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Abstract. We provide a general strategy to construct multilinear in-
equalities of Brascamp–Lieb type on compact homogeneous spaces of Lie
groups. As an application we obtain sharp integral inequalities on the
real unit sphere involving functions with some degree of symmetry.

1. Introduction

Many well-known multilinear inequalities commonly used in analysis, such
as multilinear Hölder’s inequality, Loomis–Whitney inequality and the sharp
Young convolution inequality, can be seen as instances of a broader family of
estimates: the so called Brascamp–Lieb inequalities. These are inequalities
of the form ∫

Rn

m∏
j=1

fj(Bjx)dx ≤ C
m∏
j=1

‖fj‖Lpj (Rnj ), (1)

where pj ∈ [1,∞], Bj : Rn → Rnj are linear surjective maps and the functions
fj : Rnj → R+ are measurable, for j = 1, . . . ,m. The constant C in (1) is the
smallest constant, either finite or infinite, over all measurable inputs fj for
which (1) holds. This constant depends on the maps Bj and the exponents
pj and is called the Brascamp–Lieb constant.

These inequalities were extensively studied in the last years, starting from
the works of Rogers [20] Brascamp, Lieb and Luttinger [7] and Brascamp and
Lieb [6], where the authors studied the rank-one case, that is the case where
nj = 1 for all j, using rearrangement techniques. In particular they proved
that the Brascamp–Lieb constant is the same if one restricts the inputs to
Gaussians, a result known as Lieb’s Theorem. This result was then extended
to the higher rank case by Lieb in [15], then Barthe gave an alternative proof
using transportation of mass techniques in [2].

Another approach to the problem was introduced by Carlen, Lieb, Loss
who used heat flow methods to prove Lieb’s Theorem in the rank one case
in [9]. This approach was rediscovered independently and used by Bennett,
Carbery, Christ and Tao to prove Lieb’s Theorem in the general case in [5].
In particular they were able to prove the following theorem.

Theorem 1.1 ([5]). The constant C in (1) is finite if and only if the scaling
condition

m∑
j=1

p−1j nj = n (2)
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and the dimension condition

dim(V ) ≤
m∑
j=1

p−1j dim(BjV ), (3)

for all subspaces V ⊆ Rn, are satisfied.

The heat flow technique consists in studying the monotonicity properties
of a certain function, depending on a nonnegative parameter that can be
thought of as time, that is related to the heat evolution of some functions.
Comparing this function at different times is a way of producing inequalities.
For example in [5] the authors study, among other things, the case of the
so called geometric Brascamp–Lieb inequality (already studied by Ball in
[1] and Barthe in [2]), in which the linear maps B∗j are isometries and the
condition

m∑
j=1

p−1j B∗jBj = IdRn (4)

holds. They show that for nonnegative Schwartz functions fj the quantity

Q(t) =

∫
Rn

m∏
j=1

uj(t, x)dx (5)

is nondecreasing, where uj(t, x)pj is the solution of the heat equation in Rn
with initial datum f

pj
j ◦ Bj . Inequality (1) is then obtained by comparing

limt→0Q(t) with limt→∞Q(t).
In this paper we will interpret inequality (1) in the following way: we

are given a family of functions fj ◦ Bj , each one having some degree of
symmetry (indeed, these functions are constant on the fibers of the maps Bj ,
that are affine subspaces parallel to kerBj) and we want to find exponents
pj for which the inequality holds with a finite constant C for all choices
of functions. Theorem 1.1 gives a complete answer to this question in the
Euclidean setting, relating the exponents pj to the geometry of the maps Bj
and to the scale invariant structure of Rn.

An interesting issue is to extend inequality (1) to other settings. This
problem was already addressed in the works [9, 10] where some inequalities
were obtained in the case of real spheres and of the permutation group on d
elements Sd (see also [3, 4] for further results).

In particular in [9, Theorem 1.1] the authors proved that for nonnegative
measurable functions fi on the unit sphere Sn−1 of Rn depending only on
one variable xi (that can be seen as functions f̃ defined on the interval
[−1, 1] and pulled-back to the sphere by the projection on the i-th variable
πi : Sn−1 → [−1, 1]), the estimate∫

Sn−1

n∏
j=1

f̃j(πjx)dσ ≤
n∏
j=1

‖f̃j ◦ πj‖Lp(Sn−1) (6)

holds, with p ≥ 2, where dσ is the normalized uniform measure on the sphere.
The authors also proved that the inequality is sharp, in the sense that there
exist n functions in Lp(Sn−1) for p < 2, each depending on a different variable,
for which the right-hand side of (6) is finite and the left-hand side diverges.

Inequality (6) can be viewed in two ways:
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• it can be compared with Hölder’s inequality, but in (6) the sum of
the reciprocal of the exponents is bigger than one, a condition that
cannot be achieved for general functions just by multilinear Hölder’s
inequality and continuous embeddings of Lebesgue spaces on the
sphere, so that, in this sense, inequality (6) can be considered an
improvement on Hölder’s inequality;
• as a Brascamp–Lieb type inequality, plugging in it the estimate
‖f̃j ◦ πj‖Lp . ‖f̃j‖Lp([−1,1]).

The proof of inequality (6) is based on the heat flow method and relies
on the fact that the sphere is a compact homogeneous space of Lie groups.
Following ideas of [9] in Section 2 of this paper we find inequalities similar to
(6) in the setting of general compact homogeneous spaces of type M = K\G,
where G is a connected, unimodular Lie group and K is a closed subgroup
of G. We endow M with the unique normalized measure dµ induced by the
Haar measure on G. We fix a finite set of vector fields I in the Lie algebra of
left invariant vector fields g of G satisfying Hörmander’s bracket generating
condition and we construct the sum of squares sub-Laplacian L, which is a
symmetric, negative, essentially self-adjoint, hypoelliptic operator acting on
smooth functions defined on G and on its quotient M . By means of the heat
semigroup {etL}t>0, we introduce the nonlinear heat flow

v(t, x) =
(
etLfp

)1/p
,

where p ≥ 1 and f ∈ C∞(M), which is the solution of the nonlinear equation

∂tv(t, x) = (p− 1)
|∇v(t, x)|2

v(t, x)
+ Lv(t, x),

where ∇ is the gradient with respect to the vector fields in I.
Taking m different nonnegative functions fi ∈ C∞(M) and considering

their nonlinear evolutions vi(t, x) one can prove that the function

φ(t) =

∫
M

m∏
i=1

vi(t, x)dµ (7)

is nondecreasing for p ≥ m. By a comparison between limt→0 φ(t) and
limt→∞ φ(t), it will then follow that∫

M

m∏
i=1

fidµ ≤
m∏
i=1

‖fi‖Lp(M), (8)

for p ≥ m. In the case of general functions fi the estimate (8) can also be
obtained as a straightforward consequence of multilinear Hölder’s inequality
and continuous embeddings of Lebesgue spaces on M . This is not surprising,
since with generic functions fi one cannot expect to improve on Hölder’s
exponents. Nevertheless, if we let the functions involved have some kind
of symmetries, we can obtain better exponents not directly deducible by
Hölder’s inequality and continuous embeddings.

The relevant symmetries in our analysis are those that can be described
by means of subsets A of I consisting of vector fields that commute with L.
We call a subset A of I maximal if 〈A〉 ∩ I = A, where 〈A〉 is the smallest
Lie subalgebra of g containing A. We say that a function f ∈ C∞(M) is
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A-symmetric if Xf = 0 for all vector fields X in A. Functions that are
A-symmetric are constant on certain nonintersecting submanifolds that cover
the manifold M . The commutation property with L of the vector fields in A
ensures that the symmetry is preserved by the heat flow.

The main result of this paper, expressed in Theorem 3.8, says that taking
m functions, each Ai-symmetric for some maximal subset Ai of I, inequality
(8) holds for p greater than or equal to a critical p̃ that depends only on the
combinatorics of the sets Ai and to prove this we use the fact that for p ≥ p̃
the function φ in (7) is nondecreasing. In Theorem 3.10 we obtain an analog
of inequality (8), but with a different exponent pi for each function fi on the
right-hand side. In this case we use the fact that the function

φ(t) =

∫
M

m∏
i=1

(
etLfpii

)1/pi
dµ (9)

is nondecreasing if each pi is greater than or equal to a critical p̃i that again
depends on the combinatorics of the sets Ai.

As a first application of this machinery, in Section 4 we study the (abelian)
case of the torus Tn = Rn/Zn. By means of Theorem 3.8 we are able to recover
a result by Calderón in [8] and a family of local geometric Brascamp–Lieb
inequalities associated to projections to collections of coordinate variables.

In Section 5 we apply the results of Section 2 to the case of the sphere

Sn−1 = SO(n− 1)\SO(n)

in Rn. We recover the result of [9] for functions depending on one variable
and extend it to functions depending on k variables, for 1 ≤ k ≤ n− 1.

A function f of k variables can be understood as a function f̃ defined on
the k-dimensional unit ball Bk of Rk and pulled-back to the sphere by the
projection π : Sn−1 → Bk on the k variables involved.

Let C(n, k) =
(
n
k

)
. We prove that if f1, . . . , fC(n,k) are nonnegative mea-

surable functions, each depending on a different collection of k variables,
denoted with xωi , where ωi ⊂ {1, . . . , n}, |ωi| = k, the inequality∫

Sn−1

f1(xω1) . . . fC(n,k)(xωC(n,k)
)dσ ≤

C(n,k)∏
i=1

‖fi‖Lp(Sn−1) (10)

holds for

p ≥ p̃ =

(
n

k

)
−
(
n− 2

k

)
.

Moreover we prove that this inequality is sharp in the sense of [9]. Since for

a function f depending on k variables, ‖f‖Lp = ‖f̃ ◦ π‖Lp . ‖f̃‖Lp(Bk), we
can interpret (10) as a Brascamp–Lieb type inequality.

If we add an additional symmetry to the functions, requiring that each func-
tion depends radially on k variables we prove an (again sharp) improvement
of inequality (10), obtaining a lower critical exponent

q̃ = 2

(
n− 2

k − 1

)
.

This case is studied in Section 6. Inequality (10) is first proved for a small
range of exponents that is then extended by interpolation. In Section 6 we
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also study in what range of exponents the inequality can hold, obtaining
some optimal result, and provide other examples.

Acknowledgements: Part of the research contained in this paper was
carried out while visiting the School of Mathematics at The University of
Edinburgh. I would like to thank Prof. Anthony Carbery and Prof. James
Wright for interesting discussions and remarks and the School of Mathematics
for the kind hospitality.

2. Homogeneous spaces

For an extensive overview of the setting of homogeneous spaces of Lie
groups see [13].

Let G be a connected, unimodular Lie group, with bi-invariant Haar
measure dµ and let K be a closed subgroup so that the homogeneous space
M = K\G is compact and has no boundary. Denote by π : G→ K\G the
canonical projection. Recall (see [13, Theorem 4.2, Ch. II]) that M is defined
as the space of right cosets

M = {Kg : g ∈ G}
and has an analytic structure.

If dµ is the Haar measure on G we have a unique (up to scalars) bi-invariant
measure on K\G (cfr. [13, Theorem 1.7, Ch. X]), which we will still denote
by dµ, defined as the push-forward of dµ by means of the projection π. We
assume that this measure is normalized, i.e. dµ(M) = 1. We denote with τg
the left translation on G by the element g and by abuse of notation we will
also write τgf for f ◦ τg for functions f on G. Recall that a left invariant
vector field is a first order differential operator X that commutes with all
left translation, i.e. such that

X(τgf) = (τg)(Xf)

for all g ∈ G and f ∈ C∞(G). Let g be the Lie algebra of the Lie group G.
As usual, we identify X ∈ g with the corresponding left invariant vector field
on G given by the Lie derivative

Xf(g) =
d

dt
f(g exp(tX))|t=0,

where exp : g→ G denotes the exponential mapping and f ∈ C∞(G).
There is a one-to-one correspondence between smooth real-valued functions

f on the quotient space M = K\G and smooth functions f̃ on G that are
constant on coset spaces, i.e.

C∞(K;G) := {f̃ ∈ C∞(G) : f̃(g) = f̃(kg), for all k ∈ K}.
Left invariant differential operators act on smooth functions on M via the
pushforward of the map π (that we denote with Tπ). We write D instead of
Tπ(D) for differential operators in the universal enveloping algebra U(g) of
g acting on C∞(M). Note that the integration by parts formula∫

M
(Xf)gdµ = −

∫
M
f(Xg)dµ
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holds on M for X ∈ g and f, g ∈ C∞(M). The boundary terms are absent
due to the compactness of the quotient.

2.1. Hörmander systems. Fix a finite subset I = {X1, . . . , Xl} of g.

Definition 2.1. We say that I is a Hörmander system if 〈I〉 = g, where
〈I〉 is the smallest Lie subalgebra containing I.

We now define some differential operators on M = K\G adapted to a
Hörmander system I. First of all we define a gradient

∇f(x) = (X1f(x), . . . , Xlf(x)) (11)

for f ∈ C∞(M). Next we define a divergence operator

divF (x) =
l∑

i=1

XiFi(x) (12)

for F ∈ (C∞(M))l. Finally we define a sum of squares operator, which we
will sometimes refer to as sub-Laplacian,

Lf(x) =
l∑

i=1

X2
i f(x) (13)

for f ∈ C∞(M). Consider the Hilbert space L2(M) with respect to the
measure dµ with scalar product 〈·, ·〉. The operator L is initially defined in
the subspace C∞(M), which is dense in L2(M) (recall that M is compact).
It is immediate to check that the operator −L is symmetric and positive.
Since the vector fields in I satisfy Condition 2.1 the operator L is hypoelliptic
by Hörmander’s theorem. By Nelson’s theorem (see [18]) we conclude that
the operator L is essentially self-adjoint. Moreover, since M is compact −L
has a real discrete nonnegative spectrum Σ ⊂ R+ with eigenvalues, counted
with multiplicity,

0 = λ0 < λ1 ≤ · · · ≤ λk ≤ . . . ,
with λk → ∞ as k → ∞. The associated L2-normalized eigenfunctions
ϕi form a complete orthonormal system for L2(M). Since the operator L
is hypoelliptic, the eigenfunctions are C∞(M) and in particular they are
bounded. Note that λ0 has multiplicity 1 and ϕ0 = 1.

The spectral theorem provides a functional calculus for the operator −L,
if m ∈ L∞(Σ), the operator m(−L) defined by

m(−L)f =

∞∑
i=0

m(λi)〈f, ϕi〉ϕi

is bounded on L2(M).

2.2. The heat flow. We consider the Cauchy problem for the heat equation
on M associated to L with initial datum f ,{

∂tu(t, x) = Lu(t, x) (t, x) ∈ R+ ×M
u(0, x) = f(x) x ∈M.

(14)

It is known (see [22]) that for all t > 0 the solution at time t of the heat
equation with initial datum f ∈ C∞(M) is obtained by applying the heat
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semigroup etL, which is given by the multiplier e−t(·) : Σ→ R+. Explicitly
we have

etLf =
∞∑
i=0

e−tλi〈f, ϕi〉ϕi. (15)

Fix p ≥ 1 and consider the evolution for a nonnegative f ∈ C∞(M) given by

v(t, x) =
(
etLfp

)1/p
(x). (16)

We see that when p > 1, v(t, x) is a nonlinear evolution since it satisfies the
nonlinear equation

∂tv(t, x) = (p− 1)
|∇v(t, x)|2

v(t, x)
+ Lv(t, x). (17)

The solutions to Problem (14) and its nonlinear version (16) enjoy the
following properties.

Proposition 2.2. Let v : R+ ×M → C be a solution of equation (16) with
p ≥ 1 and with initial datum f ∈ C∞(M). Then the following properties
hold.

(1) If f is nonnegative, v(t, x) is strictly positive for every t > 0.
(2) The Lp mass of the solution is preserved at each time t > 0:∫

M
v(t, x)pdµ =

∫
M
fpdµ.

(3) The operators
(
etL(·)p

)1/p
enjoy the semigroup property, i.e. v(t +

s, x) = v(s, v(t, x)).
(4) The solution converges to the Lp(M) norm of the initial datum at

each point x ∈M , i.e.

lim
t→∞

v(t, x) =

(∫
M
fpdµ

)1/p

.

Proof. Properties (1) and (2) follow from Hunt’s theorem (see [14]) for the
group G and pass to the quotient M (see [17, Section 2.5]). Property (3) is
obvious. Property (4) follows from the fact that 0 is an eigenvalue for L with

constant eigenfunction ϕ0 = 1 and that (16) converges to (〈fp, ϕ0〉)1/p =(∫
M fpdµ

)1/p
as t→∞. �

2.3. A monotonicity result. Fix p ≥ 1 and m ∈ N. Consider a set
{f1, . . . , fm} of nonnegative smooth functions on M and the associated flows

vi(t, x) =
(
etLfpi

)1/p
(x). (18)

For fixed t > 0 consider the function of t given by the integration over M of
the product of the nonlinear evolutions vi(t, x):

φ(t) =

∫
M

m∏
i=1

vi(t, x)dµ. (19)
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Lemma 2.3. If the function (19) is nondecreasing, the following inequality
holds: ∫

M

m∏
i=1

fidµ ≤
m∏
i=1

‖fi‖Lp(M). (20)

Proof. Since φ(t) is nondecreasing we have

lim
t→0

φ(t) ≤ lim
t→∞

φ(t). (21)

On the left-hand side we obviously obtain the integral of the product of the
initial data. For the right-hand side, by Property (4) of Proposition 2.2, each
vi(t, x) converges to ‖fi‖Lp(M) and the result follows since

∫
M 1dµ = 1. �

Remark 2.4. Since the space M is compact, the best constant in inequality
(20) is 1 and is attained by constant functions, since for a ∈ R+, ‖a‖Lp(M) = a
for 1 ≤ p ≤ ∞.

Remark 2.5. At first sight the estimate (20) looks like Hölder’s inequality.
Note, however, that in (20) there are in general no constraints on the exponent
p. In particular

∑m
i=1 p

−1 need not be 1. In fact, proving the monotonicity
of φ under certain assumptions that will be made clear later, we will get
exponents that do not satisfy Hölder’s condition.

We first find an explicit formula for the time derivative of φ(t). Note that
φ is differentiable in time. Since by Property (1) of Proposition 2.2, each
vi(t, x) is strictly positive, we may define, for t > 0 and i = 1, . . . ,m,

ṽi(t, x) = log(vi(t, x))

and

G(t, x) =
m∏
i=1

vi(t, x).

Proposition 2.6. Under the assumptions above we have

d

dt
φ(t) = (p− 1)

m∑
i=1

∫
M

l∑
j=1

(Xj ṽi(t, x))2G(t, x)dµ

−
m∑
i=1

l∑
j=1

m∑
k=1
k 6=i

∫
M

(Xj ṽi(t, x)Xj ṽk(t, x))G(t, x)dµ. (22)

Proof. By the Leibniz rule and (17) we have

d

dt
φ(t) =

m∑
i=1

∫
M
∂tvi(t, x)

m∏
j=1
j 6=i

vj(t, x)dµ

=
m∑
i=1

∫
M

(
(p− 1)

|∇Lvi(t, x)|2

vi(t, x)
+ Lvi(t, x)

) m∏
j=1
j 6=i

vj(t, x)dµ. (23)
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We split each integral in the sum into two pieces:∫
M

(p− 1)
|∇Lvi(t, x)|2

vi(t, x)

m∏
j=1
j 6=i

vj(t, x)dµ+

∫
M
Lvi(t, x)

m∏
j=1
j 6=i

vj(t, x)dµ

=: Ii(t) + IIi(t).

For Ii(t) we have

Ii(t) = (p− 1)

∫
M

|∇Lvi(t, x)|2

vi(t, x)2
G(t, x)dµ = (p− 1)

∫
M

l∑
j=1

(Xj ṽi(t, x))2G(t, x)dµ.

For IIi(t), integrating by parts, we obtain:

IIi(t) = −
l∑

j=1

∫
M
Xjvi(t, x)Xj

 m∏
j=1
j 6=i

vj(t, x)

 dµ,

which, using again the Leibniz rule, gives

IIi(t) = −
l∑

j=1

∫
M
Xjvi(t, x)

m∑
k=1
k 6=i

Xjvk(t, x)
m∏
k′=1
k′ 6=i,k

vk′(t, x)

 dµ

= −
l∑

j=1

m∑
k=1
k 6=i

∫
M

Xjvi(t, x)

vi(t, x)

Xjvk(t, x)

vk(t, x)

(
m∏
k′=1

vk′(t, x)

)
dµ

= −
l∑

j=1

m∑
k=1
k 6=i

∫
M
Xj ṽi(t, x)Xj ṽk(t, x)G(t, x)dµ.

Finally, taking the sum in i we obtain the result. �

Remark 2.7. By manipulating the sums, the time derivative of φ can be
equivalently written as

d

dt
φ(t) = (p− 1)

m∑
i=1

∫
M

l∑
j=1

(Xj ṽi(t, x))2G(t, x)dµ

− 2
m∑
i=1

l∑
j=1

i−1∑
k=1

∫
M

(Xj ṽi(t, x)Xj ṽk(t, x))G(t, x)dµ. (24)

We observe that this expression contains all possible square type terms
(Xj ṽi)

2 and all possible double products 2Xj ṽiXj ṽk for j = 1, . . . , l and
i, k = 1, . . . ,m, with i < k. Hence, if there are enough square type terms,
i.e. if p is big enough, it is possible to group the terms up in order to get a
sum of nonnegative squares of binomials and (possibly) other nonnegative
summands.
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One could allow each nonnegative fi ∈ C∞(M) to evolve with a different
nonlinear evolution. Indeed, one could choose a different pi ≥ 1 for each fi
and define

vi(t, x) =
(
etLfpii

)1/pi
(x).

In this regard, we state a simple modification of Proposition 2.6.

Proposition 2.8. In the hypotheses above we have

d

dt
φ(t) =

m∑
i=1

∫
M

(pi − 1)
l∑

j=1

(Xj ṽi(t, x))2G(t, x)dµ

−
m∑
i=1

l∑
j=1

m∑
k=1
k 6=i

∫
M

(Xj ṽi(t, x)Xj ṽk(t, x))G(t, x)dµ. (25)

Proof. The proof is the same as for Proposition 2.6, once noticed that each
vi(t, x) solves the equation

∂tvi(t, x) = (pi − 1)
|∇vi(t, x)|2

vi(t, x)
+ Lvi(t, x).

�

As a simple consequence of Proposition 2.8 one may obtain multilinear
Hölder’s inequality for a restricted range of exponents. Indeed, taking pi ≥ m,
the time derivative of function (19) can be arranged in the form

d

dt
φ(t) =

m∑
i=1

l∑
j=1

∫
M

(pi −m)(Xj ṽi(t, x))2G(t, x)dµ

+
∑
k<i

∫
M

l∑
j=1

(Xj ṽi −Xj ṽk)
2G(t, x)dµ ≥ 0,

since both summands are nonnegative. Hence by the monotonicity of φ the
inequality ∫

M

m∏
i=1

fidµ ≤
m∏
i=1

‖fi‖Lpi (M).

holds.
We conclude the section with the following definition, which will be useful

in what follows.

Definition 2.9. Let f1, . . . , fm be nonnegative measurable functions and
pi ≥ 1 for i = 1, . . . ,m. We say that the inequality∫

M

m∏
i=1

fidµ ≤
m∏
i=1

‖fi‖Lpi

is nontrivial if
∑m

i=1 p
−1
i > 1, i.e. if it does not follow directly from Hölder’s

inequality and continuous embeddings of Lebesgue spaces.
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3. Inequalities for functions with symmetries

As the proof of multilinear Hölder’s inequality suggests, the choice of the
exponent p depends in a combinatorial fashion on the number of vector fields
and on the number of functions. Multilinear Hölder’s inequality from this
point of view represents the worst case, in which one considers all vector fields
of the family I applied to all functions. In what follows we will investigate
the cases where some of the functions are annihilated by a subset of the
vector fields in the family I.

Definition 3.1. Let A ⊆ g. We say that a function f ∈ C∞(M) is A-
symmetric if Xf = 0 for all X ∈ A. We denote with C∞A (M) the space of
A-symmetric functions, which is also an algebra with respect to pointwise
multiplication.

Remark 3.2. Since if Xf = 0 and Y f = 0, then also [X,Y ]f = 0, we
see that if a function is A-symmetric, then it is also 〈A〉-symmetric. In
particular, if A1 and A2 are subsets of g such that 〈A1〉 = 〈A2〉, we have
that C∞A1

(M) = C∞A2
(M).

Functions that are A-symmetric enjoy invariance properties on the group
G, and hence on the manifold M .

Definition 3.3. Let G′ < G be a Lie subgroup of G. We say that f ∈ C∞(G)
is G′-invariant if f(gg′) = f(g) for all g′ ∈ G′.
Remark 3.4. With G′ < G a connected subgroup of G and g′ its Lie algebra,
if f ∈ C∞(G) we have that f ∈ C∞g′ (G) if and only if f is G′-invariant.

Next we define a class of sets that will be useful to describe the symmetries
we are interested in. Since if X ∈ g commutes with L then etLX = XetL for
all t > 0, we introduce the following notion.

Definition 3.5. Let A ⊂ g and I be a Hörmander system. We say that A is
an I-set if L commutes with all the elements in A, i.e. [L,X] = LX−XL = 0.

We are interested in functions that are A-symmetric, with A some I-set.
For these functions we have the following proposition.

Proposition 3.6. Let A ⊆ g be an I-set and let f ∈ C∞A (M). For all
1 ≤ p <∞. Then etLfp ∈ C∞A (M) for all t > 0.

Proof. The case p = 1 is immediate. For the case p > 1 it suffices to notice
that, if X ∈ A,

X
(
etLfp

)1/p
=

1

p

(
etLfp

) 1−p
p XetLfp = 0,

since [X, etL] = 0 and fp ∈ C∞A (M). �

Thus the heat flow preserves the symmetry: ifA is an I-set and if the initial
datum is A-symmetric, then so is its evolution, either linear or nonlinear,
under the heat equation.

Given a subalgebra A ⊆ g we can consider the vector space of functions
C∞A (M) that are annihilated by all vector fields in A. The Lie algebra g has
a (nonunique) direct sum decomposition as a vector space

g = A⊕ B,
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where B is a vector subspace of g.
By Proposition 2.6, for the task of proving the inequalities we are interested

in, it suffices to take into account only the action of vector fields in the system
I. So we can only consider I ∩ A or we may as well consider subalgebras
generated by subsets of vectors in I. Different subsets of I could generate
the same subalgebra and we will not distinguish them. This leads us to the
following definition.

Definition 3.7. Let A ⊆ I. We say that A is maximal in I if for every
A′ ⊆ I such that 〈A〉 = 〈A′〉, we have that A′ ⊆ A.

In other words a maximal subset A of I contains all possible brackets and
linear combinations of its elements that are still in I. For example, if we
take the Hörmander system {e1, . . . , en, e1 + e2} in the abelian Lie algebra
Rn, where {e1, . . . , en} is a basis, we have that {e1, e2} is not maximal,
since the set {e1, e2, e1 + e2} is such that 〈{e1, e2}〉 = 〈{e1, e2, e1 + e2}〉, but
{e1, e2, e1 + e2} ) {e1, e2}.

It is clear that if A ⊆ I, then 〈A〉 ∩ I is maximal in I.
Let us introduce a notation. If A1, . . . , Am are finite sets, for a multi-index

j = (j1, . . . , jm) ∈ {0, 1}m we denote with⋂
j

Ai =
⋂

i : ji=1

Ai

the intersection of the sets Ai such that ji = 1. Obviously the length of the
multi-index, denoted by |j|, gives the number of sets we are considering in
the intersection.

Theorem 3.8. Let A1, . . . ,Am be maximal subsets of I that are I-sets. Let
fi ∈ C∞Ai(M) be nonnegative functions, for i = 1, . . . ,m. The following
inequality holds ∫

M

m∏
i=1

fidµ ≤
m∏
i=1

‖fi‖Lp(M)

for p ≥ p̃, where p̃ is the number of occurrences of the most recurrent element
among the finite sets Aci , i.e.

p̃ = max
a∈∪iAci

max
j :∩jAci3a

|j|.

The exponent p̃ has a combinatorial nature and is related to the way the
vector fields Li,j are distributed among the sets Ai. In the next sections we
will give several examples in which this quantity is easily computable. It is
interesting to notice that the exponent p̃ found by this method is always an
integer.

Proof. Since the functions fi are Ai-symmetric, and the sets Ai are I-sets,
by Proposition 3.6 the nonlinear evolutions, defined in (18), are also Ai-
symmetric. By Proposition 2.6 all possible double products of the form
XiṽjXiṽk, with i < k and Xi ∈ Acj ∩Ack, will appear in the time derivative of
φ. Recall that p̃− 1 depends on how many square type elements are needed
to complete the squares. In order to have positive derivative, we will need
p̃− 1 to be at least as big as the number of occurrences of the most recurrent
vector field among the Aci . �
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The following sufficient condition to obtain a nontrivial inequality in the
sense of Definition 2.9 can be easily proved.

Proposition 3.9. Let A1, . . . ,Am be maximal subsets of I that are I-sets.
To obtain a nontrivial inequality from the nonlinear heat flow associated to L
the condition

m⋂
i=1

Aci = ∅, (26)

must be fulfilled.

Proof. By Theorem 3.8 we have a nontrivial inequality if p̃ < m and this
happens if no elements of I appear in all the sets Aci , yielding condition
(26). �

So far we considered the case where all functions evolve under the same
flow, i.e. with the same exponent p ≥ 1. If we consider different exponents pi
for different evolutions we have the following result, which can be obtained
by the same monotonicity argument as in the proof of Theorem 3.8. We
omit the proof, but we just point out that in this case we use formula (2.8)
for the time derivative of φ.

Theorem 3.10. Let A1, . . . ,Am be maximal subsets of I that are I-sets.
Let fi ∈ C∞Ai(M) be nonnegative functions, for i = 1, . . . ,m. The following
inequality holds ∫

M

m∏
i=1

fidµ ≤
m∏
i=1

‖fi‖Lpi (M)

for pi ≥ p̃i, where p̃i is the number of occurrences of the most recurrent
element of Aci among the finite sets Ack, i.e.

p̃i = max
a∈Aci

max
j :∩jAck3a

|j|.

4. The abelian case

As a first example, in this section we analyze the inequalities discussed in
the previous section when the Lie group is (Rn,+). We fix an orthonormal
basis {e1, . . . , en} of Rn and consider the corresponding Cartesian coordinates
(x1, . . . , xn). We take the quotient by the discrete subgroup Zn,

Rn/Zn = Tn,

where Tn is the n-dimensional torus, which can be understood as the cube
[0, 1]n in Rn with identifications of opposite sides.

The Lie algebra of Rn is generated by the vector fields Xi = ∂xi for
i = 1, . . . , n. Clearly [Xi, Xj ] = 0 for all i, j = 1, . . . , n. In this setting a
Hörmander system of vector fields must necessarily contain a basis for the
Lie algebra, since all commutators are trivial. So let

I = {Y1, . . . , Yl}

with l ≥ n and let {Y1, . . . , Yn} be a basis for the Lie algebra. In this abelian
setting all subsets A ⊆ I are I-sets, since every two vectors commute. So
we can pick any subset of I and we have the following proposition.
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Proposition 4.1. A subset A = {Yi1 , . . . , Yis} of I, with 1 ≤ i1 < · · · <
is ≤ l, is maximal if and only if, for all X ∈ I \ A,

rank(Yi1 , . . . , Yis , X) 6= rank(Yi1 , . . . , Yis). (27)

Proof. We know that 〈A〉 ∩ I is maximal. Since g is abelian, vectors in
〈A〉 ∩ I that are not in A are vectors of I that are linearly dependent from
the vectors in A. Condition (27) ensures that A already contains these
vectors. �

Let us treat the case l = n, i.e. when I is a basis for g. In this case
all subsets of I are maximal, so we have 2n possible maximal subsets to
which we can apply Theorem 3.8. If A is any subset, the vector space
sum decomposition g = 〈A〉 ⊕ 〈Ac〉 is also a Lie subalgebras decomposition,
meaning that [〈A〉, 〈Ac〉] = {0} . All subsets have maximal complement and
we can directly consider the complements of the annihilating sets.

Let us discuss the case where I = {X1, . . . , Xn}. Consider a subset A ⊆ I
given by A = {Xi1 , . . . , Xis} with s ≤ n. The Lie subalgebra 〈A〉 is just
the vector subspace of g given by span(Xi1 , . . . , Xis), which corresponds

to the Lie subgroup Ã given by span(ei1 , . . . , eis). A nonnegative function
f = f(x1, . . . , xn) on the torus Tn which is A-symmetric is constant on
translates by vectors in the Lie subgroup 〈A〉, i.e. f(x+ v) = f(x), for all

v ∈ Ã. In other words, the function f does not depend on the variables
xi1 , . . . , xis and we can think of it as a function of the remaining n − s
variables. Suppose for simplicity that ij = j, for j = 1, . . . , s, then f can be
identified with a function

F : Rn/Rs ' Rn−s → R+

such that F (xs+1, . . . , xn) = f(x1, . . . xs, xs+1 . . . , xn) for any s-tuple (x1, . . . , xs).
Equivalently we can write

F = f ◦ π,
where π : Tn → Tn−s is the linear projection

π(x1, . . . , xn) = (xs+1, . . . , xn).

We follow the notation of [8], denoting with ω finite subsets of {1, . . . , n}
and with xω the set of variables {xi1 , . . . , xi|ω|}, where ω = {i1, . . . , i|ω|}. We
denote with fω a function only depending on xω. Note that∫

T|ω|
fω(xω)dxω =

∫
Tn
fω(xω)dx1 . . . dxn,

from which we get that

‖fω‖Lp(T|ω|) = ‖fω‖Lp(Tn), (28)

for all p ≥ 1.
Let C(n, k) :=

(
n
k

)
. We have the following proposition.

Proposition 4.2. Let ω1, . . . , ωC(n,k) be the possible k-tuples of elements in
{1, . . . , n}, and let fωi be nonnegative measurable functions only depending
on the collection of variables ωi. The inequality∫

Tn

C(n,k)∏
i=1

fωi(xωi)dx ≤
C(n,k)∏
i=1

‖fωi‖Lp(Tn) (29)
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holds, for

p ≥ p̃ =

(
n− 1

k − 1

)
.

Proof. In the language developed in this section, the sets Aci are given
by {Xi1 , . . . , Xik} and they are in correspondence with the collection of
variables xωi , where ωi = {i1, . . . , ik}. By Theorem 3.8 it suffices to compute
the number of occurrences of the most recurrent element among the Aci ,
or, equivalently, the most recurrent variable xl among the collections xωi .

It is easy to see that in this case every variable xl appears exactly
(
n−1
k−1
)

times. �

Remark 4.3. Proposition 4.2 is a local version of a result due to A. P.
Calderón in [8] (see also the work of H. Finner [11] for further results). In
the notation above, Calderón proved the inequality∫

Rn

C(n,k)∏
i=1

fωi(xωi)dx ≤
C(n,k)∏
i=1

‖fωi‖Lp̃(R|ωi|),

with p̃ =
(
n−1
k−1
)
, by induction on the cardinality k of the subsets ωi. If the

functions fωi are supported in the unit cubes of R|ωi|, Calderón inequality
becomes ∫

Tn

C(n,k)∏
i=1

fωi(xωi)dx ≤
C(n,k)∏
i=1

‖fωi‖Lp̃(T|ωi|),

which by (28) is equivalent to (29). The case k = n− 1 is a local version of
Loomis–Whitney inequality (see [16]).

All the estimates above (Calderón inequalities, Loomis–Whitney inequality
and their local versions) can be proved by a smart iteration of Hölder’s
inequality.

Another way of proving this kind of inequalities is the heat flow method
used in [5]. Recall that a geometric Brascamp–Lieb inequality is an estimate
of the type ∫

Rn

m∏
i=1

fi(Bix)dx ≤ C
m∏
i=1

‖fi‖Lpi (Rni ), (30)

where Bi : Rn → Rni are surjective linear maps such that B∗i is an isometry,
i.e. BiB

∗
i = IdRni , fi : Rni → R+ are measurable functions, and the relation∑

i=1

p−1i B∗iBi = IdRn (31)

is satisfied. In [5] the authors prove that under condition (31), inequality
(30) holds with C = 1. Restricting the supports of the functions to unit
cubes in Rni this local version of the inequality obviously holds∫

Tn

m∏
i=1

fi(Bix)dx ≤
m∏
i=1

‖fi‖Lpi (Tni ), (32)

under the same assumption (31).
Let us consider the case m = C(n, k), Bi = πωi being the projection onto

the set of variables xωi . The maps B∗i are isometries, being inclusion maps.
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We have to check for which exponents pi assumption (31) is satisfied. It is
easy to see that B∗iBi is given by a diagonal matrix such that (B∗iBi)jj = 1
if and only if j ∈ ωi, for j = 1, . . . , n. Hence condition (31) requires that∑

i: ωi3j
p−1i = 1

for j = 1, . . . , n. Each sum is made by
(
n−1
k−1
)

terms, so that condition (31)

is certainly satisfied if p−1i =
(
n−1
k−1
)

for all i = 1, . . . , C(n, k). We note that

the general condition (31) gives rise to exponents that are not covered by
Proposition 4.2.

5. The case of the sphere

In this section we will find inequalities for functions enjoying some sym-
metries on spheres. We consider the Euclidean space Rn, for n ≥ 2, with
the standard scalar product 〈·, ·〉 and the induced norm | · |. Let {e1, . . . , en}
be an orthonormal basis and (x1, . . . , xn) the associated coordinates. The
(n− 1)-dimensional unit sphere is the set

Sn−1 = {x ∈ Rn : x21 + · · ·+ x2n = 1},

which we endow with the normalized uniform measure dσ.
The sphere Sn−1 can be seen as a homogeneous space of the special

orthogonal group

Sn−1 = SO(n− 1)\SO(n),

where SO(n − 1) is thought of as a closed subgroup of SO(n) fixing one
direction. The measure dσ is, up to normalization, the push-forward through
the projection map on the quotient Sn−1 of the bi-invariant Haar measure
on SO(n).

5.1. Functions depending on k variables. In what follows we will use
cartesian coordinates to describe points on the sphere. In particular we will
often write f(x1, . . . , xn) for functions f : Sn−1 → R, implicitly assuming
the condition x21 + · · ·+ x2n = 1.

We will consider functions on the sphere depending on k variables, with
1 ≤ k ≤ n− 1. Let ω = {i1, . . . , ik} be a subset of {1, . . . , n}, with |ω| = k
and let xω = (xi1 , . . . , xik). We will use the notation ωc = {ik+1, . . . , in} for
the complement of ω in {1, . . . , n}.

Consider the projection

πω : Sn−1 → Rk

that maps (x1, . . . , xn) 7→ (xi1 , . . . , xik). The image of the map πω is the
closed unit ball Bk in Rk.

Definition 5.1. We say that a function f : Sn−1 → R depends on k variables,
for 1 ≤ k ≤ n− 1 if there exists a function f̃ : Bk → R such that

f = f̃ ◦ πω
for some subset ω of {1, . . . , n}, with |ω| = k.
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By abuse of notation we will often write f(xω) for a function on the sphere

depending on k variables, meaning f̃(xω).
Functions on the sphere depending on k variables enjoy special symmetry

properties. Indeed, they are constant on (n− k − 1)-dimensional subspheres
of the original sphere. The fiber of a point y ∈ Bk is a sphere Sn−k−1 of
radius 1− y21 − · · · − y2k in Sn−1. Note that for fixed ω, π−1ω (y) 6= π−1ω (y′) if
y 6= y′, so that the subspheres π−1ω (y) indexed by y ∈ Bk do not intersect
each other and cover the whole Sn−1.

For convenience of the reader, in the following proposition we recall a well
known integration formula for functions depending on k variables (see for
example [12, 21]).

Proposition 5.2. Let ω = {i1, . . . , ik} be a subset of {1, . . . , n} with |ω| = k,
for 1 ≤ k ≤ n − 1. Let f : Sn−1 → R be a function depending on the k
variables xω. The following integration formula holds:∫

Sn−1

f(xω)dσ = cn,k

∫
Bk

f(xω)(1− x2i1 − · · · − x
2
ik

)
n−k−2

2 dxω. (33)

The constant cn,k depends only on the dimension n and on the number of
variables k.

Remark 5.3. Let ω be as above, with |ω| = k, for 1 ≤ k ≤ n − 2,
and let f : Sn−1 → R be a function depending on k variables. Since(
1− x2i1 − · · · − x

2
ik

)
≤ 1, we have the trivial inequality∫

Sn−1

f(xω)dσ .
∫
Bk
f(xω)dxω. (34)

In this way, we obtain a family of continuous immersions

Lp(Bk, dxω) ↪→ Lp(Sn−1, dσ),

for 1 ≤ p ≤ ∞.

5.2. The Lie algebra of the special orthogonal group. A basis for
so(n), the Lie algebra of SO(n), is given by the vector fields

Li,j = xi∂xj − xj∂xi ,
for 1 ≤ i < j ≤ n. Since Lj,i = −Li,j , the dimension of so(n) is n(n− 1)/2.

Let δi,j be the Kronecker delta. The bracket of two basis elements Li,j
and Lk,l is given by

[Li,j , Lk,l] = Ll,jδi,k + Li,lδj,k + Lj,kδi,l + Lk,iδl,k. (35)

It follows that the commutator of two elements of the basis {Li,j}i<j , if not
trivial, is again an element of the basis.

This basis will be our Hörmander system I. The corresponding sub-
Laplacian is given by

L =
∑
i<j

L2
i,j . (36)

The operator L commutes with all the vector fields Li,j , since it is the
quadratic Casimir operator, which is an element of the center of the universal
enveloping algebra U(so(n)). Note also that L is the Laplace–Beltrami
operator on SO(n) with the Riemannian metric induced by the Killing form
(see [13]).
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5.3. Structure of maximal subsets. We now discuss the structure of
maximal subsets of I = {Li,j}i<j . In order to visualize the subsets of I we
associate to the vector field Li,j the pair (i, j). Given a subset A ⊆ {(i, j)}i<j ,
we can relate to it an undirected simple graph GA = (V,E) where the set of
vertices V is given by {1, . . . , n} and the edges E are given by the (unordered)
pairs (i, j) ∈ A, so that we identify A with E.

The following proposition holds.

Proposition 5.4. Let A be a subset of I. A is a maximal subset if and only
if the associated graph GA = (V,E) splits in complete connected components.

Proof. Note that if (a, b) ∈ E and (b, c) ∈ E, then (a, c) ∈ E by the max-
imality assumption on A and (35). Since connected components are path
connected, each connected component of a graph associated to a maximal
subset is complete. The converse is straightforward, again by (35). �

We also have the following result.

Proposition 5.5. Let A be a maximal subset of I and GA = (V,E) its as-

sociated graph. Each complete connected component G̃ = (Ṽ , Ẽ), identifying

Ẽ with a subset of I, has the property that 〈Ẽ〉 ' so(|Ṽ |).

Proof. Let Ṽ = {i1, . . . , ik}, with i1 < · · · < ik, so that |Ṽ | = k. Since G̃

is complete, Ẽ contains all the edges in E with vertices in Ṽ . It is easy to

see that, by property (35), the map 〈Ẽ〉 → so(k) that maps Lij ,il 7→ Lj,l,

for ij < il, is a Lie algebra isomorphism. Moreover the set Ẽ is a basis for

〈Ẽ〉. �

Let us introduce some notation. Let α = (α1, . . . , αn) ∈ {0, 1}n be a
multi-index and denote by |α| = α1 + · · ·+αn its length. The scalar product
α · β = α1β1 + · · ·+ αnβn indicates the number of 1’s in common between α
and β, so that two multi-indices are orthogonal if they do not have 1’s in
common.

We will denote with soα the Lie algebra isomorphic to so(|α|) generated by
the set {Lk,l : αk = αl = 1}. We can deduce the following theorem describing
the structure of subalgebras generated by maximal subsets associated to
basis systems of so(n).

Theorem 5.6. Let A be a maximal subset of I = {Li,j}i<j. Then there exist
multi-indices α1, . . . , αN pairwise orthogonal, with |α1| ≥ |α2| ≥ · · · ≥ |αN |
and |α1|+ · · ·+ |αN | ≤ n, such that

〈A〉 =

N⊕
k=1

soαk , (37)

where on the right-hand side we have a direct sum of Lie algebras, i.e. each
subalgebra commutes with the others.

Proof. By Proposition 5.4 and Proposition 5.5 the graph associated to A
splits in N , say, complete connected components Gαi = (Vαi , Eαi), where
i = 1, . . . , N , each component describing a graph associated to a basis system
of a Lie algebra of type so(k) for some k. Without loss of generality we
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can assume that |Vα1 | ≥ · · · ≥ |VαN | so that |α1| ≥ · · · ≥ |αN |. The multi-
indices are pairwise orthogonal since the graphs Gαi are disconnected so
that Vαi ∩ Vαj = ∅ for i 6= j. It is clear that |α1| + · · · + |αN | = |V | ≤ n.
Finally, since the multi-indices are pairwise orthogonal, in view of formula
(35), fixing k 6= l, 1 ≤ k, l ≤ N , we have that [Li1,j1 , Li2,j2 ] = 0 for all i1, j1
such that αi1k = αj1k = 1 and i2, j2 such that αi2l = αj2l = 1, and by linearity
the same holds for all brackets between elements of soαl and soαk . Thus the
sum in (37) is direct. �

We now study the properties of functions annihilated by maximal subsets
of vectors in I. First we consider the case of a singleton, i.e. A = {Li,j}.

Lemma 5.7. Let f : Sn−1 → R, with f ∈ C∞(Sn−1) and Li,j be as above.

Then Li,jf(x) = 0 for all x ∈ Sn−1 if and only if there exists a function f̃
such that

f(x1, . . . , xi, . . . , xj , . . . , xn) = f̃(x2i + x2j , x1, . . . , x̂i, . . . , x̂j , . . . , xn), (38)

for all (x1, . . . , xn) ∈ Sn−1, where by x̂i we mean that the variable xi is not
appearing.

Proof. Clearly, (38) implies

Li,jf(x1, . . . , xn) = Li,j f̃(x2i + x2j , x1, . . . , xn) = 2xixjD1f̃ − 2xjxiD1f̃ = 0

for all x ∈ Sn−1, where D1 denotes the partial derivative with respect to
the first variable of f̃ . Conversely, suppose that f satisfies Li,jf(x) = 0 for
all x ∈ Sn−1. Since Li,j is the infinitesimal generator of rotations in the
xixj-plane, it fixes circles of the type x2i + x2j = r2; f , being annihilated
by Li,j , is constant on these circles, thus it depends on xi and xj through
x2i + x2j . �

An analogous property holds if we consider functions annihilated by a
maximal subset A of I whose generated Lie algebra is isomorphic to so(k).

Lemma 5.8. Let f : Sn−1 → R, with f ∈ C∞(Sn−1) and A be a maximal
subset of I such that 〈A〉 ' so(k) for some k ≤ n, i.e. A = {Lij ,il}ij<il with

ij , il ∈ {i1, . . . , ik} ⊆ {1, . . . , n}. Then Lij ,ilf(x) = 0 for all x ∈ Sn−1 and

Lij ,il ∈ A if and only if there exists a function f̃ such that

f(x1, . . . , xi1 , . . . , xik , . . . , xn) = f̃(x2i1+· · ·+x2ik , x1, . . . , x̂i1 , . . . , x̂ik , . . . , xn),
(39)

for all (x1, . . . , xn) ∈ Sn−1.

Proof. The assertion is proved arguing as in Lemma 5.7, once noted that
the subalgebra 〈A〉 generates the rotations in the k-plane related to the
coordinates xi1 , . . . , xik . �

By abuse of notation we will just write f in place of f̃ .

Remark 5.9. If a function f ∈ C∞(Sn−1) is A-symmetric with respect
to a maximal subset A of I such that 〈A〉 ' soα for some multi-index α
with |α| = k, the function f is a function of n− k variables in the sense of
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Definition (5.1). Without loss of generality, assume αi = 1 for i = 1, . . . , k
and zero otherwise. By Lemma 5.8 we have

f(x1, . . . , xn) = f(x21+· · ·+x2k, xk+1, . . . , xn) = f(1−x2k+1−· · ·−x2n, xk+1, . . . , xn),

so that f is a function of the n− k variables xk+1, . . . , xn.

A generic maximal subset A of I splits by Theorem 5.6 into N disjoint
subsets, labeled by a family of multi-indices αi. Each of these subsets
generates a subalgebra of so(n) isomorphic to so(|αi|). In Theorem 5.6
we ordered these subsets by cardinality. We will interpret the splitting in
the following way: the subalgebra related to the multi-index α1 tells us on
how many variables the functions annihilated by A depend, as explained in
Remark 5.9; the subalgebras related to the multi-indices αi, for 2 ≤ i ≤ N
give instead information concerning radiality in the variables. To be more
precise, functions in C∞(Sn−1) that are A-symmetric depend on the n− |α1|
variables xi for which αi1 = 0, and depend radially on the collections of
|αi| variables associated to each multi-index αi (that are disjoint by the
orthogonality of the multi-indices).

Example 5.10. Consider the maximal system in so(7) given by A =
{L5,6, L5,7, L6,7, L1,2, L3,4}, that splits as {L5,6, L5,7, L6,7} t {L1,2} t {L3,4},
and whose generated subalgebra 〈A〉 splits therefore as

soα1(3)⊕ soα2(2)⊕ soα3(2),

with α1 = (0, 0, 0, 0, 1, 1, 1), α2 = (1, 1, 0, 0, 0, 0, 0), α3 = (0, 0, 1, 1, 0, 0, 0). A
function f ∈ C∞(Sn−1) that is A-symmetric will depend on the n− |α1| =
7 − 3 = 4 variables x1, x2, x3, x4 and will be radial in the collections of
variables x1, x2 associated to α2 and x3, x4 associated to α3. So it will be
written as

f(x21 + x22, x
2
3 + x24).

Remark 5.11. We stick to the convention of ordering the subsets by cardi-
nality. We remark that all orderings are equivalent. Indeed, in Example 5.10
one could have considered instead the splitting

soα2(2)⊕ soα1(3)⊕ soα3(2).

In this point of view, a function f ∈ C∞(Sn−1) that is A-symmetric is a
function of the n− |α2| = 7− 2 = 5 variables x3, x4, x5, x6, x7, radial in the
collections of variables x5, x6, x7 associated to α1 and x3, x4 associated to
α3. So it can be written as

f(x23 + x24, x
2
5 + x26 + x27),

but since x25 +x26 +x27 = 1−x21−x22−x23−x24, we can reduce the dependence
to x23 + x24 and x21 + x22, thus obtaining the same numerology as in Example
5.10.

In the rest of the section we will study some interesting instances of
multilinear inequalities of the type (20) related to the system I = {Li,j}i<j
described above. We will obtain nontrivial inequalities in the sense of Defini-
tion 2.9. As we saw, functions involved in the inequalities have symmetry
properties determined by the maximal system A that annihilates them. We
will also be able to show for some of the inequalities that the exponents p̃
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found by means of Theorem 3.8 are sharp in a sense that we make precise
with the following definition.

Definition 5.12. We will say that the exponent p̃ is sharp if the inequality∫
Sn−1

m∏
i=1

fidµ ≤
m∏
i=1

‖fi‖Lp(Sn−1),

holds for p = p̃ and is false for p < p̃, i.e. there exist functions fi for which
the right-hand side is finite and the left-hand side diverges.

5.4. Inequalities for functions depending on k variables. The first
inequality we discuss was discovered by Carlen, Lieb and Loss in [9] and it is
an inequality for n functions on the sphere Sn−1 each depending on a single
different variable. The inequality is the following.

Theorem 5.13 ([9]). Let f1, . . . , fn be nonnegative measurable functions,
fi : [−1, 1]→ R+. The inequality∫

Sn−1

f1(x1) . . . fn(xn)dσ ≤
n∏
i=1

‖fi‖Lp(Sn−1) (40)

holds for p ≥ p̃ = 2. Moreover inequality (40) is sharp in the sense of
Definition 5.12.

We will now generalize this result of [9] to functions depending on 1 ≤
k ≤ n− 1 variables and thus obtain Theorem 5.13 as a corollary. The proof
for this general case is based on Theorem 3.8, which is in the spirit of the
original proof of [9]. We will also give a proof of the sharpness by producing
an explicit counterexample.

The case of functions depending on n− 1 variables is the easiest one and
we treat it separately. In this case we have

(
n
n−1
)

= n possible (n− 1)-tuples
of variables, which correspond to empty maximal systems Ai, for which
〈Ai〉 = {0}. Indeed, functions depending on n − 1 variables are almost
generic functions, as explained at the beginning of the section, and there
is no hope to obtain something better than Hölder’s inequality, i.e. p̃ = n.
This is confirmed by Theorem 3.8, since each element in each Aci = I occurs
in all Ack, for k = 1, . . . , n.

Let us now consider the case of functions depending on 1 ≤ k ≤ n − 2
variables. We have

(
n
k

)
:= C(n, k) possible choices ok k-tuples out of the

set {1, . . . , n}. We will label them as ω1, . . . , ωC(n,k) following the notation
introduced in Section 4. To each collection of variables ωi = {i1, . . . , ik}
corresponds a maximal subset Ai which contains the vector fields Lj,l for
which j, l 6= is for all s = 1, . . . , k.

The subalgebra generated by each maximal subset Ai is isomorphic to
so(n − k) and the splitting of 〈Ai〉 given by Theorem 5.6 has just one

direct summand soαi , with αi a multi-index such that αji = 0 if j ∈ ωi, for
j = 1, . . . , n. By Remark 5.9 a function f ∈ C∞(Sn−1) that is Ai-symmetric
is a function of the variable xωi in Rk. As we saw we can think of a function
depending on xωi as a function defined on the k-dimensional unit ball
Bk ⊂ Rk, pulled back to the sphere Sn−1 via the projection πωi : Sn−1 → Bk,
mapping a point x ∈ Sn−1 to xωi . We will write f(xωi) for f(πωi(x)), with
x ∈ Sn−1. We have the following theorem.
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Theorem 5.14. Let f1, . . . , fC(n,k) be nonnegative measurable functions,

fi : Bk → R+. The inequality∫
Sn−1

f1(xω1) . . . fC(n,k)(xωC(n,k)
)dσ ≤

C(n,k)∏
i=1

‖fi‖Lp(Sn−1) (41)

holds for

p ≥ p̃ =

(
n

k

)
−
(
n− 2

k

)
.

Moreover inequality (41) is sharp in the sense of Definition 5.12.

Remark 5.15. For k = 1 we recover the result of [9]. Note that inequality
(41) is nontrivial in the sense of Definition 2.9 for n ≥ 3, since p̃ < C(n, k).

Proof. By Theorem 3.8, the exponent p̃ is given by the number of occurrences
of the most recurrent element among the sets Aci , for i = 1, . . . , C(n, k). As
we said, the elements of Aci are vector fields of type Lj,l with either j or l
or both j, l in ωi. So an element Lj,l will occur in all Aci apart from those
for which j, l /∈ ωi. The number of sets ωi made of k elements taken from
{1, . . . , n} that do not contain two fixed elements j, l is

(
n−2
k

)
. This means

that each vector field will occur in exactly

p̃ =

(
n

k

)
−
(
n− 2

k

)
sets Aci , proving the first half of the theorem.

To show that p̃ is sharp we construct a counterexample. We consider
functions fi : Bk → R+, where Bk is the unit ball in Rk, of the form

fi(xωi) = (|xi1 ||xi2 | . . . |xik |)
−γ/k+(1−x2i1)−γδ/2 + · · ·+(1−x2ik)−γδ/2, (42)

where γ, δ are positive constants to be determined. We remark that for
k = 1 this set of functions reduces to the counterexample for Theorem 5.13
contained in [9]. The right-hand side of inequality (41) must be finite. We
first compute the Lp norm of these functions. Without loss of generality we
focus on the case ω = {1, 2, . . . , k} and work with f(x1, . . . , xk). Let p ≥ 1.
We have

‖f‖p
Lp(Sn−1)

.
∫
Sn−1

[
(|x1||x2| . . . |xk|)−γp/k + (1− x21)−γδp/2 + · · ·+ (1− x2k)−γδp/2

]
dσ

=

∫
Sn−1

(|x1||x2| . . . |xk|)−γp/kdσ +

k∑
i=1

∫
Sn−1

(1− x2i )−γδp/2dσ

=: I0 +
k∑
i=1

Ii.

For the first term I0 we have

I0 .
∫
Bk

(|x1| . . . |xk|)−γp/k(1− x21 − · · · − x2k)(n−k−2)/2dx1 . . . dxk ≤
k∏
i=1

∫ 1

−1
|xi|−γp/kdxi

where we used the integration formula (33), the fact that (1 − x21 − · · · −
x2k)

(n−k−2)/2 ≤ 1 in Bk, since k ≤ n− 2, and also that Bk ⊂ [−1, 1]k. So I0
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is finite if γp < k. For each of the terms Ii we have

Ii =

∫ 1

−1
(1− x2i )−γδp/2(1− x2i )(n−3)/2dxi,

by (33). So Ii is finite whenever γδp < (n − 1). We conclude that the
right-hand side of (41) is finite if

γp < min

{
k,
n− 1

δ

}
. (43)

To estimate the left-hand side of (41) we pass to polar coordinates in
the hyperplane Rn−1 with coordinates x1, . . . , xn−1; on the sphere Sn−1 the
variable |xn| will then be (1−ρ2)1/2. There are

(
n−1
k

)
functions not involving

the xn variable, and
(
n−1
k−1
)

involving it. For the functions not depending on

xn we select the first summand of (42), for those depending on xn we select

the summand (1− x2n)−γδ/2.
So for the left-hand side we have:∫

Sn−1

C(n,k)∏
i=1

fi(xωi)dσ ≥
∫
Sn−1

 ∏
ωi 63xn

|xi1 | . . . |xik |

−
γ
k

(1− x2n)−
γδ
2 (n−1

k−1)dσ

≥
∫ 1

0

(
ρk
)− γ

k (n−1
k ) (

ρ2
)− γδ

2 (n−1
k−1) ρn−2dσ =

∫ 1

0
ρ−(γ(n−1

k )+γδ(n−1
k−1))+n−2 dρ√

1− ρ2
,

where we used the trivial fact that |xi| ≤
(
x21 + · · ·+ x2n−1

)1/2
, for i =

1, . . . , n− 1.

The left-hand side of (41) diverges when −
[
γ
(
n−1
k

)
+ γδ

(
n−1
k−1
)]

+n−2 ≤ −1,

i.e.

γ ≥ (n− 1)

[(
n− 1

k

)
+ δ

(
n− 1

k − 1

)]−1
. (44)

Comparing (43) and (44) we see that, in order to make the right-hand side
finite and the left-hand side divergent, we must have

p < γ−1 min

{
k,
n− 1

δ

}
≤ (n− 1)−1 min

{
k,
n− 1

δ

}[(
n− 1

k

)
+ δ

(
n− 1

k − 1

)]
=: g(δ) ≤ max

δ>0
g(δ).

Easy computations show that g attains its maximum at δ = n−1
k , for which

we have

p < g

(
n− 1

k

)
=

(
n− 2

k − 1

)
+

(
n− 1

k − 1

)
= p̃,

thus proving the sharpness of the exponent p̃. �

Remark 5.16. One could ask as in the case of functions of one variable if
it is possible to obtain an inequality like (40) which is not a consequence
of embeddings of Lp(Sn−1) spaces with a different pi for each fi. In this
case also an application of Theorem 3.10 is not effective. Indeed, even if
one allows different pi’s in the nonlinear heat evolution associated to the
operator L defined in (36), the presence of functions of k variables for each
k-tuple of elements from x1, . . . , xn forces all exponents pi to be equal, since
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by symmetry each element of each finite set Aci has the same number p̃ of
occurrences among the sets Ack, for k = 1, . . . , C(n, k).

Remark 5.17. Since constant functions are trivially functions of k variables,
inequality (40) also holds for m ≤ C(n, k) functions of m different k-tuples of
variables. The inequality is nontrivial for m > p̃, since when m ≤ p̃ a direct
application of multilinear Hölder’s inequality gives a better outcome in terms
of exponents. Note that in this case an application of Theorem 3.10 could
be effective. For example consider functions on the sphere S4 depending
on 2 variables, for which p̃ = 7. There are 10 possible pairs of variables in
the set {1, . . . , 5}. Take just m = 8 functions, say those associated to the
pairs (1, 2), (1, 3), (1, 4), (1, 5), (2, 3), (2, 4), (2, 5), (3, 4). We denote with fij
the nonnegative function depending on variables xi, xj and with Aci,j the
associated maximal set. It is easy to see that the vector field L1,2 lies in
all Aci,j except for Ac3,4. So the exponent associated to all functions except
f34 will be p̃ = 7. It is also easy to check that each element of Ac3,4 occurs
at most six times among all the complements of the maximal sets. So an
application of Theorem 3.10 shows that the inequality∫
S4
f12f13f14f15f23f24f25f34dσ ≤ ‖f12‖7‖f13‖7‖f14‖7‖f15‖7‖f23‖7‖f24‖7‖f25‖7‖f34‖6

holds. This inequality is nontrivial and is not a direct consequence of Theorem
5.14.

Remark 5.18. Thanks to Formula (34) it is possible to rewrite equation
(41) in the form ∫

Sn−1

C(n,k)∏
i=1

fi(πωix)dσ .
C(n,k)∏
i=1

‖fi‖Lp(Bk), (45)

which has the structure of a Brascamp–Lieb inequality.

6. Further results

6.1. Inequalities for radial functions on k variables. In this section
we improve on Theorem 5.14 by adding an additional symmetry. We consider
functions of k variables, i.e. functions that are defined on a k-dimensional unit
ball and pulled-back to the sphere by means of a projection, that are radial
with respect to the variables in the k-dimensional ball, for 1 ≤ k ≤ n − 1.
Given a subset ωi = {i1, . . . , ik} of {1, . . . , n}, we will use the notation r(xωi)

to denote the radius (x2i1 + · · ·+ x2ik)1/2. A functions depending radially on

the variables xω is a function f : [0, 1] → R pulled back to the sphere via
the composition r ◦ πωi . We will write f(r(xωi)) for f((r(πωi(x)))), with
x ∈ Sn−1.

We have
(
n
k

)
:= C(n, k) possible choices of k-tuples out of the set {1, . . . , n},

as in the generic case of functions depending on k variables. We will label
the tuples by ω1, . . . , ωC(n,k), as in the previous section. To each collection of
variables ωi = {i1, . . . , ik} corresponds a maximal subset Ai which contains
all the vector fields Lh,l for which h, l /∈ ωi, but also the vector fields Lh,l for
which both h, l ∈ ωi, by the radiality assumption.
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The subalgebra generated by each maximal subset Ai is isomorphic to the
direct sum so(n− k)⊕ so(k) and has the form 〈Ai〉 = soαi ⊕ soβi , where αi
is a multi-index such that αji = 0 if j ∈ ωi and βi = (1, 1, . . . , 1)− αi.

Note that by the convention in Theorem 5.6 the splitting should be
ordered by the cardinality of multi-indices. We can reduce to the cases
where k ≤

⌊
n
2

⌋
. Indeed, consider a function f that depends radially on the

k variables {xi1 , . . . , xik} and let {xik+1
, . . . , xin} be the remaining n − k

variables. It is straightforward that

f(x2i1 + · · ·+ x2ik) = f(1− (x2ik+1
+ · · ·+ x2in)) = g(x2ik+1

+ · · ·+ x2in),

for some function g. There is a correspondence between functions that depend
radially on k variables and functions that depend radially on n− k variables.
Indeed, the number of possible choices of k-tuples and (n − k)-tuples is
the same, since

(
n
k

)
=
(
n

n−k
)
, for k ≤

⌊
n
2

⌋
. Moreover the splittings of the

corresponding associated maximal subsets is the same up to change in the
order of the direct summands.

We will stick to the convention that the first direct summand is related to
the longest multi-index, so it suffices to look at the case k ≤

⌊
n
2

⌋
. The case

of n even and k = n/2 is a bit different and will be treated separately.
We have the following theorem.

Theorem 6.1. Let k < n/2. Let f1, . . . , fC(n,k) be nonnegative measurable

functions, fi : [0, 1]→ R+. The inequality∫
Sn−1

f1(r(xω1)) . . . fC(n,k)(r(xωC(n,k)
))dσ ≤

C(n,k)∏
i=1

‖fi‖Lp(Sn−1) (46)

holds for

p ≥ p̃ = 2

(
n− 2

k − 1

)
.

Moreover inequality (46) is sharp in the sense of Definition 5.12.

Remark 6.2. The result of [9] is again recovered, since functions that depend
radially on one variable are just even functions of one variable. Indeed, for
k = 1 we have p̃ = 2. Note that the exponent p̃ obtained for this type of
functions is smaller than that obtained for generic functions of k variables.
This in particular implies that inequality (46) is nontrivial in the sense of
Definition 2.9.

Proof. By Theorem 3.8, the exponent p̃ is given by the number of occurrences
of the most recurrent element among the sets Aci , for i = 1, . . . , C(n, k). The
elements of Aci are vector fields of type Lh,l with exactly one among h and
l in ωi. So an element Lh,l will occur in all Aci associated to subsets ωi
containing either h but not l, which are

(
n−2
k−1
)
, or l but not h, which are

again
(
n−2
k−1
)
. Altogether, each vector field Lh,l will occur 2

(
n−2
k−1
)

times among
the Aci , yielding the exponent p̃.

To prove that p̃ is sharp we construct an explicit counterexample. Consider
functions fi : [0, 1]→ R+, of the form

fi(r(xωi)) = (x2i1 + · · ·+ x2ik)−γ/2 + (1− x2i1 − · · · − x
2
ik

)−
γ(n−k)

2k , (47)
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where γ is a positive constants to be determined.
We first compute the norms on the right-hand side. Without loss of

generality we assume that ω = {1, . . . , k} and work with f(x21 + · · · + x2k).
Let p ≥ 1. We have

‖f‖p
Lp(Sn−1)

.
∫
Sn−1

[
(x21 + · · ·+ x2k)

−γp/2 + (1− x21 − · · · − x2k)−
γ(n−k)p

2k

]
dσ

.
∫
Bk

[
(x21 + · · ·+ x2k)

−γp/2

+(1− x21 − · · · − x2k)−
γ(n−k)p

2k

]
(1− x21 − · · · − x2k)(n−k−2)/2dx1 . . . dxk

.
∫ 1

0
ρ−γp+k−1(1− ρ2)(n−2−k)/2 + ρk−1(1− ρ2)−

γ(n−k)p
2k

+n−k−2
2 dρ,

where we used the integration formula (33) and then passed to polar coordi-
nates. This integral is finite if γp < k.
We control the left-hand side of (46) by the trivial bounds (x21+ · · ·+x2k)−γ ≥
(x21 + · · · + x2k + x2k+1 + · · · + x2n−1)

−γ , for terms not involving xn, and

(1−x21− · · ·−x2n)−γ ≥ (1−x2n)−γ , for terms involving xn. We make this dis-
tinction to pass to polar coordinates in the hyperplane Rn−1 with coordinates
x1, . . . , xn−1; on the sphere Sn−1, |xn| will then just be (1− ρ2)1/2.

There are
(
n−1
k

)
terms not involving xn, and

(
n−1
k−1
)

involving it. For the

functions not depending on xn we select the first summand of (47), for those
depending on xn we select the second one. For the left-hand side we have:∫
Sn−1

C(n,k)∏
i=1

fi(r(xωi))dσ ≥
∫
Sn−1

(x21 + · · ·+ x2n−1)
− γ

2 (n−1
k )(1− x2n)−

γ
2
n−k
k (n−1

k−1)dσ

≥
∫ 1

0
ρ−(γ(n−1

k )+γ n−kk (n−1
k−1))+n−2 dρ√

1− ρ2
.

This integral diverges for

γ ≥ (n− 1)

[(
n− 1

k

)
+
n− k
k

(
n− 1

k − 1

)]−1
. (48)

Comparing the condition γp < k and (48) we see that the right-hand side is
finite and the left-hand side divergent if

p < kγ−1 ≤ k

n− 1

[(
n− 1

k

)
+
n− k
k

(
n− 1

k − 1

)]
= 2

(
n− 2

k − 1

)
= p̃,

thus proving the optimality of the exponent p̃. �

In the case of n even and functions depending radially on k = n/2 variables,
the splitting associated to a maximal subset is of type so(n/2) ⊕ so(n/2)
so that there are two possible orderings. This corresponds to the fact that,
given a subset ωi = {ii, . . . , in/2} of {1, . . . , n}, the set {i(n/2)+1, . . . , in}
being its complement, a function radial in the variables of ωi is also radial in
the variables of its complement, but in this case both sets have cardinality
n/2. So one needs to consider a family of (different) k-tuples ωi, for i =
1, . . . , C(n, k)/2, with ωi ∩ ωj 6= ∅ for all i, j. Different choices of families of
subsets ωi give equivalent types of functions. We have the following theorem.
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Theorem 6.3. Let n > 3 be even and k = n/2. Let ωi be a family
of C(n, k)/2 different k-tuples such that ωi ∩ ωj 6= ∅ for all i, j. Let
f1, . . . , fC(n,k)/2 be nonnegative measurable functions, fi : [0, 1]→ R+. The
inequality∫

Sn−1

f1(r(xω1)) . . . fC(n,k)/2(r(xωC(n,k)/2
))dσ ≤

C(n,k)/2∏
i=1

‖fi‖Lp(Sn−1) (49)

holds for

p ≥ p̃ =

(
n− 2

k − 1

)
.

Moreover inequality (49) is sharp in the sense of Definition 5.12.

Proof. We need to compute the number of occurrences of each vector field
Lh,l among the sets Aci . As before we must consider sets ωi containing either
h or l, but not both. To a k-tuple σ containing h and not l corresponds
a unique k-tuple τ containing l and not h such that σ ∩ τ = ∅. By the
assumptions on the ωi, one and just one between σ and τ is among the sets
ωi. Thus, each vector field Lh,l occurs

(
n−2
k−1
)

times among the Aci . This
provides the exponent p̃.

The sharpness is proved as in Theorem 6.1, by testing on the functions

fi(r(xωi)) = (x2i1 + · · ·+ x2ik)−(n−1)/C(n,k).

�

6.2. Inequalities with different exponents. In Remark 5.16 of Theorem
5.14 we saw that an application of Theorem 3.8 always yields the same
exponent for all functions. In this section we want to understand for which
exponents p1, . . . , pC(n,k) an inequality of the type∫

Sn−1

C(n,k)∏
i=1

fi(xωi)dσ ≤
C(n,k)∏
i=1

‖fi‖Lpi (Sn−1) (50)

may hold. Since p−1i belongs to [0, 1], only a point in the unit cube Q =

[0, 1]C(n,k) in RC(n,k) identifies a choice of exponents. The inequality holds
for points (p−11 , . . . , p−1C(n,k)) ∈ Q for which

C(n,k)∑
i=1

p−1i ≤ 1

by Hölder’s inequality and continuous embeddings of Lebesgue spaces. By
Theorem 5.14 we know that (50) also holds for (p̃−1, . . . , p̃−1) ∈ Q, with

p̃ =
(
n
k

)
−
(
n−2
k

)
. Then inequality (50) holds for points (p−11 , . . . , p−1C(n,k)) ∈ Q

for which
C(n,k)∑
i=1

p−1i ≤
C(n, k)

p̃

with pi > p̃ for all i = 1, . . . , C(n, k), by continuous embeddings of Lebesgue
spaces again. Nevertheless we can extend the range of exponents for which
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(50) is valid applying multilinear interpolation (see [19] or [12]) to the operator

T (f1, . . . , fC(n,k)) =

∫
Sn−1

∏
fi(πωix)dσ,

where the functions fi are defined on the measure space
(
Bk, (1− |x|2)(n−k−2)/2dx

)
and dx is the Lebesgue measure in Rk. Recall that thanks to the integration
formula (33) we have

‖fi ◦ πωi‖Lp(Sn−1) ' ‖fi‖Lp(Bk,(1−|x|2)(n−k−2)/2dx).

By interpolating the exponents that verify Hölder’s condition with (p̃−1, . . . , p̃−1),
we obtain the following proposition.

Proposition 6.4. Let (p−11 , . . . , p−1C(n,k)) ∈ Q be such that
∑C(n,k)

i=1 p−1i ≤ 1.

Then the inequality∫
Sn−1

C(n,k)∏
i=1

fi(xωi)dσ ≤
C(n,k)∏
i=1

‖fi‖Lri (Sn−1)

holds for all exponents ri such that ri
−1 = θpi

−1 + (1 − θ)p̃−1 for all i =
1, . . . , C(n, k) and θ ∈ [0, 1].

So (50) holds in the convex hull R of the region
∑
p−1i ≤ 1 and the point

(p̃−1, . . . , p̃−1). We conjecture that outside R the inequality (50) is false.
Theorem 5.14 excludes the points (p−11 , . . . , p−1C(n,k)) ∈ Q such that pi < p̃ for

all i, that are not in R, but do not exhaust the complement of R in Q.
Unfortunately we do not have a complete proof of the conjecture. We

have however the following partial result for points in the hyperplane in Q
given by the equation

C(n,k)∑
i=1

p−1i =
C(n, k)

p̃
,

to which (p̃−1, . . . , p̃−1) belongs.

Theorem 6.5. Let (p−11 , . . . , p−1C(n,k)) ∈ Q be such that

C(n,k)∑
i=1

p−1i =
C(n, k)

p̃
. (51)

For any l consider the set Jl consisting of the indices j such that l ∈ ωj (then

|Jl| =
(
n−1
k−1
)
). If there is l such that∑

j∈Jl

p−1j >

(
n−1
k−1
)

p̃
, (52)

then the inequality (50) is false.

Proof. Without loss of generality suppose that l = n in the hypothesis. We
label the

(
n−1
k−1
)

sets ωi for which n ∈ ωi with i = 1, . . . ,
(
n−1
k−1
)
. Consider

functions fi : Bk → R+, where Bk is the unit ball in Rk, of the form

fi(xωi) = (|xi1 ||xi2 | . . . |xik |)
−γi/k + (1−x2i1)−

γi(n−1)

2k + · · ·+ (1−x2ik)−
γi(n−1)

2k .
(53)
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From the proof of Theorem 5.14 we know that each fi is in Lpi(Sn−1) if

γipi < k (54)

for all i = 1, . . . , C(n, k), so that under this assumption the right-hand side
of (50) is finite.

For the left-hand side we proceed as follows. For the functions not de-
pending on the variable xn we select the first summand in (53), for those

depending on xn we select the summand (1− x2n)−
γi(n−1)

2k . So the left-hand
side satisfies:∫
Sn−1

C(n,k)∏
i=1

fi(xωi)dσ ≥
∫
Sn−1

C(n,k)∏
i=(n−1

k−1)+1

(|xi1 | . . . |xik |)
− γi
k

(n−1
k−1)∏
j=1

(1− x2n)−
γj(n−1)

2k dσ

≥
∫ 1

0
ρ−

∑
i γi−

n−1
k

∑
j γj+n−2 dρ√

1− ρ2
,

where we proceeded as in the proof of Theorem 5.14. Set I = {
(
n−1
k−1
)

+

1, . . . , C(n, k)} and J = {1, . . . ,
(
n−1
k−1
)
}. The left-hand side of (50) diverges if

−
∑
i∈I

γi −
n− 1

k

∑
j∈J

γj + n− 2 = −1,

that is if ∑
i∈I

γi = (n− 1)

1− 1

k

∑
j∈J

γj

 .

Since by (54)
∑

i∈I γi < k
∑

i∈I p
−1
i , to make the left-hand side divergent we

must have (
(n− 1)− k

∑
i∈I

p−1i

)
<
n− 1

k

∑
j∈J

γj .

Since by (54)
∑

j∈J γj < k
∑

j∈J p
−1
j , we must also have(

1− k

n− 1

∑
i∈I

p−1i

)
<

1

k

∑
j∈J

γj <
∑
j∈J

p−1j .

It is possible to choose γj so that k−1
∑

j∈J γj is squeezed between these two
terms if (

1− k

n− 1

∑
i∈I

p−1i

)
<
∑
j∈J

p−1j ,

which by (51) becomes

1− k

n− 1

C(n, k)

p̃
−
∑
j∈J

p−1j

 <
∑
j∈J

p−1j ,

which is equivalent to∑
j∈J

p−1j >

(
1− k

n− 1

)−1(
1− k

n− 1

C(n, k)

p̃

)
,
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from which the assertion follows. �

Remark 6.6. Note that there are n and k for which the assumptions of
Theorem 6.5 are not fulfilled. For example, consider n = 4 and k = 2, i.e. the
case of functions of two variables on the sphere S3, for which p̃ = 5. There
are 6 possible tuples (i, j), with 1 ≤ i < j ≤ 4. We will denote by pij the
exponent corresponding to the pair (i, j). It is easy to check that choosing
p12 = p13 = p24 = p34 = 10, p23 = p14 = 5/2, we have that

∑
i<j p

−1
ij = 6/5.

Nevertheless, Theorem 6.5 cannot be applied, since for all l and all triples
(j1, j2, j3) we have plj1 + plj2 + plj3 ≤ 3/5, so that (52) is never satisfied.

6.3. The case n = 3 and k = 1. In this section we will discuss in more
detail the case of functions of one variable on the sphere S2. We want to
understand for which (p−11 , p−12 , p−13 ) ∈ Q = [0, 1]3 the inequality∫

S2
f1(x1)f2(x2)f3(x3)dσ ≤ ‖f1‖Lp1 (S2)‖f2‖Lp2 (S2)‖f3‖Lp3 (S2) (55)

holds true for all measurable functions fi : [−1, 1]→ R+, for i = 1, 2, 3. As
explained in the previous section, the inequality holds in the region R, which
is the convex hull of the the Hölder’s tetrahedron and the point (1/2, 1/2, 1/2)
given by Theorem 5.13. Moreover in this case the assumptions of Theorem
6.5 are always fulfilled, since given any triple (p−11 , p−12 , p−13 ) 6= (1/2, 1/2, 1/2)

such that p−11 + p−12 + p−13 = 3/2, by pigeonholing there must always be one
pi > 1/2. This implies that the point (1/2, 1/2, 1/2) is the only point in
the hyperplane p−11 + p−12 + p−13 = 3/2 where inequality (55) holds. From
this we also deduce that inequality (55) cannot hold for points in Q such
that p−11 + p−12 + p−13 > 3/2. Indeed, by interpolation with points in R this

would yield points in the hyperplane p−11 + p−12 + p−13 = 3/2 for which the
inequality holds, providing a contradiction. This goes in the direction of our
conjecture, that R is the optimal region of validity for (55).

P
1/p2

1/p3

1/p1

P

Figure 1. The conjectured sharp region R, where P = (1/2, 1/2, 1/2).

The only points left are those outside of R for which 1 < p−11 +p−12 +p−13 <
3/2. In this range we have the following proposition which leads to a partial
improvement towards the sharpness.
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Proposition 6.7. Suppose that 1 < p−11 + p−12 + p−13 < 3/2 and that the
condition

1

pa
+

1

pb
> 2

(
1− 1

pc

)
(56)

holds for at least one choice of a, b, c in {1, 2, 3} with a, b, c pairwise distinct.
Then inequality (55) is false.

Proof. We make the usual construction. Assume for instance that a = 1, b =
2, c = 3. We let

fi(xi) = |xi|−γi + (1− x2i )−
(n−1)γi

2 = |xi|−γi + (1− x2i )−γi ,
for i = 1, 2, 3. As usual the integrability condition for the right-hand side of
(55) is γipi < 1. For the left-hand side, taking the first summand for f1 and
f2 and the second one for f3, we get that∫

S2
f1(x1)f2(x2)f3(x3)dσ ≥

∫ 1

0
ρ−γ1−γ2−2γ3+1 dρ√

1− ρ2
,

which diverges for γ1 + γ2 + 2γ3 = 2, that is for

γ3 = 1− γ1 + γ2
2

.

From the condition γipi < 1 we get that we need to have

2

(
1− 1

p3

)
< γ1 + γ2 <

1

p1
+

1

p2
.

Clearly γ1 + γ2 can be in this range only when (56) holds. �

To sum up, we do not know what happens in the range 1 < p−11 + p−12 +

p−13 < 3/2, outside of R, where none of the conditions (56) is satisfied for
any exponent pi. An example of a point in this region is (2/3, 2/3, 0).

6.4. Inequalities with other symmetries. In the last sections we saw
applications of Theorem 3.8 in special cases, where the choices of the maximal
subsets Ai of {Lj,l}j<l reflected particular symmetries of the functions in-
volved. Nevertheless, Theorem 3.8 (and Theorem 3.10) can also be applied to
other type of symmetries. Indeed, let Ai be maximal subsets for i = 1, . . . ,m.

An easy algorithm to compute the exponent p̃ of Theorem 3.8 and the
exponents p̃i of Theorem 3.10 is as follows. We consider the matrix of zeros
and ones with m rows indexed by the m maximal subsets and

(
n
2

)
columns

indexed by the vector fields of the basis of so(n). We set aij = 1 if the vector
field corresponding to the j-th column is in Aci and zero otherwise. In this
way the exponent p̃ of Theorem 3.8, being the number of occurrences of the
most recurrent element among the Aci , is just

max
j

m∑
i=1

aij .

The exponent p̃i in Theorem 3.10, being the number of occurrences of the
most recurrent element in Aci , is given by

max
j : aij=1

m∑
k=1

akj ,
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where we take the maximum only over the columns j for which aij = 1, so
that we check how many times the vector fields that are contained in Aci
occur in the sets Ack.

We give two examples. We remark that also in these examples the
exponents given by Theorem 3.8 turn out to be sharp.

Example 6.8. On the sphere S3 consider three functions, f1 depending on x1,
f2 depending on x2, and f3 depending radially on x1 and x2 (or equivalently
depending radially on x3 and x4). The maximal subset annihilating f1 isA1 =
{L2,3, L2,4, L3,4}, with 〈A1〉 ' so(3), so that Ac1 = {L1,2, L1,3, L1,4}. The
maximal subset annihilating f2 is A2 = {L1,3, L1,4, L3,4}, with 〈A2〉 ' so(3),
so that Ac2 = {L1,2, L2,3, L2,4}. The maximal subset annihilating f3 is A3 =
{L1,2, L3,4}, with 〈A3〉 ' so(2)⊕ so(2), so that Ac3 = {L1,3, L1,4, L2,3, L2,4}.
Each Aci has an element that occurs twice among the sets Ack, for k = 1, 2, 3,
so by Theorem 3.8 we have p̃ = 2. It follows that∫

S3
f1(x1)f2(x2)f3(x

2
1 + x22)dσ ≤ ‖f1‖L2(S3)‖f2‖L2(S3)‖f3‖L2(S3).

Moreover this inequality is sharp. Indeed, consider the functions fi(xi) =

|xi|−1/2 for i = 1, 2 and the function f3(x
2
1 + x22) = (x21 + x22)

−1/2. It is easy
to see, proceeding in the same way as above, that ‖fi‖Lp(S3) <∞ with p < 2
for i = 1, 2, 3. Nonetheless we have that∫
S3
f1f2f3dσ =

∫
S3
|x1|−1/2|x2|−1/2(x21 + x22)

−1/2dσ

∼
∫
B2

|x1|−1/2|x2|−1/2(x21 + x22)
−1/2(1− x21 − x22)(4−2−2)/2dx1dx2

&
∫ 1

0
ρ−(1/2)−(1/2)−1ρdρ =

∫ 1

0
ρ−1dρ,

that diverges.

Example 6.9. On the sphere S4 we consider functions depending on three
variables, with radial dependence on two of them. This corresponds to the
case of maximal subsets Ai with two elements Li,j , Lk,l with i, j, k, l pairwise
distinct so that the generated subalgebras have the form 〈Ai〉 = so(2)⊕so(2).
As we discussed above, the first subalgebra indicates the number of variables
the functions depend on, in this case we have n− k = 5− 2 = 3. The second
subalgebra refers to radiality in two of the variables involved. The ambiguity
in the order of the subalgebras is not a problem, since the two possibilities
are equivalent in the following sense. If A = {L1,2, L3,4} we are considering
a function f either of type f(x23 + x24, x5) or a function of type f(x21 + x22, x5)

which are equivalent, since x23 + x24 = 1− x21 − x22 − x25. There are
(
5
2

)
= 10

possible choices for Li,j , and having fixed i and j we have
(
3
2

)
= 3 choices

for Lk,l. By the aforementioned equivalence we have 15 possible maximal
subsets.

It is easy to see that in this case the critical exponent given by Theorem 3.8
is p̃ = 12. The exponent is sharp and this can be easily checked considering
the functions

f jli (xi, x
2
j + x2l ) = |xi|−1/12(x2j + x2l )

−1/12 + (1− x2i )−1/6. (57)
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