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SUMMARY

Stroke causes focal brain lesions that disrupt func-
tional connectivity (FC), a measure of activity syn-
chronization, throughout distributed brain networks.
It is often assumed that FC disruptions reflect dam-
age to specific cortical regions. However, an alter-
native explanation is that they reflect the structural
disconnection (SDC) of white matter pathways.
Here, we compare these explanations using data
from 114 stroke patients. Across multiple analyses,
we find that SDC measures outperform focal dam-
age measures, including damage to putative critical
cortical regions, for explaining FC disruptions asso-
ciated with stroke. We also identify a core mode of
structure-function covariation that links the severity
of interhemispheric SDCs to widespread FC disrup-
tions across patients and that correlates with defi-
cits in multiple behavioral domains. We conclude
that a lesion’s impact on the structural connectome
is what determines its impact on FC and that inter-
hemispheric SDCs may play a particularly important
role in mediating FC disruptions after stroke.

INTRODUCTION

Disorders such as stroke cause focal brain lesions but also pro-

duce dysfunction in distributed brain networks (Carrera and

Tononi, 2014). Functional connectivity (FC), a measure of the

correlation between spontaneous activity fluctuations in remote

brain regions (Biswal et al., 1995), has been used to identify

several brain network abnormalities that predict behavioral def-

icits after stroke. These include reductions in (1) interhemispheric

network integration (He et al., 2007; Carter et al., 2010; Wang

et al., 2010; Park et al., 2011; Wu et al., 2011; van Meer et al.,

2012; Golestani et al., 2013; Bauer et al., 2014; Lim et al.,

2014; New et al., 2015; Siegel et al., 2016b; Tang et al., 2016);

(2) ipsilesional network segregation (Baldassarre et al., 2014; Ba-

uer et al., 2014; Eldaief et al., 2017); and (3) network modularity

(Gratton et al., 2012; Siegel et al., 2018). An important next
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step is to determine how these FC abnormalities depend on

the properties of the focal lesion (Carrera and Tononi, 2014; Cor-

betta et al., 2018).

Prior work on this topic has primarily focused on how FC

disruptions depend on the FC network properties of damaged

gray matter (GM) regions (Eldaief et al., 2017; Gratton et al.,

2012; Nomura et al., 2010; Ovadia-Caro et al., 2013). Based

on this work, it has been proposed that damage to cortical

‘‘connector hub’’ regions, which interface with multiple FC

networks, produces broad disruptions of FC and behavior

(Gratton et al., 2012; Warren et al., 2014). However, this expla-

nation ignores the fact that stroke, tumors, and traumatic

brain injuries frequently affect the white matter (WM) (Corbetta

et al., 2015; Esmaeili et al., 2018; Sharp et al., 2014) and over-

looks evidence implicating the structural disconnection (SDC)

of WM pathways in complex disorders such as spatial neglect

(He et al., 2007; Thiebaut de Schotten et al., 2014) and apha-

sia (Fridriksson et al., 2013; Yourganov et al., 2016; Griffis

et al., 2017a, 2017b).

Structural connectivity (SC) directly and indirectly shapes FC

in the healthy brain (Adachi et al., 2012; Goñi et al., 2014; Grei-

cius et al., 2009; van Den Heuvel et al., 2009; Honey et al.,

2009). Accordingly, we expected that SDCs fundamentally

shape the FC disruptions caused by stroke. This expectation

aligns with the general predictions of computational studies

that have simulated the effects of lesions on FC (Alstott et al.,

2009; Cabral et al., 2012; Saenger et al., 2018; Vá�sa et al.,

2015), as well as with empirical reports of FC disruptions associ-

ated with callosal resections and traumatic brain injuries (Jilka

et al., 2014; Johnston et al., 2008; Roland et al., 2017). Thus,

we aimed to test the hypothesis that a lesion’s distributed impact

on the structural connectome, not its focal impact on critical GM

regions, is what determines its impact on FC.

The relationship between SC and FC is an important topic in

systems neuroscience (Mi�si�c and Sporns, 2016; Park and Fris-

ton, 2013). However, because the structural connectome cannot

be experimentally manipulated in human subjects, few studies

have empirically examined how direct perturbations of the struc-

tural connectome are reflected in the functional connectome

(Jilka et al., 2014; Johnston et al., 2008; Roland et al., 2017).

Because focal brain lesions can be conceptualized as naturally

occurring perturbations of the structural connectome, we also
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Figure 1. Disconnection Measures Capture Common Effects of Disparate Lesions

(A) Structural data and atlases. From left to right: T2-weighted structural MRI scan from a single patient, regional GM parcellation, and diffusion MRI structural

connectome atlas.

(B) Example structural measures. From left to right: voxel damage, regional GM damage, tract-based SDC, and region-based SDCmeasures for a single patient.

(C) Topographies of voxel damage (top) and region-based SDC (bottom) overlap across patients. Colormaps represent the number of patients with damage (top)

and disconnection (bottom) at each voxel and connection, respectively. For SDC overlaps, lines represent connections and colored spheres represent regions.

Sphere colors correspond to network assignments shown in Figure S2A.

(D) Bar heights (y axis) indicate the proportion of voxels (blue) and connections (orange) in the across-patient overlap maps that are damaged in different numbers

of patients (x axis). Dashed lines correspond to the maximum number of patients with damage and disconnection at any voxel and connection, respectively.
aimed to empirically characterize the relationship between SDC

and FC patterns across patients.

We were particularly interested in whether this relationship

might be dominated by a few core structure-function profiles.

Stroke produces a small set of related FC abnormalities, and

behavioral deficits appear similarly low-dimensional such that

a few components account for most of the variance in perfor-

mance within and across behavioral domains (Corbetta et al.,

2015). A potential explanation for this is that strokes often disrupt

multiple proximal fiber pathways that traverse vascular terri-

tories, leading to correlated deficits and network dysfunction

(Corbetta et al., 2018). If this is true, then the relationship be-

tween SDC and FC patterns should also be low-dimensional,

and the FC patterns identified based on their relationships to

SDCs should reflect the core FC disruptions that have previously

been identified based on their relationships to behavior.
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RESULTS

Structural Measures
Structural MRI data acquired from 114 sub-acute stroke patients

(mean time since stroke = 13.09 days, SD = 4.75 days) (Table S1)

were used along with a regional GM parcellation (359 regions)

and a WM structural connectome atlas (70 tracts) to measure

each lesion’s focal and distributed anatomical impacts at

different spatial scales (Figure 1A). For each patient, we defined

two measures of focal damage: (1) a voxel-based measure indi-

cating the lesion status (i.e., lesioned versus spared) of each

voxel in the brain, including both GM and WM voxels (Figure 1B,

voxel-based damage); and (2) a region-based measure quanti-

fying the proportion of voxels in each GM region that overlapped

with the lesion (Figure 1B, region-based damage). We also

defined two measures of distributed SDCs: (1) a tract-based



measure quantifying the proportion of streamlines in each tract

that intersected the lesion (Figure 1B, tract-based SDC), and

(2) a region-basedmeasure quantifying the proportion of stream-

lines between each pair of brain regions that intersected the

lesion (Figure 1B, region-based SDC). See STAR Methods for

details.

Disconnection Measures Capture Common Effects of
Disparate Lesions
Lesions in different locations can produce similar SDCs due to

the spatially distributed nature of WM pathways (Catani et al.,

2012). Thus, SDCmeasures should reveal commonalities among

patients with heterogeneous lesions. To illustrate this, we

summed the (1) binary voxel-based damagemeasures and (2) bi-

narized region-based SDC measures across patients to create

maps quantifying the number of patients with damage and

disconnection at each voxel and connection in the brain (Fig-

ure 1C). Notably, the region-based SDC overlap distribution (Fig-

ure 1D, orange histogram) was shifted to the right relative to the

voxel-based damage overlap distribution (Figure 1D, blue histo-

gram), indicating that SDC overlaps (max = 47; see dashed or-

ange line in Figure 1D) were much more frequent than lesion

overlaps (max = 18; see dashed blue line in Figure 1D) across pa-

tients. Thus, SDC measures can reveal common structural dis-

ruptions across patients with heterogeneous lesions.

Functional Connectivity Measures
Resting-state fMRI data acquired from 114 sub-acute stroke pa-

tients and 24 demographically matched controls (Table S1) were

used to measure FC between 324 cortical regions associated

with different brain networks (Figures S2A–S2C). We defined

12 network-level summary measures to capture core FC disrup-

tions associated with stroke, namely reductions in (1) interhemi-

spheric network integration, (2) ipsilesional network segregation,

and (3) network modularity. For each patient, we extracted the

mean interhemispheric FC values for nine bilateral cortical net-

works (Figure S2D, left) and averaged these values to summarize

interhemispheric within-network integration across the cortex

(Figure S2D, left inset). We also extracted the mean FC values

between the ipsilesional dorsal attention (DAN) and default

mode (DMN) networks to summarize network segregation in

the lesioned hemisphere (Figure S2D, middle). Finally, we aver-

aged modularity estimates for a priori network partitions across

multiple edge density thresholds to summarize the overall

network structure (Figure S2D, right; mean shown in inset).

These FCmeasures were used as dependent variables in subse-

quent analyses.

Functional Connectivity Disruptions in Sub-acute
Stroke
The mean FC matrices for patients and controls had similar

topographies (Figure S2B; r = 0.96, p < 0.001). Subtracting the

patient matrix from the control matrix revealed magnitude differ-

ences that were often in opposite directions for connections with

positive versus negative values in the mean control matrix (Fig-

ure S2C; r = �0.42, p < 0.001), consistent with reduced within-

network integration and between-network segregation after

stroke. As expected, patients showed marked abnormalities in
network-level summary measures relative to controls (Fig-

ure S2D), and this was not attributable to differences in total

FC between groups (STAR Methods).

Total Disconnection Is Superior to Cortical Hub Damage
for Explaining Reduced Modularity
Reductions in modularity have been associated with damage to

cortical regions with diverse between-network FC (‘‘connector

hubs’’) but not with damage to regions with diverse within-

network FC (‘‘provincial hubs’’) (Gratton et al., 2012). Connector

hubs have therefore been proposed as critical GM regions that

produce widespread dysfunction when damaged (Warren

et al., 2014). We aimed to replicate this effect in our data and

compare its explanatory power to that of a simple summary

measure of SDC severity, defined for each patient as the total

number of region-based SDCs caused by their lesion (i.e., total

SDC). For each patient, we also defined measures of FC

connector and provincial hub damage as weighted means of

the control-derived participation coefficient (PC) and within-

module degree (WMD) values for damaged cortical regions as

in the study by Gratton et al. (2012) (Figure 2A).

Replicating the connector damage effect, a 2-predictor multi-

ple regression model, identified a significant effect of connector

hub (Figure 2B; model 1, PC Dmg) but not provincial hub (Fig-

ure 2B; model 1, WMD Dmg) damage on modularity (see also

Figure 2C, left). However, a 3-predictor model that included

total SDC explained significantly more variance (F1,110 = 22.6,

p < 0.001) and featured total SDC as the only significant predictor

(Figure 2B, model 2). This model was not improved by adding

lesion volume, and total SDC remained the only significant pre-

dictor after lesion volumewas added (Figure 2B,model 3). Corre-

lational analyses confirmed that modularity was more strongly

related to SDC than to connector hub damage (Figure 2C, left),

even when adjusting for lesion volume (Figure 2C, right). Thus,

the loss of modularity after stroke is better explained by SDC

severity than by damage to cortical connector hub regions.

Disconnection Provides the Best Anatomical Account of
Network Dysfunction after Stroke
We next compared the ability of multivariate damage and SDC

information to explain each network-level measure of FC disrup-

tion. For each FC measure (see Figure S2D), we fit four separate

partial least-squares regression (PLSR) models by using the

different structural measures (see Figure 1B) as predictors. The

optimal number of PLS components for each model was deter-

mined by jackknife cross-validation, and confidence intervals

(CIs) for the model fits were obtained by bootstrap resampling

(1,000 bootstraps). To identify the best model of each FC mea-

sure, we compared Akaike information criterion (AIC) weights

among models. AIC weights can be interpreted as conditional

probabilities that a model is the best of a set given the data

and the set of models (Wagenmakers and Farrell, 2004).

Across FC measures, the SDC models consistently explained

more variance than the damage models (Figure 3A). Although

SDCmodels tended to use more PLS components than damage

models (Figure 3B), subsequent comparisons using AIC weights

accounted for differences in model complexity, and similar re-

sults were obtained when only a single component was used
Cell Reports 28, 2527–2540, September 3, 2019 2529



Figure 2. Total Disconnection Is Superior

to Cortical Hub Damage for Explaining

Reduced Modularity

(A) FC participation coefficients (top) and within-

module degree Z scores (bottom) for each cortical

region in the mean control FC matrix.

(B) Standardized betas (y axes) for structural

measure predictor effects (x axes) from three

nested regression models of network modularity

in the patient group (n = 114). Error bars corre-

spond to 95% CIs.

(C) Correlations (left, y axis) and partial correla-

tions (right, y axis) between structural measures

(x axes) and modularity. *FDR, p < 0.05.

See also Figure S2.
for all models (Figure S3). Comparisons of AIC weights revealed

that nine of the best models were region-based SDCmodels and

the remaining three were tract-based SDC models (Figure 3C).

SDC model performance could not be attributed to lesion

volume effects, as the damage measures contained the most in-

formation about lesion volume (STAR Methods). Thus, SDC

measures (particularly region-based SDC) consistently outper-

formed region-level and voxel-level damage measures for ex-

plaining core FC disruptions associated with stroke.

Disconnection Patterns Associated with Core FC
Disruptions
Prior work indicates that FC disruptions involving different net-

works are correlated across patients (Corbetta et al., 2018).

We observed moderate-to-strong correlations among the

different FCmeasures (bottom triangle in Figure 4A) that were re-

flected in the correlations of the unthresholded PLSR weights

from the region-based SDC models (top triangle in Figure 4A).

Consistent with the proposal that correlations among FC disrup-

tions reflect the simultaneous disruption of proximal WM

pathways within vascular territories (Corbetta et al., 2018), FC

disruptions and corresponding SDC weight patterns were highly

correlated among networks with dense connections traversing

the middle cerebral artery (MCA) territory (Figure 4A, networks

other than the visual network [VIS]; see Figure S1D) but were

weakly-to-negatively correlated between these networks and

other networks (Figure 4A, VIS).
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To characterize the most salient SDCs

associated with each core FC disruption,

we extracted the region-based SDC

PLSR model weights with significant

99% CIs (1,000 bootstraps) and positive

signs (signs were flipped so that positive

weights predicted more severe FC dis-

ruptions in all models) from the models

of mean interhemispheric within-network

FC, ipsilesional DAN-DMN FC, and

network modularity. Mean model

weights were larger for interhemispheric

SDCs than for intrahemispheric SDCs

(Figure 4B, compare orange and blue

dots), and top weights corresponded
overwhelmingly to interhemispheric SDCs within the MCA terri-

tory (Figure 4B, dots above the dashed lines; Figure 4C; see

also Figure S4). The top weights also included several intrahemi-

spheric SDCs involving right thalamocortical, fronto-parietal and

fronto-temporal, and/or left frontal, frontostriatal, and frontotha-

lamic pathways (Figure 4C; see also Figure S4). SDCs and/or le-

sions involving the cerebellum and brainstem (and to a lesser

extent, VIS) were associated with less severe FC disruptions

(Figures S4 and S5), consistent with the interpretation that the

correlation among FC disruptions reflects co-occurring SDCs

of diverse commissural and association pathways in the MCA

territory.

Low-Dimensional Covariance of Disconnection and
Functional Connectivity Patterns
The results reported above support the conclusion that SDCs

underlie core FC disruptions associated with stroke. However,

because they were originally identified based on their relation-

ships to behavior (rather than to SDCs), these core FC disrup-

tions may not be the only or even the primary FC consequences

of SDCs. To characterize the broader relationships between

SDC and FC patterns across patients, we applied a data-driven

partial least-squares correlation (PLSC) analysis to the full

connection-level (i.e., un-summarized) SDC and FC matrices

from the patient sample. PLSC performs a linear decomposition

of the cross-covariance matrix to obtain a set of orthogonal

latent variables (LVs)–linear combinations of the original



Figure 3. Disconnection Provides the Best Anatomical Account of Network Dysfunction After Stroke

(A) PLSR model fits and family-wise error (FWE)-corrected 95% CIs. Plots show R2 values (y axes) for different anatomical models (x axes) of each FC measure

obtained from the patient group (n = 114).

(B) Number of components included in each anatomical model (x axis) of each FC measure (y axis) as determined by jackknife cross-validation.

(C) Left: model AIC weights for each anatomical model (x axis) of each FC measure (y axis). Right: number of times (y axis) each anatomical model (x axis) was

selected as the best model of the set. The red boxes highlight distinct core FC disruptions.

See also Figures S2 and S3.
structural and functional connections–that maximally explain the

covariance between the SDC and FC datasets. The multivariate

SDC and FC topographies linked by each LV are reflected in

connection-level loadings (i.e., weights), and patient-level

scores for each LV are obtained by multiplying the original data

matrices by the corresponding loading vectors.

Consistent with the expectation that SDC and FC patterns

would exhibit a low-dimensional relationship, 87% of the covari-

ance between the full SDC and FCdatasets was explained by the
first 10 LVs (Figure 5A). Permutation testing (1,000 permutations)

revealed that the first two LVs (i.e., LV1 and LV2) each explained

significantly more covariance (45% and 21%, respectively) than

expected under the empirical null (false discovery rate [FDR],

p = 0.005). For each significant LV, we identified significant load-

ings (i.e., individual connections) as those with absolute boot-

strap (1,000 bootstraps) signal-to-noise ratios (BSRs) greater

than 2.5. Although both LV1 and LV2 accounted for a significant

portion of the total covariance, the loadings on LV2 did not
Cell Reports 28, 2527–2540, September 3, 2019 2531



Figure 4. Disconnection Patterns Associ-

ated with Core FC Disruptions

(A) Correlations among the different FC measures

(bottom triangle) and among the PLSR weight

vectors from the region-based SDC models

(top triangle).

(B) Distributions of significant region-based SDC

weights associated with reduced interhemispheric

within-network FC, increased DAN-DMN FC, and

reduced modularity in the patient group (n = 114).

Weights are shown separately for different network

and hemispheric connection types. Data points

correspond to single connections. Dashed lines

correspond to 80th percentile cutoffs of thresh-

olded weights (points above these lines are plotted

in C). Means and SDs are shown as line plots and

error bars.

(C) Brain plots show top 20% of weights in (B).

See also Figures S4 and S5.
achieve significance (see Figure S6 for characterization of

LV2). We therefore focused on characterizing LV1. Mean LV1

SDC (t112 = �1.0, p = 0.34) and FC scores (t112 = �0.62, p =

0.53) did not differ significantly between patients with left versus

right hemispheric lesions, indicating that LV1 was similarly ex-

pressed in both patient groups (see Figure S7 for separate ana-

lyses of each group).

At the patient level, expression of the LV1 SDC pattern was

reliably associated with the expression of the LV1 FC pattern,

as indicated by the correlation of SDC and FC scores across

patients (Figure 5B; 99% CI = 0.73–0.78, 1,000 bootstraps). In

terms of loading topographies, significant SDC loadings had

only positive signs and corresponded to interhemispheric

SDCs within and between networks (Figures 5C and 5D, see

LV1 SDC). Significant FC loadings with positive signs con-

sisted of interhemispheric and intrahemispheric functional

connections that were almost exclusively between different

networks (Figure 5C, LV1 FC; Figure 5D, right panels),

whereas loadings with negative signs corresponded over-

whelmingly to interhemispheric functional connections both

within and between networks (Figure 5C, LV1 FC; Figure 5D,

middle panel). These topographies are summarized in Fig-

ure 5D and show that the expression of the inter-hemispheric

SDC+ pattern (Figure 5D, see SDC+) was associated with
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stronger FC between networks (i.e.,

reducing segregation; Figure 5D, see

FC+) and weaker interhemispheric FC

that was most pronounced within net-

works (i.e., reducing integration; Fig-

ure 5D, see FC�).
LV1 Underlies Core Functional
Connectivity Disruptions and
Correlates with Behavior
The FC patterns associated with LV1

resembled two core FC disruptions asso-

ciated with stroke: reductions of within-
network interhemispheric FC and increases in between-network

FC (Figures 6C and 6D). This suggests that the core FC disrup-

tions associated with stroke are, in fact, primary consequences

of SDCs. We confirmed this correspondence by correlating the

patient LV1 scores with the a priori FC measures (Figure 6A,

top row). Patient FC scores for LV1 showed an extremely strong

negative correlation with mean interhemispheric within-network

FC and moderately strong correlations with the other measures.

Similar, but weaker, relationships were observed for LV1 SDC

scores (Figure 6A, bottom row). Thus, core FC disruptions previ-

ously identified based on their relationships to behavior appear

to largely reflect a single underlying FC pattern associated with

interhemispheric SDCs.

To confirm that LV1 captured a behaviorally relevant structure-

function relationship, we correlated patient-level LV1 scores with

performance scores obtained from PCAs of multiple tests in the

language, attention, visual memory, spatial memory, and motor

domains (Corbetta et al., 2015). LV1 expression significantly

correlated with behavioral impairments in multiple domains (Fig-

ure 6B, left), even when adjusting for lesion volume (Figure 6B,

right). Together with the results described above, these results

support the view that the low dimensionality of behavioral and

brain dysfunction after stroke reflects correlated SDCs resulting

from lesions within arterial territories.



Figure 5. Low-Dimensional Covariance of

Disconnection and Functional Connectivity

Patterns

(A) Proportion of total covariance explained by 1st

10 LVs from the PLSC of SDC and FC patterns in

the patient group (n = 114). LV1 (red outline) is

characterized in subsequent panels.

(B) Relationship between patient SDC (x axis) and

FC (y axis) scores for LV1.

(C) LV1 SDC (left plot) and FC (right plot) BSRs

(y axes) for different connection type categories

(x axes). Dots correspond to individual connec-

tions. Dashed lines denote significance thresholds.

(D) Multivariate SDC and FC topographies linked

by LV1. Brain images show top 20% of significant

positive (shown in red) and negative (shown in blue)

loadings for SDC and FC patterns with significant

BSRs (i.e., data points above and/or below dashed

lines in C).

See also Figures S6 and S7.
Disconnection Topographies Are Partially Reflected in
Functional Connectivity Patterns
The SC and FC patterns that covary across healthy individuals

feature divergent topographies, suggesting that they primarily

reflect indirect network-level relationships (Mi�si�c et al., 2016).

However, normal inter-individual variability inSCmeasuresmight

conceivably be dominated by relativelyminor variations around a

conserved macroscale architecture that underlies stable group-

level FC phenomena like resting-state networks (Greicius et al.,

2009; van Den Heuvel et al., 2009). Because SDCs are direct per-

turbations of this core architecture, we expected that their topog-

raphies would be at least partially reflected in linked FC patterns.

We assessed the topographic similarity of the SDC and FC

components of LV1 by correlating the unthresholded loadings

common to both components (Figure 7A). This revealed a weak

but significant negative relationship between SDC and FC load-

ings (Figure 7B). Because the degree of structure-function corre-

spondence might be expected to differ among connections with

distinct network and/or hemispheric attributes, we separately

computed the correlations between the SDC and FC loadings

for different hemispheric and network connection categories.

Although considerable correspondence was observed for

within-network connections, very little was observed for be-

tween-network connections (Figure 7C). This finding was not

drivenby regional damage, as similar resultswere obtained in pa-

tients with little-to-no cortical damage (Figure S8). Thus, direct

perturbations of the structural connectome are directly reflected
Cell Repor
by changes in the FC of disconnected no-

des, but this effect appears to be primarily

driven by within-network SDCs.

DISCUSSION

Stroke disrupts the macroscale functional

connectome (Grefkes and Fink, 2014;

Baldassarre et al., 2016a; Carrera and To-

noni, 2014; Fox, 2018). A complete under-
standing of stroke pathophysiology must link these functional

disruptions back to the underlying structural lesion. Here, we

advanced this goal by highlighting a key role of SDCs in deter-

mining the effects of stroke on brain network function. Specif-

ically, we found that core FC signatures of stroke (1) are better

explained by SDCs than by focal damage, and (2) largely reflect

a single latent FC pattern that covaries with the severity of inter-

hemispheric SDCs and partially reflects the underlying SDC

topography.

Anatomical Determinants of Functional Connectivity
Disruptions after Stroke
We tested the hypothesis that SDCs are the primary anatomical

factor underlying FC disruptions after stroke. Acrossmultiple an-

alyses, SDC measures outperformed focal damage measures

for explaining core FC disruptions (Figures 2 and 3; Figure S3).

Region-based SDC measures typically performed best, but the

comparable performance of the tract-based SDC measures is

noteworthy given their macroscale resolution and their indepen-

dence from the regional parcellation scheme. Voxel-based dam-

age models, which largely emphasized WM damage in their

weight maps (Figure S5), also outperformed region-based dam-

age models that only considered GM damage (Figure 3A).

These results support the conclusion that FC disruptions pri-

marily reflect SDCs and argue against the notion that most focal

lesions selectively disrupt function within damaged functional

networks (Nomura et al., 2010;Warren et al., 2014) while damage
ts 28, 2527–2540, September 3, 2019 2533



Figure 6. LV1 Underlies Core Functional

Connectivity Disruptions and Correlates

with Behavior

(A) Scatterplots show relationships between core

FC disruptions (y axes) and LV1 FC (top row) and

SDC (bottom row) scores (x axes) in the patient

group (n = 114).

(B) Bar plots show raw (left plot) and partial (right

plot) correlations (y axes) between behavioral

measures (x axes) and LV1 scores. Lang, lan-

guage; Att, attention; MemV, verbal memory;

MemS, spatial memory. *FDR, p < 0.05.
to cortical connector hubs causes broad network dysfunction

(Gratton et al., 2012; Warren et al., 2014). Although this account

has been highly influential, it has been challenged by recent ev-

idence indicating that (1) lesions can disrupt FC between undam-

aged networks while sparing FC within damaged networks (Eld-

aief et al., 2017); (2) damage to ‘‘connector’’ regions may not be

particularly important for predicting FC disruptions in multivar-

iate GM damage models (Yuan et al., 2017); and (3) task-evoked

network disruptions can result from lesions that minimally over-

lap with constituent cortical regions but that cause extensive

within-network SDCs (Griffis et al., 2017a). Although we directly

replicated the effect of connector hub damage onmodularity, the

addition of SDC information increased the variance explained by

a factor of 2.5 (Figure 2B), and the effect of connector hub dam-

age was significantly weaker than the effect of total SDC even

when accounting for lesion size (Figure 2C). More broadly, our

PLSR results strongly argue against GM damage as a primary

source of FC disruptions in patients with focal brain lesions, as

the region-based damage models were consistently the worst-

performing models tested (Figure 3; Figure S3).

The finding that SDCs can largely explain FC disruptions after

stroke complements prior work on the role of SDCs in deter-

mining the cognitive and behavioral consequences of stroke

(Catani et al., 2012; Chechlacz et al., 2013; Thiebaut de Schotten

et al., 2014; Corbetta et al., 2015; Kuceyeski et al., 2015, 2016a;

Yourganov et al., 2016; Griffis et al., 2017b, 2017a; Marebwa

et al., 2017). Speculatively, SDC-behavior relationships may be
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partially mediated by the large-scale

functional disruptions precipitated by

SDCs. Future studies using path

modeling or mediation analyses are an

important next step toward understand-

ing the complete relationship linking focal

lesions to functional disruptions and

behavioral impairments.

Our results also confirm a general

prediction of previous computational

modeling work—namely, that a lesion’s

impact on FC is strongly influenced by

its expected impact on the structural con-

nectome (Alstott et al., 2009; Cabral et al.,

2012; Saenger et al., 2018; Vá�sa et al.,

2015). However, most computational

studies have simulated SDCs by region-
wise or random connection removal, and this makes it difficult

to compare their specific results to results obtained from ana-

lyses of real patient data. For example, region-wise connection

removal cannot account for WM damage that spares a region

and/or a subset of its connections, and random connection

removal cannot account for correlations among SDCs within

the same vascular territories or fiber bundles. As our approach

to measuring expected SDCs does not have these limitations,

the incorporation of similar approaches into future modeling

studies might enable more realistic simulations and improve

the generalizability of specific findings.

Links between Structural Disconnection, Functional
Connectivity, and Behavior
We empirically characterized how perturbations of the structural

connectome are reflected in whole-brain FC patterns. Our ana-

lyses revealed a low-dimensional relationship between SDC

and FC, such that two-thirds of the SDC-FC covariance could

be attributed to two LVs (Figure 5A). Principal-component ana-

lyses (PCAs) indicated that this result did not simply reflect an

intrinsic low dimensionality of the lesion, SDC, or FC data

(Figure S9). Although this does not imply that more specific

SDC-FC relationships do not exist, it indicates that any such re-

lationships account for a minority of the total covariance.

This analysis was partially motivated by the consideration that

the FC patterns that maximally covary with SDCs might be

distinct from the core FC disruptions reported in the literature.



Figure 7. Disconnection Topographies Are

Partially Reflected in Functional Connectiv-

ity Patterns

(A) Unthresholded LV1 SDC (left; cortical only) and

FC (right) loadings obtained from PLSC of data

from the patient group (n = 114). Matrices are

organized as in Figure S2.

(B) Relationship between LV1 SDC (x axis) and FC

(y axis) loadings.

(C) Relationships for different connection type

categories (WN, within-network; BN, between-

network). *FDR, p < 0.05.

See also Figures S6 and S8.
However, the FC pattern captured by LV1 clearly reflected core

FC disruptions (Figures 5 and 6A) that have been identified

based on their relationships to behavior and deviations from con-

trols (for review, see Corbetta et al., 2018). Accordingly, patient-

level expression of LV1 correlated with behavioral impairments

(Figure 6B). This was particularly pronounced for attention,

spatial memory, and motor domains, consistent with the notion

that cortico-cortical FC is critical for higher cognitive functions

(Corbetta et al., 2018) and with previous reports of corrrelated

motor and attention deficits after stroke (Baldassarre et al.,

2016b). Because the FC profile associated with LV1 was identi-

fied based on its relationship to SDCs rather than behavior, we

speculate that it contains an aggregate of different behaviorally

relevant FC topographies that covary with partially overlapping

sets of interhemispheric SDCs. Consistent with this interpreta-

tion, the LV1 FC pattern qualitatively resembles the FC pattern

that was found to predict multi-domain behavioral deficits in a

previous analysis of FC data from this sample (Siegel et al.,

2016b).

The relationships shown in Figure 6B are consistent with evi-

dence indicating that behaviorally relevant FC abnormalities

are correlated and tend to vary in topography and severity but

not form (Corbetta et al., 2018). The weakening of interhemi-

spheric FC is a common signature of impairments in multiple

behavioral domains, and domain-specific deficits are associated

with specific topographies of weakened connections (Carter

et al., 2010; Park et al., 2011; Tang et al., 2016; Baldassarre

et al., 2016b). Our results advance a mechanistic explanation
Cell Repor
for the low dimensionality of behavioral

and FC disruptions after stroke. Specif-

ically, they suggest that strokes within

theMCA territory disrupt interhemispheric

SC both within and between cortical

networks, producing both direct and

network-level effects on FC that lead to

a breakdown in the balance of network

integration and segregation.

Why might interhemispheric SDCs be

particularly important for determining the

functional consequences of focal brain le-

sions? One explanation is that stable

interhemispheric integration is a funda-

mental component of large-scale FC or-

ganization (Shen et al., 2015a, 2015b)
that shapes broader aspects of FC. This explanation is consis-

tent with modeling results indicating that the interaction between

callosal SC and physiological factors may partially mediate FC

between other regions (Messé et al., 2014) and with empirical

data indicating that interhemispheric SDCs both reduce inter-

hemispheric FC and increase intrahemispheric FC in non-human

primates (O’Reilly et al., 2013). Nonetheless, this is an open

question that should be addressed in detail by future work.

The observed low-dimensional relationship between SDC and

FC contrasts sharply with recent reports of high-dimensional

covariance between SC and FC patterns in healthy individuals.

For example, a recent PLSC study reported that 5 LVs explained

only 22.6% of the covariance between SC and FC patterns in a

sample of 156 healthy participants (Mi�si�c et al., 2016). In

contrast, the first 5 LVs identified by our PLSC analysis together

explained over 80% of the structure-function covariance across

patients (Figure 5A). One explanation for this stark difference is

that normal variability in MRI measures of SC may reflect rela-

tively minor but not inconsequential variations around an other-

wise conserved structural scaffold that shapes the core FC to-

pographies identified by group-level analyses, whereas

variability in SDC measures reflects major differences in the

integrity of this core scaffold. This explanation is consistent

with the fact that the topographies of the SC and FC components

of the LVs identified by Mi�si�c et al. (2016) were discordant,

whereas the SDC and FC components of LV1 identified by our

analysis exhibited significant topographic similarity that was

especially pronounced forwithin-network connections (Figure 7).
ts 28, 2527–2540, September 3, 2019 2535



Even so, the correspondence between the linked SDC and FC

patterns was still relatively weak, and many of the most stable

SDC loadings corresponded to connection types that showed

weak topographic similarity (e.g., see interhemispheric be-

tween-network in Figures 5C and 7C). This suggests that much

of the covariance between SDC and FC may reflect indirect

SDC effects that arise by propagation along serial connections

in polysynaptic pathways (Carter et al., 2012; Lu et al., 2011) or

through large-scale network dynamics (Adachi et al., 2012; Al-

stott et al., 2009; Mi�si�c et al., 2016) arising from the sudden

loss of diverse afferent and/or efferent connections throughout

distributed brain networks. Future studies should aim to charac-

terize the nature of putative indirect SDC effects.

Considerations for Studying Structure-Function
Relationships in the Lesioned Brain
The current study featured several methodological advantages

over previous work on this topic. By explicitly incorporating

SDC measures, we were able to account for the effects of inter-

est beyond what was possible using focal damage measures.

This contrasts with the historical focus on GM damage by

studies in this domain (Gratton et al., 2012; Nomura et al.,

2010; Ovadia-Caro et al., 2013; Yuan et al., 2017), which ignores

potentially relevant information about WM damage (e.g.,

compare voxel and regional damage model fits in Figure 3) and

may lead to the mis-localization of WM effects into nearby GM

regions (Figure S5). The latter might occur when relevant vari-

ables (i.e., WM voxels) are not measured, but proxy information

is available from correlated measured variables (i.e., GM re-

gions). Hypothetically, this could also lead to distorted SDC

weight topographies if outcomes were largely driven by GM

damage. We accounted for this possibility by performing an

additional PLSR analysis that included both region-based dam-

age and SDC measures as predictors (see STAR Methods).

Although the SDC weight topographies were unchanged, the

damage weight topographies were substantially altered when

SDCs were simultaneously modeled. This emphasizes the

importance of accounting for potentially relevant lesion effects

when drawing conclusions about critical locations or topogra-

phies in lesion analyses.

We also used data collected from a relatively large sample of

first-ever stroke patients in the sub-acute recovery phase.

Most previous studies utilized data obtained from relatively small

samples of patients with diverse lesion etiologies (e.g., stroke,

traumatic brain injury, and tumor resection) and/or at varying

stages of recovery (Nomura et al., 2010; Gratton et al., 2012; Eld-

aief et al., 2017; Yuan et al., 2017). Larger patient samples in-

crease power and stabilize effect estimates (Poldrack, 2012;

Yarkoni, 2009), but the importance of studying patients with

similar lesion etiologies at the same phase of recovery warrants

further discussion.

All lesions are not created equal. The pathological origin of a

given lesion contributes to its physiological and behavioral conse-

quences (Anderson et al., 1990). For example, slow-growing le-

sions (e.g., tumors) tend to produce less severe cognitive and

behavioral deficits than sudden-onset lesions (e.g., ischemic

stroke). This may reflect differences in the brain’s ability to

compensate for lesions that develop on different time scales (Des-
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murget et al., 2007). Lesions resulting from specific pathologies

may also exhibit spatial biases—medial prefrontal regions are

frequently affected by low-grade glioma (Duffau and Capelle,

2004) but are infrequently affected by stroke (Corbetta et al.,

2015; Sperber and Karnath, 2015). Furthermore, the behavioral

and physiological consequences of brain lesions are not static

but evolve throughout the course of recovery (Corbetta et al.,

2005; Heiss et al., 1999; Ramsey et al., 2016; Rehme et al., 2011;

Saur et al., 2006). Therefore, it is important to utilize data from pa-

tientswith similar lesion etiologies and in the same recovery phase

to minimize the risk of latent confounders in lesion analyses.

Limitations
Diffusion MRI data were not available for this sample, and SDC

measures were defined by intersecting patient lesions with a

structural connectome atlas (see STAR Methods). Similar

atlas-based approaches have been used by other recent lesion

studies (Foulon et al., 2018; Griffis et al., 2017a; Hope et al.,

2018; Kuceyeski et al., 2015, 2016a, 2016b; Pustina et al.,

2017a), and analogous strategies are often used to study SC-

FC relationships in animal models (Adachi et al., 2012; Grandjean

et al., 2017; Grayson et al., 2016; Shen et al., 2015b). These ap-

proaches assume similar approximations of individual structural

connectomes by the atlas and cannot account for interindividual

variability in un-damaged fiber pathways (Forkel and Catani,

2018; Forkel et al., 2014), but they also offer protection against

potential biases arising from inter-individual differences in diffu-

sion MRI data quality, reconstruction, etc. and provide an intui-

tive means of estimating SDCs relative to a common reference

that can be used across independent samples and/or studies.

Furthermore, the structural connectome atlas was based on

very high-quality data (i.e., 90 direction high-angular resolution

diffusion imaging) from a very large sample of participants (i.e.,

N = 842) and was expert-vetted to reduce the likelihood of

false-positive connections (Yeh et al., 2018). Thus, although

direct patient SDC measures would be ideal, our results show

that atlas-based measures provide important information about

FC beyond what is present in focal damage measures.

Similarly, template-based areal parcellations may not provide

comparable approximations of areal boundaries for all partici-

pants. Previous analyses of data from this sample have shown

that the parcellation delineates largely homogeneous functional

regions in both patients and controls (Siegel et al., 2018), but

inter-individual variability in areal boundaries and/or network to-

pographies could still influence our measures (Braga and Buck-

ner, 2017; Gordon et al., 2017; Gratton et al., 2018; Marek et al.,

2018). However, template-based parcellation approaches have

advantages that are analogous to those described for tem-

plate-based SDC approaches. Furthermore, the large amount

of necessary data (Gordon et al., 2017) and the potential for dis-

tortions by lesion and/or hemodynamic factors (Siegel et al.,

2017) make individual functional parcellations infeasible in sub-

acute stroke patients.

Previous studies have successfully used expected SDC mea-

sures to model behavioral impairments (Foulon et al., 2018; Fri-

driksson et al., 2013; Griffis et al., 2017b; Kuceyeski et al.,

2015, 2016b) and changes in brain structure (Foulon et al.,

2018; Kuceyeski et al., 2014), but SDCmeasuresmay not always



provide unique information (Hope et al., 2018). The utility of SDC

measures will likely depend on several factors, including the de-

gree to which the outcome of interest depends on SDCs versus

focal damage, the quality of the SDC measures, and the lesion

characteristics of the patient sample. Because SDC information

is implicit in the lesion, it is likely that voxel-based lesion mea-

sures will provide similar information as SDC measures when

lesion coverage and diversity is sufficiently high to recover the

implicit SDCs, although this would likely require huge samples

with diverse lesions and dense coverage throughout the brain

(e.g., N = 818 in Hope et al., 2018). Even in scenarios where

SDC and damage information enable similar prediction, we

consider the inclusion of SDC information useful from a neurosci-

entific perspective.
STAR+METHODS

Detailed methods are provided in the online version of this paper

and include the following:

d KEY RESOURCES TABLE

d LEAD CONTACT AND MATERIALS AVAILABILITY

d EXPERIMENTAL MODEL AND SUBJECT DETAILS
B Participant information

d METHOD DETAILS

B Neuroimaging data collection

B Lesion identification

B Behavioral measures

B MRI data processing

B Parcels and network assignments

B Functional connectivity estimation

B Template structural connectome

d QUANTIFICATION AND STATISTICAL ANALYSIS

B Functional connectivity measures

B Structural lesion features

B Multiple linear regressions and partial correlations

B Partial least-squares regressions

B Partial least-squares correlations

B Additional analyses

B Controlling for large ipsilesional hemodynamic lags in

PLSR/PLSC analyses

B Controlling for differences in the number of PLSR com-

ponents across models

B Controlling for the inclusion of patients with lesions in

either hemisphere

B Controlling for removal of damaged regions in PLSC

analyses

B PLSR analyses with composite SDC and damage

models

B Comparing lesion volume information provided by

damage and disconnection measures

B Dimensionality of structural and functional data

d DATA AND CODE AVAILABILITY
SUPPLEMENTAL INFORMATION

Supplemental Information can be found online at https://doi.org/10.1016/j.

celrep.2019.07.100.
ACKNOWLEDGMENTS

Funding was provided by NIH grant R01 NS095741 to M.C. and NIMH grant

R01 HD061117 to M.C. Data were provided (in part) by the Human Connec-

tome Project, WU-Minn Consortium (principal investigators David Van Essen

and Kamil Ugurbil; 1U54MH091657), funded by the 16 NIH institutes and cen-

ters that support the NIH Blueprint for Neuroscience Research and by the

McDonnell Center for Systems Neuroscience at Washington University. We

thank Alexandre Carter for assisting with lesion segmentation and Joshua Sie-

gel for comments on earlier versions of the manuscript.

AUTHOR CONTRIBUTIONS

J.C.G. and G.L.S. designed the analyses and wrote the paper. J.C.G. and

N.V.M. performed data processing and analyses. J.C.G., G.L.S., andM.C. edi-

ted the paper. G.L.S. and M.C. contributed data and other resources.

DECLARATION OF INTERESTS

The authors do not declare any competing interests.

Received: March 14, 2019

Revised: May 29, 2019

Accepted: July 26, 2019

Published: September 3, 2019

REFERENCES

Abdi, H. (2010). Partial least squares regression and projection on latent struc-

ture regression (PLS Regression). WIRES Comput. Stat. 2, 97–106.

Adachi, Y., Osada, T., Sporns, O., Watanabe, T., Matsui, T., Miyamoto, K., and

Miyashita, Y. (2012). Functional connectivity between anatomically uncon-

nected areas is shaped by collective network-level effects in themacaque cor-

tex. Cereb. Cortex 22, 1586–1592.

Alstott, J., Breakspear, M., Hagmann, P., Cammoun, L., and Sporns, O. (2009).

Modeling the impact of lesions in the human brain. PLoS Comput. Biol. 5,

e1000408.

Anderson, S.W., Damasio, H., and Tranel, D. (1990). Neuropsychological Im-

pairments Associated With Lesions Caused by Tumor or Stroke. Arch. Neurol.

47, 397–405.

Baldassarre, A., Ramsey, L., Hacker, C.L., Callejas, A., Astafiev, S.V., Metcalf,

N.V., Zinn, K., Rengachary, J., Snyder, A.Z., Carter, A.R., et al. (2014). Large-

scale changes in network interactions as a physiological signature of spatial

neglect. Brain 137, 3267–3283.

Baldassarre, A., Ramsey, L.E., Siegel, J.S., Shulman, G.L., and Corbetta, M.

(2016a). Brain connectivity and neurological disorders after stroke. Curr.

Opin. Neurol. 29, 706–713.

Baldassarre, A., Ramsey, L., Rengachary, J., Zinn, K., Siegel, J.S., Metcalf,

N.V., Strube, M.J., Snyder, A.Z., Corbetta, M., and Shulman, G.L. (2016b).

Dissociated functional connectivity profiles for motor and attention deficits in

acute right-hemisphere stroke. Brain 139, 2024–2038.

Bauer, A.Q., Kraft, A.W.,Wright, P.W., Snyder, A.Z., Lee, J.M., and Culver, J.P.

(2014). Optical imaging of disrupted functional connectivity following ischemic

stroke in mice. Neuroimage 99, 388–401.

Benjamini, Y., and Hochberg, Y. (1995). Controlling the False Discovery Rate:

A Practical and Powerful Approach to Multiple Testing. J. R. Stat. Soc. B 57,

289–300.

Biswal, B., Yetkin, F.Z., Haughton, V.M., and Hyde, J.S. (1995). Functional

connectivity in the motor cortex of resting human brain using echo-planar

MRI. Magn. Reson. Med. 34, 537–541.

Braga, R.M., and Buckner, R.L. (2017). Parallel Interdigitated Distributed Net-

works within the Individual Estimated by Intrinsic Functional Connectivity.

Neuron 95, 457–471.e5.
Cell Reports 28, 2527–2540, September 3, 2019 2537

https://doi.org/10.1016/j.celrep.2019.07.100
https://doi.org/10.1016/j.celrep.2019.07.100
http://refhub.elsevier.com/S2211-1247(19)31016-2/sref1
http://refhub.elsevier.com/S2211-1247(19)31016-2/sref1
http://refhub.elsevier.com/S2211-1247(19)31016-2/sref2
http://refhub.elsevier.com/S2211-1247(19)31016-2/sref2
http://refhub.elsevier.com/S2211-1247(19)31016-2/sref2
http://refhub.elsevier.com/S2211-1247(19)31016-2/sref2
http://refhub.elsevier.com/S2211-1247(19)31016-2/sref3
http://refhub.elsevier.com/S2211-1247(19)31016-2/sref3
http://refhub.elsevier.com/S2211-1247(19)31016-2/sref3
http://refhub.elsevier.com/S2211-1247(19)31016-2/sref4
http://refhub.elsevier.com/S2211-1247(19)31016-2/sref4
http://refhub.elsevier.com/S2211-1247(19)31016-2/sref4
http://refhub.elsevier.com/S2211-1247(19)31016-2/sref5
http://refhub.elsevier.com/S2211-1247(19)31016-2/sref5
http://refhub.elsevier.com/S2211-1247(19)31016-2/sref5
http://refhub.elsevier.com/S2211-1247(19)31016-2/sref5
http://refhub.elsevier.com/S2211-1247(19)31016-2/sref6
http://refhub.elsevier.com/S2211-1247(19)31016-2/sref6
http://refhub.elsevier.com/S2211-1247(19)31016-2/sref6
http://refhub.elsevier.com/S2211-1247(19)31016-2/sref7
http://refhub.elsevier.com/S2211-1247(19)31016-2/sref7
http://refhub.elsevier.com/S2211-1247(19)31016-2/sref7
http://refhub.elsevier.com/S2211-1247(19)31016-2/sref7
http://refhub.elsevier.com/S2211-1247(19)31016-2/sref8
http://refhub.elsevier.com/S2211-1247(19)31016-2/sref8
http://refhub.elsevier.com/S2211-1247(19)31016-2/sref8
http://refhub.elsevier.com/S2211-1247(19)31016-2/sref9
http://refhub.elsevier.com/S2211-1247(19)31016-2/sref9
http://refhub.elsevier.com/S2211-1247(19)31016-2/sref9
http://refhub.elsevier.com/S2211-1247(19)31016-2/sref10
http://refhub.elsevier.com/S2211-1247(19)31016-2/sref10
http://refhub.elsevier.com/S2211-1247(19)31016-2/sref10
http://refhub.elsevier.com/S2211-1247(19)31016-2/sref11
http://refhub.elsevier.com/S2211-1247(19)31016-2/sref11
http://refhub.elsevier.com/S2211-1247(19)31016-2/sref11


Cabral, J., Hugues, E., Kringelbach, M.L., and Deco, G. (2012). Modeling the

outcome of structural disconnection on resting-state functional connectivity.

Neuroimage 62, 1342–1353.

Carrera, E., and Tononi, G. (2014). Diaschisis: past, present, future. Brain 137,

2408–2422.

Carter, A.R., Astafiev, S.V., Lang, C.E., Connor, L.T., Rengachary, J., Strube,

M.J., Pope, D.L.W., Shulman, G.L., and Corbetta, M. (2010). Resting inter-

hemispheric functional magnetic resonance imaging connectivity predicts

performance after stroke. Ann. Neurol. 67, 365–375.

Carter, A.R., Patel, K.R., Astafiev, S.V., Snyder, A.Z., Rengachary, J., Strube,

M.J., Pope, A., Shimony, J.S., Lang, C.E., Shulman, G.L., and Corbetta, M.

(2012). Upstream dysfunction of somatomotor functional connectivity after

corticospinal damage in stroke. Neurorehabil. Neural Repair 26, 7–19.

Catani, M., Dell’acqua, F., Bizzi, A., Forkel, S.J., Williams, S.C., Simmons, A.,

Murphy, D.G., and Thiebaut de Schotten, M. (2012). Beyond cortical localiza-

tion in clinico-anatomical correlation. Cortex 48, 1262–1287.

Chechlacz, M., Rotshtein, P., Hansen, P.C., Deb, S., Riddoch, M.J., and Hum-

phreys, G.W. (2013). The central role of the temporo-parietal junction and the

superior longitudinal fasciculus in supportingmulti-item competition: evidence

from lesion-symptom mapping of extinction. Cortex 49, 487–506.

Corbetta, M., Kincade, M.J., Lewis, C., Snyder, A.Z., and Sapir, A. (2005). Neu-

ral basis and recovery of spatial attention deficits in spatial neglect. Nat. Neu-

rosci. 8, 1603–1610.

Corbetta, M., Ramsey, L., Callejas, A., Baldassarre, A., Hacker, C.D., Siegel,

J.S., Astafiev, S.V., Rengachary, J., Zinn, K., Lang, C.E., et al. (2015). Common

behavioral clusters and subcortical anatomy in stroke. Neuron 85, 927–941.

Corbetta, M., Siegel, J.S., and Shulman, G.L. (2018). On the low dimensionality

of behavioral deficits and alterations of brain network connectivity after focal

injury. Cortex 107, 229–237.

Dale, A.M., Fischl, B., and Sereno,M.I. (1999). Cortical surface-based analysis.

I. Segmentation and surface reconstruction. Neuroimage 9, 179–194.

Desmurget, M., Bonnetblanc, F., and Duffau, H. (2007). Contrasting acute and

slow-growing lesions: a new door to brain plasticity. Brain 130, 898–914.

Duffau, H., and Capelle, L. (2004). Preferential brain locations of low-grade gli-

omas. Cancer 100, 2622–2626.

Efron, B., and Tibshirani, R. (1986). Bootstrap Methods for Standard Errors,

Confidence Intervals, and Other Measures of Statistical Accuracy. Stat. Sci.

1, 54–75.

Eldaief, M.C., McMains, S., Hutchison, R.M., Halko, M.A., and Pascual-Leone,

A. (2017). Reconfiguration of Intrinsic Functional Coupling Patterns Following

Circumscribed Network Lesions. Cereb. Cortex 27, 2894–2910.

Esmaeili, M., Stensjøen, A.L., Berntsen, E.M., Solheim, O., and Reinertsen, I.

(2018). The direction of tumour growth in glioblastoma patients. Sci. Rep. 8,

1199.

Van Essen, D.C., Drury, H.A., Dickson, J., Harwell, J., Hanlon, D., and Ander-

son, C. (2001). An Integrated Software Suite for Surface-based Analyses of

Cerebral Cortex. J. Am. Med. Inform. Assoc. 8, 443–459.

Fischl, B., Sereno, M.I., andDale, A.M. (1999). Cortical surface-based analysis.

II: Inflation, flattening, and a surface-based coordinate system. Neuroimage 9,

195–207.

Forkel, S.J., and Catani, M. (2018). Lesion mapping in acute stroke aphasia

and its implications for recovery. Neuropsychologia 115, 88–100.

Forkel, S.J., Thiebaut de Schotten, M., Dell’Acqua, F., Kalra, L., Murphy,

D.G.M., Williams, S.C.R., and Catani, M. (2014). Anatomical predictors of

aphasia recovery: a tractography study of bilateral perisylvian language net-

works. Brain 137, 2027–2039.
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LEAD CONTACT AND MATERIALS AVAILABILITY

Requests for additional information or resources should be directed to the Lead Contact, Gordon Shulman (gshulman@wustl.edu).

EXPERIMENTAL MODEL AND SUBJECT DETAILS

Participant information
Patients and controls provided written informed consent prior to participation in the study. Study procedures were performed in

accordance with the Declaration of Helsinki ethical principles and approved by the Institutional Review Board at Washington Univer-

sity in St. Louis. The complete data collection protocol is described in full detail in our previous publication (Corbetta et al., 2015). Data

from 132 first-time stroke patients who presented with clinical evidence of cognitive and/or behavioral impairment and data from 33

demographically matched healthy controls were considered for inclusion in the study. Data from 114 patients and 24 controls met

quality control criteria (described below) and were included in the study. Participant demographics are shown in Table S1.
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METHOD DETAILS

Neuroimaging data collection
Neuroimaging data were collected using a Siemens 3T Tim-Trio scanner at the Washington University School of Medicine with a

12-channel head coil, and are fully described elsewhere (Corbetta et al., 2015; Siegel et al., 2016b). Sagittal T1-weighted MP-

RAGE (TR = 1950msec; TE = 2.26msec, flip angle = 90 degrees; voxel dimensions = 1.0x1.0x1.0 mm), transverse T2-weighted turbo

spin-echo (TR = 2500 msec; TE = 43 msec; voxel dimensions = 1x1x1), and sagittal T2-weighted FLAIR (TR = 750 msec; TE =

32 msec; voxel dimensions = 1.5x1.5x1.5 mm) structural scans were obtained along with gradient echo EPI (TR = 2000 msec;

TE = 2 msec; 32 contiguous slices; 4x4 mm in-plane resolution) resting-state functional MRI scans. During the fMRI scans, partic-

ipants were instructed to fixate on a small white centrally-located fixation cross presented against a black background on a screen

at the back of the magnet bore. An Eyelink 1000 eye-tracking system (SR Research) was used to monitor when participant’s eyes

were opened/closed during each run. Between six and eight resting-state scans (128 volumes each) were obtained from each partic-

ipant (�30 minutes total).

Lesion identification
Lesions were manually segmented on each patient’s structural MRI scans using the Analyze software package (Robb and Hanson,

1991). The T1-weighted, T2-weighted, and T2-FLAIR scans were used in conjunction to ensure complete lesion delineation. If pre-

sent, surrounding vasogenic edema was included in the lesion definition for all patients. All segmentations were reviewed by two

board certified neurologists (Maurizio Corbetta and Alexandre Carter), and were reviewed a second time by MC. The final segmen-

tations were used as binary lesionmasks for subsequent processing and analysis steps. Lesionmaskswere transformed toMNI atlas

space using a combination of linear transformations and non-linear warps and were resampled to have isotropic voxel resolution.

Behavioral measures
Participants performed a behavioral battery consisting of multiple assessments within motor, language, attention, verbal memory,

spatial memory, and visual domains. Principal components analyses (PCA) were used to decompose the behavioral data from

each domain. Detailed descriptions of the behavioral testing and PCA analyses can be found in the Supplemental Material for Cor-

betta et al. (2015) and Siegel et al., (2016b). Analogously to other previous work (Ramsey et al., 2017; Siegel et al., 2016b, 2018), the

first PCs from each behavioral domain (with the exception of vision) were considered as domain scores of interest and were used in

analyses that related imaging measures to behavior (Figure 6B). Of the 114 patients that were included in the main analyses, 108 had

data for the language domain, 93 had data for the attention domain, 101 had data for themotor domain, and 84 had data for the verbal

and spatial memory domains.

MRI data processing
Functional MRI data pre-processing consisted of slice-timing correction using sinc interpolation, correction of inter-slice intensity

differences resulting from interleaved acquisition, normalization of whole-brain intensity values to a mode of 1000, correction for

distortion via synthetic field map estimation, and within- and between- scan spatial re-alignment. BOLD data were re-aligned, co-

registered to the corresponding structural images, normalized to atlas space, and resampled to 3mm cubic voxel resolution using

a combination of linear transformations and non-linear warps. Prior to estimating FC, additional processing steps were applied to

account for non-neural sources of signal variance. Confounds related to headmotion, global signal fluctuations, and non-gray matter

signal compartments were removed from the data by regression of the six head motion parameters obtained from rigid body correc-

tion, along with the global GM signal and the CSF and white matter signals extracted from FreeSurfer tissue segmentations (Dale

et al., 1999). BOLD data were band-pass filtered (0.009 < f < 0.08 Hz) to retain low-frequency fluctuations. A frame was censored

if it exceeded a 0.5mm framewise displacement threshold, and the succeeding framewas also censored to further reduce confounds

related tomotion (Power et al., 2014). The first four frames of each runwere discarded to allow for the scanner to achieve steady-state

magnetization.

Cortical surface generation and subsequent fMRI data processing generally followed previously published minimal preprocessing

procedures (Glasser et al., 2013), although some modifications were required to accommodate lesioned brains (Siegel et al., 2016b,

2017). FreeSurfer was used to automatically obtain anatomical surfaces from the T1-weighted structural scans (Dale et al., 1999;

Fischl et al., 1999), and the resulting segmentations were visually inspected to ensure accuracy. Data from patients with failed reg-

istrations and/or segmentations were modified by replacing the values of lesioned voxels with normal values from the structural atlas

prior to running the registration and segmentation procedures, and the modified voxels were masked out after running the proced-

ures (Siegel et al., 2017). Each hemisphere was resampled to 164,000 vertices, and the two hemispheres were registered to each

other (Van Essen et al., 2001). The data were then down-sampled to 32,000 vertices per hemisphere. Ribbon-constrained sampling

in ConnectomeWorkbench was used to sample functional MRI volumes to each participant’s individual surface, and voxels with co-

efficients of variation > 0.5 standard deviations above the mean of all voxels within a 5 mm sigma Gaussian neighborhood were

excluded from volume to surface mapping (Glasser et al., 2013).
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Participants were excluded if they had less than 180 usable frames of resting-state data after applying quality controls, and this

resulted in the exclusion of 18 patients and 9 controls. The remaining 114 patients and 24 controls who had sufficient FC data

were included in the primary analyses.

Parcels and network assignments
We used the Gordon333 cortical parcellation and network community assignments to obtain region-level and network-level mea-

sures of functional connectivity. This parcellation is based on functional connectivity boundary mapping and InfoMap community

detection analyses of resting-state fMRI data from 120 healthy individuals (Gordon et al., 2016), and consists of 333 cortical regions

associated with 13 large-scale networks. Previous studies involving the current dataset excluded 9 regions for having very low

numbers of vertices, and so they were also excluded here for consistency (Siegel et al., 2016b, 2018). The remaining 324 surface-

based cortical regions were used for subsequent surface-based estimation of functional connectivity.

In addition to the 324 cortical regions, we also defined a set of 35 sub-cortical and cerebellar regions to allow for the complete

quantification of damage and disconnection throughout the brain. This set of regions consisted of 34 parcels from the automatic

anatomical labeling (AAL) atlas (Tzourio-Mazoyer et al., 2002) that corresponded to different portions of the thalamus, basal ganglia,

and cerebellum, and also included 1 region from the Harvard-Oxford Subcortical Atlas that corresponded to the brainstem. The full

set of 359 regions is shown in Figure S1 and was used for subsequent estimation of regional damage and structural disconnection.

The cortical regions were dilated by 2mm using the ‘‘dilate’’ command in DSI_studio to improve the sensitivity of subsequent struc-

tural connectivity analyses (van Den Heuvel et al., 2009; Wilson et al., 2011) and to allow for a slightly relaxed threshold for deter-

mining cortical damage (Pustina et al., 2018).

Functional connectivity estimation
Region-wise functional connectivity matrices were constructed by correlating the average (i.e., across all within-region vertices)

nuisance-regressed BOLD timeseries of each surface region with the average nuisance-regressed BOLD timeseries of every other

region and applying the Fisher z-transformation to the resulting linear correlation values. For each patient, vertices that fell within the

boundaries of the lesion were masked out, and regions with less than 60 vertices remaining after excluding lesioned vertices were

completely excluded by setting the values to NaN, analogously to previous reports (Siegel et al., 2016b; Siegel et al., 2018). We note

that analyses that were performed without removing lesioned vertices produced very similar results for all analyses (not shown), likely

owing to the relatively low frequency of cortical lesions in our sample (Figure 1C; Figure S8A).

Template structural connectome
We used a publicly available diffusion MRI streamline tractography atlas to create a template structural connectome. The tractog-

raphy atlas was constructed using data from 842 Human Connectome Project participants (Yeh et al., 2018), and atlas data were

accessed under the WU-Minn HCP open access data use term. To summarize the atlas construction, Yeh et al. (2018) recon-

structed the high-angular resolution diffusion MRI data (b-values: 1000, 2000, and 3000 s/mm2; diffusion sampling directions:

90, 90, and 90; in-plane resolution: 1.25mm) from 842 Human Connectome Project participants in MNI space using Q-space

diffeomorphic reconstruction (Yeh and Tseng, 2011), averaged the resulting spin distribution functions (SDFs) to obtain popula-

tion-level streamline trajectories, and performed deterministic fiber tracking (Yeh et al., 2013b) to extract 550,000 streamline tra-

jectories that were then vetted and labeled by a team of neuroanatomists (for detailed descriptions of the procedures, see Yeh

et al., 2018). Thus, the tractography atlas consisted of expert-vetted end-to-end streamline trajectories in MNI space that were

each associated with 1 of 66 neuroanatomically defined fiber bundles (e.g., superior longitudinal fasciculus, corpus callosum,

etc.) corresponding to commissural, association, projection, brainstem, and cerebellar pathways (cranial nerves were

not included). Because we expected that different segments of the corpus callosum might show different relationships to FC in

the tract disconnection analyses, we split the corpus callosum into 5 segments based on the FreesurferSeg ROIs included with

DSI_studio, resulting in a total of 70 tracts.

We used command line utilities provided in the DSI_studio software package to define the normative region-based structural con-

nectome template based on the tractography atlas (Figure S1). To define the region-based structural connectome, we first combined

the labeled streamline bundles from the structural connectome atlas (e.g., short-rangeU-fibers, callosal projections, etc.) into a single

aggregate .trk file, and then extracted all streamlines that bilaterally terminated (i.e., began and ended) within any pair of the 359 vol-

ume-based regions. This resulted in a 359x359 structural connectivity adjacencymatrix ASwhere each entryAS
ij indexed the number

of streamlines connecting regions i and region j. Due to the close proximity of ventral visual and dorsal cerebellar regions, a small

number of dorsal cerebellar streamlines were captured by the dilated visual regions. Therefore, we removed any connections

between visual areas and the cerebellum.

QUANTIFICATION AND STATISTICAL ANALYSIS

All quantification and statistical analyses were performed in MATLAB version 2015a that included the Statistics and Machine

Learning Toolbox. Brain visualizations were created using the Connectome Workbench, MRIcroGL and SurfIce software packages.
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Thematlab_nifti toolbox was used to convert raw voxel data in the nifti file format for visualization in MRIcroGL. The GRETNA toolbox

was used to convert raw connection vectors/matrices into .edge and .node files for brain visualization in SurfIce.

Functional connectivity measures
Functional connectivity matrices were averaged from each group to create the group-averaged functional connectivity matrices

shown in Figure S2B. The mean matrix from the control group was subtracted from the mean matrix from the patient group to create

a differencematrix (Figure S2C). Linear correlations between the upper triangles of the group-averaged and differencematrices were

used to assess the similarity of mean functional connectivity topographies with each other and with the difference matrix.

We defined 12 a priorimeasures of network dysfunction based on previously reported functional connectivity abnormalities in sub-

acute stroke patients. For each of nine bilateral functional networks, we averaged the FC strengths over all within-network interhemi-

spheric functional connections. This resulted in nine network-specific interhemispheric functional connectivitymeasures (Figure S2D,

left). To obtain a general measure of interhemispheric integration, we averaged the nine network-specific interhemispheric functional

connectivity measures to obtain a single measure of mean interhemispheric within-network functional connectivity. We note that this

measure essentially corresponded to the first principal component of the nine interhemispheric functional connectivity measures

(R2 = 0.94), which explained 70%of the total variance across the nine network-specific interhemispheric functional connectivitymea-

sures. To obtain a measure of network segregation, we averaged the functional connectivity values for all ipsilesional DAN and DMN

functional connections (Figure S2D, middle). We chose this measure because previous analyses data from this sample have reliably

reported reduced segregation between theDAN andDMN in patients (e.g., Ramsey et al., 2016; Siegel et al., 2016b). Finally, to obtain

a global measure that considered both integration and segregation, we measured network modularity (Newman’s Q) using the

community_louvain function from the Brain Connectivity Toolbox (Rubinov and Sporns, 2010). Modularity estimation was performed

using the 280 regions with specific a priori network assignments (i.e., excluding unassigned regions), and modules were defined a

priori as the default network assignments in the Gordon333 parcellation for the reasons described in Siegel et al. (2016b). As in

previous studies that have measured modularity in patients with focal brain lesions (Gratton et al., 2012; Siegel et al., 2018), we per-

formed our analyses across multiple connection density thresholds ranging from 4% and 20% connection density in 2% steps (Fig-

ure S2D, right). The final modularity measure was obtained by averaging over connection density thresholds. We considered this

appropriate as modularity estimates were highly correlated across thresholds such that a single principal component accounted

for 95% of the total variance across thresholds (this component was almost perfectly colinear with the mean across thresholds –

R2 = 0.99). Unequal variance t tests were used to compare the a priorimeasures between patients and controls, and false discovery

rate (FDR) correction was used to correct for multiple testing (Benjamini and Hochberg, 1995). Results of these analyses are shown in

Figure S2D. We note that while some recent work suggests a potential for biases related to connection density thresholding when

performing patient-control comparisons (e.g., Vá�sa et al., 2018), this approach to modularity estimation was chosen as it was

most comparable to the approaches used by previous studies on similar topics (e.g., Gratton et al., 2012; Siegel et al., 2018).

The parcel-level participation coefficients and within-module degree z-scores shown in Figure 2A were estimated by applying the

Brain Connectivity Toolbox functions participation_coef andmodule_degree_zscore to the mean functional connectivity matrix from

the control group (shown in Figure S2B) using the same regions and range of connection density thresholds as the modularity ana-

lyses (described above), and averaging across thresholds. Note that functional connectivity between parcels with Euclidean dis-

tances of less than 20mmwas not used in the computation of these measures (Power et al., 2013). The connector hub and provincial

damage measures (Figure 2) were defined according to the same procedure described by Gratton et al. (2012). For each patient, this

involved multiplying the amount of damage to each region by its participation coefficient (connector hub damage) or its within-mod-

ule degree z-score (provincial hub damage) and then averaging measures over regions. This produced a single connector hub

damage measure and a single provincial hub damage measure for each patient.

We performed additional analyses to ensure that the observed group differences in modularity were not driven by false positives

that could arise from applying proportional thresholding to data from groups that might differ in overall functional connectivity

(van den Heuvel et al., 2017). We performed these analyses using overall functional connectivity defined as the mean of all positive

functional connectivity values (van den Heuvel et al., 2017). First, we compared overall functional connectivity between patients and

controls, and found that it did not significantly differ between groups (t = 0.29, p = 0.77). Next, we regressed overall functional con-

nectivity out of the modularity measure and compared the residuals between patients and controls. Across the entire dataset, only

�11% of the variance was attributable to the effects of overall functional connectivity, and group differences persisted after regress-

ing out the effect of overall functional connectivity. Similar results were also obtained when functional connectivity magnitude-based

thresholds were used rather than edge density thresholds, and when modularity was computed on the weighted functional connec-

tivity matrices (Rubinov and Sporns, 2011).

Structural lesion features
MATLAB scripts utilizing functions from the matlab_nifti toolbox were used to obtain voxel-based damage and parcel-based gray

matter damage measures (Figure 1B). For each patient, we re-shaped their 3x3x3mm lesion mask into a 1-dimensional vector index-

ing the presence versus absence of damage at each voxel within the group-level lesion coverage area (hereafter referred to as ‘‘voxel-

based damage’’). We also computed the proportion of each gray matter region that overlapped with each patient’s lesion to create a

1-dimensional vector quantifying the amount of damage to each region within the group-level lesion coverage area (hereafter referred
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to as ‘‘region-based damage’’). MATLAB scripts implementing command line functions from the DSI_studio software package were

used to obtain expected disconnections for each patient based on the intersection of their MNI-registered lesion and the structural

connectome template, as described below.

For each patient, we extracted all streamlines that passed through the lesion to obtain a 359x359 structural disconnection adja-

cencymatrixADwhere each entryAD
ij quantified the number of streamlines connecting region i and region j that intersected the lesion

(i.e., that were disconnected in that patient). We then normalized each structural disconnectionmatrixAD via element-wise division by

the structural connection matrix AS, such that entries in the resulting matrix ADnorm quantified the proportion of streamlines connect-

ing region i and region j that were disconnected by the lesion. This step accounted for differences in the number of streamlines con-

necting different region pairs and ensured that all disconnectionmeasurements were directly comparable and intuitively interpretable

in terms of proportional disconnection rather than raw number of streamlines. The upper triangles (excluding diagonal elements) of

the normalized disconnection matrices were then extracted and reshaped into a 1-dimensional vector quantifying the amount of

disconnection for each connection (hereafter referred to as ‘‘region-based disconnection’’). For each patient, we also calculated

the proportion of each neuroanatomically defined fiber bundle from the structural connectome atlas that was disconnected by the

lesion, resulting in a 1-dimensional vector quantifying the amount of disconnection for each tract (hereafter referred to as ‘‘tract-

based disconnection’’). Prior to performing any statistical analyses, the damage/disconnection vectors from all 114 patients were

stacked on top of each other to form four separate data matrices.

Damage and disconnection frequency maps (Figure 1) were created using the voxel-based damage and region-based disconnec-

tion data. Voxel-based damage maps were summed across patients, resulting in a map that quantified the number of patients with

damage to each voxel in the brain (Figure 1C, top). Region-based disconnections were binarized at a 1% disconnection threshold

and summed across patients, resulting in a map that quantified the number of patients with damage to each connection in the struc-

tural connectome (Figure 1C, bottom). The damage and disconnection frequency measures were used to create the histograms

shown in Figure 1D.

Multiple linear regressions and partial correlations
We used multiple linear regressions to compare the effects of connector hub damage, provincial hub damage, and total disconnec-

tion (defined by summing the binarized region-based disconnections for each patient) on network modularity (Figure 2). We first fit a

linear regression model that included connector hub and provincial hub damage as predictors (Figure 2B, Model 1). We then added

total disconnection to themodel to determinewhether total disconnection explained additional variance beyondwhat could be attrib-

uted to the hub damage measures (i.e., F-test on R2 change statistic; Figure 2B, Model 2), and to simultaneously evaluate the effects

of all three measures in a single model. We then added lesion volume to determine whether the same effects were observed when

lesion volume was included in the model (Figure 2B, Model 3). Effects were considered significant if they survived FDR correction

at 0.05.

Because the original study by Gratton et al., (2012) used a correlation (i.e., rather than regression) approach, and because this

allowed us to directly compare the strength of the relationships between different structural measures and modularity, we also per-

formed correlational analyses (Figure 2C). For these analyses, we first computed the linear correlations between network modularity

and total disconnection, connector hub damage, and provincial hub damage. We then compared each correlation using Steiger’s

z-tests. These analyses were then repeated after adjusting for lesion volume (i.e., partial correlation). Because the comparison be-

tween connector hub damage and provincial hub damage was intended to replicate the effect reported by Gratton et al., we used a

one-tailed test (i.e., connector hub damage > provincial hub damage). Two-tailed tests were used to compare the correlations for

total disconnection and connector hub damage. Effects were considered significant if they survived FDR correction at 0.05.

Partial least-squares regressions
We used partial least-squares regressions (PLSR) to predict our a priori network-level functional connectivity measures from our

structural damage and disconnection measures (Figures 3 and 4). PLSR is a multivariate regression technique (Wold et al., 2001)

that is closely related to principal components regression (PCR) (Hotelling, 1957). Both PLSR and PCR are particularly useful for

situations where there are more variables than observations and/or when there is high collinearity among the predictor variables.

However, PLSR has important advantages over PCR (Abdi, 2010) that are primarily due to differences in the criteria used for decom-

position of the predictormatrix. Namely, while PCRdecomposes the predictormatrixX into a set of linearly independent components

that maximally account for the variance in X and uses the scores on some subset of those components to predict Y, PLSR performs a

dual decomposition ofX andY to obtain components fromX that maximally account for the covariance withY. This typically results in

simpler models and is advantageous over PCR because it reduces the potential for important variables to be omitted from the model

on the basis that they explain only small amounts of the variance in X (Abdi, 2010; Krishnan et al., 2011). Detailed descriptions of the

theory and algorithms behind the PLSR approach can be found elsewhere (Abdi, 2010; Krishnan et al., 2011; McIntosh and Lobaugh,

2004; Tie Jong, 1993; Wold et al., 2001). We performed PLSR using the SIMPLS algorithm implemented in the plsregress function

included with the MATLAB Statistics and Machine Learning Toolbox. Structural data matrices were mean-centered column-wise

(default option for plsregress) prior to analysis. Predictor matrices were restricted to columns that had greater than two non-zero

observations.
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We fit PLSR models for each functional connectivity measure using the four different structural lesion measures as predictors.

Leave-one-out (i.e., jackknife) optimization was used to identify the number of components (i.e., predictors) included for each model

by adding components and measuring the change in prediction error with the inclusion of each additional component (Abdi, 2010).

Components were added until the sum of squared prediction errors for the held-out cases increased with the addition of the new

component, as increases in prediction error following the inclusion of additional components indicate overfitting to the training set

(Abdi, 2010). This approach has been previously used for similar neuroimaging applications of PLSR (Kuceyeski et al., 2016b).

The number of components for each model is shown in Figure 3B.

PLSR models were then fit to the full dataset using the optimal number of components identified for each model (Kuceyeski et al.,

2015, 2016b). Bootstrap resampling (1000 bootstraps) was used to estimate CIs for the model fits and beta weights using the bias-

corrected and accelerated percentile method (Efron and Tibshirani, 1986) as implemented in theMATLAB function bootci (Figures 3A

and 4). 95%CIs for model fits were adjusted to control the family-wise error rate for all 4 models fit to each FCmeasure, and therefore

correspond to �99% confidence intervals. 99% CIs were also estimated for the beta weights from each model. The signs of model

weights were flipped as necessary so that positive weights predicted more severe FC disruptions for all models. Beta weights were

also rescaled for the plots in Figures 4, S4, and S5 by multiplying all weights by a scalar value of 1000 (i.e., so that scientific notations

would not overlap with the plot titles). Plots in Figure 4B were created using the MATLAB function plotSpread.

Comparisons of the different anatomical models of each functional connectivity outcome were performed using Akaike’s informa-

tion criterion weights (AICw; Figure 3C), as they incorporate information about both goodness-of-fit and model complexity (Kuceye-

ski et al., 2016b; Wagenmakers and Farrell, 2004). For each outcome variable, AICw were calculated as:

AICw= exp

 
DAIC

2

!�X
exp

 
DAIC

2

!

where DAIC corresponds to the difference between the AIC of each model and the minimum AIC across models for that outcome

variable. The AIC weights for a given model from a set of candidate models can be interpreted as expressing the conditional prob-

ability that a given model is the best of all candidate models when considering both model performance and model complexity (Wa-

genmakers and Farrell, 2004). Thus, models with AIC weights closer to 1 are considered superior to models with AIC weights closer

to 0. Linear correlations were computed among the unthresholded parcel disconnection weights from all 12models and among all 12

functional connectivity measures (Figure 4A). Region-based disconnection model weights were extracted and plotted for different

connection type categories (Figure 4B). The top 20% of significant weights from each model were projected to the brain for visual-

ization (Figure 4C).

Partial least-squares correlations
We used partial least-squares correlation (PLSC) of the full region-based disconnection and functional connectivity datasets to iden-

tify the patterns of structural disconnection and functional connectivity that maximally covary across patients (Figures 5, 6, and 7;

Figures S6, S7, and S8). PLSC is a data-driven technique that is closely related to PLSR. PLSC seeks to define linear combinations

of two data matrices (X and Y), referred to as latent variables (LVs), that maximally explain the covariance between the data matrices,

and essentially involves performing a singular value decomposition (SVD) on the cross-block covariancematrix (Abdi, 2010; Krishnan

et al., 2011; McIntosh and Lobaugh, 2004). PLSC has been successfully used to characterize covarying patterns of structural and

functional connectivity in healthy individuals (Mi�si�c et al., 2016) and has been successfully applied to other problems involving the

relationships between structural and functional connectivity (Shen et al., 2015a, 2015b; Zimmermann et al., 2016).

Prior to performing the PLSC analysis, the upper triangle (excluding diagonal elements) of each patient’s z-transformed functional

connectivity matrix was extracted and reshaped into a 1-dimensional vector. The resulting vectors were then stacked on top of each

other to create a patient-by-connection functional connectivity matrix, and an analogous patient-by-connection matrix that was

created using the region-based disconnection matrices. Because the PLSC approach cannot accommodate missing values, func-

tional connectivity between parcels that had been excluded fromprevious analyses (i.e., regionswith < 60 vertices remaining) was set

to 0 as in previously published multivariate analyses involving dense functional connectivity matrices from this sample (Siegel et al.,

2016b). However, analyses that were performed without removing lesioned regions produced highly similar results (not shown), and

control analyses that only included patients for whom no regions were removed (n = 51; see Additional Analyses) also produced

results that were highly consistent with themain analyses (Figure S8). The patient-by-connection region-based disconnection (Xma-

trix) and functional connectivity (Ymatrix) matrices weremean-centered column-wise and used to compute the cross-product matrix

X’Y. Singular value decomposition (SVD) was then applied using the MATLAB function paq to obtain the solution:

X
0
Y=USV

0

where

U
0
U = V

0
V = I

producing a set ofN-1 orthogonal LVs that each consisted of singular vectorsU andV, and a diagonal matrixS containing the singular

values. The singular vectors contained weighted linear combinations of the original data matrices that maximally covaried together,
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and the singular values encoded the proportion of the covariance between the original data matrices that was accounted for by each

LV. Score matrices were computed by multiplying the original data matrices by the corresponding loading matrices to project each

patient’s data onto the LVs.

Permutation testing was used (1,000 permutations) to determine the significance of individual LVs (Abdi, 2010; Krishnan et al.,

2011; McIntosh and Lobaugh, 2004), and bootstrap resampling (1,000 bootstraps) was used to compute bootstrap signal-to-noise

ratios (BSRs) for the singular vector loadings associated with each LV by dividing the loadings by their bootstrapped standard error

estimates (Abdi, 2010; Krishnan et al., 2011; McIntosh and Lobaugh, 2004). The (BSRs) quantify the stability of the loading estimates,

and approximate z-scores (Efron and Tibshirani, 1986). Because the permutation and bootstrap procedures can produce LVs that do

not match those obtained from PLSC of the original data, Procruste rotation was applied to the LVs obtained from the permutation/

bootstrap analyses to ensure that they corresponded to those obtained from the original analyses (Krishnan et al., 2011; McIntosh

and Lobaugh, 2004; Mi�si�c et al., 2016). LVs obtained from the main PLSC analyses were considered significant if the permutation

p value was less than 0.05 after correcting for tests across all 10 LVs that accounted for at least 1% of the covariance, and loadings

were considered stable if the corresponding absolute BSRs were greater than 2.5 (i.e., p�0.01) (Krishnan et al., 2011; Mi�si�c et al.,

2016). Relevant results are shown in Figures 5, S6, S7, and S8.

Linear correlation was used to assess the strength of the relationship between LV1 functional connectivity and disconnection

scores. Bootstrap resampling (1,000 bootstraps) was used to compute a 95% confidence interval on the correlation (Krishnan

et al., 2011). Patient scores on the first LV (LV1) were linearly correlated with mean interhemispheric within-network functional con-

nectivity, ipsilesional DAN-DMN functional connectivity, and network modularity measures, and with each of the behavioral mea-

sures (Figure 6). Linear correlations were also computed between the unthresholded disconnection and functional connectivity

loading vectors for LV1 to characterize the topographic similarity of the linked structural and functional patterns (Figure 7). This anal-

ysis only considered loadings that were non-zero in both vectors (i.e., only cortico-cortical edges that had non-zero disconnection

loadings). FDR correction was used to correct for multiple testing for each set of correlations.

Additional analyses
We performed additional analyses to (1) ensure that our main PLSR and PLSC results were not impacted by vascular factors as in-

dexed by hemodynamic lags (Lv et al., 2013; Siegel et al., 2016a), (2) ensure that our main PLSR results held when all models were fit

with only a single component, (3) ensure that ourmain PLSR and PLSC results did not depend on the inclusion of patients with lesions

in either hemisphere, (4) ensure that the topographical similarity analyses of the PLSC loadings were not driven by the exclusion of

highly damaged regions from the functional connectivity estimation, (5) ensure that the topographies of the region-based PLSR

model weights were not distorted by including only disconnection information in the region-based disconnection PLSR models,

(6) ensure that the main PLSR results were not attributable to lesion volume effects, and (7) ensure that the low-dimensionality of

the PLSC results was not constrained by an intrinsic low-dimensionality of the structural and/or functional measures. These analyses

are described in more detail below.

Controlling for large ipsilesional hemodynamic lags in PLSR/PLSC analyses
Identification of patients with abnormal hemodynamic lags proceeded as follows. For each voxel, hemodynamic lags were with esti-

mated with respect to the global gray matter signal using a window size of �8 s to 8 s (i.e., 4 TR), and the average difference in lag

values between the lesioned and unlesioned hemispheres was computed for each patient as in previous work (Siegel et al., 2016a).

To ensure that our main results were not driven by patients with potentially abnormal hemodynamics, supplemental PLSR and

PLSC analyses were performed that excluded patients with lag differences greater than 2 standard deviations from the control

mean (i.e., > 0.32 s; 20/114 patients excluded). We note that this threshold (0.32 s) is conservative compared to thresholds used

in prior work (Siegel et al., 2016b, 2018). Results from the PLSR and PLSC analyses that excluded high-lag patients were highly

consistent with the main results and are shown in Figure S3A and S7A.

Controlling for differences in the number of PLSR components across models
The PLSR parcel SDC models presented in Figure 3 often utilized more components than the damage models. While the number of

components for each model was determined in a principled manner using jackknife cross-validation and the AIC weights incorpo-

rated information about model complexity, we wanted to ensure that similar results were obtained when all models utilized only a

single component. We therefore fit all of the PLSR models using only a single component solution. The results of these analyses

were highly consistent with the main analyses and are presented in Figure S3B.

Controlling for the inclusion of patients with lesions in either hemisphere
The analyses presented in the main text utilized data from patients with lesions in either the left or right hemisphere. To determine

whether our main results held when analyses were restricted to patients with lesions in a single hemisphere, we performed separate

PLSR and PLSC analyses for patients with left versus right hemispheric lesions. Results from the PLSR and PLSC analyses that were

restricted to patients with lesions in a single hemisphere were highly consistent with the results from themain analyses and are shown

in Figures S3C and S3D, and S7B and S7C, respectively.
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Controlling for removal of damaged regions in PLSC analyses
As described in the description of the functional connectivity estimation procedures, lesioned vertices were not included in the esti-

mation of functional connectivity, and regions that had less than 60 vertices remaining after excluding lesioned vertices were

removed for each patient by setting them to NaN. When computing functional connectivity summary measures, this allowed us to

completely exclude highly damaged regions. However, the PLSC analyses used the dense functional connectivity matrices and

therefore could not accommodate NaN values. Therefore, functional connectivity for removed regions was set to 0 as in previous

multivariate analyses (Siegel et al., 2016b). However, we were concerned that the removal of highly damaged regions from the func-

tional connectivity matrices might introduce systematic covariance between disconnections caused by the lesions that resulted in

region removal and the zero-valued cells in the functional connectivity matrix, as this could bias the solution and lead to artificial topo-

graphic similarity between the structural and functional loadings. While region removals were relatively infrequent (Figure S8A), we

still wanted to control for this possibility. Therefore, we repeated the PLSC and topographic similarity analyses using only data from

51 patients for whom no regions were sufficiently damaged to be removed from the analyses. These patients had essentially minimal

to no cortical damage (Figure S8B), and therefore the results could not be attributed to the effects of regional damage on functional

connectivity. The results obtained from these analyses were highly similar to those obtained from the main analyses and are pre-

sented in Figure S8.

PLSR analyses with composite SDC and damage models
The results shown in Figure S5 suggested that region-based damage PLSRmodels sometimes mis-localized WM damage effects to

nearby gray matter regions. This suggested that the region-based damage models were taking advantage of damage to gray matter

regions that was correlated with the white matter damage effects identified by the voxel damage models. Because the region-based

disconnection models lacked explicit information about gray matter damage, we were concerned that the region-based disconnec-

tion topographies might be susceptible to similar distortion. Therefore, we performed supplemental analyses to determine whether

the region-based disconnection weight topographies were affected by including information about region-based gray matter dam-

age. This analysis consisted of running the PLSR analyses with both the region-based disconnection and damage measures as pre-

dictors in the samemodel, and then correlating the resulting (unthresholded) PLSR weight vectors with those obtained from the orig-

inal analyses. This revealed that the weight topographies of the region-based SDCmodels were virtually unchanged by the inclusion

of the region-based damage measures (across-model mean correlation of weight vectors = 0.98, SD = 0.04). However, this did have

substantial effect on the region-based damage weight topographies (across-model mean correlation of weight vectors = 0.79, SD =

0.24), consistent with what would be expected under the scenario described above given that the functional connectivity measures

were most strongly related to white matter damage and structural disconnection.

Comparing lesion volume information provided by damage and disconnection measures
To determine whether the effects observed for the disconnection measures might be driven by an underlying relationship to total

lesion volume, we performed an additional PLSR analysis with lesion volume as the dependent variable. This allowed us to identify

the multivariate damage/disconnection measure(s) that contained the most information about lesion volume. Given that lesion vol-

ume can be directly computed from the voxel-wise damage maps, and given that the total number of parcels damaged in a patient

will be closely related to the size of the lesion, we expected that the damagemeasures would actually contain more information about

lesion volume than the disconnectionmeasures. The PLSR analysis revealed that the region-based and voxel-based damagemodels

were able to almost perfectly explain the variance in lesion volume (R2’s = 0.98 and 0.99, respectively), and explained substantially

more variance in lesion volume than the region-based and tract-based disconnection models (R2’s = 0.67 and 0.72, respectively).

Comparisons of AIC weights revealed that voxel-based damage measures provided the best account of lesion volume. Therefore,

the potential effects of lesion volume were actually greatest for the damage models. This indicates that even though the damage

models were able to capitalize directly on information about lesion volume to a much greater extent than the disconnection models,

the disconnection models still outperformed them for explaining functional connectivity disruptions.

Dimensionality of structural and functional data
To ensure that the low-dimensionality of the PLSC results was not simply reflecting an intrinsically low-dimensionality of the structural

measures or functional connectivity measures, we performed principal component analyses (PCA) on the dense voxel-based

damage, region-based disconnection, and functional connectivity data from the patient sample (Figure S9). Recall that in the

PLSC analyses, the first 5 LVs explained over 80%of the total covariance between the dense structural disconnection and functional

connectivity datasets (Figure 5A). By comparison, the dense voxel-based damage data were relatively high-dimensional – 28 com-

ponents are necessary to explain 80% of the total variance across all voxels in the lesion coverage zone. The dense region-based

disconnection data were lower-dimensional than the voxel-based damage data, but were still relatively high-dimensional – 15

components were necessary to explain 80% of the total variance in region-based disconnections across all connections in the

disconnection coverage zone. Finally, the dense functional connectivity data were very high-dimensional – 72 components were
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necessary to explain 80% of the total variance in the functional connectivity data. These results indicate that there were far fewer

salient covariance dimensions between the disconnection and functional connectivity data than there were variance dimensions

in the voxel-based damage, region-based disconnection, or functional connectivity data. This argues against an intrinsic low-dimen-

sionality of the dense structural or functional data as a source of the observed low-dimensional covariance.

DATA AND CODE AVAILABILITY

The full set of neuroimaging and behavioral data are available at http://cnda.wustl.edu/app/template/Login.vm. Specific data and

analysis scripts are available on request to the authors.
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