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1Dipartimento di Matematica, Università di Roma Tor Vergata, Via della Ricerca
Scientifica 1, I-00133 Roma, Italy, e-mail: celletti@mat.uniroma2.it
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Abstract. The discovery of the asteroid Ceres by Piazzi in 1801 motivated the develop-
ment of a mathematical technique proposed by Gauss, (Theory of the Motion of the
Heavenly Bodies Moving about the Sun in Conic Sections, 1963) which allows to recover
the orbit of a celestial body starting from a minimum of three observations. Here we
compare the method proposed by Gauss (Theory of the Motion of the Heavenly Bodies
Moving about the Sun in Conic Sections, New York, 1963) with the techniques (based
on three observations) developed by Laplace (Collected Works 10, 93–146, 1780) and
by Mossotti (Memoria Postuma, 1866). We also consider another method developed by
Mossotti (Nuova analisi del problema di determinare le orbite dei corpi celesti, 1816–
1818), based on four observations. We provide a theoretical and numerical comparison
among the different procedures. As an application, we consider the computation of the
orbit of the asteroid Juno.
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1. Introduction

According to Kepler’s laws, the motion of a celestial body, subject only to the
attraction of the Sun, is described by a conic section C. The set of elements
providing the motion is given by the quantities σ = (p, e, g,�, i,M), where p

is the ellipse parameter (related to the semimajor axis and to the eccentricity
of the orbit), e is the eccentricity, g is the argument of perihelion, � is the
longitude of the node, i is the inclination and M is the mean anomaly. There-
fore we need to find six independent data from celestial observations. There
are several possibilities for the selection of the independent data. For exam-
ple, one might measure the apparent velocities (on the celestial sphere) at two
different times. However, this is not an easy task, since the time derivatives
are difficult to measure and they may require a comparison of the values of
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the angles at close observational times. In order to overcome this problem,
Laplace proposes to perform several moderately spaced observations of the
angles and times, so that one can find an interpolation of the velocities by
polynomials T (t − ti), F(t − ti), i = 1,2,3, . . . , n+ 3 and one can obtain the
derivatives at the times ti with i = 1,2, . . . , n + 2 by analytical differentia-
tion of the interpolating polynomials. The simplest interpolation is the lin-
ear one, which requires three observations, n = 0; in this case, one simply
assumes that the polynomials are linear functions of t . Quadratic interpola-
tion corresponds to n= 1 and so on. Of course increasing n does not really
improve the precision, since the time intervals between the measurements
cannot become too small to avoid excessive influence of the observational
errors, and they cannot become too large since in such case a polynomial
interpolation becomes inaccurate: indeed, the power series expansion of the
actual motion has singularities in the complex time, which prevent high accu-
racy in the polynomial interpolation (see Appendix E) when the eccentricities
are large. Furthermore, in any event, the observations must be taken in a time
short compared to the revolution period if one wants approximations with
polynomials of reasonably small degree. Therefore Laplace’s method may
lead to difficulties which originate from the above considerations and from
the further difficulty that for n > 0 the problem is actually overdetermined
and it may become hard to proceed in presence of errors of measurement.

A few years later Gauss used the observations of the asteroid Ceres
performed by Piazzi in 1801 (von Zach, 1801), which provide the angu-
lar coordinates at different times. He decided to use only three observa-
tions with the advantage that the problem is not overdetermined (as it is in
Laplace’s case when n>0) and it is exactly solved (it carries only the errors
due to the measurements, but not the ones due to the interpolation and
to the arbitrary decisions taken implicitly in using overdetermined data).
However Gauss’ method leads to the necessity of solving a nonlinear equa-
tion, which can be obtained through a Newton’s method (Section 2.1).

We can now state the problem of determining the elements from the
three observations, known as Gauss problem, as follows:

Let the times of observations be t1, t2, t3. Let us define the vectors �a1,
�a2, �a3, �b1, �b2, �b3, such that �b1, �b2, �b3 are independent and |�bk| = 1. Find
ρ1, ρ2, ρ3, such that the vectors �rk = �ak + ρk

�bk are coplanar and define a
conic section C such that, denoting by �r(t) the position vector evolving on C
according to Kepler laws from the initial datum �r(t2)=�r2, one has �r(t1)=�r1,

�r(t3)= �r3.
Here, �ak represent the position vectors of the Earth with respect to the

Sun (which are known from ephemerides), �bk denote the unit vectors from
the Earth to the celestial body (known from the observations), �rk represent
the position vectors from the Sun to the body (the heliocentric place of the



FOUR CLASSICAL METHODS FOR DETERMINING ELEMENTS 3

body), ρk are the unknown distances from the Earth and ρk
�bk are the geocen-

tric position vectors. Of course one has to take into account also the rotation
of the Earth, its revolution around the Sun, the precession of the equinoxes,
the nutational effect, the aberration due to the velocity of the observer, beside
the observational errors due to the imprecision of the instruments (the tele-
scope and the clock) as well as the exact determination of the position of the
observatory: the relative data are also measured separately in each applica-
tion.

One must emphasize that several scientists studied the problem of the
determination of the orbits from observations. In this paper we concen-
trate on the methods developed by Gauss (Brunswick 1777 – Göttingen
1855, Germany), Laplace (Beaumont-en-Auge 1749 – Paris 1827, France)
and Mossotti (Novara 1791– Pisa 1863, Italy) (Laplace, 1780; Mossotti,
1942a,b; Gauss, 1809, and in the presentation of Gauss’ method we fol-
low Gallavotti, 1986). Actually, Mossotti developed two different tech-
niques, which are both reviewed in the present paper; while one method
is quite similar to that of Laplace, the second method (developed earlier)
is based on the knowledge of four observations and it attempts to find
a first approximation of the angular momentum, which defines the plane
and the parameter of the unknown orbit. Gauss reviewed this approach
in Gauss (1817), remarking that the main novelty, based on the intro-
duction of the extra observation, relies on the fact that one is led to
solve two linear equations, instead of one nonlinear equation like in Gauss
and Laplace methods. However, beside the fact that the problem becomes
overdetermined, the neglected terms of the linear approximation might
seriously influence the solution whenever the observational errors become
relevant.

An interesting question concerns the comparison of the different meth-
ods as far as practical applications are concerned. We plan to perform such
investigation in a forthcoming study.

This paper is organized as follows. The different techniques are shortly
sketched in Section 2 and fully presented in the Appendix. We propose in
Section 3 a comparison among the various procedures, providing an appli-
cation to the computation of the elements of the asteroid (3) Juno starting
from three observations. For each of the three methods we developed com-
puter programs, which are available upon request to the authors. Finally, in
Section 4 we provide some numerical experiments to compare Gauss and
Laplace methods. Moreover, we determine the domain of convergence of
Gauss method by varying the initial conditions (longitudes and latitudes)
and by computing the corresponding orbital elements given by the semi-
major axis, the eccentricity and the inclination.
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2. A Sketch of the Methods for Determining the Orbits

In this section we briefly sketch the methods of Gauss, Laplace and
Mossotti (first and second method), referring, respectively, to Appendices
A–D for an exhaustive description. In order to make the exposition clearer,
we divide each method in different steps.

2.1. A SKETCH OF GAUSS METHOD

First step. We impose that the observed body C moves on a plane passing
through the Sun. Let �ak denote the positions of the observer with respect
to the Sun at times tk (k=1,2,3); similarly, let �rk denote the locations of C

with respect to the Sun and let ρk
�bk denote the position of C with respect

to the Earth. By the coplanarity of the position vectors, �rk = �ak +ρk
�bk, there

exist α and β such that

�r2 =α�r1 +β�r3, (2.1)

where, denoting by npq/2 the areas of the triangles spanned by �rp and �rq ,
we can take α=n23/n13 and β =n12/n13 with α,β to be determined. There-
fore the coplanarity condition can be written as

α(�a1 +ρ1 �b1)− (�a2 +ρ2 �b2)+β(�a3 +ρ3 �b3)=�0. (2.2)

From the input data provided by the geocentric longitudes and latitudes,
the Earth–Sun distances and the ecliptical longitudes of the Earth at the
three times of observations, one computes the vectors �ak, �bk (k = 1,2,3).
The details are presented in Appendix A.

Second step. We derive equations for the determination of ρ1, ρ2, ρ3.
We interpret the vectorial equation (2.2) as a linear system for the
unknown geocentric distances ρ1, ρ2, ρ3 and we rewrite it as

α�b1ρ1 − �b2ρ2 +β �b3ρ3 =−α�a1 + �a2 −β�a3, (2.3)

under the condition �b1 ∧ �b2 · �b3 �=0, we take the scalar product of (2.3) with
the vectors �c1, �c2, �c3 defined as

�c1 =
�b2 ∧ �b3

�b1 ∧ �b2 · �b3
, �c2 =

�b3 ∧ �b1

�b1 ∧ �b2 · �b3
, �c3 =

�b1 ∧ �b2

�b1 ∧ �b2 · �b3
. (2.4)

Finally, under the further condition αβ �=0, we obtain
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ρ1 =−�c1 · �a1 + 1
α

�c1 · �a2 − β

α
�c1 · �a3,

ρ2 =α�c2 · �a1 − �c2 · �a2 +β�c2 · �a3, (2.5)

ρ3 =−α

β
�c3 · �a1 + 1

β
�c3 · �a2 − �c3 · �a3.

We stress that the knowledge of only two quantities, namely α, β, deter-
mines uniquely the ellipse, if it exists, through �r1, �r2, �r3. Using the defini-
tion of α and β we obtain

ρ2 =−�c2 · �a2 + �c2 · �a1n23 + �c2 · �a3n12

n12 +n23

n12 +n23

n13
, (2.6)

which is a function of α,β or, more conveniently (after Gauss), of the quantities
P,Q defined below. Denoting by Apq the areas of the conic sectors spanned
by �rp and �rq , let ηpq ≡ Apq/npq . Let tpq ≡ tq − tp; we define P ≡ n12/n23 and
Q≡2r3

2 ((n12 +n23)/n13 −1). From Kepler’s second law we get

P = t12

t23

η23

η12
,

Q= t12t23r
2
2

r1r3η12η23 cosf12 cosf23 cosf13
, (2.7)

where 2fpq are the angles formed by �rp and �rq . Casting together (2.6) and
(2.7), we obtain the (implicit) Gauss equation for ρ2 in the form

ρ2 =G(P,Q,ρ2),

G(P,Q,ρ2)≡−�c2 · �a2 + �c2 · �a1 + �c2 · �a3 P

P +1

(
1+ Q

2r3
2

)
. (2.8)

Given the vectors �ak, �bk as outputs of the first step, one computes the
left hand sides of equations (2.7) and (2.8). Given the vectors �ak, �bk and
P =P0,Q=Q0, the quantity ρ2 is computed by solving (2.8) by a Newton’s
method. The quantities ρ1 and ρ3 are then provided by

ρ1 =−�c1 · �a1 + P +1

1+ Q

2r3
2

�c1 · �a2 −P �c1 · �a3,

ρ3 =− 1
P

�c3 · �a1 + P +1

P(1+ Q

2r3
2
)
�c3 · �a2 − �c3 · �a3. (2.9)

Remark. Notice that to have a meaningful approximation for ρ2 in (2.6) it
is not sufficient to start with npq = tpq as it can be seen by computing the
orders of magnitude of the different quantities entering (2.6). In fact, let
ε= t3 − t1; then npq is proportional to tpq up to O(ε3), while the vectors �cj

in (2.4) are of O(1/ε2).
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Third step. Steps 1 and 2 are iterated by introducing the Gauss map as the
application F : (Pk,Qk)→ (Pk+1,Qk+1), k �0, defined as follows.

As initial approximation we define P0 = t12/t23, Q0 = t12t23, which dif-
fer from the real values by, respectively, O(ε2) and O(ε3); we compute
ρ2,0 using (2.8), and ρ1,0, ρ3,0 using (2.9). The knowledge of the geocentric
distances provides the values for rk,0, ηpq,0, fpq,0. Then, we iterate defin-
ing (P1,Q1) by means of the expressions (2.7). Finally, Gauss problem is
solved by looking for a non–trivial fixed point of the Gauss map.

Remark. There are many ways that one can imagine to fix the “unknowns”
and to set up the corresponding equations: the essential contribution of
Gauss has been to devise equations for quantities that could be determined
from the obervations to the high accuracy necessary to start a meaningful
iteration method of solution. The important new contribution of Gauss is
the remark that the quantities P0,Q0 to start the iteration above provide an
approximation of O(ε2) of the quantities α,β. Indeed, the relation among
α, β and P , Q (in particular P0, Q0) is given by

α = 1
1+P

(
1+ Q

2r3
2

)
, β = P

1+P

(
1+ Q

2r3
2

)
.

From the fact that P is known up to O(ε2), while Q is determined up to
O(ε3), we obtain that α, β are of order O(ε2). Moreover we can write the
definitions of P and Q as P =β/α, Q= 2r3

2 (α +β − 1), from which we see
that α+β −1 is O(ε3). This remark allows us to conclude that the quantities
ρi are determined up to O(ε) as it can be seen rewriting (2.5) in the form

ρ1 =−α +β −1
α

�c1 · �a1 + 1
α

�c1 · (�a2 − �a1)− β

α
�c1 · (�a3 − �a1),

ρ2 =α�c2 · (�a1 − �a2)+ (α +β −1)�c2 · �a2 +β�c2 · (�a3 − �a2),

ρ3 =−α

β
�c3 · (�a1 − �a3)+ 1

β
�c3 · (�a2 − �a3)− α +β −1

β
�c3 · �a3

and noticing that the quantities �a2 − �a1, �a3 − �a2, �a3 − �a1 are of O(ε2).

Fourth step. From the results about the heliocentric distances �r1, �r2, �r3 of
the observed body C at times t1, t2, t3, we derive the orbital elements defin-
ing the trajectory described by C.

2.2. A SKETCH OF LAPLACE METHOD

First step. We assume that the unit vectors from the Earth to the celestial
body are known from the observations and that the heliocentric positions
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of the Earth are known from ephemerides. The geocentric distances of the
observed body are unknown. Starting from the equations of motion, we
derive an implicit equation for the distance of C from the Earth.

For a function f = f (t) let us denote by f ′
2 ≡ df (t2)/dt and by f ′′

2 ≡
d2f (t2)/dt2. The equations of motion are given by

�a′′ =− �a
a3

, �r ′′ =− �r
r3

, (2.10)

where �a and �r denote the position vectors of the Earth and C with respect to
the Sun. Notice that the first in (2.10) implies the coplanarity of the Earth–
Sun distance vectors, which is eventually destroyed by any aberrational effect.

Let �r(t) be the heliocentric distance at time t . Then �r(t)= �a(t)+ρ(t)�b(t)

(where ρ(t) is the geocentric distance and �a, �b have the same meaning as
in Gauss method); differentiating �r(t) twice with respect to time, comput-
ing the derivatives at t = t2 and using (2.10), we get a linear system for ρ2,
ρ ′

2, ρ ′′
2 . Its solution implies that ρ2, ρ ′

2 must satisfy

ρ2 = d1

d

(
1

r3
2

− 1

a3
2

)
, ρ ′

2 = d2

d

(
1

r3
2

− 1

a3
2

)
, (2.11)

where

d= �b2 ∧ �b2
′ · �b2

′′
, d1 =− �b2 ∧ �b2

′ · �a2, d2=−1
2

�b2 ∧ �a2 · �b2
′′
. (2.12)

We remark that in the above expression the quantities �b2 and �a2 are known,
while �b2

′
and �b2

′′
are unknown.

Second step. Let λ(t), β(t) be the geocentric longitude and latitude of C.
Then the components b1, b2, b3 of �b(t) can be expressed as

b1(t)= cosλ(t) cosβ(t), b2(t)= sin λ(t) cosβ(t),
(2.13)

b3(t)= sin β(t).

Taking the derivatives of (2.13) with respect to time and computing the
result at t = t2, we obtain an expression for �b, �b′, �b′′ at t = t2 in terms of
four parameters λ′

2, λ′′
2, β ′

2, β ′′
2 . An approximation for λ′

2, λ′′
2, β ′

2, β ′′
2 can

be found by quadratic interpolation between the observed values λ1, λ2, λ3,
β1, β2, β3; expanding λ and β in Taylor series, one finds that such approx-
imation is of O(ε2), where ε ≡ t3 − t1. As a consequence, one can compute
the quantities d, d1, d2 appearing in (2.12) and we can proceed to solve
Equation (2.11) by a Newton’s method.
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On the other hand, we find that also the velocity �v2 of C at time t2
depends on the same quantities, since it can be expanded as

�v2 = �a′
2 +ρ ′

2
�b2 +ρ2 �b′

2,

where �a2, �a′
2 are given by the ephemerides. We still need to express the

derivatives of �b2 in terms of �b1, �b2, �b3.

Remark 2.1. Making use of m observations (λ1, β1), . . . , (λm,βm) at differ-
ent times t1, . . . , tm with m�3, one can compute the interpolating polyno-
mials λ̃(t), β̃(t) of degree m−1 as (Moulton, 1914; Laplace, 1780)

λ̃(t)= (t − t2) . . . (t − tm)

(t1 − t2) . . . (t1 − tm)
λ1 +· · ·+ (t − t1) . . . (t − tm−1)

(tm − t1) . . . (tm − tm−1)
λm,

β̃(t)= (t − t2) . . . (t − tm)

(t1 − t2) . . . (t1 − tm)
β1 +· · ·+ (t − t1) . . . (t − tm−1)

(tm − t1)...(tm − tm−1)
βm.

Taking the derivatives, for instance, in t = t2, one obtains:

λ′
2 =λ′

n +O(εn+2), β ′
2 =β ′

n +O(εn+2) (2.14)

λ′′
2 =λ′′

n +O(εn+1) β ′′
2 =β ′′

n +O(εn+1),

where n = m − 3, λ′
n ≡ λ̃′(t2), β ′

n ≡ β̃ ′(t2), λ′′
n ≡ λ̃′′(t2), β ′′

n ≡ β̃ ′′(t2). We stress
that more than three observations are used only to compute the interpolat-
ing polynomials, but that using more than three observations one must face
the problem of the compatibility of the equations, whenever the data are
affected by observational errors. In principle, one can write some implicit
equations for �b2

′
and �b2

′′
, which allow to solve the above mentioned com-

patibility problem.
Moreover, care must be taken while using the interpolating polynomials.

Indeed, the longitude and latitude depend on the mean anomaly (equiva-
lently, on the time) through some standard formulae and through Kepler’s
equation. The inversion of Kepler’s equation provides the eccentric anom-
aly in terms of the mean anomaly. The solution of this implicit func-
tion problem by polynomial interpolation is made difficult at least in the
case of high eccentricity by the fact that the dependence of the mean
anomaly from the eccentric anomaly or from the true anomaly has sin-
gularities in a complex domain whose size limits the accuracy implemen-
tation of the interpolating formulae. Furthermore, as already mentioned,
the observations must be made during a time interval small with respect
to the revolution period and if the observations are too close in time, the
error’s influence may become excessive and may compete with the fact that
the problem is overdetermined. We refer to Appendix E for details about



FOUR CLASSICAL METHODS FOR DETERMINING ELEMENTS 9

the discussion of the singularity domain of Kepler’s equation for complex
values of the mean and eccentric anomalies. Laplace applied his method
with four observations for the study of the comet of 1773 (see Laplace
1780, p. 131) and with five observations for the study of the comet of 1781
(see Laplace 1780, p. 141). Perhaps the most appropriate way to proceed
is again the one suggested and used by Gauss: to determine several orbits
always using three observations and then to apply statistical methods to
find the “best fitted orbital data”, which led Gauss to introduce in this
occasion the least squares method (Gauss, 1809 Second book, Third sec-
tion, English transl. p. 249).

Third step. We determine the distance of the observed body C from the
Earth and the Sun, and we compute the components of the velocity.

Fourth step. In order to implement the method, we start by computing the
approximations for the first and second derivatives of the longitude and lat-
itude. As a consequence we compute �b′

2 and �b′′
2 as well as the quantities d,

d1 and d2 in (2.12). The solution of the first in (2.11) provides ρ2, which
allows to compute ρ ′

2. The knowledge of ρ2 and ρ ′
2 gives �r2 and �v2. From

the above results we compute the elements of the orbit, which correspond
to a solution of the equations of motion (2.10) with initial data �r2, �v2 at
t = t2. We refer to section 4.2 for a comparison of the first approximations
of Gauss and Laplace methods.

2.3. A SKETCH OF MOSSOTTI METHOD

First step. From the equations of motion (2.10) and the coplanarity condi-
tion, we expand the heliocentric distance in Taylor series around the inter-
mediate time t2.

Let the equations of motion for C be expressed by

�r ′′ =− �r
r3

, (2.15)

with initial condition

�r(t2)= �r2, �r ′(t2)= �v2. (2.16)

We expand �r(t) in Taylor series around t = t2, so that (after some compu-
tations) we can write

�r(t)=T �r2 +V �v2,
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where

T (r2, v2, s2, t − t2)=1− (t − t2)
2

2r3
2

+ s2

r5
2

(t − t2)
3

2
+· · · ,

V (r2, v2, s2, t − t2)= (t − t2)− 1

6r3
2

(t − t2)
3 + s2

r5
2

(t − t2)
4

4
+· · · , (2.17)

similarly one gets

�r1 =T1�r2 −V1�v2, �r3 =T3�r2 +V3�v2, (2.18)

where we have denoted by T1 =T (r2, v2, s2,−t12), T3 =T (r2, v2, s2, t23), V1 =
−V (r2, v2, s2,−t12), V3 =V (r2, v2, s2, t23). From (2.18) it follows that

�r2 = V3

V2
�r1 + V1

V2
�r3, �v2 = T1

V2
�r3 − T3

V2
�r1, (2.19)

where V2 = T1V3 + T3V1. Notice that V1, V2, V3 are related to the trian-
gle’s areas introduced in Gauss method through: V1 =n12/

√
p, V2 =n13/

√
p,

V3 =n23/
√

p, with p being the parameter of the conic; we remark that the
first equation in (2.19) defines a planarity condition, which is equivalent to
(2.1).

Second step. We write �rk = �ak +ρk
�bk and we develop some equations defin-

ing the geocentric distances ρ1, ρ2, ρ3.
More precisely, mimicking Gauss method, one writes the equation defin-

ing ρk in terms of Vk and Tk as

ρ2 =−�c2 · �a2 + �a1 · �c2
V3

V2
+ �a3 · �c2

V1

V2

= (�a1 − �a2) · �c2
V3

V2
+ (�a3 − �a2) · �c2

V1

V2
+ �a2 · �c2(1−T1)

V3

V2

+�a2 · �c2(1−T3)
V1

V2
(2.20)

ρ1 =−�c1 · �a1 + V2

V3
�c1 · �a2 − V1

V3
�c1 · �a3

ρ3 =−V3

V1
�c3 · �a1 + V2

V1
�c3 · �a2 − �c3 · �a3,

where the �ck’s are defined in (2.4).

Third step. We derive an implicit equation for ρ2 and from its solution we
compute the position �r2 and the velocity �v2 of the observed body at the
mean time t2.
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In order to find an approximation for Vk and Tk, one can introduce the
functions k1, k2, k3, h1, h3 such that

V1 ≡ t12k1, V3 ≡ t23k3, T1 ≡1− t2
12

2r3
2

h1, (2.21)

T3 ≡1− t2
23

2r3
2

h3, V2 =T1V3 +T3V1 ≡ t13k2,

where kj =1+O(ε2), hj =1+O(ε) for j =1,3 and k2 ≡ (T1V3 +T3V1)/t13 =
1+O(ε2). Finally, Mossotti equation for ρ2 is obtained by substituting the
previous formulae inside the first of (2.20):

ρ2 =M(x, y, ρ2)≡x + y

r3
2

, (2.22)

where

x = (�a1 − �a2) · �c2
t23k3

t13k2
+ (�a3 − �a2) · �c2

t12k1

t13k2
,

y = �a2 · �c2t12t23

2
t12h1k3 + t23h3k1

t13k2
.

Let us observe that Mossotti’s method, like Laplace’s, relies on the knowl-
edge of four independent parameters, such as h1, h3, k1, k3. A first approx-
imation for ρ2 is given by solving the Mossotti equation by a Newton’s
method, where we take as a first approximation kj = 1, hj = 1. Using the
second and the third of (2.20) we determine the geocentric distances ρ1,
ρ3. This procedure yields an approximate value for the position �r2 of the
observed body at the mean time t2, while the velocity �v2 at the same time
can be determined by using the second of (2.19).

Better approximations can be obtained by developing the functions kj

and hj at higher orders.

Fourth step. To implement the method, one starts by taking h1 =h3 = k1 =
k2 =k3 =1, which allows to solve equation (2.2) for ρ2, which in turn yields
ρ1 and ρ3 by means of (2.20), where Vi and Ti are given by (2.21). The vec-
tors �r2 and �v2 are computed through (2.19), whose knowledge provides the
elements of the orbit like in Laplace’s method.

2.4. A SKETCH OF ANOTHER METHOD DEVELOPED BY MOSSOTTI

In 1816–1818 Mossotti developed a method which is based on four obser-
vations. The idea is to use some formulae relating the angular momentum
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to the position of the orbital plane. We briefly review this method, taking
more care for those parts which were not discussed during the presentation
of the previous techniques.

First step. With reference to the notations introduced in the previous sec-
tions, let �m = �r ∧ �v and write �rh ∧ �rk = θhk �m, where θhk = |�rh ∧ �rk|/| �m| =
|�rh ∧ �rk|/p1/2. One easily finds that �m · �b2 θ12 = �M · �b2 T12 − ρ1 �b1 ∧ �b2 · �a2

and that �m · �b3 θ13 = �M · �b3 T13 − ρ1 �b1 ∧ �b3 · �a3, where �ah ∧ �ak ≡ Thk
�M, �M

being the angular momentum of the Earth. Eliminating ρ1 and using the
orthogonality relations �M · �ak =0= �m · �rk = �m · (�ak +ρk

�bk), one finds

( �M − �m) · �A1 =0

ρ1 = ( �M − �m) · �b2 T12 + ( �M − �m) · �a2 (T12 − θ12)/ρ2

�b1 ∧ �b2 · �a2

= ( �M − �m) · �b3 T13 + ( �M − �m) · �a3 (T13 − θ13)/ρ3

�b1 ∧ �b3 · �a3
, (2.23)

where

�A1 ≡ �b1 ∧ �b3 · �a3 T12

[
�b2 +

(
1− θ12

T12

)
�a2/ρ2

]

−�b1 ∧ �b2 · �a2 T13 ×
[
�b3 +

(
1− θ13

T13

)
�a3/ρ3

]
. (2.24)

As for ρ2 and ρ3 one obtains:

θ13ρ2 =−(T12 − θ12) �a3 · �c2 + (T13 − θ13) �a2 · �c2 − (T23 − θ23) �a1 · �c2,

θ12ρ3 = (T12 − θ12) �a3 · �c3 − (T13 − θ13) �a2 · �c3 + (T23 − θ23) �a1 · �c3.

Second step. Substituting the previous expressions in (2.23) and (2.24), one
obtains

�A1 = �b1 ∧ �b3 · �a3 T12 �b2 − �b1 ∧ �b2 · �a2 T13 �b3

+�b1 ∧ �b3 · �a3 T12

θ13

(
1− θ12

T12

)
−(T12 − θ12) �a3 · �c2 + (T13 − θ13) �a2 · �c2 − (T23 − θ23) �a1 · �c2

�a2

−�b1 ∧ �b2 · �a2 T13

θ12

(
1− θ13

T13

)
(T12 − θ12) �a3 · �c3 − (T13 − θ13) �a2 · �c3 + (T23 − θ23) �a1 · �c3

�a3,

ρ1 =
[
( �M − �m) · �b2 T12

+ ( �M − �m) · �a2
θ13(T12 − θ12)

−(T12 − θ12)�a3 · �c2 + (T13−θ13)�a2 · �c2 − (T23 − θ23)�a1 · �c2

]
(�b1 ∧ �b2 · �a2)

−1.
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Similarly, with a permutation of the indexes in (2.24), one can define a sec-
ond vector orthogonal to �m, say �A2:

�A2 =−�b1 ∧ �b2 · �a1 T23 �b3 + �b2 ∧ �b3 · �a3 T13 �b1

−�b1 ∧ �b2 · �a1 T23

θ12(1− θ23
T23

)

(T23 − θ23) �a1 · �c3 + (T12 − θ12) �a3 · �c3 − (T13 − θ13) �a2 · �c3
�a3

+�b2 ∧ �b3 · �a3 T12

θ23(1− θ12
T12

)

(T23 − θ23) �a1 · �c1 + (T12 − θ12) �a3 · �c1 − (T13 − θ13) �a2 · �c1
�a1.

(2.25)

Third step. Write t23 =σ t12, t13 =σ1t12, with σ1 =1+σ , and look for �A1
1, �A1

2
such that

�A1 = �A1
1 +O(t2

12),

�A2 = �A1
2 +O(t2

12).

Using Taylor expansion, one gets

θhk = thk + t3
hk

6r3
2

+O(t4
hk).

Applying the same argument to the Earth, one obtains

Thk = thk + t3
hk

6a3
2

+O(t4
hk).

After some computations one finds that �A1
2 = �A1

1 up to O(t2
12); therefore the

problem is underdetermined and it would be necessary to compute higher
order approximations. However, Mossotti proposes to solve this problem in
a different way, namely by using four observations. In this way, it is possi-
ble to choose at least two triples among the four observations; more pre-
cisely, suppose that the first triple of observations corresponds to times t1,
t2, t3, while the second triple refers to times t1, t2, t4. Let �A(1,2,3) correspond
to the term �A1

1 for the first triple and let �A(1,2,4) correspond to the term �A1
1

for the second triple; then, one has

( �M − �m) · �A(1,2,3) =0, (2.26)

( �M − �m) · �A(1,2,4) =0.

In the same spirit, one obtains ρ1 =ρ1
1 +O(t12) with

ρ1
1 =

[
( �M − �m) · �b2 T12

+ ( �M − �m) · �a2
t13

− �a3 · �c2 +σ 3
1 �a2 · �c2 −σ 3 �a1 · �c2

]
× (�b1 ∧ �b2 · �a2)

−1.

(2.27)
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Finally, we make use of the equation

( �M − �m) · (�a1 +ρ1
1
�b1)=ρ1

1
�M · �b1, (2.28)

expressing the orthogonality between �m and �r1 as well as between �M and
�a1. Being �M known, one can combine the three equations provided by
(2.26) and (2.28) to find the three components of �m and therefore a first
approximation of the elements within an error of O(t12).

Remark 2.2. Both Mossotti and Laplace methods use more than three
observations. However, the fourth observation is needed in Mossotti’s
method to bypass the problem of solving a very complicated equation. On
the contrary, Laplace’s method does not necessarily require a fourth obser-
vation, though it can be used to find a better interpolation of the initial
coordinates.

3. A Comparison and an Application of the Three Methods

We devote this section to a comparison of the methods developed by Gauss,
Laplace and Mossotti, stressing the main differences which make each tech-
nique peculiar (here we concentrate only on the method by Mossotti based
on three observations, see Section 2.3). We discuss also an application of the
three methods to a specific sample, provided by the asteroid (3) Juno.

3.1. A COMPARISON OF THE METHODS

We list below the main discrepancies that we have found comparing the
methods developed by Gauss, Laplace and Mossotti.

(i) In the methods of Gauss and Mossotti of Section 2.3 the vectors
�a1, �a2, �a3 joining the Sun to the point O (where the observations are per-
formed) need not to be coplanar. On the contrary, the method of Laplace
and that of Mossotti of Section 2.4 require that the heliocentric position
vectors of the observer are coplanar, since both techniques start with the
equations of motion in the form (2.10) and (2.15), which define a Keple-
rian solution as a conic in a fixed plane. Indeed, Laplace and Mossotti
methods do not account for corrections of the aberration with respect to
the Earth’s latitude. More precisely, �a1, �a2, �a3 represent the Sun–Earth vec-
tors with respect to a point–mass Earth. When dealing with Gauss method,
such vectors can be interpreted as joining the Sun with an observatory
located on the surface of a finite–body Earth.
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(ii) In Laplace method, the mass and the radius of the Earth are set
to zero. In particular, in order to obtain more physical results, one should
modify the equations of motion as follows. Let �a, �r be the heliocentric
positions of the observer and of the body C; then, the equations of motion
can be written as

�a′′ =−(1+µE)
�a
a3

, �r ′′ =− �r
r3

,

where µE denotes the mass–ratio of the Earth and of the Sun. Let ρ(t)�b(t) be
the geocentric position of C, with ρ(t) being the distance at time t between
the Earth and C. Consequently, one should take (compare with (B.61))

ρ = d1

d

(
1
r3

− (1+µE)
1
a3

)
, ρ ′ = d2

d

(
1
r3

− (1+µE)
1
a3

)
,

where d = �b∧ �b′ · �b′′, d1 =−�b∧ �b′ · �a, d2 =− 1
2
�b∧ �a · �b′′.

(iii) The basic difficulty relies on finding the first approximation C0 of
the conic section. Once this problem is solved, Gauss method allows to
obtain a better approximation Cn by iterating the Gauss map.

(iv) Let �r2 ≡ �r(t2), �v2 ≡ �r ′(t2), with r2, v2 denoting the correspond-
ing lengths. Let s2 ≡ �r2 · �v2 and denote by T1 ≡ T (r2, v2, s2,−t12), T3 ≡
T (r2, v2, s2, t23), V1 ≡ −V (r2, v2, s2,−t12), V3 ≡ V (r2, v2, s2, t23), V2 ≡ T1V3 +
T3V1, where tpq = tq − tp. With respect to point iii) above, in the method
of Mossotti (see Section 2.3) a better approximation is obtained consider-
ing a larger number of terms in the Taylor expansion of the functions T1,
T3, V1, V2, V3.

(v) The method of Mossotti (Section 2.4) can be interpreted as an
attempt to find a first approximation for the angular momentum �m, defin-
ing the plane and the parameter of the unknown orbit. As remarked by
Gauss (1817), the main novelty of this method, as a byproduct of taking
one extra observation, is the fact that one must solve two linear equations
(and a quadratic equation for the unknown distance, see (2.27)) instead
of one nonlinear equation like in Gauss and Laplace methods. However,
contrary to Gauss and Laplace methods, the neglected terms of the linear
equations might contribute remarkably to the determination of the motion,
so that experimental errors could strongly influence the solution.

(vi) In some sense one could say that Laplace and Mossotti get a first
good approximation and stop there; Gauss also finds a first good approx-
imation and then he improves it indefinitely (actually only three iteration
steps are usually sufficient to obtain very precise orbital data).

We notice that iterative methods can be applied also to the algorithms
developed by Laplace and Mossotti, as described in the following paragraph
(we omit this part for the method of Mossotti based on four observations).
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3.2. ITERATIONS OF THE ALGORITHMS

In this section we illustrate how iterative methods can be applied also to
the algorithms developed by Laplace and Mossotti. We omit the complete
details, since the procedure is very close to that adopted by Gauss (see
Appendix A).

Let λk and βk be the geocentric longitude and latitude of C at times tk,
for k =1,2,3. For suitable functions R1, R3, S1, S3, we can write λ′

2, λ′′
2, as

λ′
2 =− t23

t12 t13
(λ1 −R1)− t12 − t23

t12 t23
λ2 + t12

t13 t23
(λ3 −R3),

λ′′
2 = 2

t12 t13
(λ1 −R1)− 2

t12 t23
λ2 + 2

t13 t23
(λ3 −R3)

and similarly for β ′
2 and β ′′

2 with βj replacing λj and with some other
functions S1, S3 replacing R1, R3. Moreover, let �b′

2, �b′′
2 be the first

and second derivatives at time t = t2 of �b = �b(t) ≡ (b1(t), b2(t), b3(t)) =
(cos λ(t) cos β(t), sin λ(t) cos β(t), sin β(t)). Let

h(ρ)≡|�a2 +ρ �b2|3, L(x, ρ)≡x

(
1

h(ρ)
− 1

a3

)
(3.29)

and let Z ′ be the set of (R1,R3, S1, S3, ρ), such that ρ =L(d1/d, ρ). Finally,
let A′ be the subset of Z ′ such that the following conditions are verified:

(i) d �=0;
(ii) if �r2 = �a2 +ρ2 �b2, �v2 = �a′

2 +ρ ′
2
�b2 +ρ2 �b′

2, then �r2 ∧ �v2 �= �0;
(iii) let t →�r(t) be the solution of the equations of motion with initial data

�r(t2)= �r2, �v(t2)= �v2; then, one has �r(t1)− �a1 �= �0 and �r(t3)− �a3 �= �0;
(iv) let b̃1 ≡ (�r(t1) − �a1)/|�r(t1) − �a1|, b̃3 ≡ (�r(t3) − �a3)/|�r(t3) − �a3|; denote

by λ̃1, β̃1, λ̃3, β̃3, the longitudes and latitudes of b̃1, b̃3, respectively.
Finally, let R̃i = λ̃i −λi +Ri and let Si = β̃i −βi +Si for i = 1,3. Then,
there exists ρ̃ ∈R+, such that (R̃1, R̃3, S̃1, S̃3, ρ̃)∈Z ′.

Define the map

(R1,R3, S1, S3, ρ)∈A′ → (R̃1, R̃3, S̃1, S̃3, ρ̃)≡F ′(R1,R3, S1, S3, ρ)∈Z ′.
(3.30)

One easily sees that (R1,R3, S1, S3, ρ) provides a solution of the problem,
if and only if it is a fixed point of the map (3.30). Therefore we have the
following

PROPOSITION 3.1. Let ρ0 be such that (0,0,0,0, ρ0)∈A′. Let N be such
that the map F ′ defined in (3.30) can be iterated N times starting with
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(0,0,0,0, ρ0) and let (Rn
1 ,Rn

3 , Sn
1 , Sn

3 , ρn) be the nth iterate with initial point
(0,0,0,0, ρ0). If we denote by ε≡ t13, then (Rn

1 ,Rn
3 , Sn

1 , Sn
3 ) are such that λ′

2 =
λ′

n + O(εn+2), β ′
2 = β ′

n + O(εn+2), λ′′
2 = λ′′

n + O(εn+1), β ′′
2 = β ′′

n + O(εn+1) for
n=0, . . . ,N .

The Laplace algorithm leads to the following Theorem (see Proposition
B.1):

THEOREM 3.1. Let (R1,R3, S1, S3, ρ) be a fixed point of the map (3.30),
such that (∂/∂ρ)L(d1/d, ρ) �= 1, where L is defined as in (3.29). Let ρ0

be such that (0,0,0,0, ρ0) ∈ A′ and assume that F ′ can be iterated N

times starting with (0,0,0,0, ρ0). If the n th iterate (Rn
1 ,Rn

3 , Sn
1 , Sn

3 , ρn) of
(0,0,0,0, ρ0) is such that (Rn

1 ,Rn
3 , Sn

1 , Sn
3 ) belongs to a suitable neighbor-

hood U of (R1,R3, S1, S3) for n = 1, . . . ,N , then it determines a conic sec-
tion Cn such that C =Cn +O(εn+1), where C is the conic section associated to
(R1,R3, S1, S3, ρ).

We describe now a similar statement which can be applied to the algo-
rithm developed by Mossotti. We define Z ′′ as the subset of elements
(h1, h3, k1, k3, ρ2)∈R4, such that ρ2 =M(h1, h3, k1, k3, ρ2), where M(x, y, ρ2)≡
x +y/h(ρ2). Let A′′ be the subset of Z ′′ such that the following conditions
hold:

(i) For (h1, h3, k1, k3, ρ2) ∈ A′′, let ρ1, ρ2, ρ3 be defined as in (2.20); let
�rk = �ak + ρk

�bk and let the velocity vector �v2 be given by �v2 = (T1/V2)�r3 −
(T3/V2)�r1, with �r2 ∧ �v2 �= �0. Let t →�̃r(t) be the solution of the equations of
motion with initial data �r2, �v2; let �̃r1 ≡�̃r(t1), �̃r3 ≡�̃r(t3). Define k̃1, k̃3, h̃1, h̃3

by means of the following expressions:

t12k̃1 = Ṽ1 = |r̃1 ∧ �r2|
|�r2 ∧ �v2| , t23k̃3 = Ṽ3 = |�r2 ∧ r̃3|

|�r2 ∧ �v2| ,

1− t2
12

2r3
2

h̃1 = T̃1 = |r̃1 ∧ �v2|
|�r2 ∧ �v2| , 1− t2

23

2r3
2

h̃3 = T̃3 = |r̃3 ∧ �v2|
|�r2 ∧ �v2| .

(ii) There exists ρ̃2 such that (h̃1, h̃3, k̃1, k̃3, ρ̃2)∈Z ′′.

Define the map

(h1, h3, k1, k3, ρ2)∈A′′ → (h̃1, h̃3, k̃1, k̃3, ρ̃2)

≡F ′′(h1, h3, k1, k3, ρ2)∈Z ′′. (3.31)

One easily sees that (h1, h3, k1, k3, ρ2) determines a solution of the problem,
if and only if it is a fixed point of the map (3.31).
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THEOREM 3.2. Let (h1, h3, k1, k3, ρ2) be a fixed point of the map (3.31)
(with associated conic section C), such that ∂

∂ρ
M(h1, h3, k1, k3, ρ2) �= 1. Let

ρ0 be such that (1,1,1,1, ρ0) ∈ A′′. Let N be such that the map F ′′ can
be iterated N times from (1,1,1,1, ρ0); denote by (hn

1, h
n
3, k

n
1 , kn

3 , ρn) the n–
th iterate starting with (1,1,1,1, ρ0). If (hn

1, h
n
3, k

n
1 , kn

3 ) ∈ U , where U is a
suitable neighborhood of (h1, h3, k1, k3), then (hn

1, h
n
3, k

n
1 , kn

3 , ρn) determines a
conic section Cn, which is related to C through C =Cn +O(εn+1).

3.3. AN APPLICATION TO JUNO

In his “Theoria Motus Corporum Coelestium in Sectionibus Conicis Solem
Ambientium” Gauss provided an application of his powerful technique to
the asteroid Juno, one of the biggest bodies of the asteroidal belt between
Mars and Jupiter, being about 240 km in diameter and with a mass of
about 2×1019 kg. Here, we reproduce the results of Gauss, taking the same
input data as found in Gauss (1809). Once the methods of Laplace and
Mossotti are iterated according to the previous section, they provide results
which are definitely overlapping (within the machine precision) with the
results provided by Gauss method. We remark that the original works of
Laplace (1780) and Mossotti (1942a) did not contain the iterative scheme,
but it is reasonable to expect that the authors intended to iterate their
methods when dealing with concrete examples.

The input data necessary to start the procedure for the computation of
the elements of the orbit are the following:

(1) the epochs of three observations, say t1, t2, t3;
(2) the Earth–Sun distances at the above epochs (Table I reports the log-

arithm of the distance);
(3) the ecliptical longitudes of the Earth at times tj (j =1,2,3);
(4) the geocentric ecliptical longitudes of the body at times tj (j =1,2,3);
(5) the geocentric ecliptical latitudes of the body at times tj (j =1,2,3).

We remark that the quantities (2) and (3) can be derived from ephemer-
ides tables, while the quantities (4) and (5) are obtained through astro-
nomical observations. Corrections for fixed star aberration, time aberration,
precession of the equinox, nutation, diurnal motion are already included in the
initial data reported in Table I, which refers to October 1804 (see Gauss, 1809).

The output is composed by the 6 elements of the orbit, namely the semi-
major axis a (in Astronomical Units, AU ), the eccentricity e, the inclination
i, the argument of perihelion g, the longitude of the ascending node � and
the mean anomaly M referred to 1/1/1805 for the meridian of Paris (the
angles are expressed in degrees).
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TABLE I

Log of the Earth’s longitude Longitude of C Latitude of
Epoch Earth–Sun distance C

Oct 5.458644 9.9996826 12◦ 28’ 27.76” 354◦44’31.60” −4◦59’31.06”
Oct 17.421885 9.9980979 24◦19’49.05” 352◦34’22.12” −6◦21’55.07”
Oct 27.393077 9.9969678 34◦16’9.65” 351◦34’30.01” −7◦17’50.95”

TABLE II

a e i g � M

Gauss 2.645080 0.245316 13.1123 241.1724 171.130 349.5701
GLM 2.644619 0.245049 13.1155 241.1547 171.132 349.5678
Astr. data 2.667332 0.258614 12.9717 247.9220 170.129

We report in Table II the results of the computation of the orbital
elements using the initial data of Table I. The first line (Gauss) reports
the data computed by Gauss (1809) after three iterations of the method.
The second line (GLM) denotes the results that we obtained applying
one of the three methods by Gauss, Laplace and Mossotti (we recall that
the values obtained applying the different techniques are identical within
the machine precision). Just for comparison, we add in the third line
(Astr. data) the values of the same parameters, which are available at the
web–site http ://ssd.jpl.nasa.gov/sb elem.html; in the last case we omit
the value of the mean anomaly, since it refers to different epoch. We stress
that the difference between the third and the previous lines is due to the
different computational framework (two or more body problem), to the
epoch of computation, to the correction for aberrations and to eventual
observational errors. We remark that the disagreement between the origi-
nal results by Gauss (first line in Table II) and the results of our computer
programs (second line) are due to a different computational precision (we
used double precision format) and to a higher order of iteration (we iter-
ated 100 times, instead of the three iterations performed by Gauss).

4. Some Numerical Experiments

4.1. DOMAINS OF CONVERGENCE

In order to explore the efficacy of Gauss method, we compute the domain
of convergence by varying the initial data (i.e., latitude and longitude).
Nowadays the instrumental errors are very small, typically of the order of
0.5/arcsec on the angles and less than 1 second on the time. If we adopt
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such ranges for the variation of the input data, we find that the method
converges for any initial condition in such interval. Therefore, we are led to
consider wider ranges of variation of the input data, much larger than the
instrumental errors (even at the time of Piazzi). Nevertheless such analysis
provides a useful tool to evaluate the regions where Gauss method con-
verges and the domain of variation of the orbital parameters. In particu-
lar, we shall consider the eccentricity e, the semimajor axis a (related to the
parameter p of the conic by a =p/(1− e2)) and the inclination i.

The experiments are performed varying simultaneously the three longi-
tudes λk (k =1,2,3) or the three latitudes βk of the celestial body.

We assume that the central values of the intervals of variation corre-
spond to the input data for the computation of Juno’s elements as pro-
vided in Table I. We compute a grid of 21 points (10 points on the left,
10 on the right, plus the central value), marking those points for which we
find convergence to an elliptic orbit. In order to investigate the behaviour
of the orbital elements, let us denote by a(0), e(0), i(0) the elliptic elements
corresponding to the orbit of Juno (second line in Table II). Let us define
the following quantities: avar = |(a −a(0))/a(0)|, evar = |(e− e(0))/e(0)|, ivar =
|(i − i(0))/i(0)|, where a, e, i are the elements corresponding to the initial
data varying on the grid. We report in Figures 1–3 the 3-dimensional plots
in the space (avar, evar, ivar) associated to a variation of the longitudes and
in Figures 4–6 the 3-dimensional plots associated to a grid in the latitudes.

4.2. A PRACTICAL COMPARISON BETWEEN GAUSS AND LAPLACE METHODS

In this section we implement Gauss and Laplace methods for an overall
set of 105 initial conditions, which are obtained varying randomly the
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Figure 1. Grid over the longitudes with amplitude equal to 0.1◦: the number of conver-
gent orbits is 9261 (equal to the overall number of grid–points). Left: plane (avar, evar);
Right: plane (avar, ivar).
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Figure 2. Grid over the longitudes with amplitude equal to 1◦: the number of convergent
orbits is 5089.Left: plane (avar, evar); Right: plane (avar, ivar).
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Figure 3. Grid over the longitudes with amplitude equal to 5◦: the number of convergent
orbits is 1156. Left: plane (avar, evar); Right: plane (avar, ivar).
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Figure 4. Grid over the latitudes with amplitude equal to 0.1◦: the number of convergent
orbits is 8830. Left: plane (avar, evar); Right: plane (avar, ivar).
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Figure 5. Grid over the latitudes with amplitude equal to 1◦: the number of convergent
orbits is 2226. Left: plane (avar, evar); Right: plane (avar, ivar).
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Figure 6. Grid over the latitudes with amplitude equal to 5◦: the number of convergent
orbits is 564. Left: plane (avar, evar); Right: plane (avar, ivar).

longitude and latitude of the body, and the three times of observation. We
first compute the true orbital elements of the conic, which are obtained
letting the program iterate several times until convergence is reached; we
denote such elements as at , et , it , referring respectively to the semi–major
axis, the eccentricity and the inclination.

Since the iterative scheme was not conceived in the original paper by
Laplace, but it was later introduced by Gauss, we implement the methods
without iterating the algorithms. Let (aG, eG, iG) be the results obtained
using Gauss method and let (aL, eL, iL) be the corresponding quantities
obtained through Laplace method. In order to have a measure of the
relative error for each orbital element, we introduce the quantities

εa,G ≡
∣∣∣∣aG −at

at

∣∣∣∣ , εe,G ≡
∣∣∣∣eG − et

et

∣∣∣∣ , εi,G ≡
∣∣∣∣ iG − it

it

∣∣∣∣ ,
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εa,L ≡
∣∣∣∣aL −at

at

∣∣∣∣ , εe,L ≡
∣∣∣∣eL − et

et

∣∣∣∣ , εi,L ≡
∣∣∣∣ iL − it

it

∣∣∣∣ ,
where the subscripts G and L refer, respectively, to Gauss and Laplace.
Finally, we introduce the difference between the relative errors as

�a ≡ εa,G − εa,L, �e≡ εe,G − εe,L, �i ≡ εi,G − εi,L.

Notice that if one of the above quantities is negative, it means that Gauss
method provides better results than Laplace; on the contrary, a posi-
tive value indicates that Laplace prevails over Gauss. In the first line of
Table III we report the number of times such that �a < 0, �e < 0, �i < 0
and the number of times for which all three values are simultaneously neg-
ative; in the second line we report the number of occurrences for which the
above quantities are positive. The results reported in Table III shows that
Laplace method provides a better estimate of the semi–major axis, being
�a > 0 for 59095 trajectories, while �a < 0 for 40905 orbits; the two tech-
niques are essentially equivalent as far as the error in the eccentricity is
considered, while Gauss method prevails when looking at the error in the
inclination. The last column denotes the number of orbits for which all the
quantities �a, �e, �i have simultaneously the same sign, providing there-
fore the correct result as far as all orbital elements of the trajectory are
considered. In this case, Gauss method gives more than twice times the
best results when compared to Laplace algorithm.

As a further comparison, we compute the solutions obtained by imple-
menting Gauss method, iterating the algorithm until convergence is reached,
and implementing Laplace method without any iteration (as in the orig-
inal paper). Let aG, eG, iG be the semimajor axis, eccentricity and incli-
nation obtained through Gauss method; let aL, eL, iL be the semimajor
axis, eccentricity and inclination obtained through Laplace method. Let
�LG ≡

√
(aG −aL)2 + (eG − eL)2 + (iG − iL)2. Over a set of 105 random ini-

tial conditions, we found that �LG � 0.01 for 5179 initial conditions, 0.01 <

�LG � 0.1 for 61114 initial conditions, 0.1 < �LG � 1 for 14471 initial data,
1<�LG �10 for 6699 initial conditions, while �LG >10 for 12537 initial data.

TABLE III

�a �e �i �a & �e & �i

Gauss 40905 49402 71979 28436
Laplace 59095 50598 28021 13837
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4.3. GAUSS AND LAPLACE FIRST APPROXIMATIONS

As a further comparison, we implement Gauss method in which we sub-
stitute the first approximation with that given by Laplace method. In this
way, we aim to compare the validity of the first approximation found by
Gauss with that provided by Laplace algorithm.

More precisely, we apply Laplace technique to obtain the elements of the
orbit from which we compute the vectors �r1, �r3. Next, we determine the area
of the triangles npq and as a consequence we get the quantities P and Q,
where P = n12/n23, Q = 2r3

2 ((n12 +n23)/n13 − 1) with r2 ≡ |�a2 + ρ2 �b2| and ρ2

given by (2.11). Starting with this initial (Laplacian) approximation, we imple-
ment Gauss method, iterating the procedure until convergence is reached.

Indeed, we compare the elements obtained according to the above pro-
cedure (where Gauss method is run with the initial approximation derived
from Laplace technique) with those produced by the standard Gauss
procedure (namely, taking the initial approximation as provided by Gauss
himself). We tested the comparison for an overall set of 105 random ini-
tial conditions and we found that the difference bewteen the elements com-
puted according to the two procedures never exceeds 3×10−8, showing that
both initial approximations guarantee reliable results.
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Appendix A. Gauss Method

In this appendix we review the method developed by Gauss (1963). In
order to fix the notations and the basics of the method, let us start by
recalling the three fundamental Kepler’s laws, which describe the interac-
tion between two bodies subject to the reciprocal gravitational attraction.
We shall identify the two bodies with the Sun and a minor body C, for
example a comet or an asteroid. Let �r1, �r2, �r3 be the position vectors of
C with respect to the Sun, computed at three different times t1, t2, t3; let
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M = M(t) be the so-called mean anomaly, which is related to the mean
motion n by

M(t)=nt +M(0)

(without loss of generality, we can assume that M(0)=0). The observations
of the minor body C will be performed from the Earth, though we will not
consider the gravitational influence of the Earth on C. Therefore, we fix a
reference frame with the Sun at the origin and we assume that the period
of the orbit of the Earth around the Sun is normalized to 2π(1 +µE)−1/2

(where µE is the ratio of the masses of the Earth and the Sun); with this
choice the mean motion of the Earth is normalized to (1+µE)1/2, while its
semimajor axis is normalized to 1. We also assume that the minor body C

has zero–mass.
With the above notations, the motion of C is governed by Kepler’s laws,

which can be stated as follows:
(i) The position vectors �r1, �r2, �r3 are coplanar and determine a conic sec-

tion with a focus in the origin; we denote by p and e, respectively, the
parameter and the eccentricity of the conic section.

(ii) The areal velocity is constant; notice that the area A(t)/2 of the
conic section described by the position vector from the perihelion to a
generic time t is related to the mean anomaly by

A(t)

2
= p2

2(|1− e2|)3/2
M(t), (A.32)

where a =p/|1− e2|.
(iii) The semimajor axis and the mean motion are related by the expres-

sion:

n2a3 =1.

We remark that from (ii) to (iii) it follows that

A(t)=√
pt. (A.33)

The condition for the coplanarity of the vectors �r1, �r2, �r3 can be expressed
as in (2.1) for some α and β, which can be interpreted as the ratios
between the areas of the triangles npq/2 spanned by the vectors �rp, �rq . In
fact, let us denote with �k the unit vector orthogonal to the plane of the
orbit, oriented so that the motion takes place counterclockwise. Suppose,
for simplicity, that the angle between �r1 and �r3 is smaller than π . Then,
taking the vector product of (2.1) with �r3 (respectively, with −�r1) and com-
puting the scalar product with �k, one obtains

α = n23

n13
, β = n12

n13
. (A.34)
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Let us denote by �ak the positon vector of the Earth with respect to the Sun
and by ρk

�bk the position vector of the body C with respect to the Earth,
where ρk are the unknown distances between the Earth and the body C;
then, we can write the distances �rk as

�rk = �ak +ρk
�bk, (A.35)

so that (2.1) becomes (2.2). Taking the vector product of (2.2) with �c1, �c2,
�c3 defined in (2.4) and assuming linear independency among �b1, �b2, �b3 (so
that �b1 ∧ �b2 · �b3 �=0), we get that, if the �rk’s are coplanar and not parallel to
each other, then (2.5) holds. Conversely, given �ak and �bk (where �bk are inde-
pendent vectors), let α and β, with αβ �=0, such that (2.5) holds. Then, the
vectors �rk = �ak +ρk

�bk are coplanar and not parallel to each other. In fact,
let us define

�v ≡α�r1 − �r2 +β�r3

from (2.5) and (2.4), one immediately gets that

�v · �c1 = �v · �c2 = �v · �c3 =0.

From the above relations, using the linear independence of �b1, �b2, �b3, it fol-
lows that �v = �0, which implies that the �rk’s are coplanar and not parallel
to each other, due to the assumption on α and β. In conclusion, we have
proved the following

LEMMA 4.1. Given the vectors �a1, �a2, �a3, �b1, �b2, �b3 as in (A.35) (with �bk

independent vectors), the distances �rk = �ak +ρk
�bk are coplanar and not parallel

to each other if and only if there exist α and β, with αβ �=0, such that ρ1, ρ2,
ρ3 verify (2.5) and (2.4). The quantities α and β represent the ratios between
the areas of the triangles npq spanned by the vectors �rp, �rq (see (A.34)).

A.1. GAUSS EQUATION

Inserting the expressions for α and β given by (A.34) inside the second
equation in (2.5), we obtain (2.6). Let us introduce the ratio ηpq between
the area of the conic sector spanned between �rp and �rq and the area of the
corresponding triangle as

ηpq ≡ Apq

npq

. (A.36)

Define the quantity P ≡n12/n23; one easily obtains

P = β

α
= t12

t23

η23

η12
, (A.37)
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where we used Apq/Ars = tpq/trs , as it results from second Kepler’s law
(A.32). A suitable form for (n12 +n23)/n13 is obtained by equating the
expression for the parameter p as derived in (A.33), i.e. p=A12A23/(t12t23),
with the formula obtained by computing the parameter p from the
coplanar vectors �r1, �r2, �r3, as it immediately follows from (A.58) below
(see Gauss, 1809; Gallavotti, 1980). More precisely, let rk =|�rk| and let 2fpq

be the angle between �rp and �rq ; then, one has

p = n12n23n13

2(n12 +n23 −n13)r1r2r3 cosf12 cosf23 cosf13
.

From the above relations, one obtains that

n12 +n23

n13
=α +β =1+ Q

2r3
2

, (A.38)

where Q is defined as in (2.7) and r3
2 is related to ρ2 by

r3
2 =|�a2 +ρ2 �b2|3 = (a2

2 +2�a2 · �b2ρ2 +ρ2
2)

3/2 ≡h(ρ2). (A.39)

Using (A.37) and (A.38) one obtains

α = 1
1+P

(
1+ Q

2r3
2

)
, β = P

1+P

(
1+ Q

2r3
2

)
. (A.40)

From the previous relations, (2.8) and (2.9) easily follow. Equation (2.8) is
the celebrated Gauss equation, which is an implicit equation for ρ2.

Notice that for each (P,Q)∈R2
+, the formula (2.8), interpreted as an equa-

tion forρ2, can be reduced to an algebraic equation of degree eight, which admits
a finite number of solutions. This remark justifies the following.

DEFINITION 1. Let Z be the set of (P,Q,ρ2) ∈ R3
+ which are solutions

of the function (P,Q,ρ2)→ρ2 −G(P,Q,ρ2). Let A be a subset of Z such
that:

(i) defining ρ1, ρ3 by means of (2.9) and letting �r1, �r2, �r3 as in (A.35), then
�r1, �r2, �r3 are coplanar and not parallel to each other; let C be the conic
section (to which we will refer as the conic section associated to (P,Q))
defined through �r1, �r2, �r3 (which can be viewed as the coordinates of three
points with respect to a focus). Let

P ′ = t12

t23

η23

η12
, Q′ = t12t23 r2

2

r1r3η12η23 cosf12 cosf23 cosf13
,
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where ηpq are the ratios between the areas of the conic sectors on C,
defined through �rp and �rq , and the correspondent triangles, while 2fpq are
the angles between �rp and �rq ;

(ii) there exists ρ ′
2 ∈R+, such that (P ′,Q′, ρ ′

2)∈Z.
The map Ft12,t23 : (P,Q)→ (P ′,Q′) is called the Gauss map. We are finally

led to the following

PROPOSITION A.1. A conic section C on which a Keplerian motion t →�r(t)
takes place (where �r(t2)= �r2 = �a2 +ρ2 �b2 for some ρ2) is a solution of Gauss
problem if and only if there exists a fixed point (P,Q) of the Gauss map,
with C being its associated conic section.

Proof. It is sufficient to prove that any fixed point of Ft12,t23 provides
a solution of the Gauss problem. To this end, let C be the conic section
determined by a fixed point of the Gauss map (P,Q). Let us denote by
npq/2, Apq/2 and 2fpq the areas of the triangles, the areas of the conic sec-
tors and the angles spanned by �rp, �rq , respectively. Let p be the param-
eter of C and let t ′pq be the time occurring to C (moving on C through
a Keplerian motion t → �r(t), with �r(t2)= �r2) to reach �rq starting from �rp.
Due to the definition of C, it remains to prove that t ′pq = tpq . Without loss
of generality, we may assume that the motion takes place counterclock-
wise from �r1 to �r2, so that t ′12 � 0. The ratios ηpq = Apq/npq verify ηpq =√

pt ′pq/npq , with

p = n12n23n13

2(n12 +n23 −n13)r1r2r3 cosf12 cosf23 cosf13
= A12A23

t ′12t
′
23

.

Using the fixed point condition and the above relations, we obtain

P = t12t
′
23

t23t
′
12

n12

n23
, Q= t12t23

t ′12t
′
23

2r3
2

(
n12 +n23

n13
−1

)
. (A.41)

From these expressions and from Lemma A.1, it follows that

n23

n13
=α = 1

1+P

(
1+ Q

2r3
2

)
= 1

1+ t12t
′
23

t23t
′
12

n12
n23

[
1+ t12t23

t ′12t
′
23

(
n12 +n23

n13
−1

)]
,

n12

n13
=β = P

1+P

(
1+ Q

2r3
2

)
=

t12t
′
23

t23t
′
12

n12
n23

1+ t12t
′
23

t23t
′
12

n12
n23

×
[

1+ t12t23

t ′12t
′
23

(
n12 +n23

n13
−1

)]
. (A.42)
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Taking the ratio of the previous equations, we get t12 t ′23/t23 t ′12 =1. There-
fore, defining χ ≡ t12/t ′12 = t23/t ′23, we conclude the proof by showing that
χ =1. Adding the two equations in (A.42) we obtain:

n12 +n23

n13
=1+χ2

(
n12 +n23

n13
−1

)

from which it follows that χ2 =1; recalling that χ �0, we obtain χ =1.

Remark A.1. Notice that �a1, �a2, �a3 can be interpreted as the position vec-
tors at times t1, t2, t3 of the point O on the surface of the Earth (the
Observatory, where the observations are performed) with respect to the
Sun. Assuming that the center of the Earth E moves of Keplerian motion
(with mean motion nE = (1 + µE)1/2) on an ellipse CE and assuming that
the plane of motion (i.e., the Ecliptic) coincides with the (x, y) plane of a
reference frame with the Sun at the origin, we have:

�ak = �aE
k + �aO

k , k =1,2,3, (A.43)

where �aE
k is the vector joining E and the Sun at time tk, while �aO

k joins E

and O at time tk, including the effect of the rotation of the Earth (consid-
ered as a rigid sphere of radius R) around a fixed axis (the so-called diurnal
motion, see Gallavotti, 1986; Gauss, 1963 for more details). If we neglect �aO

k

in (A.43) and we let µE =0, the orbit of the Earth turns out to be a solution
of the problem for all �b1, �b2, �b3. In fact, the coplanarity condition for �a1, �a2,
�a3 can be obtained from (2.9) just replacing �rk with �ak, ρk with 0 and (P,Q)

with (PE,QE), where PE,QE are the Gauss parameters corresponding to the
Earth. We want to show that (PE,QE) is a fixed point of the Gauss map,
called the trivial fixed point. We remark that for ρk =0 one has

�c1 · �a1 = PE +1

1+ QE

2a3
2

�c1 · �a2 −PE �c1 · �a3, �c2 · �a2=�c2 · �a1 + �c2 · �a3 PE

PE +1

(
1+ Q

2a3
2

)
,

�c3 · �a3 =− 1
PE

�c3 · �a1 + PE +1

PE(1+ Q

2a3
2
)
�c3 · �a2.

Therefore, equations (2.8) and (2.9) can be written as:

ρ1 = P +1

1+ Q

2r3
2

�c1 · �a2 −P �c1 · �a3 − PE +1

1+ QE

2a3
2

�c1 · �a2 +PE �c1 · �a3,

ρ2 = �c2 · �a1 + �c2 · �a3 P

P +1

(
1+ Q

2r3
2

)
− �c2 · �a1 + �c2 · �a3 PE

PE +1

(
1+ QE

2a3
2

)
,
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ρ3 =− 1
P

�c3 · �a1 + P +1

P(1+ Q

2r3
2
)
�c3 · �a2 + 1

PE

�c3 · �a1 − PE +1

PE(1+ Q

2a3
2
)
�c3 · �a2. (A.44)

From the first and the third of (A.44), it follows that (PE,QE) determines
the orbit of the Earth; let us prove that (PE,QE) is a fixed point of the
Gauss Map. Using (A.41) and the second of (A.44), the image (P ′,Q′) of
(PE,QE) through the Gauss map is given by

P ′ = t12t
′
23

t23t
′
12

PE =PE, Q′ = t12t23

t ′12t
′
23

QE =QE (A.45)

with ρ2 being given by ρ2 = �c2·�a1+�c2·�a3PE

PE+1
QE

2 (r−3
2 − a−3

2 ) and provided that
t ′pq =AE/

√
pE = (1+µE)1/2 tpq = tpq (due to the assumptions on the motion

of the Earth). The conclusion comes from (A.45). The solution of Gauss
problem is thus reduced to the problem of looking for a non- trivial fixed
point of the Gauss map.

A.2. APPROXIMATIONS

Let ε, τ12, τ23 be defined by means of the expressions

t13 = ε, t12 = τ12ε, t23 = τ23ε. (A.46)

Let (P̄ , Q̄) be a fixed point of the Gauss map. Looking at the orders of
magnitude of the constants �c2 · �ak, one roughly finds that an approximation
ρ̃n of ρ̄2 up to O(εn+1), i.e.

ρ̄2 = ρ̃n +O(εn+1), (A.47)

can be obtained by looking for a solution of ρ̃n =G(P̃n, Q̃n, ρ̃n), where P̃n

and Q̃n are defined by

P = P̃n +O(εn+2), Q= Q̃n +O(εn+3) (A.48)

In the case n = 0, one must determine P̄ , Q̄ up to terms of order ε, ε2,
respectively. Let us introduce the areas Akl of the conic sectors correspond-
ing to the triangles nkl by nkl = Akl + O(ε3) = √

pτklε + O(ε3). We obtain
that the ratios of the areas of the triangles satisfy

P = n12

n23
= τ12

τ23
+ϑ0

1 (ε)ε2, (A.49)

where ϑ0
1 (ε) has a finite limit as ε tends to zero. Moreover, equations (2.7)

easily leads to

Q= ε2τ12τ23ϑ
0
2 (ε), (A.50)
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where

ϑ0
2 (ε)= r2

2

r1r3η12η23 cosf12 cosf23 cosf13
→1 as ε →0.

From the relations (A.49) and (A.50) it follows that P̃0, Q̃0 are related by
the expression

P̃0 = τ12

τ23
, Q̃0 = τ12τ23ε

2.

DEFINITION 2. Consider the map H :X→X; we say that H can be iter-
ated m times from x0 if there exists m∈ N such that xk ≡H(xk−1) for k =
1, . . . ,m. We will refer to xk as the kth-iterate of x0.

In the following, we shall identify a conic section C with the set of its
parameters: C = (p, e, g,�, i,M) (where p is the parameter of the conic, e

is the eccentricity, g is the argument of perihelium, � is the longitude of
the ascending node, i is the inclination and M is the mean anomaly at time
t2).

Remark A.2. Let (P̃n, Q̃n) satisfy (A.48). Using (2.9) and (A.40), comput-
ing the orders of magnitude of �ck in (2.4) (Gallavotti, 1986) and using the
continuity of the map (P̃n, Q̃n)→Cn (where Cn is the conic section associ-
ated to (P̃n, Q̃n)), we obtain that C −Cn =O(εn+1).

THEOREM A.1 (Gauss Algorithm). Let (P̄ , Q̄) be a fixed point of the
Gauss map Ft12,t23 (with t12, t23 defined in (A.46)); let ρ̄ be such that
(∂/∂ρ)G(P̄ , Q̄, ρ̄) �=1 and let C be the associated conic section. There exists
a neighborhood U of (P̄ , Q̄) and a neighborhood V of ρ̄ such that, if P̃0, Q̃0

(defined as in (A.48)) belongs to U , then there exists ρ̃0 ∈ V such that ρ̄ =
ρ̃0 + O(ε). Moreover, if (P̃0, Q̃0) belongs to the domain of definition of the
Gauss map F , then the associated conic section C0 verifies: C − C0 = O(ε).
Finally, if the Gauss map F can be iterated N times from (P̃0, Q̃0) and if the
j -th iterate (P̃j , Q̃j ) is such that (P̃j , Q̃j )∈U for each j =0, . . . ,N , then the
associated conic section Cj verifies: C −Cj =O(εj+1).

Proof. Let us start by proving that there exists a neighborhood U of
(P̄ , Q̄) such that, if (P̃n, Q̃n) ∈ U with P̄ = P̃n + ϑn

1 (ε)εn+2, Q̄ = Q̃n +
ϑn

2 (ε)εn+3 (where ϑn
1 (ε), ϑn

2 (ε) are suitable functions of ε with finite limit as
ε →0), then there exists ρ̃n in the set of zeros of the function (P,Q,ρ)→
ρ −G(P,Q,ρ) such that (A.47) holds. Let �C(P,Q)= (C1(P,Q),C2(P,Q))

be defined through:
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C1(P,Q)≡ (�a3 − �a2) · �c2 + (�a1 − �a3) · �c2

1+P
,

C2(P,Q)≡ �a3 · �c2
Q

2
+ Q

2
(�a1 − �a3) · �c2

1+P

and let us write G(P,Q,ρ) as:

G(P,Q,ρ)= G̃(C1(P,Q),C2(P,Q), ρ), G̃(x, y, z)=x + y

h(z)
,

where the function z → h(z) is defined in (A.39). Let U ′ be a neighbor-
hood of C1(P̄ , Q̄) and C2(P̄ , Q̄); let V be a neighborhood of ρ̄ and let
f be a function of class C1, f : U ′ → V (whose existence is guaranteed
by the implicit function theorem). We assume that the graph of f coin-
cides with the set of (C1,C2, ρ

′) such that (C1,C2) ∈ U ′, ρ ∈ V and ρ =
G̃(C1,C2, ρ). Let U = f −1(U ′) and let ρ̃n = f (P̃n, Q̃n) (ρ̃n is well defined
since (P̃n, Q̃n) ∈ U ). We want to prove that ρ̄ = ρ̃n + O(εn+1). Due to the
regularity of f and �C (making use of Cauchy theorem), we only need to
prove that: | �C(P̄ , Q̄)− �C(P̃n, Q̃n)| =O(εn+1). To this end, using (A.49) we
obtain

C1(P̄ , Q̄)−C1(P̃n, Q̃n)= (�a1 − �a3) · �c2

(
1

1+ P̄
− 1

1+ P̃n

)
= (�a1 − �a3) · �c2ϑ

n
1 (ε)C(ε)εn+2

= [(�a1 − �a3) · �c2ε]C(ε)ϑn
1 (ε)εn+1,

where C(ε) = −1/((1+ P̄ )(1+ P̃n)) has a finite limit as ε → 0. Moreover,
making use of (A.50) and of the previous equations, we get

C2(P̄ , Q̄)−C2(P̃n, Q̃n)

= �a3 · �c2

2
(Q̄− Q̃n)+ Q̃n

2

(
C1(P̄ , Q̄)−C1(P̃n, Q̃n)

)
+(Q̄− Q̃n)

2
(�a1 − �a3) · �c2

1+ P̄

= �a3 · �c2

2
ϑn

2 (ε)εn+3 + Q̃n

2

(
C1(P̄ , Q̄)−C1(P̃n, Q̃n)

)
+ϑn

2 (ε)εn+2

2
[(�a1 − �a3) · �c2ε]

1+ P̄

= [�a3 · �c2ε
2]

2
ϑn

2 (ε)εn+1 + Q̃n

2
[(�a1 − �a3) · �c2ε]C(ε)ϑn

1 (ε)εn+1

+ϑn
2 (ε)εn+2

2
[(�a1 − �a3) · �c2ε]

1+ P̄
,
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where (�a1 − �a3) · �c2ε and �a3 · �c2ε
2 are defined, by (2.4), as

(�a1 − �a3) · �c2ε =−(�b1 ∧ �b3) · (�a1 − �a3)

�b1 ∧ �b2 · �b3
ε, �a3 · �c2ε

2 =−
�b1 ∧ �b3 · �a3

�b1 ∧ �b2 · �b3
ε2.

The above quantities have a finite limit as ε → 0; therefore, it is easily
seen that C1(P̄ , Q̄)−C1(P̃n, Q̃n)=O(εn), C2(P̄ , Q̄)−C2(P̃n, Q̃n)=O(εn). If
(P̃n, Q̃n, ρ̃n) belongs to A, by Remark A.2 we obtain that

|C(P̄ , Q̄, ρ̄)−C(P̃n, Q̃n, ρ̃n)|=O(εn+1).

Let N ∈N be such that the Gauss map F can be iterated N times starting
from (P̃0, Q̃0), with (P̃n, Q̃n)∈U for any n�N ((P̃n, Q̃n) is the n-th itera-
tion from (P̃0, Q̃0)). It remains to prove that

P̄ = P̃n +O(εn+2), Q̄= Q̃n +O(εn+3), ρ̄ = ρ̃n +O(εn+1) (A.51)

for each n=0, . . . ,N .
To this end, we proceed by induction. For n=0 we just obtain the definition

of P̃0, Q̃0. Suppose now that (A.51) is true for n>0. Then, the conic section Cn

determined by (P̃n, Q̃n) satisfies C −Cn =O(εn+1), where ε= t13 = tn13 +O(εn+1)

and tn13 is the time occurring to C (such that a Keplerian motion takes place
on Cn) to reach �r3 from �r1. The images (P̃n+1, Q̃n+1) of (P̃n, Q̃n) through the
Gauss map can be expressed (using Taylor expansion) as a sum of powers in
εn = tn13 = ε −O(εn+1) up to degree n+2, n+3, respectively, whose coefficients
are continuous functions of Cn. Therefore, one has:

P̃n+1 = c0 + c2(Cn)ε
2
n +· · ·+ cn+2(Cn)ε

n+2
n +O(εn+3

n )

= c0 + c2(Cn)ε
2 +· · ·+ cn+2(Cn)ε

n+2 +O(εn+3),

Q̃n+1 = c′
2ε

2
n + c′

3(Cn)ε
3
n +· · ·+ c′

n+3(Cn)ε
n+3
n +O(εn+4

n )

= c′
2ε

2 + c′
3(Cn)ε

3 +· · ·+ c′
n+3(Cn)ε

n+3 +O(εn+4)

with c0 = τ12/τ23, c′
2 = τ12τ23, C =Cn +O(εn+1). Finally, by the continuity of

ck and c′
k+1 (k �2), one has P̄ = P̃n+1 +O(εn+3), Q̄= Q̃n+1 +O(εn+4).

A.3. COMPUTATION OF THE ELEMENTS OF A CONIC SECTION THROUGH

THREE COPLANAR VECTORS

Let �r1, �r2, �r3 be three different coplanar vectors applied at the same point
and let �m be the unit vector perpendicular to the plane of the �ri ’s. We
will assume that �m is oriented in such a way that the motion from �r1 to
�r3 through �r2 appears counterclockwise (this can be achieved defining �m=
η �r1 ∧ �r3/|�r1 ∧ �r3| with η = 1 if �r1 ∧ �r2/|�r1 ∧ �r2| = �m = �r2 ∧ �r3/|�r2 ∧ �r3|, while
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η = −1 otherwise). We will show that there exists a unique conic section
with focus in the common origin of the given vectors and passing through
them, if and only if the oriented areas npq = �rp ∧ �rq · �m verify

n12 +n23 −n13 �=0. (A.52)

In fact, if n12 +n23 −n13 =0, then the vectors �u≡�r2 −�r1, �v ≡�r3 −�r2 are col-
linear, being �u ∧ �v · �m = n12 + n23 − n13 = 0. Therefore it is not possible to
find a conic section through three points on a straight line. In the oppo-
site case, the inclination i ∈ [0, π ] is defined as the angle between �m and �k,
where (�i, �j, �k) is a preassigned reference frame (the ecliptic frame), and
it is defined as cos i = �m · �k (notice that i denotes the inclination, while �i
is the unit vector of the reference frame). Next, let �n be the unit vector of
the line of nodes oriented in such a way that the rotation of the angle i in
the plane (�k, �m) that transforms �k in �m appears counterclockwise (the line
of nodes is defined as the intersection between the plane (�r1, �r3) and the
plane (�i, �j), namely �n = �k ∧ �m/|�k ∧ �m|). The ascending node � is defined
as the oriented angle in [0,2 π) between �i and �n with respect to the eclip-
tic frame. Next, let �n′ = �m ∧ �n. It is clear that both �n and �n′ belong to
the plane defined by �r1, �r2, �r3. We will refer to (�n, �n′, �m) as the orbital
reference frame. Let us fix in the orbital frame a (polar) reference frame
with the polar axis direction coinciding with the line described by �n and
with the pole coinciding with the common origin of �r1, �r2, �r3. Let (rk, θk)

be the polar coordinates of �rk with respect to the previous frame, being
rk =|�rk|. In order to find the conic through (r1, θ1), (r2, θ2), (r3, θ3) we use
the relation between the anomaly θ and the modulus r of a point (r, θ)

belonging to the conic. More precisely, the polar equation of a conic is
given by

r = p

1+ e cos (θ −g)
, (A.53)

where e denotes the eccentricity of the conic, p is the parameter and g is
the argument of perihelion. Let us notice that if r1 = r2 = r3 ≡ r, the unique
conic through �r1, �r2, �r3 is a circle with radius r. Let us suppose that there
exist i �= j ∈ {1,2,3} such that ri �= rj ; we state that, under the condition
(A.52), the quantities

A≡ r2(r3 − r1)+ r1(r2 − r3) cos θ12 + r3(r1 − r2) cos θ23

B ≡ r1(r2 − r3) sin θ12 − r3(r1 − r2) sin θ23

cannot be simultaneously zero. In fact, A and B represent the projections
of the vector �w ≡ (r2 − r3)�r1 − (r1 − r3)�r2 + (r1 − r2)�r3 on the directions of �r2
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and on the perpendicular to �r2; therefore, �w=�0 implies that (we can always
assume that r1 �= r3)

�r2 = r3 − r2

r3 − r1
�r1 + r2 − r1

r3 − r1
�r3.

Recalling the definition of the coefficients which express the linear depen-
dence of �r1, �r2, �r3, we get

n23

n13
= r3 − r2

r3 − r1
,

n12

n13
= r2 − r1

r3 − r1
,

which implies n12 +n23 −n13 =0, in contrast to our assumption.
Next we compute e, p, g. From (A.53) it follows that

r1 =p − e r1 cos (θ1 −g),

r2 =p − e r2 cos (θ2 −g),

r3 =p − e r3 cos (θ3 −g). (A.54)

We eliminate e and p through the first and the third of the previous equa-
tions, obtaining

e=− r3 − r1

r3 cos (θ3 −g)− r1 cos (θ1 −g)

p = r1 r3
cos (θ3 −g)− cos (θ1 −g)

r3 cos (θ3 −g)− r1 cos (θ1 −g)
. (A.55)

Finally, we substitute (A.55) in the second of (A.54). Let θhk =θk −θh; after
some computations, if B �=0 we get

tan (θ2 −g)=−A

B

=−r2(r3 − r1)+ r1(r2 − r3) cos θ12 + r3(r1 − r2) cos θ23

r1(r2 − r3) sin θ12 − r3(r1 − r2) sin θ23
; (A.56)

otherwise we have cos (θ2 −g) = 0 implying θ2 − g = ±π/2. Let us write
θ1 −g = (θ2 −g)− θ12 and θ3 −g = (θ2 −g)+ θ23; we develop cos (θ1 −g) and
cos (θ3 −g) in (A.55), inserting the value (A.56) for tan (θ2 −g). Therefore,
if B �=0 we get

e=−r1(r2 − r3) sin θ12 − r3(r1 − r2) sin θ23

cos (θ2 −g)(n12 +n23 −n13)
, (A.57)

otherwise

e= r2(r3 − r1)+ r1(r2 − r3) cos θ12 + r3(r1 − r2) cos θ23

sin (θ2 −g)(n12 +n23 −n13)
.
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Finally, the parameter p is defined as

p = r1 r2 r3
sin θ12 + sin θ23 − sin θ13

n12 +n23 −n13
. (A.58)

The indetermination on g as expressed in (A.56) is solved by imposing e�
0 in (A.57), which implies that cos (θ2 −g) has the same sign of −[r1(r2 −
r3) sin θ12 − r3(r1 − r2) sin θ23]/(n12 + n23 − n13) if r1(r2 − r3) sin θ12 − r3(r1 −
r2) sin θ23 �=0, otherwise that sin (θ2 −g)(equal to ± 1) has the same sign of
[r2(r3 − r1)+ r1(r2 − r3) cos θ12 + r3(r1 − r2) cos θ23]/(n12 +n23 −n13).

Appendix B. Laplace Method

In this appendix we review a method developed by Laplace (1780), with-
out reproducing those computations which have been already discussed in
Appendix A. In addition to the hypotheses of the previous section, we
assume that the Earth and the body C have zero-mass and that they move
on Keplerian orbits according to (2.10). The geocentric position vector
ρ(t)�b(t) of C is defined by means of the relation

�r = �a +ρ �b, (B.59)

while the velocity is given by

�v = �a′ +ρ ′ �b+ρ �b′ (B.60)

(where, as usual, t →ρ(t) represents the distance of C from the Earth and
|�b(t)|=1 if ρ(t) �=0, �b(t)=�0 otherwise). Using (2.10) one obtains

− �a
a3

+ρ ′′ �b+2ρ ′ �b′ +ρ �b′′ =− �a +ρ �b
r3

.

The above equation can be written in the form:

ρ

(
�b′′ +

�b
r3

)
+2ρ ′ �b′ +ρ ′′ �b=−

(
1
r3

− 1
a3

)
�a.

We can derive ρ and ρ ′ as functions of �b, �b′, �b′′, after scalar multiplication
with �b∧ �b′, �b∧ �b′′; in this way we obtain:

ρ = d1

d

(
1
r3

− 1
a3

)
, ρ ′ = d2

d

(
1
r3

− 1
a3

)
, (B.61)

where:

d = �b∧ �b′ · �b′′, d1 =−�b∧ �b′ · �a, d2 =−1
2

�b∧ �a · �b′′ (B.62)
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for any t such that d(t) �= 0. Notice that the first equation in (B.61) is an
implicit equation for ρ and it takes the form:

ρ =L(d1/d, ρ), L(x, ρ)≡x

(
1

h(ρ)
− 1

a3

)
,

h(ρ)≡ r3 =|�a +ρ �b|3 = (a2 +2�a�bρ +ρ2)3/2. (B.63)

We denote by t2 the time of the mean observation and we let f2 =f (t2) (for
any function t →f (t) appearing in (B.59) and (B.60)). Then, one obtains:

�r2 = �a2 +ρ2 �b2, �v2 = �a′
2 +ρ ′

2
�b2 +ρ2 �b′

2, (B.64)

where �a2 and �a′
2 are quantities which can be derived from ephemerides,

while �b2 denotes the mean geocentric observation. The unknown orbit is
completely determined by the equation of motion (see the second equation
in (2.10)) and by the initial condition �r(t2)=�r2,�r ′(t2)= �v2, where �r2, �v2 have
been defined in (B.64). Therefore we have proven the following.

PROPOSITION B.1. Let C be a conic section on which a Keplerian motion
t →�r(t) takes place. We assume that d(t2) �=0, where the function t →d(t) is
defined by the first equation in (B.62), with �b(t) given in (B.59). Let t → �a(t)

be a fixed Keplerian motion on some conic section CE and let t2 be the time
corresponding to the mean observation. Then the position and velocity vectors
at time t2 may be expressed as functions of �b2, �b′

2 through (B.64), with ρ2, ρ ′
2

given in (B.61) and (B.62).

In view of the previous result, we are led to the problem of finding an algo-
rithm for the computation of �b′

2, �b′′
2 from �b1, �b2, �b3. Assuming ρ(t) �= 0,

there exist two C∞(U)-functions λ0, β0 :U →T (where T=R/Z is the one-
dimensional torus, and U is a suitable neighborhood of t), such that �b(t)

may be written as �b(t)= (b1(t), b2(t), b3(t)) with

b1(t)= cosλ(t) cosβ(t), b2(t)= sin λ(t) cosβ(t),

b3(t)= sin β(t), (B.65)

where λ=2πλ0, β =πβ0 (λ and β can be interpreted as the geocentric lon-
gitude and latitude of C). Let λ2 ≡λ(t2), β2 ≡β(t2); taking the first and sec-
ond derivatives with respect to time of (B.65), and computing them at t =
t2, one obtains the following expressions for �b′

2 ≡ (b′
2,1, b

′
2,2, b

′
2,3):

b′
2,1 =−λ′

2 sin λ2 cosβ2 −β ′
2 cosλ2 sin β2

b′
2,2 =λ′

2 cosλ2 cosβ2 −β ′
2 sin λ2 sin β2

b′
2,3 =β ′

2 cosβ2,



38 ALESSANDRA CELLETTI AND GABRIELLA PINZARI

while for �b′′
2 ≡ (b′′

2,1, b
′′
2,2, b

′′
2,3) one has:

b′′
2,1 =−λ′′

2 sin λ2 cosβ2 −β ′′
2 cosλ2 sin β2 − (λ′

2)
2 cosλ2 cosβ2

+2λ′
2β

′
2 sin λ2 sin β2 − (β ′

2)
2 cosλ2 cosβ2,

b′′
2,2 =λ′′

2 cosλ2 cosβ2 −β ′′
2 sin λ2 sin β2 − (λ′

2)
2 sin λ2 cosβ2,

−2λ′
2β

′
2 cosλ2 sin β2 − (β ′

2)
2 sin λ2 cosβ2

b′′
2,3 =β ′′

2 cosβ2 − (β ′
2)

2 sin β2.

Next we discuss how to obtain approximate values for λ′
2, λ′′

2, β ′
2, β ′′

2 .
Using Taylor expansion, one can write

λ1 =λ2 −λ′
2 t12 + 1

2
λ′′

2 t2
12 +R1, λ3 =λ2 +λ′

2 t23 + 1
2
λ′′

2 t2
23 +R3,

(B.66)

where we denoted by tpq ≡ tq − tp and where R1, R3 are the remainder func-
tions. Defining ε as in (A.46), the functions R1, R3 are of order ε3. By
(B.66) one easily obtains:

λ′
2 =− t23

t12 t13
(λ1 −R1)− t12 − t23

t12 t23
λ2 + t12

t13 t23
(λ3 −R3),

(B.67)

λ′′
2 = 2

t12 t13
(λ1 −R1)− 2

t12 t23
λ2 + 2

t13 t23
(λ3 −R3).

A similar procedure for the latitude leads to the following expressions

β ′
2 =− t23

t12 t13
(β1 −S1)− t12 − t23

t12 t23
β2 + t12

t13 t23
(β3 −S3),

(B.68)

β ′′
2 = 2

t12 t13
(β1 −S1)− 2

t12 t23
β2 + 2

t13 t23
(β3 −S3),

where S1, S3 are suitable functions of O(ε3). Inserting R1 =R3 =S1 =S3 =0
in (B.67) and (B.68), one obtains the following values for λ′

0, λ′′
0, β ′

0, β ′′
0 :

λ′
0 =− t23

t12 t13
λ1 − t12 − t23

t12 t23
λ2 + t12

t13 t23
λ3,

(B.69)

λ′′
0 = 2

t12 t13
λ1 − 2

t12 t23
λ2 + 2

t13 t23
λ3

and

β ′
0 =− t23

t12 t13
β1 − t12 − t23

t12 t23
β2 + t12

t13 t23
β3,

(B.70)

β ′′
0 = 2

t12 t13
β1 − 2

t12 t23
β2 + 2

t13 t23
β3.
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These quantities represent an approximation of λ′
2, β ′

2, λ′′
2, β ′′

2 , being λ′
2 =

λ′
0 + O(ε2), β ′

2 = β ′
0 + O(ε2), λ′′

2 = λ′′
0 + O(ε), β ′′

2 = β ′′
0 + O(ε), as one easily

finds by (B.67) and (B.68). The formulae (B.69) [(B.70)] are often referred
to as interpolation formulae, since they can be interpreted as the expres-
sions that λ′

2, λ′′
2 [β ′

2, β ′′
2 ] take whenever λ(t) [β(t)] is replaced by the second

order Taylor expansion λ̃(t) [β̃(t)] with λ̃(tk)=λk [β̃(tk)=βk], for k=1,2,3.
We are finally led to the following.

THEOREM B.1 (Laplace Algorithm). Given �a1, �a2, �a3, �b1, �b2, �b3, let C be
a conic section, solution of the problem, such that d(t2) �=0, ρ(tk) �=0 for k =
1,2,3 and ∂

∂ρ
L(d1/d, ρ2) �=1. Let λ′

n, β ′
n, λ′′

n, β ′′
n be as in (2.14) and let �b′

n =
(b′

n,1, b
′
n,2, b

′
n,3) be defined as:

b′
n,1 =−λ′

n sin λ2 cosβ2 −β ′
n cosλ2 sin β2

b′
n,2 =λ′

n cosλ2 cosβ2 −β ′
n sin λ2 sin β2

b′
n,3 =β ′

n cosβ2;

let �b′′
n = (b′′

n,1, b
′′
n,2, b

′′
n,3) be defined as

b′′
n,1 =−λ′′

n sin λ2 cosβ2 −β ′′
n cosλ2 sin β2 − (λ′

n)
2 cosλ2 cosβ2

+2λ′
nβ

′
n sin λ2 sin β2 − (β ′

n)
2 cosλ2 cosβ2

b′′
n,2 =λ′′

n cosλ2 cosβ2 −β ′′
n sin λ2 sin β2 − (λ′

n)
2 sin λ2 cosβ2

−2λ′
nβ

′
n cosλ2 sin β2 − (β ′

n)
2 sin λ2 cosβ2

b′′
n,3 =β ′′

n cosβ2 − (β ′
n)

2 sin β2;

let dn = �b2 ∧ �b′
n · �b′′

n, dn,1 = − �b2 ∧ �b′
n · �a2, dn,2 = −(1/2) �b2 ∧ �a2 · �b′′

n with dn �= 0.
Then, there exists a neighborhood U of x ≡d1/d and a neighborhood V of ρ2

such that, if xn ≡dn,1/dn ∈U , there exists ρn ∈V such that ρ2 =ρn +O(εn+1).
Defining

ρ ′
n = dn,2

dn

(
1

h(ρn)
− 1

a3

)
, �rn = �a2 +ρn

�b2, �vn = �a′
2 +ρ ′

n
�b2 +ρn

�b′
n

(where h is given by (B.63)), the Keplerian solution of the second in (2.10)
with initial data �r(t2)=�rn, �r ′(t2)= �vn defines a conic section Cn such that C =
Cn +O(εn+1).

We omit the details of the proof, which mimick that of Gauss Algorithm.
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B.1. COMPUTATION OF THE ELEMENTS GIVEN THE POSITION AND THE VELOCITY

In this section we discuss how to find the elements associated to the conic
describing a Keplerian orbit with initial position �r0 and velocity �v0. We will
assume that

�m0 ≡ �r0 ∧ �v0 �= �0.

From the central motions’ theory one has that the plane of the orbit is
perpendicular to the angular momentum �m0 (passing through the Sun).
We construct the orbital frame (�n, �n′, �m) as in Appendix A.3, where �m ≡
�m0/| �m0|. Let θ0 be the argument of latitude, defined as the angle between �n
and �r0 in the plane (�n, �n′); therefore θ0 is defined by

cos θ0 = �r0 · �n
|�r0| , sin θ0 = �r0 · �n′

|�r0| .

In order to compute the elements p, e, g, we write the polar equation of
the conic referred to the focus:

r(θ)= p

1+ e cos (θ −g)
. (B.71)

Let t →θ(t) be the evolution describing the Keplerian motion of a point P

on C with constant areal velocity A/2 (A=p1/2 = r2θ̇ ), such that

θ̇ (t)= p1/2

r2(t)
=p−3/2 · [1+ e cos (θ(t)−g)]2. (B.72)

The components along �n and �n′ of the radius vector �r(t) at time t are given
by

�r(t) · �n= r(t) cos θ(t),

�r(t) · �n′ = r(t) sin θ(t),

where r(t) = r(θ(t)). In order to find the components of the velocity �v(t)

along the same directions, we take the derivatives of the previous equations
with respect to time:

�v(t) · �n= ṙ(t) cos θ(t)− r(t) sin θ(t)θ̇ (t),

�v(t) · �n′ = ṙ(t) sin θ(t)+ r(t) cos θ(t)θ̇ (t), (B.73)

moreover, from (B.71) one has

ṙ(t)= p e sin (θ(t)−g)

[1+ e cos (θ(t)−g)]2
θ̇ (t)=p−1/2e sin (θ(t)−g). (B.74)
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Casting together (B.72), (B.73) and (B.74), we obtain (omitting the explicit
dependence on t):

�v · �n=p−1/2e sin (θ −g) cos θ −p−1/2(1+ e cos (θ −g)) sin θ

=−p−1/2(sin θ + e sin g),

�v · �n′ =p−1/2e sin (θ −g) sin θ +p−1/2(1+ e cos (θ −g)) cos θ

=p−1/2(cos θ + e cosg).

From the previous equations, we get

|�v|2 =p−1(1+2e cos (θ −g)+ e2), �r · �v = rp−1/2e sin (θ −g),

e cos (θ −g)= p

r
−1. (B.75)

We easily obtain the expressions of the integrals of motion, namely the
angular momentum and the energy, in terms of the elements e, p:

|�r ∧ �v|=p1/2 =|�r0 ∧ �v0|≡m0,
v2

2
− 1

r
=−1− e2

2p
=v2

0

2
− 1

r0
≡E0;

therefore we get

p =m2
0, e= (1+2E0 m2

0)
1/2.

Let β0 ≡ θ0 − g be the true anomaly associated to �r0; setting �r = �r0, �v = �v0,
from the last two equations in (B.75) we obtain

cosβ0 = p − r0

er0
, sin β0 = �r0 · �v0p

1/2

r0e
.

Appendix C. Mossotti Method

In this appendix we describe the method developed by Mossotti (1942a),
which was inspired by the technique proposed by Gauss. Although Gauss
method starts by Kepler’s equations, the algorithm proposed by Mossotti
relies on writing down the equations of motion for C as in (2.15) with ini-
tial conditions (2.16). By means of the Taylor expansion around t = t2 (i.e.,
the time of mean observation), making use of equations (2.15) and (2.16),
the position vector �r(t) of C at time t can be expressed as:

�r(t)= �r2 + �v2 (t − t2)− 1
2

�r2

r3
2

(t − t2)
2 +· · ·

+ 1
(n+2)!

dn

dtn

(
− �r

r3

)
(t2)(t − t2)

n+2 +· · · (C.76)
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In order to make the terms dn

dtn
(− �r

r3 )(t2) explicit, we use the following rela-
tions:

d
dt

�r(t2)= �v2,
d
dt

�v(t2)=− �r2

r3
2

,
d
dt

r(t2)= s2

r2
, s2 ≡ �r2 · �v2,

d
dt

s(t2)= (v2)
2 − 1

r2
.

Therefore, the right hand side of (C.76) can be written in the form

�r(t)=T �r2 +V �v2, (C.77)

where T and V depend only on r2, v2, s2, t − t2 as in (2.17). Applying (C.77)
to the position vectors �r1, �r3, relative to the first and the third observations,
we obtain (2.18).

Denote by �m the constant vector �r ∧ �v (whose modulus coincides with
the areal velocity

√
p, with p being the parameter of the conic, see (A.33)).

Let T1 = T (r2, v2, s2,−t12), T3 = T (r2, v2, s2, t23), V1 = −V (r2, v2, s2,−t12),
V3 =V (r2, v2, s2, t23), V2 ≡T1V3 +T3V1; making use of (2.18), we find

�r1 ∧ �r2 =V1 �m=V1
√

p �k, �r2 ∧ �r3 =V3 �m=V3
√

p �k
�r1 ∧ �r3 =V2 �m=V2

√
p �k,

where �k is the unit vector orthogonal to the plane of the orbit. It follows
that V1, V2, V3 are related to the areas npq/2 of the triangles spanned by
the vectors �rp, �rq , through the relations

n12 = �r1 ∧ �r2 · �k =V1
√

p, n23 = �r2 ∧ �r3 · �k =V3
√

p,

n13 = �r1 ∧ �r3 · �k =V2
√

p. (C.78)

From (2.18) one also finds

�r1 ∧ �v2 · �k =T1
√

p, �r3 ∧ �v2 · �k =T3
√

p.

From (C.78) it follows that the the ratios ηpq defined in (A.36) are related
to Vi through:

1
η12

= V1

t12
=1− 1

6r3
2

t2
12 +· · · ,

1
η23

= V3

t23
=1− 1

6r3
2

t2
23 +· · · ,

1
η13

= V2

t13
= T1V3 +T3V1

t13
=1− 1

6r3
2

t2
13 +· · ·
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Multiplying the first equation in (2.18) by V3, the second by V1 and tak-
ing their sum, one obtains (2.19), which expresses the fact that the motion
takes place on a plane, as given also by (2.1). Therefore, defining ρk as in
(A.35) and computing the vector product of the first of (2.19) with �c1, �c2,
�c3 (as defined in (2.4)), we obtain the analogous of (2.9), that we rewrite
after some manipulation as (2.20). Moreover, multiplying the first equation
in (2.18) by −T3, the second by T1 and taking their sum, we obtain the
expression for �v2 given in (2.19). Since the motion is completely determined
by �r2 and �v2, we need an approximation for Ti and Vi . Looking at the first
of (2.20), one finds that an approximation ρ0

2 of ρ2, say ρ2 =ρ0
2 +O(ε), can

be calculated as a solution of Equation (2.20), whenever V3/V2, V1/V2 are
replaced by any value different by a factor O(ε2). More generally, using
(2.17) we write Ti , Vi in the form (2.21). Finally, the first equation in (2.20)
is given by

ρ2 =M(x, y, ρ2)≡x + y

h(ρ2)
, (C.79)

where

x = (�a1 − �a2) · �c2
t23k3

t13k2
+ (�a3 − �a2) · �c2

t12k1

t13k2
,

y = �a2 · �c2 t12t23

2
· t12h1k3 + t23h3k1

t13k2

and where the function ρ → h(ρ) is defined as in (A.39), i.e. h(ρ) =
(a2

2 +2�a2 �b2ρ +ρ2)3/2. The above discussion leads to the following

PROPOSITION C.1. Let C be a conic section on which a Keplerian motion
t →�r(t) takes place; let �r(tk)=�rk ≡ �ak +ρk

�bk for some ρk, with k=1,2,3 and
with �b1 ∧ �b2 · �b3 �= 0. Let T1, T3, V1, V2, V3 be defined as in (2.17). Then ρ1,
ρ3 are related to ρ2 via (2.20), the velocity vector �v2 (in t = t2) is related to
�r1, �r3 by means of (2.19), while ρ2 is a solution of (C.79), where k1, k2, k3,
h1, h3 have been defined as in (2.21).

The algorithm introduced by Mossotti can now be stated as follows:

THEOREM C.1 (Mossotti Algorithm). Using the notations of Proposi-
tion C.1, suppose that ∂

∂ρ2
M(x, y, ρ2) �=1 and let ki,n, h1,n, h3,n satisfy

ki =ki,n +O(εn+2) (i =1,2,3),

h1 =h2,n +O(εn+1), h3 =h3,n +O(εn+1).
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Then, there exist a neighborhood U of (x, y) and a neighborhood V of ρ2

such that, defining

xn = (�a1 − �a2) · �c2
t23k3,n

t13k2,n

+ (�a3 − �a2) · �c2
t12k1,n

t13k2,n

yn = �a2 · �c2 t12t23

2
· t12h1,nk3,n + t23h3,nk1,n

t13k2,n

with (xn, yn)∈U , there exists ρ2,n ∈V satisfying ρ2 =ρ2,n +O(εn+1). Denoting
by �r2,n = �a2 +ρ2,n

�b2, �v2,n = (T1,n/V2,n)�r3,n − (T3,n/V2,n)�r1,n with

V1,n = t12k1,n, V3,n = t23k3,n, T1,n =1− t2
12

2h(ρn)
h1,n,

T3,n =1− t2
23

2h(ρn)
h3,n, V2,n =T1,nV3,n +T3,nV1,n = t13k2,n,

�r1,n = �a1 +ρ1,n
�b1, �r3,n = �a3 +ρ3,n

�b3,

ρ1,n =−�c1 · �a1 + V2,n

V3,n

�c1 · �a2 − V1,n

V3,n

�c1 · �a3

ρ3,n =−V3,n

V1,n

�c3 · �a1 + V2,n

V1,n

�c3 · �a2 − �c3 · �a3,

then the Keplerian solution of (2.15) with initial data �r(t2)=�r2,n, �r ′(t2)= �v2,n,
defines a conic section Cn such that C =Cn +O(εn+1).

Appendix D. A Method by Mossotti Based on Four Observations

In this section, we briefly describe a method for the determination of
the orbits, developed by Mossotti during the years 1816–1818. We remark
that, contrary to the previous techniques, the present method needs four
observations. The reason is the following: the geocentric distances of the
observed body are expressed in terms of the angular momentum �m of the
body and that of the Earth �M; being �M computable from ephemerides, it
remains to find the three components of the angular momentum �m. There-
fore we need three equations, which are provided by three observations.
However, to the lowest degree of approximation in the time interval, two
of such equations are equal, yielding an underdetermined system. In order
to solve this problem, one could compute higher orders of approxima-
tion; however, being the calculations too complicated, Mossotti proposes to
use a fourth observation, which provides two more equations. Indeed, we
need just one more equation to form a system of three equations in the
three unknown components of the angular momentum. The details of the
method are the following.
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We denote, as usual, by �rk (k=1, . . . ,4) the heliocentric distances of the
body at time tk and by ρk

�bk the geocentric distances, being �rk = �ak +ρk
�bk.

This method provides some equations for the determination of the (con-
stant) angular momentum �m=�r ∧ �v, which is strictly related to the location
of the orbital plane of the body. Due to the planarity of the motion of C,
the vector �rh ∧ �rk is parallel to �m; therefore we may write

�rh ∧ �rk = θhk �m, (D.80)

where θhk = |�rh ∧ �rk|/| �m| = |�rh ∧ �rk|/p1/2 (as in Gauss method θhk = thk/ηhk,
where ηhk has been defined in Section 2.1 and thk = tk − th). Using the
orthogonality relations of the cross product, we get

�m · �b2 θ12 = �r1 ∧ �r2 · �b2 = (�a1 +ρ1 �b1)∧ (�a2 +ρ2 �b2) · �b2

= �M · �b2T12 −ρ1 �b1 ∧ �b2 · �a2,

�m · �b3 θ13 = �r1 ∧ �r3 · �b3 = (�a1 +ρ1 �b1)∧ (�a3 +ρ3 �b3) · �b3

= �M · �b3T13 −ρ1 �b1 ∧ �b3 · �a3,

where we defined �ah ∧ �ak ≡ Thk
�M, �M being the angular momentum of the

Earth. From the previous equations we may eliminate ρ1 by setting

ρ1 =
�M · �b2 T12 − �m · �b2θ12

�b1 ∧ �b2 · �a2
=

�M · �b3 T13 − �m · �b3 θ13

�b1 ∧ �b3 · �a3
,

one immediately obtains

�b1 ∧ �b3 · �a3 T12

[
( �M − �m) · �b2 +

(
1− θ12

T12

)
�m · �b2

]

= �b1 ∧ �b2 · �a2 T13

[
( �M − �m) · �b3 +

(
1− θ13

T13

)
�m · �b3

]
,

ρ1 = ( �M − �m) · �b2 T12 + �m · �b2(T12 − θ12)

�b1 ∧ �b2 · �a2

= ( �M − �m) · �b3 T13 + �m · �b3 (T13 − θ13)

�b1 ∧ �b3 · �a3
. (D.81)

We now use the orthogonality relations �M · �ak = 0 = �m · �rk = �m · (�ak +ρk
�bk)

to write �m · �bk as �m · �bk = − �m · �ak/ρk = ( �M − �m) · �ak/ρk. Therefore we find
that (D.81) becomes (2.23), (2.24). In order to eliminate from the previous
formulae the dependence on ρ2 and ρ3, we write the planarity condition
involving �r1, �r2, �r3 and �a1, �a2, �a3 as

θ23(�a1 +ρ1 �b1)− θ13(�a2 +ρ2 �b2)+ θ12(�a3 +ρ3 �b3)=�0,

T23�a1 −T13�a2 +T12�a3 =�0.
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We easily find that

θ13ρ2 =−(T12 − θ12) �a3 · �c2 + (T13 − θ13) �a2 · �c2 − (T23 − θ23) �a1 · �c2

θ12ρ3 = (T12 − θ12) �a3 · �c3 − (T13 − θ13) �a2 · �c3 + (T23 − θ23) �a1 · �c3,

where the vectors �c1 and �c3 are defined in (2.4). We next substitute the last
expressions in (2.23) and (2.24), taking, for simplicity, only the first expres-
sion for ρ1; we are finally led to

�A1 = �b1 ∧ �b3 · �a3 T12 �b2 − �b1 ∧ �b2 · �a2 T13 �b3

+
⎛
⎝�b1 ∧ �b3 · �a3 T12 ×

×
θ13

(
1− θ12

T12

)
−(T12 − θ12) �a3 · �c2 + (T13 − θ13) �a2 · �c2 − (T23 − θ23) �a1 · �c2

�a2

⎞
⎠

−
⎛
⎝�b1 ∧ �b2 · �a2 T13×

×
θ12

(
1− θ13

T13

)
(T12 − θ12)�a3 · �c3 − (T13 − θ13) �a2 · �c3 + (T23 − θ23) �a1 · �c3

�a3

⎞
⎠,

ρ1 =
[
( �M − �m) · �b2 T12

+
(

( �M− �m) · �a2 ×

× θ13(T12 − θ12)

−(T12 − θ12) �a3 · �c2 + (T13 − θ13) �a2 · �c2 − (T23 − θ23) �a1 · �c2

)]
×(�b1 ∧ �b2 · �a2)

−1.
(D.82)

With a cyclic permutation of the indexes we find another vector, say �A2, which
belongs to the orthogonal subspace of �M − �m, i.e. ( �M − �m) · �A2 =0; in particular
we recover (2.25). We remark that the vectors �Ak still depend on the unknown
quantities θhk. In order to find an approximation for the �Ak, we write t23 =σ t12,
t13 =σ1t12, with σ1 =1+σ , and we look for �A1

1, �A1
2 such that

�A1 = �A1
1 +O(t2

12),

�A2 = �A1
2 +O(t2

12). (D.83)

Computing the Taylor expansion for �r1 and �r3 at t = t2 and using the equa-
tions of motion (namely, taking the scalar product of (C.76) with �r2 and
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next using the second of (2.17), for t = t1 and t = t3) we get for h<k:

�rh ∧ �rk =
[
thk + t3

hk

6r3
2

+O(t4
hk)

]
�r2 ∧ �v2;

comparing the previous equation to (D.80), one gets

θhk = thk + t3
hk

6r3
2

+O(t4
hk).

A similar argument can be applied to the Earth, so that one obtains

Thk = thk + t3
hk

6a3
2

+O(t4
hk),

if we approximate to the lowest order in (2.24), (2.25) the quantities θhk by
thk and Thk − θhk by [a−3

2 − r−3
2 ]t3

hk/6, we obtain, for example:

�A1
1 = �b1 ∧ �b3 · �a3 T12 �b2 − �b1 ∧ �b2 · �a2 T13 �b3

+�b1 ∧ �b3 · �a3
t13

−�a3 · �c2 +σ 3
1 �a2 · �c2 −σ 3 �a1 · �c2

�a2

−�b1 ∧ �b2 · �a2
t12 σ−3

1

�a3 · �c3 −σ−3
1 �a2 · �c3 +σ−3 �a1 · �c3

�a3.

Performing a similar computation for �A1
2, it is easy to recognize that �A1

2 =
�A1

1 +O(t2
12). In summary, the equations

( �M − �m) · �A1 =0,

( �M − �m) · �A2 =0, (D.84)

( �M − �m) · (�a1 +ρ1 �b1)=ρ1 �M · �b1

provide the three components of the angular momentum �m. However from
(D.83) we find that, up to the lowest approximation, �A1 = �A2, which implies
that two equations in (D.84) are the same and therefore the system is un-
derdetermined. One could solve this problem by computing a higher order
approximation for �A1, �A2 (and consequently ρ1), which would involve an
elaborated dependence on the unknown quantity r2. Mossotti bypasses the
problem by starting the procedure with four observations, rather than three.
In this way, it is possible to choose at least two triples among the four
observations; more precisely, suppose that the first triple of observations
corresponds to times t1, t2, t3, while the second triple refers to times t1, t2,
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t4. Let �A(1,2,3) correspond to the term �A1
1 (defined previously) for the first

triple and let �A(1,2,4) correspond to the term �A1
1 for the second triple; then,

one has

( �M − �m) · �A(1,2,3) =0 (D.85)

( �M − �m) · �A(1,2,4) =0.

In the same spirit, from (D.81) we obtain ρ1 =ρ1
1 +O(t12) with ρ1

1 given in
(2.27). Finally, we make use of the equation

( �M − �m) · (�a1 +ρ1
1
�b1)=ρ1

1
�M · �b1, (D.86)

expressing the orthogonality between �m and �r1 as well as between �M and
�a1. From (D.85) and (D.86) we obtain a linear system defining �M − �m,
which allow to find �m, and therefore a first approximation of the elements
within an error of O(t12).

Appendix E. Singularities of Kepler’s Equation

When the method of Laplace is applied with more than three observations,
one is led to compute Taylor expansions with respect to time (see Remark
2.1) of the form

f (t)=
∑

cn (t − t2)
n,

where t2 represents, for instance, the time of mean observation. The func-
tion f (t) might coincide with the ecliptic longitude λ or with the latitude
β. In such cases we can write the function f (t) in terms of the eccentric
anomaly as

f (t)=F(ξ(t)), (E.87)

where F is analytic everywhere on R, while ξ : R →R denotes the eccentric
anomaly, which is uniquely defined through Kepler’s equation:

ξ − ε sin ξ =M =n(t − t2)+M2, (E.88)

where ε denotes the eccentricity of the orbit (we assume that ε < 1), n is
the mean motion and M2 is the mean anomaly at time t2. In this section,
in view of (E.87) we want to investigate the radius of convergence of the
series which defines through (E.88) the eccentric anomaly in terms of the
mean anomaly and therefore of the time (see also Levi–Civita, 1904). Thus,
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we are led to the problem of finding the radius of convergence, say R(ε),
of the Taylor expansion of ξ in terms of M −M2 =n(t − t2):

ξ =
∞∑

n=0

an(ε) (M −M2)
n

for some real coefficients an(ε). We start by constructing an analytic con-
tinuation w of ξ which verifies the complex Kepler’s equation

w − ε sin w =µ, (E.89)

where µ ∈ C represents the complex mean anomaly and ε ∈ R is the
eccentricity.

We report in Figure 7 the graph of the analiticity domain as given by
the function γ (µx) (µx is the real part of µ), written in the equivalent form

γ (µx)=±
[

log
(

1
ε
+
√

1
ε2 −1

)
− (1 − ε2) cosg(µx)

]
, where g(µx) is the solu-

tion of the equation x − sin x = µx . The graph is displayed in the interval
(−π,π ] for ε =0.1 and repeats itself by periodicity; notice the existence of
cusps correponding to the point µx =0.

In the following, for θ �1, we will denote by cosh−1
(θ) the positive solu-

tion of cosh η= θ .

PROPOSITION E.1. Let Dk be the set of w=x + iy ∈C such that x ∈ (−π +
2kπ,π + 2kπ ], |y|� cosh−1

(ε−1); let Sk be the set of µ=µx + iµy ∈ C such
that µx ∈ (−π + 2kπ,π + 2kπ ], |µy | � γ (µx), where γ (µx) is the periodic
continuation of the function, defined in (−π,π ], γ (µx)≡ cosh−1

(ε−1)− (1 −
ε2) cos g(µx), with g(µx) being the unique solution of x ′ − sin x ′ = µx . Let
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Figure 7. Graph of the analiticity domain γ (µx)=±
[

log
(

1
ε
+
√

1
ε2 −1

)
− (1− ε2) cosg(µx)

]
,

where g(µx) is the solution of the equation x − sin x =µx in the interval (−π,π ] for ε =
0.1. The abscissa denotes µx and the ordinate corresponds to γ (µx).
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D =∪kDk, S =∪kSk. Then f (w)=w − ε sin w maps bijectively D to S, with
f (Dk)=Sk.

Proof. Making use of the relation

sin w = sin (x + iy)= sin x cos iy+cos x sin iy

= sin x cosh y + i cos x sinh y,

we obtain that the equation (E.89) may be written as

u(x, y)≡x − ε cosh y sin x =µx

v(x, y)≡y − ε cos x sinh y =µy.

We observe that the transformations (x, y,µx,µy) → (x + 2kπ, y,µx +
2kπ,µy), (x, y,µx,µy) → (−x, y,−µx,µy) and (x, y,µx,µy) →
(x,−y,µx,−µy) leave equation (E.90) invariant. Therefore it is sufficient to
prove that f maps bijectively D+

0 ≡D0 ∩ C+ to S+
0 ≡ S0 ∩ C+, where C+ is

the subset of complex numbers with nonnegative real and imaginary parts.
The function u(·, y) verifies u(0, y) = 0, u(π, y) = π , and it is increasing
for x ∈ [0, π ], being ∂xu(x, y)= 1 − ε cosh y cosx � 0 for 0 � y � cosh−1

(ε−1)

(notice that ∂xu(x, y) could vanish on D+
0 only if (x, y)= (0, cosh−1

(ε−1)).
Therefore, for each µx ∈ [0, π ] there exists a unique g̃(µx, y) such that
u(x, y) = µx for x = g̃(µx, y). Moreover, g̃(0, y) = 0, so that the function
g̃(µx, ·) is differentiable with respect to y for (µx, y) �= (0, cosh−1

(ε−1)), and
∂yg̃ = ε sinh y sin g̃(µx, y)/[1 − ε cosh y cos g̃(µx, y)]. The function h(µx, ·) ≡
v(g̃(µx, ·), ·) verifies h(µx,0) = 0, h(µx, cosh−1

(ε−1)) = cosh−1
(ε−1) − (1 −

ε2)1/2 cosg(µx), where g(µx) = g̃(µx, cosh−1
(ε−1)), i.e. g(µx) is the unique

solution of x ′ − sin x ′ = µx (we have used sinh y = (cosh2
y − 1)1/2 = (ε−2 −

1)1/2 for y = cosh−1
(ε−1)); therefore h(µx, cosh−1

(ε−1) = γ (µx). Moreover,
h(µx, ·) is continuous for y ∈ [0, cosh−1

(ε−1)] for each µx ∈ [0, π ] and it is
increasing in y, being

∂yh(µx, y)=1− ε cos g̃(µx, y) cosh y + ε sin g̃(µx, y) sinh y ∂yg̃(µx, y)

= (1− ε cos g̃(µx, y) cosh y)2 + ε2 sin2
g̃(µx, y) sinh2

y

1− ε cos g̃(µx, y) cosh y
>0

for (µx, y) �= (0, cosh−1
(ε−1)). Therefore, for each µy ∈ [0, γ (µx)] there

exists a unique �(µx,µy)∈ [0, cosh−1
(ε−1)], such that h(µx, y)=µy for y =

�(µx, y). The theorem is proved by the explicit construction of the inverse
function f −1, defined as f −1 = h(µx, �(µx,µy)) + i�(µx,µy) if µ = µx +
iµy ∈S.

The domain S of f −1 has a contour defined by the functions µx →
±γ (µx). A straightforward computation shows that γ (µx) is continuous
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for µx = (2k + 1)π , where it takes local maxima, while local minima are
attained at µx =2kπ . The function γ is differentiable at the maxima, while
at the points of minimum γ takes the value γ (2kπ) = cosh−1

(ε−1) − (1 −
ε2)1/2 ≡ µ̄y =| ln [ε e(1−ε2)1/2

/(1+ (1− ε2)1/2)]|, being g(2kπ)=2kπ . These are
singular points of the first derivative of γ , which tends to ±∞ according to
µx approaching 2kπ from the right or from the left. Moreover, the second
derivative of γ is negative in every interval (−π +2kπ,π +2kπ); therefore
S ∩ (−π + 2kπ,π + 2kπ) is a convex set. The points (2kπ ± iµ̄y) are also
singular points for the derivative of f −1. Indeed, the singularities of the
function f −1 must be found among the values µ∈S, such that w=f −1(µ)

is a solution of

f ′(w)=1− ε cos w =0.

Equating to zero the real and the imaginary parts, we obtain

1− ε cosh y cos x =0

ε sinh y sin x =0.

The previous equations admit solutions in D, given by x = x̄k = 2kπ , y =
ȳ± = ± cosh−1

(ε−1) = ± ln [1/ε + (1/ε2 −1)1/2]. The singular points of the
derivative of f −1 on S are then found by computing f (x̄k + iȳ±), which
correspond to µ=2kπ ± iµ̄y . We have thus proved the following

PROPOSITION E.2. The complex function f −1 : S → D, defined as the
inverse of the function f : D → S given by Proposition (E.1), is defined in a
domain S such that S ∩ (−π + 2kπ,π + 2kπ) is convex, and it is analytic
in S − {2kπ ± iµ̄y}, where µ̄y = | ln [ε e(1−ε2)1/2

/(1+ (1− ε2)1/2)]|. The points
2kπ ± iµ̄y are minima of the function γ .

As a consequence, the distance of any initial point (see (E.88)) µ = M2 ∈
R lying in the interval [−π + 2kπ,π + 2kπ) from the nearest singularities
µ± ≡ 2kπ ± iµ̄y(ε) is equal to R(ε)= [(M2 − 2kπ)2 + µ̄y(ε)

2]1/2; henceforth,
the real eccentric anomaly ξ(t), obtained through the analytic function
f −1(µ) for µ = M2 + n(t − t2), can be expanded in a convergent Taylor
series of powers of t − t2 with center at t2, only if n|t − t2|=|M −M2|<R(ε),
where n = a−3/2 is the mean motion of the orbit. Finally we obtain that
|t − t2|<R(ε)a3/2.

Notice that µ̄y(ε) � R(ε) � (π2 + µ̄y(ε)
2)1/2, and that R(ε) reaches its

minimum (maximum) value µ̄y(ε) ([π2 + µ̄y(ε)
2]1/2), when t2 corresponds to

a time of perihelion (aphelion) crossing, so that M2 =2kπ (M2 =±π +2kπ ).
Moreover, µ̄y(ε) tends to zero as ε tends to 1 (almost parabolic orbit),
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while µ̄y(ε) goes to infinity whenever the eccentricity tends to zero (circu-
lar orbit). As an example, we mention that in the case of the orbit of Juno,
where ε =0.245049 and a =2.644619 (see Table II), one obtains 0.763 years
as a lower bound and 2.282 years as an upper bound for R(ε)a3/2 (recall
that one year corresponds to 2π in our units of measure).
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