂

∂xk
= i−1(α · 5),

and the 4× 4 Dirac matrices can be written as

αk =

(
0 σk

σk 0

)
, k = 1, 2, 3, β =

(
I2 0

0 −I2

)
(2)

in terms of the Pauli matrices

σ1 =

(
0 1

1 0

)
, σ2 =

(
0 −i
i 0

)
, σ3 =

(
1 0

0 −1

)
. (3)

The α matrices satisfy the following relations

αjαk + αkαj = 2δjkI4, 1 ≤ j, k ≤ 3,

αjβ + βαj = 0, j = 1, 2, 3,

β2 = I4;

2010 Mathematics Subject Classification. Primary: 35Q41, 35B40; Secondary: 35B06.
Key words and phrases. Dispersion, PDEs, Dirac equation, asymptotically flat manifolds,

warped products.
The second author is supported by ANR-18-CE40-0028 project ESSED.
∗ Corresponding author: Federico Cacciafesta.

4359

http://dx.doi.org/10.3934/dcds.2019177


4360 FEDERICO CACCIAFESTA AND ANNE-SOPHIE DE SUZZONI

as a consequence, the following identity holds

(i∂t −D −mβ)(i∂t +D +mβ)u = (∆−m2 − ∂2
tt)I4u. (4)

This identity allows us to study the free Dirac equation through a system of de-
coupled Klein-Gordon (or wave, in the mass-less case) equations. Therefore, it is
not a difficult task to deduce dispersive estimates (time-decay, Strichartz...) for the
Dirac flow from the corresponding ones of their more celebrated Klein-Gordon or
wave counterparts. Of course, when perturbative terms appear in equation (1), as
potentials or nonlinear terms, the argument above needs to be handled with a lot
of additional care, and in particular is going to fail in low regularity settings, when
the structure of each term play crucial roles. The study of dispersive estimates for
the Dirac equation with potentials has already been dealt with in literature: we
mention at least the papers [4, 6, 8, 12, 13, 10] in which various sets of estimates
are discussed for electric and magnetic perturbations of equation (1).

In the last years, a lot of effort has been spent in order to investigate higher
order perturbations of dispersive partial differential equations: in particular, the
problem of understanding how variable coefficients perturbations affect the wave
and Schrödinger flows has attracted increasing interest in the community. The
interest for this kind of problems is of geometric nature, as it is indeed natural to
interpret the variable coefficients as a “change of metrics”, and therefore to recast
the problem as the study of dispersive dynamics on non-flat manifolds. It turns out
that in this context a crucial role is played by the so called non-trapping condition
on the coefficients that, roughly speaking, is a condition that prevents geodesic
flows to be confined in compact sets for large times: the failure of such a condition
is indeed understood to be an obstacle for dispersion. Such a condition is in fact
guaranteed in case of “small perturbations” of the flat metric. On the subject of
dispersion for Klein-Gordon and wave equations, we mention, in a non exhaustive
way, [1, 2, 3, 16, 20, 21, 22].

The aim of this manuscript is to provide some first results in this framework
for the Dirac equation for which, to the best of our knowledge, nothing is known;
in particular we here aim to prove weak dispersive estimates for its flow under
some different assumptions on the geometry. We stress the fact that, due to to the
rich algebraic structure of the Dirac operator, its generalization to curved spaces is
significantly more delicate than the one of the Laplacian; we dedicate section 2 to
this issue. On the other hand, once the equation is correctly settled, it is possible
to rely on the the squaring trick (4) as in the free case to reduce to a suitable
variable coefficients wave equation with a lower order term, for which the multiplier
technique can be exploited. Therefore, in the present paper we will essentially be
mixing the strategy developed in [4] to prove dispersive estimates for the magnetic
Dirac equation, with [7, 9], in which the same method is adapted to deal with
the more involved variable coefficients setting for the Schrödinger and Helmholtz
equations.

We will show in section 2 that the general form of the Dirac operator on a
manifold with a given metric gµν is the following

D = iγaeµaDµ (5)

where the matrices γ0 = β and γj = γ0αj for j = 1, 2, 3, eµ is a vierbein (i.e. a set
of matrices that, roughly speaking, connect the curved spacetime to the Minkowski
one) and Dµ defines the covariant derivative for fermionic fields.
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In what follows, we shall restrict to metrics gµν having the following structure

gµν =

 φ−2(t) if µ = ν = 0
0 if µν = 0 and µ 6= ν
−hµν(−→x ) otherwise.

(6)

The function φ is assumed to be strictly positive for all t; let us remark that,
after a change of variable on time, one may take φ equal to 1. The structure (6)
implies means, in simple words, that time and space are decoupled. What is more,
we assume that the manifold is complete: this ensures that the Dirac operator is
self-adjoint (see [11]), a property that is crucial in order to guarantee a unitary
dynamics, and that we use for the conservation of energy or for estimates of norms
in terms of this operator. The same assumption is made in [16]. Within this setting,
we will show that equation (D + m)u = 0 can be written in the more convenient
form

iφ∂tu−Hu = 0 (7)

where H is an operator such that H2 = −∆h + 1
4Rh + m2, and ∆h and Rh are

respectively the Laplace-Beltrami operator and the scalar curvature associated to
the spatial metrics h. As a consequence, it can be proved that if u solves equation
(7) then u also solves the equation

− (φ∂t)
2u+4hu−

1

4
Rhu−m2u = 0. (8)

We should stress the analogy with the free case; the scalar curvature term that
appears in the equation above vanishes when reducing to the Minkowski metric.
Moreover, what we mean by 4h is actually the Laplace-Beltrami for spinors, that
is 4h = DjDj , with Dj the covariant derivatives acting on spinors (see section 2).

Our first main result concerns the case of manifolds which are asymptotically
flat; let us explain precisely the assumptions in this case. First of all, we require for
h(x) = [hjk(x)]nj,k=1 the following natural matrix-type bounds to hold for every x,

ξ ∈ R3

ν|ξ|2 ≤ hjk(x)ξjξk ≤ N |ξ|2 (9)

where hinv := [hjk(x)]nj,k=1 is the inverse of the matrix h(x), which is equivalent to

N−1|ξ|2 ≤ hjk(x)ξjξk ≤ ν−1|ξ|2. (10)

Notice that a consequence of (9) is that there exist constants Ci,ν,N , i = 1, 2, 3
depending on ν,N , such that for all v ∈ R3,

|hinvv|2 ≤ C1,ν,N |hv|2 ≤ C2,ν,N |v|2 ≤ C3,ν,N |hinvv|2

Moreover, (9) implies

N−3/2 ≤
√

det(h(x)) ≤ ν−3/2, ∀ x ∈ R3 (11)

where det(h(x)) = det[hjk(x)]nj,k=1. Then, we impose an asymptotic-flatness condi-
tion in the form

|hinv(x)− I| ≤ CI〈x〉−σ (12)

and
|h′inv(x)|+ |x||h′′inv(x)|+ |x|2|h′′′inv(x)| ≤ Ch〈x〉−1−σ, (13)

for some σ ∈ (0, 1), where we are using the standard notation for the japanese
bracket 〈x〉 = (1 + |x|2)1/2 and we are denoting by |h(x)| the operator norm of

the matrix h(x) and where |h′| =
∑
|α|=1

|∂αh(x)|, |h′′| =
∑
|α|=2

|∂αh(x)| and |h′′′| =



4362 FEDERICO CACCIAFESTA AND ANNE-SOPHIE DE SUZZONI∑
|α|=3

|∂αh(x)|. The constants CI and Ch will have to be small enough. Note also

that these assumptions imply

‖〈x〉1+σ 5 (
√

det(h(x)))‖L∞ + ‖〈x〉1+σ 5 (
√

det(h(x))hjk(x))‖L∞ ≤ C5 (14)

for some constant C5 (the constant C5 might be explicitly written in terms of
Ch, ν and N , but here we prefer to introduce another constant to keep notations
lighter). These are often referred to as long range perturbations of the euclidean
metrics.

We are now ready to state our first result

Theorem 1.1. Let u be a solution to (7) with initial condition u0, with g satisfying
(6), and assume that h satisfies (9), (12) and (13) with the constants involved small
enough. Then for η1, η2 > 0, there exists Cη1,η2 > 0 independent from u such that

‖〈x〉−3/2−η1u‖L2
φL

2
x

+ ‖〈x〉−1/2−η2 5 u‖L2
φL

2
x
≤ Cη1,η2‖Hu0‖2L2(Mh). (15)

The spaces L2
φ, L2(Mh) and L2(Mg), which will be needed in the statement of

Theorem 1.2, are defined in a completely standard way (see forthcoming (25), (24)
and (23).

Remark 1. Let us make a few comments about the functional framework which
are valid for the two theorems. First, we work in geodesically complete geometries
such that we have no issues with border terms when computing the virial identity
that we use in the proof. Then, by Hs norms, we mean norms that depend both on
the spinorial aspect of the Dirac equation and the geometry. Namely, the Hs norm
of u is defined as

‖u‖2Hs :=
∑
|α|≤s

‖Dα1
1 Dα2

2 Dα3
3 u‖2L2(Mh)

where (Dj)1≤j≤3 are the covariant derivatives for Dirac bispinors (we define them
later when introducing the Dirac equation), α = (αj)1≤j≤3 ∈ N3, |α| =

∑
j αj and

L2(Mh) is defined thanks to the infinitesimal volume described by the metrics h.
In our settings, ‖H2 · ‖L2 (where here H denotes the operator given in (7)) is

equivalent to the standard Sobolev norm H2 such that there is enough propagation
of regularity of the Dirac equation to close the computation of the viral identity.

Finally, let us remark that only in the setting of Theorem 1.1, the Hs norm of
u is equivalent to the Sobolev norm in R3, at least up to s = 3, thanks to the
assumption of smallness and regularity of the perturbation.

Remark 2. Our asymptotic-flatness assumptions listed above are fairly standard
in this setting (compare e.g. with [9]). The main example we have in mind is given
by the choice hjk = (1 + ε〈x〉−σ)δjk with σ ∈ (0, 1) and for some ε sufficiently
small: this matrix satisfies indeed all the assumptions of this subsection. As a
further particular case we can think hjk to be a small and regular enough compactly
supported perturbation of the flat metric.

Remark 3. In fact, we can prove under assumptions of Theorem 1.1 a slightly
stronger version of estimate (15), namely the following

‖u‖2XL2
φ

+ ‖ 5 u‖2Y L2
φ
≤ Cν,N,σ‖Hu0‖2L2(Mh) (16)

where the Campanato-type norms X and Y are defined at the end of this section,
by the equations (26), (27). These spaces represent indeed somehow the natural



WEAK DISPERSION FOR THE DIRAC EQUATION ON MANIFOLDS 4363

setting when dealing with the multiplier method (see e.g. [4, 9]); nevertheless, we
prefer to state our Theorem in this form for the sake of symmetry with the next
result. We stress anyway that estimate (16), which is the one that we will prove,
implies (15).

Remark 4. As done in [9] for the Helmholtz equation, our proof allows us, after
carefully following all the constants produced by the various estimates, to provide
some explicit sufficient conditions that guarantee local smoothing estimate (15): we
indeed quantify the closeness to a flat metric which we require by giving out explicit
inequalities that the constants in Assumptions (12)-(13) must satisfy to get the
result. These conditions are given in forthcoming subsection (4.5), by requiring the
positivity of the constants M1 and M2 which reflects in smallness requirements on
the constants CI and Ch in (12)-(13). This fact, as mentioned, is strictly connected
to the geometrical assumption of non-trapping on the metric gjk; therefore our
strategy of proof gives, in a way, some explicit sufficient conditions that guarantee
the metric g to be non-trapping.

Remark 5. In Minkowski space-time, the influence of a magnetic potential in equa-
tion (1) is reflected in the change of the covariant derivative, that is the substitution

5→ 5A := 5− iA

where

A = A(x) = (A1(x), A2(x), A3(x)) : R3 → R3

is the magnetic potential. This phenomenon can be generalized to equation (7): the
presence of a magnetic potential has indeed essentially the effect of changing the
covariant derivative Dµ. In particular, by squaring the magnetic Dirac equation on
a space with a metric gjk with the structure (6) one obtains the following Klein-
Gordon type equation

−(φ∂t)
2u+ 4̃hu−

1

4
Rhu−m2u− 1

2
Fjk[γi, γk]u = 0.

where 4̃h is the magnetic Laplace-Beltrami operator and Fjk = ∂jAk−∂kAj is the
electromagnetic field tensor. The strategy of the present paper allows to deal with
this more general situation: anyway, we prefer not to include magnetic potentials
in order to keep our presentation more readable. We refer the interested reader
to [9], in which the electromagnetic Helmholtz equation is discussed with the same
techniques as here.

Remark 6. The problem of proving Strichartz estimates for solutions to equation
(7) seems significantly more difficult: variable coefficients perturbations indeed pre-
vent the direct use of the standard Duhamel formula to handle the additional terms
(see e.g. [4]) and requires a completely different approach involving phase space
analysis and parametrices construction. We stress the fact, anyway, that proving
Morawetz-type estimates (or local energy decay in the case of the wave equation)
still represents a crucial step in this more involved setting, as they indeed provide a
convenient space to place the errors of the parametrix. The interested reader should
see [17] and references therein. We also mention the fact that one could mimic the
argument presented in [5], where it is proved that global in time Strichartz estimates
for solutions to the wave equation on a non flat background, and also outside of a
compact obstacle, are implied by a suitable local smoothing estimate, provided the
metric is assumed to be flat outside some ball and the solutions to (8) which are
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compactly supported in space are known to satisfy local in time Strichartz estimates.
This strategy seems to apply to our case, at least in order to obtain homogenous
estimates, meaning that it could be adapted to equation (8), that presents an ad-
ditional zero order term, and thus to (7). This would give, at least, a conditional
result. We intend to deal with all these problems in forthcoming papers.

Next, we consider the specific case of the so called warped products, that is metrics
of the form (6) with the additional structure

h11 = 1, h1i = hi1 = 0 if i 6= 1, hij = d(x1)κij(x
2, x3) (17)

where κ is a 2× 2 metric and d is a real function. We denote the scalar curvature
of κ by Rκ = Rκ(x2, x3).

We will use the more comfortable (and intuitive) notation r = x1. In the case
of the flat metric of R3, d(r) = r2 and κ is the metric of the sphere S2. In all
that follows, we assume that κ is smooth enough (C2) and that since h should be
positive, that κ is a positive matrix.

We prove the following theorem.

Theorem 1.2. Let u be a solution to (7) with initial condition u0, with g satisfying
(6) and h as in (17). Then the following results hold.

• (Hyperbolic-type metrics). Take d(r) = er/2 in (17) and assume that for all
(x2, x3)

Rκ(x2, x3) > 0, m2 >
3

32
.

Let η1, η2 > 0. There exists Cη1,η2 > 0 such that for all u solution of the linear
Dirac equation, we have

‖e−r/4〈r〉−(1+η1)u‖2L2(Mg) +‖e−r/4〈r〉−(1/2+η2)5hu‖2L2(Mg) ≤ Cη1,η2‖Hu0‖L2(Mh).

(18)
• (Flat-type metrics). Take d(r) = r2 in (17) and assume that for all (x2, x3),

Rκ ≥ 2, m > 0.

Let η1, η2 > 0. There exists Cη1,η2 > 0 such that for all u solution of the linear
Dirac equation, we have

‖〈r〉−(3/2+η1)u‖2L2(Mg) + ‖〈r〉−(1/2+η2) 5h u‖2L2(Mg) ≤ Cη1,η2‖Hu0‖L2(Mh). (19)

• (Sub-flat type metrics) Take d(r) = rn in (17) with n ∈]2 −
√

2, 4/3]. There
exists Cn > 0 such that if for all (x2, x3), Rκ ≥ Cn, then for all η1, η2 >
0, there exists Cη1,η2,n > 0 such that for all u solution of the linear Dirac
equation, we have

‖〈r〉−(3/2+η1)u‖2L2(Mg) + ‖〈r〉−(1/2+η2)5h u‖2L2(Mg) ≤ Cη1,η2,n‖Hu0‖L2(Mh). (20)

Remark 7. The hypothesis on the mass comes from the fact that the infimum of
the curvature infRh is not positive (it is negative in the hyperbolic case, and 0 in
the other ones). This issue arises when one estimates the H1 norm of u with the
energy, the mass is then used to compensate this negative curvature as it is chosen
such that infRh + 4m > 0. Note that proving Hardy’s inequality for any κ would
permit to have m = 0 in the flat case.

Remark 8. There are different conditions for the curvature of κ. One reason is
specified in the previous remark : we need the curvature not to be infinitely small,
such that the energy controls the H1 norm. This explains Rκ ≥ 0 in the subflat
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case and Rκ ≥ 2 in the flat case. What is more, we use the curvature term to
compensate losses due to the bi-Laplace-Beltrami term in the virial identity in the
hyperbolic and subflat cases. This is why we have more constraining hypothesis.

Remark 9. By mixing the techniques used to prove Theorem 1.1 and Theorem
1.2, one should expect to be able to prove local smoothing for the Dirac equation
on metrics that are asymptotically like the warped products we presented. It is also
reasonable to expect, simply by mimicking techniques, the same results to hold for a
more generic warped product. In the cases, we present, we always take a multiplier
of the same form. The computations for a generic d are somewhat tedious, but if one

wishes to repeat the argument for another d, one natural assumption is d(r)
d′(r) . 〈r〉.

The rest would be finding sufficient hypothesis on 42
hr and 42

hr
2.

The strategy for proving these results relies on the multiplier method: using
some standard integration by parts techniques we will be able to build a proper
virial identity for equation (7) (see Proposition 6) which, by choosing suitable mul-
tiplier functions, will allow us to prove local smoothing estimates. Notice that the
indefinite sign of the Dirac operator provides a major obstacle in the application of
the multiplier method directly to equation (7); this is the reason why one resorts
on the squared equation (8), as done in the magnetic case in [4]. We also stress
the fact that such a method does not seem to apply in lower dimensions due to the
difficulty of finding proper multipliers, and to the best of our knowledge we are not
aware of similar results in dimensions 1 or 2. On the other hand, the method would
be well adapted to deal with high dimensional frameworks: anyway, the extension
of the Dirac equation to high dimensions is not quite as straightforward as, e.g,
the Schrödinger or wave ones, and it would require some additional work and a
fair amount of technicalities that we prefer not to deal with here. Also, the high
dimensional cases seems to present a relatively scarce relevance in the applications.
This is the main reason behind our restriction to dimension n = 3.

The plan of the paper is the following: in section 2 we review the theory of Dirac
operators on curved spaces, showing how to properly build a dynamical equation,
in section 3 we prove the virial identity that is the crucial stepping stone for local
smoothing with the use of the multiplier method, while sections 4 and 5 are devoted,
respectively, to the proofs of Theorems 1.1 and 1.2.

Notations. We conclude this section by fixing some notations that will be adopted
throughout the paper together with some elementary properties. Some of the def-
initions will be anyway recalled when needed to help the reader’s reading. Let
h = h(x) be a 3 × 3, positive definite, real matrix that defines, in a standard way,
a metric tensor. We recall that the scalar curvature can be written as

Rh = hjk
(

∂

∂xi
Λijk −

∂

∂xk
Λiji + Λ`jkΛii` + Λ`jiΛ

i
k`

)
, (21)

where Λijk denote the standard Christoffel symbols (we use will Γ for the ones

associated to g).
In what follows we will use the compact notation for the matrices

h = h(x) = [hjk(x)]3j,k=1 hinv = hinv(x) = [hjk(x)]3j,k=1.

We will need the quantities

ĥ(x) = hjkx̂j x̂k, h(x) = Tr(hinv(x)) = hkk(x)
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where we are using the standard conventions for implicit summation and x̂ = x/|x|.
Notice that, as h(x) is assumed to be positive definite,

0 ≤ ĥ(x) ≤ h(x)

for every x. Also, we will use the compact notation

h̃jk =
√

det(h)hjk.

We point out that the quantities above are to be understood in local coordinates.
Straightforward computations show that, for every sufficiently regular radial func-
tion ψ,

∆hψ(x) = ĥψ′′ +
h− ĥ
|x|

ψ′ +
1√

det(h)
∂j(h̃

jk)x̂kψ
′ (22)

where ′ denotes the radial derivative and we are slightly abusing notations by iden-
tifying the functions ψ(x) and ψ(|x|).

We now introduce the notation for the functional spaces we are using. The norms
with respect to time are given by

‖u‖2L2
φ,T

=

∫ T

0

|u(t)|2

φ(t)
dt, ‖u‖2L2

φ
=

∫ +∞

0

|u(t)|2

φ(t)
dt (23)

where T > 0 and φ is the positive function given in the definition of g (6). In
particular, when φ = 1 these norms recover the standard L2

T (resp. L2) ones, and
we will simply denote with L2

T = L2
1,T . We shall use freely either ∂0 or ∂t for the

time derivative.
The norms ‖ · ‖L2(Mg) and ‖ · ‖L2(Mh) are respectively the L2 norms on the

manifold Mg and Mh, that is

‖f‖2L2(Mg) =

∫
Mg

|f |2 =

∫
R×D(h)

|f(t, x)|2
√

det(g(t, x))dxdt (24)

and

‖f‖2L2(Mh) =

∫
Mh

|f |2 =

∫
D(h)

|f(x)|2
√

det(h(x))dx (25)

where D(h) is the set where h is defined. Due to the structure of g (6), we have
g(t, x) = −φ−2(t)h(x), which yields

‖f‖2L2(Mg) =

∫
R
‖f(t, ·)‖2L2(Mh)φ

−1(t)dt.

Concerning the scalar products, we will denote the scalar product induced by h as

〈f, g〉h =

∫
Mh

fg =

∫
D(h)

f(x)g(x)
√

det(h)d3x,

while with 5hf · 5h we mean the operator hij〈Dif,Dj ·〉C4 .
In the asymptotically flat case we will also make use of the so called Campanato-

type norms , which are defined as (note that 〈R〉 =
√

1 +R2)

‖v‖2X := sup
R>0

1

〈R〉2

∫
Mh∩SR

|v|2dS = sup
R>0

1

〈R〉2

∫
SR

|v|2
√

det(h)dS (26)

where dS denotes the surface measure on the surface of the ball {|x| = R}, and

‖v‖2Y := sup
R>0

1

〈R〉

∫
Mh∩BR

|v|2dx = sup
R>0

1

〈R〉

∫
BR

|v|2
√

det(h)dx (27)
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where we are denoting by SR and BR, respectively, the surface and the interior of
the sphere of radius R centred in the origin. Notice that ‖ · ‖Y is equivalent to the
norm whose square is

sup
R≥1

1

R

∫
Mh∩BR

|v|2. (28)

2. From vierbein to dreibein. Our aim in this subsection is first of all to give
some (basic) motivations and backgrounds that lead to the study of the Dirac
equation on a non-flat setting, and then to describe the Dirac equation on curved
space-time in the case of a metrics which dissociates time and space. We prove
indeed that it can be written as

iφ∂tu−Hu = 0

with φ is the function appearing in the metrics (6) and H an operator such that

H2 = −4h +
1

4
Rh +m2

where h is the space metrics, 4h the Laplace-Beltrami operator associated to this
metrics, m ∈ R+ is a parameter (a mass) and Rh the scalar curvature.

2.1. The Dirac equation in the Minkowski metrics. Before we explain what
is the Dirac equation on manifolds, let us recall what it is on the Minkowski metrics.

The Dirac equation is a Schrödinger equation which is covariant, that is, invariant
under the changes of special relativity referencial, which makes it an equation of
quantum mechanics with relativistic corrections, and which is used to model the
free evolution of a pair electron-positron. In the introduction we have seen how the
equation writes in dimension 1 + 3 (see equation (1) and subsequent lines for the
notations). It can be seen as a Schrödinger equation in the sense that it takes the
form

i∂tu = Hu

with H = mβ − i
∑
j α

j∂j a self-adjoint operator.
We now want to discuss the covariance. The changes of special relativity refer-

encials are the Poincaré group, generated by the space-time translations and linear
transforms that preserve:

• the metrics,
• the orientation,
• causality.

In other words, they form the connected component of the identity in SO(1, 3),
which makes it a connected Lie group. It is denoted by SO0(1, 3) and its elements
are also called Lorentz transforms. Notice that The Dirac equation is quite clearly
invariant under the action of space-time translations. To see that it is invariant
under the action of SO0(1, 3), let us consider a solution u to

iγµ∂µu = mu

and set u′(x′) = u(x) where (x′)µ = Lµνx
ν with L ∈ SO0(1, 3). We have :

mu′ ◦ L = mu = iγµ∂µu = iγµ∂µ(u′ ◦ L) = iγµLνµ(∂νu
′) ◦ L

which can be rewritten as

mu′ = i(γ′)ν∂νu
′

where (γ′)ν = Lνµγ
µ.
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Since L ∈ O(1, 3), we get that the γ′ satisfy the same anti-commutation relations
as the γ, that is

{(γ′)µ, (γ′)ν} = 2ηµν .

Canonical anti-commutation relations tell us that there exists an explicit group
morphism U : SO0(1, 3)→ U4(C) where U4(C) denotes the unitary matrices of C4,
satisfying :

(γ′)ν = Lνµγ
µ → ∀µ, (γ′)µ = U(L)∗γµU(L).

From that, we deduce
mU(L)u′ = iγµ∂µU(L)u′.

In other words, up to an orthonormal change of basis of C4 characterised by U(L),
u′ satisfies the same equation as u.

Hence, to define the Dirac equation, one needs to fix equivalently

• the set of γ,
• the referencial,
• the basis of C4.

The standard representation of the Dirac equation, as discussed, comes with
the choice γ0 = β and γj = γ0αj with αj and β given by (2) (these are known
as standard gamma matrices). In this representation, the components in C4 of a
solution u to the Dirac equation are an electron of spin up, an electron of spin down,
a positron of spin up, a positron of spin down.

A solution u to the Dirac equation is called a (bi)spinor in the sense that a change
of referencial induces a change of basis of C4 as we have seen previously.

Note that :

1. it was the first prediction of anti-matter;
2. a aspinor encodes an information on the spin;
3. experiments validates this equation as a good description of the free evolution

of electron-positrons as it is known for instance in the context of large atoms
or (in 2D) of graphene.

2.2. Motivation and first construction: Vierbein. Let (M, g) be a manifold
with Lorentzian metrics g endowed with a spin structure (as it should encode spin).
Given the spin structure, we can fix a vierbein (or tetrad) e for (M, g), that is, a
matrix bundle satisfying :

eµaη
abeνb = gµν

or equivalently
e aµ ηabe

b
ν = gµν .

The latin indices a, b, etc are lowered or uppered according to metrics η and the
greek indices µ, ν, etc according to metrics g.

Note that e is not uniquely defined by this formula since, if e changes into e′ by
a local Lorentz transform L, that is (e′) aµ = Labe

b
µ , the fact that L belongs locally

to O(1, 3) ensures that

(e′)µaη
ab(e′)νb = gµν .

The Dirac equation writes :

iγµDµu = mu

where m ∈ R still is the mass of the electron, γµ = eµaγ
a with γa the standard

gamma matrices, and where Dµ is the covariant derivatives for Dirac (bi)spinors.
One may check that {γµ, γν} = gµν .
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The covariant derivative for Dirac (bi)spinors is defined as

Dµ = ∂µ + iω ab
µ Σab

where ω ab
µ is a purely geometric factor called the spin connection and Σab is a purely

algebraic factor depending only on the algebraic structure of Dirac (bi)spinors.
This algebraic factor is defined as :

U(δab + εab) = IdC4 + iεabΣab + o(ε)

where U is the same group morphism as previously that sends Lorentz transforms
into orthonormal changes of basis of C4. In other words, the Σab generate U (recall
that SO0(1, 3) is a connected Lie group). Explicitely,

Σab = − i
8

[γa, γb].

The spin connection takes the form

ωabµ = e aν (∂µe
νb + Γνµσe

σb)

where Γµµσ denotes the affine connection, but is usually computed using that it
should satisfy the Leibniz rule :

dea + wab ∧ eb = 0 (29)

where d is the exterior derivative, ∧ is the exterior product and ea and wab are the
1-forms

ea = e aµ dx
µ, wab = ω a

µ bdx
µ.

Under a local Lorentz transform L, the vierbein e is changed into e′ such that

(e′) aµ = Labe
b
µ

which induces that ω changes into ω′, Dµ changes into D′µ and γµ changes into
(γ′)µ.

In parallel, under the same local Lorentz transform L, the spinor u is changed
by definition into spinor u′ as

u′(x′) = U(L)u(x).

The covariant derivative is built in such a way that

D′µu
′ = U(L)Dµu

while we can check that

(γ′)µ = (e′)µaγ
a = eµbL

b
a γ

a.

Since, by definition of U , L b
a γ

a = U(L)γbU(L)∗ we get that

(γ′)µ = eµbU(L)γbU(L)∗ = U(L)γµU(L)∗.

Therefore, if u satisfies the Dirac equation iγµDµu = mu, we get

i(γ′)µD′µu
′ = iU(L)γµDµu = U(L)mu = mu′

and thus u′ satisfies the Dirac equation.
In other words, the Dirac equation is covariant, i.e. it is invariant under local

Lorentz transforms up to a local orthonormal change of basis of C4 described by U .
What is more, the covariant derivative Dµ satisfies the Leibniz rule thanks to the
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condition on ω, (29). One important fact to be noticed is that, by construction, the
squared equation becomes

DµDµu+m2u+
1

4
Rgu = 0

where Rg is the scalar curvature associated to the metric g.

2.3. Dreibein. In this subsection, we prove that if time and space are decorrelated
in the metrics, then they also are in the Dirac equation. The idea is then the
following, having a metrics g of the form

g =

(
1 0
0 −h

)
where h is positive, we write the dreibein, that is the connection between h and
a Euclidean space of dimension 3, the affine connection, the spin connection and
the covariant derivatives relative to h, and explain how they relate to the vierbein,
affine connection, the spin connection and the covariant derivative relative to g.
Then, we write the Dirac equation with the help of the information on h, which
helps us disconnect time and space as in

iφ∂tu = Hu

with H = −γ0(ifµa γ
aDµ + m) where fµa is a dreibein for h, γa are the standard

Dirac matrices, and Dµ is the covariant derivative for spinors in R3, h. We must say
that the result is the natural one, and that this subsection is preeminently technical.

We consider a metric g of the following form

gµν =

 φ−2(x0) if µ = ν = 0
0 if µν = 0 and µ 6= ν
−hµν(−→x ) otherwise.

where −→x = (x1, x2, x3).
Note that in the sequel we will use the latin letters a,b, etc... for the Minkowski

space R1+3, η or for the Euclidean space R3, the latin letters i,j, etc... for the space
D(h), h (where D(h) is the space where h is defined) and the greek letters µ, ν, etc...
for the space, M, g.

Let f ia be a dreibein hence satisfying

hij = f iaδ
abf jb

where δ here denotes the Kronecker symbol. In this sum, a and b are taken only
between 1 and 3. Note that we can and do choose f independent from x0.

In the sequel, we write eaµ a vierbein for g, Γσµν the affine connection for g, while

Λkij is the affine connection for h, ωabµ is the spin connection for g, and αabi is the
one for h.

Proposition 1. Write

eµa =

 φ(x0) if µ = a = 0
0 if µa = 0 and µ 6= a
fµa otherwise.

The matrix eµa is a vierbein for g.
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Proof. The issue is to prove that eaµηabe
b
ν = gµν . We start with µ = ν = 0. We have

e0
aη
abe0

b = φ2δ0
aη
abδ0

b = φ2η00 = g00.

What is more, with i 6= 0 (µ = 0, ν = i 6= 0),

e0
aη
abeib = φei0 = 0 = g0i

and for the same reason eiaη
abe0

b = gi0.
And finally, with ij 6= 0,

eiaη
abejb = f iaη

abf jb = f ia(−δab)f jb = −hij = gij .

This makes eµa a suitable vierbein for g.

Let us see how the Christoffel symbol is changed.

Proposition 2. Let

Λkij =
1

2
hkl(∂ihlj + ∂jhil − ∂lhij).

We have

Γσµν =


−φ−1φ′ if µ = ν = σ = 0
Λσµν if µνσ 6= 0
0 otherwise .

Proof. We have

Γ0
µν =

1

2
g0λ(∂µgλν + ∂νgµλ − ∂λgµν).

Since g0λ = 0 if λ 6= 0, we get

Γ0
µν =

1

2
φ2(∂µg0ν + ∂νgµ0 − ∂0gµν).

Assume ν 6= 0. We have that g0ν = gν0 = 0. Since g00 depends only on x0, and
gµ0 = 0 if µ 6= 0, we have ∂νgµ0 = 0. Since h does not depend on x0, we have
∂0gµν = 0. This yields

Γ0
µν = 0

if ν 6= 0 and by symmetry, Γ0
µν = 0 if µ 6= 0.

Besides,

Γ0
00 =

1

2
φ2∂0g00 = −φ−1φ′.

We have considered all the cases when σ = 0. Now we assume σ 6= 0, and we
consider all the cases when µ = 0. We have

Γσ0ν =
1

2
gσλ(∂0gλν + ∂νg0λ − ∂λg0ν).

Since σ 6= 0, the sum over λ is only for λ ∈ {1, 2, 3}. Hence, replacing λ by i

Γσ0ν = −1

2
hσi(∂0giν + ∂νg0i − ∂ig0ν).

Now it appears that ∂νg0i = ∂ig0ν = 0. Therefore,

Γσ0ν = −1

2
hσi∂0giν .

If ν = 0, giν = 0 and otherwise it does not depend on x0, hence

Γσ0ν = 0
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and by symmetry

Γσµ0 = 0.

Finally, if µνσ 6= 0, we may write µ = i, ν = j, σ = k. We have

Γkij =
1

2
gkλ(∂igjλ + ∂jgiλ − ∂λgij).

Because of the form of g, the sum over λ is taken only for λ ∈ {1, 2, 3}, we replace
λ by l, and get

Γkij =
1

2
hkl(∂ihjl + ∂jhil − ∂lhij) = Λkij .

Therefore, we retrieve the result :

Γσµν =


−φ−1φ′ if µ = ν = σ = 0
Λσµν if µνσ 6= 0
0 otherwise .

Let us see how the spin connection is changed.

Proposition 3. Let

αabi = faj ∂if
jb + faj Λjikf

kb.

We have

ωabµ =

{
αabµ if µab 6= 0
0 otherwise .

Proof. Indeed, we have

ωab0 = eaν∂0e
νb + eaνΓν0σe

σb.

Because Γν0σ = 0 if σ + ν 6= 0 we have eaνΓν0σe
σb = ea0Γ0

00e
0b which, since e00 =

η0ae0
a = φ, is equal to −φφ′ if a = b = 0 and to 0 otherwise.

If ν + b 6= 0, then either eνb = e0b = 0 since b 6= 0, or eνb = eν0 = 0 or eνb = fνb

and does not depend on x0.
Hence, ∂0e

νb = 0 if ν+b 6= 0 and we have ∂0e
00 = ∂0φ = φ′ we get eaν∂0e

νb = φφ′

if a = b = 0 and to 0 otherwise. Therefore,

ωab0 = 0.

We have considered all the cases where µ = 0. We assume µ 6= 0. We deal with
the case a = 0.

We have

ω0b
µ = e0

ν∂µe
νb + e0

νΓνµσe
σb = φ∂µe

0b + φΓ0
µσe

σb.

Since µ 6= 0, Γ0
µσ = 0. Since e0b depends only on x0 and µ 6= 0, ∂µe

0b = 0.

Since ωabµ = −ωbaµ , we have that ωa0
µ = 0.

We have dealt with all the cases where either a, b or µ is equal to 0. We now
treat the case µab 6= 0.

We can replace the sums on the greek letters by sums on latin letters, this yields

ωabi = faj ∂if
jb + faj Γjikf

kb = faj ∂if
jb + faj Λjikf

kb = αabi .

This gives the result.
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2.4. Covariant derivative and Dirac operator. The covariant derivative is
given by

D0 = ∂0 , Di = ∂i +
1

8
αabi [γa, γb].

Therefore, the Dirac operator can be written as

D = iγ0φ∂0 + iγaf jaDj .

Let

H = iγaf jaDj and H = −γ0(H+m).

Proposition 4. With these notations, we have

H2 = m2 −4h +
1

4
Rh. (30)

Proof. First, we prove that H2 = 4h − 1
4Rh.

We have

D2 = H2 + (iγ0φ∂0)2 + (iγ0φ∂0H+Hiγ0φ∂0).

Since γ0 commutes with φ and ∂0 and (γ0)2 = 1, we have (iγ0φ∂0)2 = −(φ∂0)2.
Since φ and ∂0 commute with H and γ0, we have

(iγ0φ∂0H+Hiγ0φ∂0) = iφ∂0(γ0H+Hγ0).

Given the Dirac matrices (2) (recall, again that γ0 = β and γi = γ0αi) , we have
for all a > 0, γ0γa = −γaγ0. Hence, γ0 commutes with [γa, γb] and thus with Dj .
Therefore, we obtain

(γ0H+Hγ0) = i(γ0γa + γaγ
0)f jaDj = 0.

We get

D2 = H2 − (φ∂0)2.

We recall that D2 = −�g − 1
4Rg and given the metric �g = (φ∂0)2 − 4h and

Rg = Rh. Therefore,

H2 = 4h −
1

4
Rh.

Finally, we have

H2 = γ0(H+m)γ0(H+m)

and since m commutes with γ0 and (γ0)2 = Id we get

H2 = (γ0Hγ0 +m)(H+m)

and since H anti-commutes with γ0 and commutes with m, we get

H2 = (−H+m)(H+m) = m2 −H2 = m2 −4h +
1

4
Rh.

Besides, notice that

m+D = γ0(iφ∂0 −H)

and

(iφ∂0 +H)(iφ∂0 −H) = −(φ∂0)2 −H2 = −(φ∂0)2 +4h −
1

4
Rh +m2.
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Corollary 1. If u solves the Dirac equation

iφ∂tu−Hu = 0 (31)

then u satisfies also

− (φ∂t)
2u+4hu−

1

4
Rhu−m2u = 0. (32)

Remark 10. After a change of variable, we can replace φ by φ = 1, and we get
the more simple expression,

m+D = γ0(i∂t −H),

and

(i∂t +H)(i∂t −H) = −∂2
t +4h −

1

4
Rh −m2.

3. Virial identity. We consider the linear equation

iφ∂tu−Hu = 0. (33)

We have seen that if u solves (33), then u also solves

(φ∂t)
2u+ Lu = 0 (34)

with L = H2 = 1
4Rh +m2 −4h. Note that L is self-adjoint for the inner product

〈·, ·〉h. Let us prove quickly that L is indeed symmetric. Take u, v test-functions
(smooth with compact support avoiding possible coordinate singularities of Bj).
The issue comes from −4h. Let us prove formally that

〈u,4hv〉h = −〈5hu,5hv〉h.

We have

4hv = DjDjv = 4̃hv +Bi∂iv + D̃iBiv +BiBiv

where 4̃h is the Laplace-Beltrami operator for scalars, D̃iΨk = ∂iΨk − Γi,jk Ψj and
Bi = hijBj . We get since Bi is skew-symmetric,

〈u,4hv〉h = −〈5̃hu, 5̃hv〉 − 〈Biu, ∂iv〉h −
∫
Mh

hij∂juBiv − 〈Biu,Biv〉h

= −〈5hu,5hv〉h
where 5̃h is the scalar gradient.

We define

Θ(t) = 〈ψφ∂tu, φ∂tu〉h + Re〈(2ψL− Lψ)u, u〉h
where ψ is a real valued function of space.

To conclude this subsection, we compute φ∂tΘ and (φ∂t)
2Θ when u solves (33).

The computation is the same as in the case of a flat metrics and is mainly based on
the self-adjointness of L, and one gets the following

Proposition 5. Let u be a solution of (33). We have that Θ satisfies

φ∂tΘ = Re〈[L,ψ]u, φ∂tu〉h, (35)

(φ∂t)
2Θ = −1

2
Re〈[L, [L,ψ]]u, u〉h. (36)
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3.1. Commutators. We compute explicit formulae in terms of u and h of φ∂tΘ
and (φ∂t)

2Θ.

Proposition 6. Let u be a solution of (33). The explicit expressions of φ∂tΘ and
(φ∂t)

2Θ in terms of u and h are

φ∂tΘ = −Re
(∫
Mh

(4hψ)uφ∂tu+ 2

∫
Mh

5hψ · 5huφ∂tu
)

(37)

(φ∂t)
2Θ =

∫
Mh

(1

2
(42

hψ) +
1

4
5h ψ · 5hRh

)
|u|2 + 2

∫
Mh

(DjuDiu)D2(ψ)ij

where D2(ψ)ij = hilhkj∂l∂kψ − Λk,ij∂kψ, from which we deduce the virial identity

−
∫
Mh

(1

2
(42

hψ) +
1

4
5h ψ · 5hRh

)
|u|2 + 2

∫
Mh

(DjuDiu)D2(ψ)ij

= −(φ∂t)Re
(∫
Mh

(4hψ)uφ∂tu+ 2

∫
Mh

5hψ · 5huφ∂tu
)
. (38)

Proof. Before we start, let us mention that 4h and 5h denote respectively the co-
variant Laplace-Beltrami operator and the gradient applied to a spinor. Therefore,
we denote indifferently 4hψ for the scalar Laplace-Beltrami operator applied to ψ,
and 4hu the Laplace-Beltrami operator for Dirac bispinors applied to u. We also
note that covariant derivatives sastisfy the Leibniz rule, as in

Dj(ψu) = ∂jψu+ ψDju.

First, the commutator between L = 1
4Rh +m2 −4h and ψ is given by

[L,ψ] = [−4h, ψ] = −4h ψ − 25h ψ · 5h
where 5hψ · 5h is the operator given by

5hψ · 5hu = hij∂iψDju.

We deduce from that

φ∂tΘ = −Re
(∫
Mh

(4hψ)uφ∂tu+ 2

∫
Mh

5hψ · 5huφ∂tu
)
.

We now have that, since m2 commutes with everything,

[L, [L,ψ]] = [L,−4hψ]+ [
1

4
Rh,−25hψ ·5h]+ [4h, 25hψ ·5h] = M1 +M2 +M3.

We have, in terms of distributions

M1 = (4h)2ψ + 25h (4hψ) · 5h , M2 =
1

2
5h ψ · 5hRh

and hence

〈M1u, u〉h =

∫
Mh

(4h)2ψ|u|2 +

∫
Mh

25h (4hψ) · 5huu

and

〈M2u, u〉h = +
1

2

∫
Mh

5hψ · 5hRh|u|2.

The term with M2 is dealt with. We now deal with the term with M1 that does
not contain the bi-Laplace-Beltrami operator applied to ψ.
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First, we compute (25h ϕ ·5h)∗, the symmetric operator of 25h ϕ ·5h for any
ϕ ∈ C0 bounded. We have for any test functions v, w ∈ H10, by definition,

〈25h ϕ · 5hv, w〉 = 2

∫ √
det(h)hij∂iϕDjvwd

3x

and since Dj is skew-symmetric,

〈25h ϕ · 5hv, w〉 = 2

∫
Dj

(√
det(h)hij∂iϕw

)
vd3x

and by the Leibniz rule,

〈25h ϕ · 5hv, w〉 = −2

∫
∂j(
√

det(h)hij∂iϕ)vwd3x− 2

∫ √
det(h)hij∂iϕvDjw

and finally, by the definition of 4h
〈25h ϕ · 5hv, w〉 = −2〈v, (4hϕ)w〉h − 2〈v,5hϕ · 5hw〉h

in other words, (25h ϕ · 5h)∗ = −24h ϕ− 25h ϕ · 5h.
Note that, when we say symmetric, we always mean for the scalar product 〈·, ·〉h.
This gives in particular, for ϕ = 4hψ,

〈25h (4hψ) · 5hu, u〉 = −2

∫
Mh

(42
hψ)|u|2 − 〈u, 25h (4hψ) · 5hu〉h

and thus

Re〈25h (4hψ) · 5hu, u〉 = −
∫
Mh

(42
hψ)|u|2 (39)

which yields

Re〈M1u, u〉h = 0.

We deal with the M3 term by directly taking the inner product. We have M3 =
4h(25h ψ · 5h)− (25h ψ · 5h)4h and hence

〈M3u, u〉h = 〈4h(25h ψ · 5h)u, u〉h − 〈(25h ψ · 5h)4h u, u〉h
and then, given the symmetry of 25hψ ·5h (and the self-adjointness of the Laplace-
Beltrami operator),

〈(25h ψ · 5h)4h u, u〉h = −〈4hu, 2(4hψ)u〉h − 〈u,4h(25h ψ · 5h)u〉h.

Therefore, we get

Re〈M3u, u〉h = 2Re〈4h(25h ψ · 5h)u, u〉h + 2Re〈4hu, (4hψ)u〉h.

The second term is given by

〈4hu,4hψu〉h = −
∫
Mh

5hu · 5h(4hψu)

which decomposes, by the Leibniz rule, into

〈4hu,4hψu〉h = −〈5h(4hψ) · 5hu, u〉 −
∫
Mh

4hψ5h u · 5hu

and thanks to previous computations, (39), we get

Re〈4hu,4hψu〉h = −
∫
Mh

4hψ5h u · 5hu+
1

2

∫
Mh

(42
hψ)|u|2.
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By summing up, we get

Re〈[L, [L,ψ]]u, u〉 =

∫
Mh

(
(42

hψ) +
1

2
5h ψ · 5hRh

)
|u|2

− 2

∫
Mh

(4hψ)5h u · 5hu+ 2Re〈4h(25h ψ · 5h)u, u〉h.

It remains to compute ReI, where

I = 2〈4h(25h ψ · 5h)u, u〉h.

Since for any test functions, v, w, we have 〈4hv, w〉h = −〈5hv,5hw〉, we get

I = −4

∫ √
det(h)hijDj

(
hkl∂kψDlu

)
Diud

3x

which decomposes, by the Leibniz rule, into

I = −4
∫ √

det(h)hij∂j(h
kl∂kψ)DluDiud

3x− 4

∫ √
det(h)hijhkl∂kψDlDjuDiud

3x.

Let II be the second term of the right hand side, that is,

II = −4

∫ √
det(h)hijhkl∂kψDlDjuDiud

3x.

By integration by parts, we have

II = 4

∫
Dl

(√
det(h)hijhkl∂kψDiu

)
Djud

3x

which decomposes into

II = 4

∫
∂l

(√
det(h)hijhkl∂kψ

)
DiuDjud

3x− II.

Hence,

ReII = 2

∫
∂l

(√
det(h)hijhkl∂kψ

)
DiuDjud

3x.

Therefore, by summing up

ReI = −4Re

∫ √
det(h)hij∂j(h

kl∂kψ)DluDiud
3x

+ 2

∫
∂l

(√
det(h)hijhkl∂kψ

)
DiuDjud

3x

that is

ReI = Re

∫
Mh

(DjuDiu)D(ψ)ij

with

D(ψ)ij =
2√

det(h)
∂l

(√
det(h)hijhkl∂kψ

)
− 4hil∂l(h

kj∂kψ).

Since

∂l

(√
det(h)hijhkl∂kψ

)
= hij∂l

(√
det(h)hkl∂kψ

)
+ (∂lh

ij)
(√

det(h)hkl∂kψ
)
,

we have

D(ψ)ij = 2hij 4h ψ + 2hkl∂kψ∂lh
ij − 4hil∂l(h

kj∂kψ).
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To sum up, we get

(φ∂t)
2Θ = −

∫
Mh

(1

2
(42

hψ) +
1

4
5h ψ · 5hRh

)
|u|2 +

∫
Mh

(4hψ)5h u · 5hu

− 1

2
Re

∫
Mh

(DjuDiu)D(ψ)ij .

We get

(φ∂t)
2Θ = −

∫
Mh

(1

2
(42

hψ) +
1

4
5h ψ · 5hRh

)
|u|2 +

1

2
Re

∫
Mh

(∂ju∂iu)D1(ψ)ij

with

D1(ψ)ij = 24h ψhij −D(ψ)ij

that is, by definition,

D1(ψ)ij = −2hkl∂kψ∂lh
ij + 4hil∂l(h

kj∂kψ)

and by the Leibniz rule :

D1(ψ)ij = 4hilhkj∂l∂kψ + 2∂kψ(−hkl∂lhij + 2hil∂lh
kj).

Thanks to the real part, we have a symmetry in i and j. Indeed,

Re
(
DjuDiuD1(ψ)ij

)
= Re

(
DiuDjuD1(ψ)ij

)
.

Thus, we can replace D1(ψ)ij by 1
2

(
D1(ψ)ij +D1(ψ)ji

)
, which yields

1

2
Re

∫
Mh

(DjuDiu)D1(ψ)ij = 2

∫
Mh

(DjuDiu)D2(ψ)ij

with

D2(ψ)ij = hilhkj∂l∂kψ +
1

2
∂kψ(−hkl∂lhij + hil∂lh

kj + hjl∂lh
ki).

We recognize the affine connection or Christoffel symbol

Λk,ij = hilhjmΛklm =
1

2

(
hkl∂lh

ij − hil∂lhkj − hjl∂lhki
)
,

which yields

D2(ψ)ij = hilhkj∂l∂kψ − Λk,ij∂kψ. (40)

Finally, we get the virial identity,

−
∫
Mh

(1

2
(42

hψ) +
1

4
5h ψ · 5hRh

)
|u|2 + 2

∫
Mh

(DjuDiu)D2(ψ)ij

= −(φ∂t)Re
(∫
Mh

(4hψ)uφ∂tu+ 2

∫
Mh

5hψ · 5huφ∂tu
)
.
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4. The asymptotically flat case. The proof of Theorem (1.1) is fairly classical
in this setting (see e.g. [4, 9]); nevertheless, before getting into details, let us give a
brief sketch of it in order to make the various steps easier to be followed. The idea
is to rely on virial identity (38), plug in it a proper choice of the multiplier (with
a fixed R > 0) that we will define in subsection 4.2 (see in particular Remark 12
where we briefly discuss the spirit behind the choice), integrate in time and carefully
estimate all the terms. By multiplier we mean the function ψ. We will start from
the Right Hand Side: making use of a modified Hardy inequality, that will be proved
in the next subsection, will allow us to estimate from above with some energy-type
terms at some fixed times 0 and T . Then, we will have to bound the Left Hand Side
from below, which will be significantly more involved. Here we will make heavy use
of our asymptotic-flatness (and smallness) assumptions to prove estimates of the
different terms and, roughly speaking, treat the non-flat ones as perturbations. To
absorb them, it will be necessary to take the sup in R > 0: this will prevent us from
exchanging the time and space norms in the Left Hand Side of (15). Eventually,
we will take the sup in time and use conservation of energy.

4.1. Useful inequalities. We start by proving some Hardy-type and weighted
estimates that will be needed in the proof of Theorem 1.1, i.e. in the asymptotically
flat case.

Proposition 7. Let m ≥ 0 and assume that h satisfies assumptions (9), (12) and
(13) with the constants CI and Ch sufficiently small. Then for any u such that
Hu ∈ L2(Mh) the following inequality holds

m2

∫
Mh

|u|2 +

[
ν4

4
−Kh

] ∫
Mh

|u|2

|x|2
≤
∫
Mh

|Hu|2 (41)

for some small constant Kh depending on CI , Ch.

Proof. We assumed that g was complete, such that the Dirac operator γ0D is self-
adjoint (see [11]). Since γ0D = iφ∂t − H − γ0m, we get that H is essentially
self-adjoint on C∞0 .

We write, as the operator H is self-adjoint with respect to the inner product
defined by h,∫

Mh

|Hu|2 =

∫
Mh

(m2 −∆h)u+
1

4

∫
Mh

Rh|u|2 = I + II. (42)

Notice now that

I =

∫
Mh

5hu · 5hu+m2

∫
Mh

|u|2. (43)

As, we recall, the operator 5hu · 5h denotes hijDifDj where Di is the covariant
derivative for spinors widely discussed in section 2 we can write∫
Mh

5hu·5hu =

∫
Mh

hij∂iu∂ju+

∫
Mh

hijBiuBju−
∫
Mh

hij(∂iB
j)|u|2 = I1+I2−I3,

where we are denoting for brevity with B the field that defines the covariant deriva-
tiveDj (recallDj = ∂j+Bj withBj = iωabj Σab). Now, we rely on the asymptotically
flat structure of the metrics h to estimate the single terms: from (9) we directly
have ∫

Mh

hij∂iu∂ju ≥ ν5/2

∫
R3

| 5 u|2
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which, by the application of standard Hardy’s inequality∫
R3

|u|2

|x|2
≤ 4

∫
R3

| 5 u|2

gives

I1 ≥
ν4

4

∫
Mh

|u|2

|x|2
.

This is to be thought of, somehow, as the “leading” term, the other ones being small
perturbations of it. The term I2 is strictly positive, and therefore we can neglect it;
to control I3 we need instead to give an estimate for the term ∂iB

j . We have shown
that Bj = αabj = fai ∂jf

ib + fai Λijkf
kb, where fab denotes the dreibein that connects

the metrics h with the flat metrics and Λijk are the Christoffel symbols. Since the

dreibein are constructed such that they satisfy the relation hij = f iaδ
abf jb , it is clear

that one can bound, in the sense of the matrices, the square of f with h; therefore,
estimates (9), (12) and (13) hold for the matrices f with the constant σ replaced
by σ/2. After differentiating and some computations one then gets the estimate

I3 =

∫
Mh

hij(∂iB
j)|u|2 ≤ C1(Ch, CI , ν,N)

∫
Mh

|u|2

〈x〉2+σ̃

for some σ̃ > 0, and thus

I3 ≤ C1(Ch, CI , ν,N)

∫
Mh

|u|2

|x|2
.

For the term II, in an analogous fashion, we can estimate each term in the curvature
by using assumptions (9), (12) and (13) to eventually obtain

II ≤ C2(Ch, CI , ν,N)

∫
Mh

|u|2

|x|2
. (44)

We should stress indeed the fact that (13) holds for the matrix h as well, due to the
well known relation ∂xjh

inv = −hinv(∂xjh)hinv, with the modified constant ν−2Ch,
and thus

|hinv(∂hinv)∂h| ≤ N

ν2

C2
h

〈x〉2+2σ
,

|hinv(∂∂h)| ≤ N2

ν4

Ch
|x|〈x〉1+1σ

,

|hinv(hinv∂h)2| ≤ N4

ν4

Ch
〈x〉2+2σ

.

Putting all together, we thus have∫
Mh

|Hu|2 ≥
[
ν4

4
− C1 − C2

] ∫
Mh

|u|2

|x|2
+m2

∫
Mh

|u|2.

Notice that, even though we did not write it explicitly in order to keep the presen-
tation as light as possible, it is possible to take the constants C1 and C2 in order

to have Kh := C1 + C2 <
ν4

4 provided the constants Ch and CI are small enough,
and this concludes the proof.
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Remark 11. In what follows we will make also use of the following estimate, which
holds for any ε ∈ (0, 1),

m2

∫
Mh

|u|2 +

[
(1− ε)ν4

4
−Kh

] ∫
Mh

|u|2

|x|2
+ ε

∫
Mh

| 5 u|2 ≤
∫
Mh

|Hu|2 (45)

that can be obtained by combining (41) with the obvious inequality

ε

∫
Mh

| 5 u|2 +
(1− ε)

4
ν4

∫
Mh

|u|2

|x|2
≤
∫
Mh

| 5 u|2.

In the following Proposition we collect a number of other weighted inequalities
that will be needed in the proofs of the main results (we recall that the spaces X
and Y are defined by (26) and (27) ).

Proposition 8. For any σ ∈ (0, 1) and any u ∈ C∞0 (R3) the following estimates
hold ∫

Mh

|u|2

〈x〉1+σ
≤ 8σ−1CN,ν‖u‖2Y , (46)

sup
R>1

∫
Mh∩BcR

R2

|x|5
|u|2 ≤ CN,ν‖u‖2X , (47)

∫
Mh∩Bc1

|u|2

|x|2〈x〉1+σ
≤ 2σ−1CN,ν‖u‖2X . (48)

‖u‖2X ≤ CN,ν
[
4 sup
R>1

1

R2

∫
Mh∩SR

|u|2 + 13‖ 5 u‖2Y
]

(49)

‖u‖2Y ≤ 3CN,ν
(
2‖ 5 u‖2Y + ‖u‖2X

)
(50)

where the constant CN,ν =
( ν
N

)3/2

.

Proof. For the proof we refer to [9] section 3: the generalization from the Euclidean
case to our perturbative setting is straightforward under assumptions (9)-(11).

4.2. Choice of the multiplier. We here present the multiplier function ψ that
will be used in the main proof. We define the radial function ψ(x) as

ψ0(x) =

∫ r

0

ψ′0(s)ds

where

ψ′0(r) =


r

3
, r ≤ 1

1

2
− 1

6r2
, r > 1

(with a slight abuse we are using the same notation for ψ(x) and ψ(r) where r = |x|).
We then define the scaled function

ψR(r) := Rψ0

( r
R

)
, R > 0

for which we have

ψ′R(r) =


r

3R
, r ≤ R

1

2
− R2

6r2
, r > R.
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Moreover, we evaluate the first 4 derivatives of ψR: we have

ψ′′R(r) =


1

3R
, r ≤ R

R2

3r3
, r > R.

ψ′′′R (r) = −R
2

r4
1r≥R,

ψivR = 4
R2

r5
1r≥R −

1

R2
δ(r −R)

where 1r≥R denotes the characteristic function of the set {x : |x| ≥ R} and δ the
standard Dirac delta distribution. Notice that, for every r ≥ 0,

ψ′′R(r) ≤ 1

2 max{R, r}
≤ 1

2r
, ψ′R(r) ≤ 1

2
.

Moreover, notice that

ψ′′R −
ψ′R
r

=

0, r ≤ R

− 1

2r2

(
1− R2

r

)
, r > R.

(51)

In the following we shall simply denote with ψ = ψR for a fixed R.

Remark 12. Our choice of the multiplier ψ here is classical, and already highly used
in several papers to prove smoothing estimates for different dispersive equations,
also in some perturbative settings. The function ψ is a mix of the so called virial
and Morawetz multipliers, which are respectively given by |x| and |x|2; originally,
the choice of such a function was dictated by the conditions of having a negative
bi-Laplacian and a positive Hessian, together with some good decay at infinity. Of
course, in a fully variable coefficients setting, this properties are much more difficult
to be fulfilled, and a smart choice of the multiplier, to the best of our knowledge,
has never been attempted in this general case. Therefore our choice is motivated by
perturbative arguments: the idea of the proof will be that the “leading” terms in
the inequality will mainly recover the ones in the flat case, while the terms involving
the variable coefficients will be treated by “smallness” arguments.

4.3. Estimate of the right hand-side (RHS). We use the Dirac equation (7)
to rewrite the right hand side of (38) as (notice that the mass term vanishes when
taking the real part)

(φ∂t)Re

(
i

∫
Mh

(∆hψ)Hu u+ 2

∫
Mh

5hψ · 5hu Hu
)
. (52)

First of all, by the application of Young’s inequality we can write the estimate∣∣∣∣∫
Mh

[
(∆hψ)Hu u+ 25h ψ · 5hu Hu

]∣∣∣∣ (53)

≤ 3

2
‖Hu‖2L2(Mh) + ‖ 5h ψ · 5hu‖2L2(Mh) +

1

2
‖∆hψ u‖2L2(Mh).

Recalling (22), (11) and (41) we then have

‖∆hψ u‖2L2(Mh) ≤ 3N

4

∥∥x|−1u
∥∥2

L2(Mh)
+

C5
4ν3/2

∥∥〈x〉−1−αu
∥∥2

L2(Mh)
(54)

≤ C

(
3N

4
+
C5N

3/2

4

)
‖Hu‖L2(Mh)
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where the constant C above will depened on CI and Ch. Moreover, due to condition
(13), we have

| 5h ψ · 5hu| ≤ N/2| 5 u|,
so that applying estimate (45) we obtain

‖ 5h ψ · 5hu‖2L2(Mh) ≤ C‖Hu‖
2
L2(Mh) (55)

with a constant C depending on N , ν, CI and Ch. Therefore, multiplying (54)
times φ−1 and integrating in time between 0 and T we obtain, plugging (54) and
(55) into (53),∣∣∣∣∣

∫ T

0

φ−1(t)(φ(t)∂t)

∫
Mh

[
(∆hψ)Hu u+ 25h ψ · 5hu Hu

]∣∣∣∣∣ (56)

. ‖Hu(T )‖2L2(Mh) + ‖Hu(0)‖2L2(Mh).

4.4. Estimate of the left hand-side (LHS). We now deal with the left hand
side of identity (38). We estimate each term separately, and start with the one
involving the gradient, namely

2

∫
Mh

(DjuDiu)D2(ψ)ij . (57)

Recalling (40), we treat separately terms involving derivatives on the coefficients
from the others. Concerning Λk,ij we have

|(DjuDiu)Λk,ij∂kψ| ≤ 3|hinv||h′inv|| 5h u|2|ψ′|

and thus, by our assumptions (13) and from the bound on ψ′,

|(DjuDiu)Λk,ij∂kψ| ≤
3

2
NCh〈x〉−1−σ| 5h u|2. (58)

Turning to the other term, we use the fact that ψ is radial to rewrite it as follows

hilhkj∂l∂kψ = hilhkj x̂lx̂k

(
ψ′′ − ψ′

|x|

)
+ hilhjl

ψ′

|x|
.

We restrict the quantity above first in the region |x| ≤ R where, notice, ψ′′ = ψ′

|x| .

Therefore,

1|x|≤R(DjuDiu)hilhkj∂l∂kψ =
1

3R
1|x|≤Rh

ilhjl(DjuDiu)

≥ ν2

3R
1|x|≤R| 5h u|2 (59)

where in the last inequality we have used (9). In the region |x| > R we have instead

1|x|>Rh
ilhkj∂l∂kψ =

1

2|x|
[
hilhjl − hilhkj x̂lx̂k

]
+

R2

2|x|3
x̂lx̂kh

ikhjl − R2

6|x|3
hilhjl ≥ 0

(60)
in the sense of matrices (notice that hilhjl−hilhkj x̂lx̂k ≥ 0 in the sense of matrices).
We can therefore neglect this term.

We thus multiply (57) by φ−1, and integrate in time between 0 and T . Exchang-
ing the integrals and applying (58), (59) and (60) therefore gives (recall (46))

2

∫
Mh

φ−1

∫ T

0

(∂ju∂iu)D2ψij ≥ 2ν2

3R

∫
Mh∩BR

‖ 5 u‖2L2
φ,T
− CD2‖ 5 u‖2Y L2

φ,T
(61)
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with the constant

CD2 =
12ν3/2Ch√

Nσ
(62)

Now we turn to the bi-Laplacian term, that is

1

2

∫
Mh

(42
hψ)|u|2. (63)

First of all observe that

∆h(fg) = (∆hf)g + 25h f · 5hg + (∆hg)f,

so that we can write, after some manipulations

∆2
hψ = ∆h∆hψ = I + II + III + IV

with

I = ĥ ·∆hψ
′′ + (h− ĥ)∆

(
ψ′

|x|

)
,

II = Aĥ · ψ′′ +A(h− ĥ) · ψ
′

|x|
,

III = 25h ĥ · 5hψ′′ + 25h (h− ĥ) · 5h
ψ′

|x|
,

IV = ∆h

(
1√

det(h)
∂j(h̃

jkx̂kψ
′)

)
.

We separate terms involving derivatives on the coefficients of hjk (which will be
of perturbative nature) from the others. After some long winded but not difficult
computations (see [9] section 4.4 for further details) one gets

∆2
hψ = S(x) +R(x)

S(x) =ĥ2ψiv + 2ĥ(h− ĥ)ψ
′′′

|x| + (h−ĥ)(h−3ĥ)
|x|2

(
ψ′′ − ψ′

|x|

)
+

+ 2
|x|2 [h`mh`m − hĥ− 4(|hx̂|2 − ĥ2)]

(
ψ′′ − ψ′

|x|

)
+

+ 4
|x| [|hx̂|

2 − ĥ2]
(
ψ′′′ − ψ′′

|x| + ψ′

|x|2

)
and√

det(h)R(x) =ĥ∂m(h̃`m)x̂mψ
′′′ + (h− ĥ)∂k(h̃jk)x̂k

(
ψ′′

|x| −
ψ′

|x|2

)
+

+ [∂j(h̃
jk∂k(h`m)x̂`x̂m) + ∂j(h̃

jkh`m)∂k(x̂`x̂m)]
(
ψ′′ − ψ′

|x|

)
+
√

det(h)(∆hh)
ψ′

|x|
+ 2
√

det(h)hjk∂kh
`mx̂`x̂mx̂j

(
ψ′′′ − ψ′′

|x|

)
+

+ 2
√

det(h)h(5h,5 ψ′

|x| ) +
√

det(h)∆h

(
1√

det(h)
∂j(h̃jkx̂kψ

′)

)
.

In our assumptions on the metric h and noticing that by the definition of ψ we have

|ψ′| ≤ |x|
2(R∨|x|) , |ψ′′| ≤ n−1

2n(R∨|x|) , |ψ′′′| ≤ n−1
2(R∨|x|)|x| ,

the remainder term R(x) can be estimated as

|R(x)| ≤ 36Ch(N + Ch)

|x|〈x〉1+σ max{R, |x|}
. (64)
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We regroup the terms in S(x) to write

S(x) = ĥ2ψiv +
(

2hĥ− 6ĥ2 + 4|hx̂|2
) ψ′′′
|x|

(65)

+
(

2h`mh`m + h
2 − 6hĥ+ 15ĥ2 − 12|hx̂|2

)( ψ′′

|x|2
− ψ′

|x|3

)
.

Now, plugging our choice of the weight into (65) gives (recall (51)

S(x) = − 1

R2
ĥ2δ(|x| −R)

for r ≤ R and, after rearranging the terms,

S(x) = 2
(

3ĥ− h
)
ĥ
R2

|x|5
− 6(|hx̂|2 − ĥ2))

R2

|x|5

−
(

2h`mh`m + h
2 − 6hĥ+ 15ĥ2 − 12|hx̂|2

)(
1−

(
R

|x|

)2
)

1

2|x|3

for |x| > R. As we can write hinv(x) = I + ε(x) (meaning εjk = hjk− δjk), we have

h`mh`m = δ`m`m + 2δ`mε`m + ε`mε`m = 3 + 2ε+ ε`mε`m

as well as

ĥ = 1 + ε̂, a+ h, |hx̂|2 = 1 + 2ε̂+ |εx̂|2.
Notice also that by assumption (12) |ε(x)| = |hinv(x) − I| ≤ CI〈x〉−σ < 1 and
therefore

|ε| ≤ 3CI〈x〉−σ, |ε̂| ≤ CI〈x〉−σ, |εx̂| ≤ CI〈x〉−σ

so that

2h`mh`m + h
2 − 6hĥ+ 15ĥ2 − 12|hx̂|2 = 4ε− 12ε̂+ 2ε`mε`m + ε2

−6εε̂+ 15ε̂2 − 12|εx̂|2

≥ 4ε− 12ε̂− 6εε̂− 12|εx̂|2

≥ −46CI〈x〉−σ. (66)

Also, as 1− CI ≤ ĥ ≤ 1 + CI , we have

−ĥ2 ≤ −(1− CI)2,

and (
3ĥ− h

)
ĥ ≤ 6CI(1 + CI) ≤ 12CI . (67)

Therefore, under our assumptions and with our choice of the multiplier ψ, we obtain
the estimates

S(x) ≤ −(1− CI)2 1

R2
δ(|x| −R) for |x| ≤ R,

and, with a bit more careful computations that essentially rely on (66) and (67)

S(x) ≤ 24CI

[
R2

|x|5
+

1

|x|3〈x〉σ

]
for |x| > R.

We now multiply times φ−1 and integrate in time (63) from 0 to T : this gives

−
∫ T

0

φ−1

∫
Mh

∆2
hψ|u|2 = −

∫
Mh

∆2
hψ‖u‖2L2

φ,T
= I + II



4386 FEDERICO CACCIAFESTA AND ANNE-SOPHIE DE SUZZONI

with

I = −
∫
Mh

S(x)‖u‖2L2
φ,T
, II = −

∫
Mh

R(x)‖u‖2L2
φ,T

and estimate the two terms separately. For the S(x) term we get, thanks to (47)
and (48),

I ≥ (1− CI)2 1

R2

∫
Mh∩SR

‖u‖2L2
φ,T
− 72CI

σ

( ν
N

)3/2

‖u‖2XL2
φ,T
.

The R(x) term can be instead estimated with

II ≥ −36Ch(N + Ch)

∫ T

0

[∫
Mh∩BR

+

∫
Mh∩BcR

]
|u|2

φ(t)|x|2〈x〉1+σ

where BcR is the complementary set of BR, that is the region where r > R. Thanks
to (48) we have∫ T

0

∫
Mh∩BR

|u|2

φ(t)|x|2〈x〉1+σ
≤
∫
Mh∩BR

‖u‖2
L2
φ,T

|x|2〈x〉1+σ
≤ 2

σ

( ν
N

)3/2

‖u‖2XL2
φ,T

(68)

and thanks to (28) and (41)∫ T

0

∫
Mh∩B1

|u|2

φ(t)|x|2〈x〉1+σ
≤
∫ T

0

∫
Mh∩B1

|u|2

φ(t)|x|2
≤ 4‖ 5 u‖2L2(Mh∩B1)L2

φ,T
.

(69)
From (68) and (69) we thus obtain

II ≥ −324Ch(N + Ch)

σ

( ν
N

)3/2 (
‖u‖2XL2

φ,T
+ ‖ 5 u‖2L2(Mh∩B1)L2

φ,T

)
.

Putting all together gives

−1

2

∫ T

0

φ−1

∫
Mh

∆2
hψ|u|2 ≥

(1− CI)2

2

1

R2

∫
Mh∩SR

‖u‖2L2
φ,T

− 1

σ

( ν
N

)3/2 [
36CI‖u‖2XL2

φ,T
+ 162Ch(N + Ch)

(
‖u‖2XL2

φ,T
+ ‖ 5 u‖2L2(Mh∩B1)L

2
φ,T

)]
Recalling (28) eventually gives

−1

2

∫ T

0

φ(t)−1

∫
Mh

∆2
hψ|u|2 ≥ (1− CI)2

2

1

R2

∫
Mh∩SR

‖u‖2L2
φ,T

(70)

− CI∆2‖u‖2XL2
φ,T
− CII∆2‖ 5 u‖2Y L2

φ,T
.

where the constants are explicitly given by

CI∆2 =
( ν
N

)3/2 36CI + 162Ch(N + Ch)

σ
, CII∆2 =

( ν
N

)3/2 162Ch(N + Ch)

σ
(71)

We now turn to the last term of (38) that is∫
Mh

5hψ · 5hRh|u|2. (72)

Notice that it involves only terms with derivatives on h (and indeed vanishes in the
flat case). Therefore, using repeatedly assumptions (13), it is not difficult to show
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that

| 5 Rh(x)| ≤ 3Ch(1 + 18N2)

〈x〉3+3σ
+

3NC2
h + 9NC2

h + 9N3C2
h

〈x〉2+2σ|x|
+

3N2C3
h

〈x〉1+σ|x|2

≤ CR
〈x〉1+σ|x|2

. (73)

where the constant CR is the sum of the three numerators above, that is

CR = 3Ch(1 + 18N2) + 3NC2
h(4 + 3N2) + 3C3

hN
2.

We now multiply as usual (72) times φ−1 and integrate in time between 0 and T :
following calculations and relying on (48)-(41) yield the estimate∫ T

0

φ(t)−1

∫
Mh

5hψ · 5hRh|u|2

≥ −CR
∫ T

0

[∫
Mh∩BR

+

∫
Mh∩BcR

]
|u|2

φ(t)|x|2〈x〉1+σ

≥ −CR
[

2

σ

( ν
N

)3/2

‖u‖2XL2
φ,T

+ 2
( ν
N

)3/2

‖ 5 u‖Y L2
φ,T

]
= −4CIR‖u‖2XL2

φ,T
− CIIR ‖ 5 u‖Y L2

φ,T
(74)

with

CIR =
CR
2σ

( ν
N

)3/2

, CIIR =
CR
2

( ν
N

)3/2

. (75)

4.5. Conclusion of the proof. We multiply times φ−1 and integrate in time
identity (38) from 0 to T , exchange integrals and use (61), (70), (74) for the left
hand side and (56) for the right hand side to obtain

(1− CI)2

2

1

R2

∫
Mh∩SR

‖u‖2L2
φ,T

+
2ν2

3R

∫
Mh∩BR

‖ 5 v‖2L2
φ,T

(76)

−(CI∆2 + CIR)‖u‖2XL2
φ,T
− (CD2 + CII∆2 + CIIR )‖ 5 u‖Y L2

φ,T

≤ Cν,N,σ‖Hu(T )‖2L2(Mh) + ‖Hu(0)‖2L2(Mh)

where the constants are explicit and given by (62), (71) and (75). We also stress
that the constant C = Cν,N,σ does not depend on R. We now take the sup over
R > 1 on the left hand side of (76) (notice that only the first two terms of inequality
above depend on R). We use (49) to estimate, for 0 < θ < 1,

(1− CI)2

2
sup
R>1

1

R2

∫
Mh∩SR

‖u‖2L2
φ,T
≥ (1− θ) (1− CI)2

2
sup
R>1

1

R2

∫
Mh∩SR

‖u‖2L2
φ,T

(77)

+θ(1− CI)2

[
1

4

( ν
N

)3/2

‖u‖2XL2
φ,T
− 13

4
‖ 5 u‖Y L2

φ,T

]
.

Thanks to our assumption (12), we can take ν = 1− CI , such that

sup
R>1

2ν2

3R

∫
Mh∩BR

‖ 5 u‖2L2
φ,T
≥ 2

3
(1− CI)2‖ 5 u‖2Y L2

φ,T
.

Choosing θ in (77) such that 13θ
4 ≤

2
3 (e.g. θ = 1/5) and using the simple property

sup
R

(F1(R) + F2(R)) ≥ 1

2

(
sup
R
F1(R) + sup

R
F2(R)

)
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for positive F1 and F2 yields

(1− CI)2

2
sup
R>1

1

R2

∫
Mh∩SR

‖u‖2L2
φ,T

+ sup
R>1

2ν2

3R

∫
Mh∩BR

‖ 5 u‖2L2
φ,T

≥ (1− CI)2

(
1

40

( ν
N

)3/2

‖u‖2XL2
φ,T

+
1

120
‖ 5 u‖2Y L2

φ,T

)
which plugged into (76) finally gives

M1‖u‖2XL2
φ,T

+M2‖ 5 u‖2Y L2
φ,T
≤ Cν,N,σ‖Hu(T )‖2L2(Mh) + ‖Hu(0)‖2L2(Mh)

with

M1 =
(1− CI)2

40
− CI∆2 − CIR

and

M2 =
(1− CI)2

120
− CD2 − CII∆2 − CIIR .

The proof is concluded provided the constants M1 and M2 are positive, i.e. if
the constants CI and Ch are small enough, by letting T to infinity and using the
conservation of the L2-norm of Hu, which is standard.

5. The warped products case. We dedicate this section to prove Theorem 1.2.
First of all, we notice that if h is in the form (17) the following result holds.

Proposition 9. Let h be a warped product. We have

Rh = −2
d′′

d
+

1

2

(d′
d

)2

+
1

d
Rκ (78)

and

Λ1,ij = 0 if i = 1 or j = 1 and Λ1,ij = −1

2

d′

d2
κij otherwise. (79)

Proof. The proof is straightforward computation.

The strategy to prove Theorem 1.2 is the same we have seen in details in the
previous section to deal with the asymptotically flat case, and thus consists in
applying the virial identity (38) to an appropriate function ψ, and then estimate
the various terms. We will deal with the three different cases separately.

Before getting into details, let us comment on the choice of the multiplier and on
some of its basic properties. The multiplier we choose is very similar to the flat case
or, indeed, the asymptotically flat case one. First, we take ψ to be radial, which
means here that it depends only on the priviledged variable x1 = r. We divide ψ
into two sectors: one below a chosen R (r ≤ R) and one above R. Below R, we
choose the map ψ′ to be affine. This is important because of the integral∫

Mh

D2(ψ)ij∂iu∂ju;

as ψ is radial, this term is equal to∫
Mh

h11ψ′′|Dru|2 −
∫
Mh

ψ′Λ1,ijDiuDju.

Taking ψ′ affine (and chosing it not constant), the first part controls the L2 norm
of ∂ru. In the subflat and flat cases, we chose ψ′ linear because Λ1,ij is proportional
to − 1

rh
ij thus we need r to compensate this loss. In the hyperbolic case, we have

Λ1,ij proportional to −hij thus we need a constant term.
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Above R, we take ψ′(r) = A − Bd(r)−1, choosing A and B such that ψ is C2.
This has many advantages : since d is increasing, ψ′ is increasing and positive;

taking the Laplace-Beltrami of ψ yields 4hψ = A4h r = Ad′

d ; this choice makes

ψ′′ differentiable but not C1, which induces a Dirac delta in 42
hψ.

5.1. Hyperbolic-type metrics. We start with the choice d(r) = er/2 that, as one
may re-scale, includes some hyperbolic manifolds. In this case we have

Rh = −3

8
+ e−r/2Rκ , ∂1Rh = −1

2
e−r/2Rκ , Λ1,ij = −1

4
hij .

We recall that under the hypothesis of Theorem 1.2 for the hyperbolic type
metrics, the curvature of κ is positive, we recall our notation : Rκ > 0.

We make the following choice for the radial multiplier ψR, which is very much
related to the choice of the asymptotically flat case:

ψ′R(r) =

{
1 +Mre−R/2 if r ≤ R
1 +MRe−R/2(2 +R)− 2Me−r/2 if r > R.

(80)

for some M ≤ infRκ where, we recall, ψ′R = ∂1ψR = ∂rψR. With this choice, we
have that ψ is C2 and the following identities hold

ψ′′R = Me−R/21r≤R +Me−r/21r>R

4hψR =
(1

2
+Me−R/2(1 +

r

2
)
)
1r≤R + 1r>R

(1

2
+Me−R/2(2 +R)

)
42ψR = −M

2
e−R/2δ(r −R) + 1r≤R

M

4
e−R/2

where δ is the Dirac delta.
We start by computing the terms involving |u|2 in the virial identity.

Lemma 5.1. We have

−1

2

∫
Mh

(
42
h ψ +

1

2
5h ψ · 5hRh

)
|u|2 ≥

∫
SR

dκ|u|2

where SR is the set r = R.

Proof. We use the fact that Rκ is positive, that ψ′ ≥ 0 and that below R, ψ′(r) ≥ 1,
to get

−1r≤R
M

4
e−R/2 − 1

2
5hψ · 5hRh ≥ 1r≤R

(
e−r/2

1

4
Rκ − e−R/2

M

4

)
.

Since M ≤ infRκ, we get

−1r≤R
M

4
e−R/2 − 1

2
5hψ · 5hRh ≥ 0.

Therefore, we have

−1

2

∫
Mh

(
42
h ψ +

1

2
5h ψ · 5hRh

)
|u|2 ≥

∫
Mh

M

2
e−R/2δ(r −R)|u|2.

What is more, ∫
Mh

δ(r −R)|u|2 = eR/2
∫
SR

|u|2dκ

which yields the result.

We now deal with the terms involving the gradient of u.
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Lemma 5.2. Assuming M ≤ 1
4 , we have∫

Mh

D2(ψ)ijDiuDju ≥Me−R/2
∫
BR

| 5h u|2.

Proof. If i = j = 0, we have D2(ψ)ij = ψ′′(r). And if none of them is 0, we have
D2(ψ)ij = 1

4h
ijψ′. We use that above R, ψ′ and ψ′′ are non negative to get∫

r>R

D2(ψ)ij∂iu∂ju ≥ 0.

Below R, we use that ψ′′ ≥Me−R/2 and ψ′ ≥ 1 ≥Me−R/2, to get the result.

Lemma 5.3. We have, for any η > 0

sup
R

∫
SR

∫
dtφ−1(t)|u2|dκ ≥

∫
Mh

〈r〉−(1+η)e−r/2
∫
dtφ−1(t)|u|2.

Proof. Indeed,∫
Mh

〈r〉−(1+η)e−r/2
∫
dtφ−1(t)|u|2 =

∫ ∞
0

〈r〉−(1+η)

∫
Sr

∫
dtφ−1(t)|u|2dκ.

Lemma 5.4. For any η2 > 0, there exists Cη2 such that

Cη2 sup
R
e−R/2

∫
BR

∫
dtφ−1(t)| 5h u|2 ≥

∫
Mh

〈r〉−(1+η2)e−r/2
∫
dtφ−1(t)| 5h u|2.

Proof. Indeed, let χ = 〈r〉−(1+η2)e−r/2, we have∫
Mh

χ(r)

∫
dtφ−1(t)| 5h u|2 = −

∫
Mh

∫ ∞
r

χ′(y)dy

∫
dtφ−1(t)| 5h u|2(r).

Interverting the integrals we get∫
Mh

χ(r)

∫
dtφ−1(t)| 5h u|2 = −

∫ ∞
0

dyχ′(y)

∫
By

∫
dtφ−1(t)| 5h u|2

≤ −
∫ ∞

0

χ′(y)ey/2dy sup
R
e−R/2

∫
BR

∫
dtφ−1(t)| 5h u|2.

We have χ′(y)ey/2 = −(1 + η2) r
〈r〉3+η −

1
2 〈r〉

−(1+η2). Hence it is integrable, and we

get the result.

Lemma 5.5. Under the hypothesis of Theorem 1.2, there exists C such that for
every u solution of the linear Dirac equation, we have the following estimate∣∣∣ ∫

Mh

4ψRuφ∂tu+

∫
Mh

5hψR · 5huφ∂tu
∣∣∣ ≤ C‖Hu(t)‖L2(Mh).

Proof. We use that u is a solution to the Dirac equation, that is φ∂tu = Hu,∣∣∣ ∫
Mh

4ψRuφ∂tu+

∫
Mh

5hψR · 5huφ∂tu
∣∣∣ = ∣∣∣ ∫

Mh

4hψRuHu+

∫
Mh

5hψR · 5huHu
∣∣∣.

Then, we use that 4hψR and 5hψR both belong to L∞ and that their L∞ norms
are uniformly bounded in R, to obtain∣∣∣ ∫

Mh

4ψRuφ∂tu+

∫
Mh

5hψR · 5huφ∂tu
∣∣∣ . ∫

Mh

|u| |Hu|+
∫
Mh

| 5h u| |Hu|.
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Thanks to Hölder’s inequality we get∣∣∣ ∫
Mh

4ψRuφ∂tu+

∫
Mh

5hψR · 5huφ∂tu
∣∣∣ . ‖u‖L2‖Hu‖L2 + ‖ 5h u‖L2‖Hu‖L2 .

We use that under the hypothesis of Theorem 1.2, Rh + 4m2 is more than a non-
negative constant, which explains the hypothesis m2 > 3

32 , to get that

‖u‖L2 + ‖ 5h u‖L2 . ‖Hu‖L2

which yields the result.

Proof of estimate (18) in Theorem 1.2. Let us recall the virial identity

−
∫
Mh

(1

2
42
h ψR +

1

4
5h ψR · 5hRh

)
|u|2 + 2

∫
Mh

(∂ju∂iu)D2(ψR)ij

= −φ∂tRe
(∫
Mh

4hψRu∂tu+ 2

∫
Mh

5hψR · 5huφ∂tu
)
.

We divide by φ and integrate over time to get∫
dtφ−1(t)

(
−
∫
Mh

(1

2
42
hψR+

1

4
5hψR ·5hRh

)
|u|2 +2

∫
Mh

(∂ju∂iu)D2(ψR)ij
)

≤ 2 sup
t

∣∣∣Re
(∫
Mh

4hψRu∂tu+ 2

∫
Mh

5hψR · 5huφ∂tu
)∣∣∣.

We use Lemma 5.5 to get∫
dtφ−1(t)

(
−
∫
Mh

(1

2
42
hψR+

1

4
5hψR ·5hRh

)
|u|2 +2

∫
Mh

(∂ju∂iu)D2(ψR)ij
)

≤ C sup
t
‖Hu(t)‖2L2 .

And finally, we use the conservation of energy to get∫
dtφ−1(t)

(
−
∫
Mh

(1

2
42
hψR+

1

4
5hψR ·5hRh

)
|u|2 +2

∫
Mh

(∂ju∂iu)D2(ψR)ij
)

≤ C sup
t
‖Hu0‖2L2 .

We use Lemmas 5.1 and 5.2 :∫
dtφ−1(t)

(∫
SR

dκ|u|2 +Me−R/2
∫
BR

| 5h u|2
)
≤ C sup

t
‖Hu0‖2L2 ,

that is,(∫
SR

dκ

∫
dtφ−1(t)|u|2 +Me−R/2

∫
BR

∫
dtφ−1(t)| 5h u|2

)
≤ C sup

t
‖Hu0‖2L2 .

Finally, we pass to the sup and use Lemmas 5.3 and 5.4 to get(∫
Mh

〈r〉−1−η1e−r/2
∫
dtφ−1(t)|u|2 +

∫
Mh

〈r〉−1−η2e−r/2
∫
dtφ−1(t)| 5h u|2

)
≤ C sup

t
‖Hu0‖2L2 ,

which gives the result.
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5.2. Flat-type metrics. There is an equivalence between the Dirac equation on
R1+3 and on the warped product R×R+×S2 provided one choses a natural dreibein.
As we mentionned, dreibein connect the structure of the tangent spaces, it is there-
fore natural to consider

faj = ∂jy
a

where we use ya as the coordinates in the Euclidean space. In this case, the equality
faj ηabf

b
i = hij is equivalent to dyaηabdy

b = dxihijdx
j . The spin connection provided

with this dreibein is equal to 0. An easy way to see this is to use a different (but
equivalent) definition for the spin connection :

αabi =
1

2
f ja(∂if

b
j − ∂jf bi )− 1

2
f jb(∂if

a
j − ∂jfai )− 1

2
fkaf jb(∂kfjc − ∂jfkc)f ci .

Because the change of variable is smooth, we have

∂if
b
j = ∂i∂jy

b = ∂jf
b
i .

We also have fjc = ηcdf
d
j therefore,

(∂kfjc − ∂jfkc) = ηcd(∂kf
d
j − ∂jfdk ) = 0

which yields αabi = 0. This gives Di = ∂i. Finally, the Dirac equation in this space
and with this dreibein writes

iγaeµaDµu = mu.

The mass term and the term involving the derivative in time do not change, hence
we may focus on

γaf jaDj = γaf ja∂j

and since ∂j = ∂jy
b∂b = f bj ∂b we get

γaf jaDj = γaf jaf
b
j ∂b = γaδba∂b = γa∂a

and we retrieve the Dirac equation in the flat case.
We now take d(r) = r2 which includes the flat case. With this choice we have

Rh = −2r−2 + r−2Rκ, ∂rRh = −2(Rκ − 2)
1

r3
.

If Rκ ≥ 2, then the computations are exactly the same as in the flat case. Let us
be more precise.

The multiplier should be essentially the same as in the flat case, that is :

ψ′R(r) =
r

〈R〉
1r≤R +

R

〈R〉

(3

2
− R2

r2

)
1r>R.

We multiply the usual multiplier by R
〈R〉 not to mess with Hardy’s inequality in the

energy term.
We recall that ψ′R is non-negative, increasing and bounded by 3

2 .
What is more,

4hψR =
3

〈R〉
1r≤R +

R

〈R〉
3

r
1r>R

which is positive and bounded by 3 and

42
hψR = − 3

R〈R〉
δ(r −R).

We start with the terms involving |u|2.
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Lemma 5.6. For all R, we have

−1

2

∫
Mh

(42
hψR +

1

2
5h ψR · 5hRh)|u|2 ≥ 3

R

〈R〉

∫
SR

|u|2dκ.

And for all η > 0, there exists Cη such that

‖〈r〉−3/2−ηu‖2L2(Mg) ≤ Cη sup
R

R

〈R〉

∫
SR

∫
dtφ−1(t)|u|2dκ.

Proof. We have that

−
∫
Mh

42
hψR|u|2 = 3

R

〈R〉

∫
SR

|u|2dκ.

What is more ψ′R is non-negative and since Rκ ≥ 2, ∂rRh is non positive. This
means

−1

4

∫
Mh

5hψR · 5hRh|u|2 ≥ 0.

Note that since ψ′R goes to 3
2
R
〈R〉 when r goes to ∞, 5hψR · 5hRh behave like

1
r3 when r goes to ∞, this is not sufficient to be compensated by the bi-Laplace-
Beltrami term if Rκ ≤ 2.

We consider the quantity

‖〈r〉−3/2−ηu‖2L2(Mg) =

∫
Mh

〈r〉−3−2η

∫
dtφ−1(t)|u|2

=

∫ ∞
0

〈r〉−2−2ηr
( r

〈r〉

∫
Sr

∫
dtφ−1(t)|u|2dκ

)
.

Since 〈r〉−2−2ηr is integrable, this yields,

‖〈r〉−3/2−ηu‖2L2(Mg) ≤ Cη sup
R

R

〈R〉

∫
SR

∫
dtφ−1(t)|u|2dκ

which concludes the proof.

We now focus on the term involving the derivatives of u.

Lemma 5.7. For all R, we have∫
Mh

D2(ψR)ijDiuDju ≥
1

〈R〉

∫
BR

| 5h u|2.

And for any η2 > 0, there exists Cη2 such that

‖〈r〉−1/2−η2 5h u‖L2(Mg) ≤ Cη2 sup
R

1

〈R〉

∫
BR

∫
dtφ−1(t)| 5h u|2.

Proof. We have D2(ψR)ij = hilhkj∂l∂kψR − Λk,ij∂kψR, and because ψR is radial,
this yields

D2(ψR)ij = δi1δ
j
1ψ
′′
R − Λ1,ijψ′R.

we have Λ1,ij = 0 if i = 1 or j = 1 and Λ1,ij = − 1
2
d′

d h
ij otherwise. Therefore, with

d(r) = r2

D2(ψR)ij = δi1δ
j
1ψ
′′
R + (1− δi1)(1− δj1)

hij

r
ψ′R.

Above R, we use that ψ′R and ψ′′R are non negative and that κij is positive to get∫
r>R

D2(ψR)ijDiuDju ≥ 0.
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Below R, we have ψ′′R =
ψ′
R

r = 1
〈R〉 , therefore D2(ψR)ij = 1

〈R〉h
ij and∫

Mh

D2(ψR)ij∂iu∂ju ≥
1

〈R〉

∫
BR

| 5h u|2.

Write χ(r) = 〈r〉−1−2η2 . We use as in the hyperbolic case that∫
Mh

χ(r)

∫
dtφ−1(t)| 5h u|2 = −

∫ ∞
0

χ′(y)

∫
By

∫
dtφ−1(t)| 5h u|2

which yields∫
Mh

χ(r)

∫
dtφ−1(t)| 5h u|2 = −

∫ ∞
0

χ′(y)〈y〉 1

〈y〉

∫
By

∫
dtφ−1(t)| 5h u|2

We have −χ′(y)〈y〉 = (1 + 2η2)y〈y〉−2−2η2 which is integrable since η2 > 0 and thus∫
χ(r)

∫
dtφ−1(t)| 5h u|2 . sup

y

1

〈y〉

∫
By

∫
dtφ−1(t)| 5h u|2

from which we deduce the result.

This concludes the estimates for the LHS, we now deal with the RHS.

Lemma 5.8. Under the hypothesis of Theorem 1.2, there exists C such that for
every u solution of the linear Dirac equation, we have the following estimate∣∣∣ ∫

Mh

4ψRuφ∂tu+

∫
Mh

5hψR · 5huφ∂tu
∣∣∣ ≤ C‖Hu(t)‖L2(Mh).

Proof. We can essentially repeat the proof in the hyperbolic case. The only differ-
ence is that to have Rh + 4m bigger than a positive constant, we need m > 0.

The second estimate of Theorem 1.2 is deduced in the same way as in the hyper-
bolic case.

5.3. Sub-flat type metrics. We consider another specific case, which is d(r) = rn

with 2−
√

2 < n ≤ 4
3 . With this choice we have

Rh =
4n− 3n2

2r2
+

1

rn
Rκ and ∂rRh = −4n− 3n2

r3
− n

rn+1
Rκ. (81)

As ∂rRh is negative (as long as Rκ is non negative), we may have that it can
compensate losses due to the bi-Laplacian.

Let us take, inspired again by the choice in the asymptotically flat case,

ψ′R =


r

〈R〉
if r ≤ R(n+ 1

n
− 1

n

(R
r

)n) R

〈R〉
if r > R

Notice that with this choice ψR ∈ C2. Moreover, we note the following properties :

• for r ≤ R, we have ψ′′R = 1
〈R〉 , and 4hψR = n+1

〈R〉 ,

• For r > R, we have ψ′′R > 0, hence R
〈R〉 ≤ ψ

′
R ≤

(n+1)R
〈R〉 .

Besides,

4hψR = (n+ 1)
R

r〈R〉
1r>R.



WEAK DISPERSION FOR THE DIRAC EQUATION ON MANIFOLDS 4395

From these relations we can deduce,

42
hψR = − (n+ 1)

R〈R〉
δ(r −R)− 1r>RR(n+ 1)(n− 2)r−3〈R〉−1.

Note that ψ′R is non negative, increasing and bounded by n+1
n and that 4hψR

is bounded by n+ 1.
We start with the terms in |u|2 in the LHS.

Lemma 5.9. Assuming that n ≥ 2−
√

2, there exists Cn > 0, such that if minRκ ≥
Cn, then

sup
y

yn−1

〈y〉

∫
Sy

∫
dtφ−1(t)|u|2dκ ≤

Cn sup
R

(
−
∫
Mh

(42
hψR +

1

2
5h Rh · 5hψR)

∫
dtφ−1(t)|u|2

)
.

Proof. Write

−(42
hψR +

1

2
5h Rh · 5hψR) =

n+ 1

R〈R〉
δ(r −R) + fR(r) + gR(r)

with

fR(r) = −1r≤R
1

2
5h Rh · 5hψR

and

gR(r) =
( R

〈R〉
(n+ 1)(n− 2)r−3 − 1

2
5h Rh · 5hψR

)
1r>R.

We have∫
Mh

n+ 1

R〈R〉
δ(r −R)

∫
dtφ−1(t)|u|2 = (n+ 1)

Rn−1

〈R〉

∫
SR

∫
dtφ−1(t)|u|2dκ.

We have that ψ′R is non negative and that ∂1Rh is non positive, thus fR(r) ≥ 0,
therefore ∫

Mh

fR(r)

∫
dtφ−1(t)|u|2 ≥ 0.

Since ∂1Rh is non negative, and ψ′R ≥ R
〈R〉 we have

gR(r) ≥ R

〈R〉

(
(n+ 1)(n− 2)r−3 − 1

2
∂1Rh

)
1r>R,

and replacing ∂1Rh by its value,

gR(r) ≥ R

〈R〉

(
− n2 − 2n+ 4

2
r−3 +

nRκ
rn+1

)
1r>R.

We factorise by r−3 to get

gR(r) ≥ R

r3〈R〉

(
− n2 − 2n+ 4

2
+ nRκr2−n+1

)
1r>R.

Note that n2 − 2n + 4 is always positive and that 2 − n > 0. Hence for r ≥ R0 =(
n2−2n+4
2nminRκ

)1/(2−n)

, gR(r) ≥ 0, which implies∫
Mh

gR(r)|u|2 ≥
∫
R≤r≤R0

gR(r)|u|2dr ≥ − R

〈R〉
n2 − 2n+ 4

2

∫
R≤r≤R0

r−3|u|2.
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We have ∫
R≤r≤R0

r−3

∫
dtφ−1(t)|u|2 =

∫
drrn−3

∫
Sr

∫
dtφ−1(t)|u|2dκ

≤ sup
y

yn−1

〈y〉

∫
Sy

∫
dtφ−1(t)|u|2dκ

∫ R0

R

〈r〉r−2dr.

Since ∫ R0

R

〈r〉r−2dr ≤ 〈R0〉
R

,

we have∫
Mh

gR(r)

∫
dtφ−1(t)|u|2 ≥ −n

2 − 2n+ 4

2
〈R0〉 sup

y

yn−1

〈y〉

∫
Sy

∫
dtφ−1(t)|u|2.

Combining this inequality with the ones involving fR and the Dirac delta, we get

−
∫
Mh

(42
hψR +

1

2
5h Rh · 5hψR)

∫
dtφ−1(t)|u|2

≥ (n+ 1)
Rn−1

〈R〉

∫
SR

∫
dtφ−1(t)|u|2dκ− n2 − 2n+ 4

2
〈R0〉 sup

y

yn−1

〈y〉

∫
Sy

∫
dtφ−1(t)|u|2.

we take the supremum over R to get

sup
R

(
−
∫
Mh

(42
hψR +

1

2
5h Rh · 5hψR)

∫
dtφ−1(t)|u|2

)
≥
(

(n+ 1)− n2 − 2n+ 4

2
〈R0〉

)
sup
y

yn−1

〈y〉

∫
Sy

∫
dtφ−1(t)|u|2.

Note that n + 1 − n2−2n+4
2 = 1

2 (2 +
√

2 − n)(n − (2 −
√

2) hence if n > 2 −
√

2,
2(n+1)
n2−2n+4 > 1. Take infRκ sufficiently big such that R0 is sufficiently small to have

〈R0〉 <
2(n+ 1)

n2 − 2n+ 4
.

With these conditions, (n+ 1)− n2−2n+4
2 〈R0〉 > 0, and we get the result.

Lemma 5.10. Let n ∈]2−
√

2, 4
3 ] and η > 0. There exists Cn,η such that if for all

x2, x3, Rκ ≥ Cn then

‖〈r〉−3/2−ηu‖2L2(Mg) ≤ Cn sup
R

(
−
∫
Mh

(42
hψR +

1

2
5hRh ·5hψR)

∫
dtφ−1(t)|u|2

)
.

Proof. We have

‖〈r〉−3/2−ηu‖2L2(Mg) =

∫
Mh

〈r〉−3−2η

∫
dtφ−1(t)|u|2

=

∫ ∞
0

drrn〈r〉−3−2η

∫
Sr

dκ

∫
dtφ−1(t)|u|2.

We get

‖〈r〉−3/2−ηu‖2L2(Mg) ≤
∫ ∞

0

dr〈r〉−2−2ηr sup
y

yn−1

〈y〉

∫
Sy

∫
dtφ−1(t)|u|2dκ

and we use the previous result to conclude.

We deal with the terms in 5hu in the left hand side of the virial identity.



WEAK DISPERSION FOR THE DIRAC EQUATION ON MANIFOLDS 4397

Lemma 5.11. We have for all R,

2

∫
Mh

D2(ψR)ijDiuDju ≥
n

〈R〉

∫
BR

|u|2.

For all η2 > 0 there exists Cη2,n such that

‖〈r〉−1/2−η2 5h u‖2L2(Mg) ≤ Cη2,n sup
R

1

〈R〉

∫
BR

∫
dtφ−1(t)| 5h u|2.

Proof. We have

D2(ψR)11 = ψ′′R and if ij 6= 1 D2(ψR)ij =
1

2

n

r
hij(ψ′R),

from which we deduce that above R, since ψ′R is non negative and non decreasing,
we have

D2(ψR)ij∂iDiuDju ≥ 0

and under R, since ψ′R = r
〈R〉 ,

D2(ψR)ijDiuDju ≥
n

2〈R〉
| 5h u|2.

Therefore,

2

∫
Mh

D2(ψR)∂iu∂ju ≥
n

〈R〉

∫
BR

| 5h u|2.

Let χ(r) = 〈r〉−1−2η2 . We have

‖〈r〉−1/2−η2 5h u‖2L2(Mg) =

∫
Mh

χ(r)

∫
dtφ−1(t)| 5h u|2.

Given that χ(r) = −
∫∞
r
χ′(y)dy, we get

‖〈r〉−1/2−η2 5h u‖2L2(Mg) = −
∫ ∞

0

dyχ′(y)

∫
By

∫
dtφ−1(t)| 5h u|2.

We deduce

‖〈r〉−1/2−η2 5h u‖2L2(Mg) ≤ −
∫ ∞

0

〈y〉χ′(y) sup
R

1

〈R〉

∫
BR

∫
dtφ−1(t)| 5h u|2.

We have −χ′(y)〈y〉 = (1 + 2η2) r
〈r〉 〈r〉

−1−2η2 , hence −χ′(y)〈y〉 is integrable and we

get the result.

We now deal with the LHS.

Lemma 5.12. Under the hypothesis of Theorem 1.2, there exists C such that for
every u solution of the linear Dirac equation, we have the following estimate∣∣∣ ∫

Mh

4ψRuφ∂tu+

∫
Mh

5hψR · 5huφ∂tu
∣∣∣ ≤ C‖Hu(t)‖L2(Mg).

Proof. We can essentially repeat the proof in the hyperbolic case. The only differ-
ence is that to have Rh + 4m bigger that a positive constant, we need m > 0.

The third estimate of Theorem 1.2 is deduced in the same way as in the hyperbolic
case.
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