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We study the collective modes of a binary Bose mixture across the soliton to droplet crossover in a quasi-
one-dimensional waveguide with a beyond-mean-field equation of state and a variational Gaussian ansatz for
the scalar bosonic field of the corresponding effective action. We observe a sharp difference in the collective
modes in the two regimes. Within the soliton regime, modes vary smoothly upon the variation of particle number
or interaction strength. On the droplet side, collective modes are inhibited by the emission of particles. This
mechanism turns out to be dominant for a wide range of particle numbers and interactions. In a small window of
particle number range and for intermediate interactions, we find that monopole frequency is likely to be observed.
We focus on the spin-dipole modes for the case of equal intraspecies interactions and equal equilibrium particle
numbers in the presence of a weak longitudinal confinement. We find that such modes might be unobservable in
the real-time dynamics close to the equilibrium as their frequency is higher than the particle emission spectrum by
at least one order of magnitude in the droplet phase. Our results are relevant for experiments with two-component
Bose-Einstein condensates for which we provide realistic parameters.
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I. INTRODUCTION

The exquisite control of parameters in ultracold quantum
gases, culminating with the achievement of Bose-Einstein
condensation in alkali-metal vapors, boosted a great exper-
imental effort to engineer multicomponent systems [1–3].
From the theoretical standpoint, the spinorial nature of the
order parameter and its complex dynamics, as in 3He-4He
mixtures and three-fluid models [4–6], enable an ample variety
of interesting physical effects. They span from persistent
supercurrent and internal Josephson effect [7–9] and itinerant
ferromagnetism in fermionic mixtures [10,11] to more exotic
topics such as the research for analogs of Hawking radiation
in bosonic mixtures [12–14] and spin-orbit physics [15–18].

More recently, the theoretical proposal of the existence
of self-bound quantum droplets in binary bosonic mixtures
by Petrov and Astrakharchik [19,20] offered the opportunity
for the investigation of nontrivial quantum phases in Bose-
Einstein condensates (BECs). Dilute quantum droplets were
first observed in a single-component dipolar condensate of dys-
prosium [21–23] even in the absence of external confinement
[24], confirming droplet self-stability. Experiments with binary
mixtures were recently performed using two internal states of
39K by Cabrera and co-workers [25,26] and Semeghini et al.
[27] both in three dimensions and in quasi-one-dimensional
setups. Theoretical work on both dipolar [28–32] and binary
BECs [33–35] describes well such experiments in a variety of
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regimes by the inclusion of leading Gaussian corrections to the
mean-field equation of state.

In a recent experiment [26], the formation of dilute self-
bound states in a two-component BEC was studied in a tight
optical waveguide. Interestingly, above a critical value of
the magnetic field a smooth crossover interpolating between
droplets and bright soliton states was observed. Below such
a critical magnetic field and for small particle numbers a
bistable region is detected, corresponding to different min-
ima of the energy functional. Importantly, droplets appear
naturally as a competition between mean-field and quantum
fluctuation energies with opposite sign. Solitons, on the other
hand, are excitations appearing genuinely in low-dimensional
systems. If the one-dimensional (1D) interaction strength is
repulsive (self-defocusing nonlinearity) one recovers localized
dark solitons, while for attractive condensates (self-focusing
nonlinearity) one finds bright solitons. Both dark and bright
solitons have been observed experimentally with atomic BECs
[36].

In this work we study the collective modes of a two-
component Bose gas in an optical waveguide along the
crossover from solitons to droplets. Collective modes are an
essential tool in identifying and characterizing the behavior
of a quantum system both at zero and at finite temperature.
For a single-component BEC with contact interactions in a
confining potential they have been studied thoroughly both
theoretically and experimentally [37]. In the presence of
nonlocal interactions, such as soft-core [38–41] or dipolar
potentials [42,43], or internal coupling in multicomponent
systems [33,34], collective modes turn out to be crucial in
detecting quantum phase transitions from the uniform state
to a structured ground-state configuration. Binary systems
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naturally support modes where the two components move in
phase, such as monopole and quadrupole oscillations, which
are expected to be the lowest-energy excitations. In these
simple cases the two components share the same spatial
wave function over the oscillation period. More interestingly,
there exist cases in which the spinorial nature of the order
parameter allows nontrivial collective modes where the in-
ternal components move out of phase around the equilibrium
configuration. The simplest case is represented by the so-called
spin-dipole excitation. For a repulsive two-component Bose
gas the spin-dipole oscillation frequency depends crucially on
the presence of an external confining potential as well as on the
reciprocal interaction strength and was recently characterized
in an experiment of Bienaimé et al. [44]. Remarkably, for
attractive binary mixtures, spin-dipole oscillations may take
place even in the absence of an external potential, the restoring
force being proportional to the interspecies interaction. In this
paper we characterize such modes, highlighting the combined
effect of the standard mean-field attraction and the beyond-
mean-field corrections to the oscillation frequency. We employ
a variational approach based on a Gaussian ansatz for the
space modes of the two components, which has been proven to
perform well close to the equilibrium configuration. We find
striking differences in the collective modes between droplets
and solitons. Namely, in the soliton phase we are able to
generalize well-known results of quasi-1D BECs. In the droplet
regime we find that collective modes are generically inhibited
as they have energies higher than the particle emission spec-
trum for a wide range of available experimental parameters.

In Sec. II we summarize the formalism and the variational
results of the ground state of the two-component mixtures
with equal masses. In Sec. III we derive the collective modes
in the crossover from soliton to droplet for a wide range of
particle numbers and interaction strengths for the experimen-
tally relevant case of 39K within the variational approach. In
Sec. IV we focus on the spin-dipole oscillation mode, which
is characteristic of a two-component mixture. We specialize to
the case of equal intraspecies interaction strength for different
particle numbers and compare it with the particle emission
spectrum. In Sec. V we highlight the connection of the present
study with current experiments on mixtures and give some
perspectives for future work.

II. SOLITON-TO-DROPLET CROSSOVER

We begin by considering a Bose gas made of atoms in two
different hyperfine states in a volume L3. Each component can
be described by a complex field ψi (i = 1,2), whose dynamics
results from the real-time low-energy effective action

S =
∫

dt d3r

⎡
⎣ ∑

j=1,2

ih̄

2
(ψ∗

j ∂tψj − ψj∂tψ
∗
j )−Etot(ψ1,ψ2)

⎤
⎦.

(1)

The total energy density Etot reads

Etot =
∑
j=1,2

[
h̄2

2m
|∇ψj |2 + Vext(r)|ψj |2 + 1

2
gjj |ψj |4

]

+ g12|ψ1|2|ψ2|2 + EBMF(ψ1,ψ2), (2)

where Vext(r) is an external confining potential and gjk =
4πh̄2ajk/m, with ajk the intra- (with ajk ∝ δj,k) and in-
terspecies (j �= k) scattering lengths, respectively, and nj =
|ψj |2 is the density of the species j . The beyond-mean-field
term EBMF arises from the zero-point energy of Bogoliubov
collective excitations [19,45], namely,

EBMF = 8

15π2

(
m

h̄2

)3/2

(g11n1)5/2f

(
g2

12

g11g22
,
g22n2

g11n1

)
, (3)

with f (x,y) = ∑
±[1 + y ±

√
(1 − y)2 + 4xy]5/2/4

√
2. In

this section the calculation leading to the ground-state proper-
ties can be simplified by assuming the two components occupy-
ing the same spatial mode [19,20]. The bosonic fields can then
be redefined as ψj = √

njφ(r,t). This assumption neglects
the intercomponent dynamics and thus is inadequate to probe,
for example, spin-dipole oscillations. In Sec. IV, within the
variational framework, we present a modified Gaussian ansatz
to include this feature in our study. The minimum of the mean-
field energy density (3) fixes the ratio between the components
of the population at which the spatial overlap is maximized,
i.e., N1/N2 = √

a22/a11 [19,25], which we assume throughout
this section. By defining �a = a12 + √

a11a22, Eq. (2) can then
be expressed as

Etot = h̄2ntot

2m
|∇φ|2 + ntotVext(r)|φ|2

+ 4πh̄2

m

�a
√

a22/a11(
1 + √

a22/a11
)2 ntot|φ|4 + 256

√
πh̄2

15m

×
(

ntot
√

a11a22

1 + √
a22/a11

)5/2

f

(
a2

12

a11a22
,

√
a22

a11

)
|φ|5, (4)

where ntot = n1 + n2. Inspired by the experiment described
in [26], from now on we consider a quasi-one-dimensional
optical waveguide. Then we take a harmonic confinement on
a transverse plane, so Vext = 1

2mω2
⊥(x2 + y2). The presence

of a harmonic potential defines a characteristic length scale,
namely, a⊥ = √

h̄/mω⊥. In the following, all lengths are in
units of a⊥ and energies in units of h̄ω⊥. Scattering length
will be rescaled in units of the Bohr radius a0 for convenience.
The beyond-mean-field diagram and the static properties of the
ground-state configurations have been studied in [26].

The properties of the system can be analytically explored
by taking a Gaussian ansatz

φ(r) =
√

L3

π3/2σ 2
r σz

exp

(
−

∑
ri=x,y,z

r2
i

2σ 2
ri

)
(5)

whose variational parameters are σr and σz. The choice of nor-
malization factor ensures that the original condition ‖ψ‖2 = N

is preserved. By replacing Eq. (5) in Eq. (4) and taking the
infinite-volume limit, the variational energy per particle is
given by [26]

E

Nh̄ω⊥
= 1

4

(
1

σ̃ 2
x

+ 1

σ̃ 2
y

+ 1

σ̃ 2
z

)
+ σ̃ 2

x + σ̃ 2
y

4

+ 2N�ã√
2πσ̃xσ̃y σ̃z

√
ã22/ã11(

1 + √
ã22/ã11

)2
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+ 512
√

2

75
√

5π7/4

N3/2

(σ̃x σ̃x σ̃z)3/2

( √
ã11ã22

1 + √
ã22/ã11

)5/2

× f

(
ã2

12

ã11ã22
,

√
ã22

ã11

)
. (6)

The tilde signals that we are expressing a length in units of a⊥.
By means of Feshbach resonance [46], below a critical value
of the magnetic field, the condition �a < 0 is achieved. Here,
due to the simultaneous presence of quantum fluctuations and
external confinement, two different self-bound states can be
observed. First, for low particles number or, equivalently, small
values of |�a|, the ground state of the system corresponds to
the so-called solitonic state, whose shape basically depends
on the external trapping. Indeed, σx = σy ∼ a⊥, while the
longitudinal one σz is much greater. It is important to note the
fact that beyond-mean-field corrections are not necessary for
the stability of this state. Indeed, quantities such as the energy
and density profile are in good agreement with the mean-field
solutions for bright solitons in BECs [47].

The situation changes by increasing the particle number
or lowering �a. Here the system moves to an isotropic
ground state (σx = σy = σz < a⊥), effectively independent of
the confinement aspect ratios. The existence of this self-bound
state is enabled by taking into account the contribution of
Gaussian quantum fluctuations in the variational energy of
Eq. (3). These results are summarized in Fig. 1, where we
plot the width as a function of N at fixed values of �a

[Figs. 1(a)–1(c)] and in turn as a function of �a for chosen
values of N [Figs. 1(d)–1(f)] computed via the Gaussian
ansatz (5).

At fixed �a, the system approaches the droplet state by
increasing the particle number. In order to reach a pure isotropic
state, the effective mean-field attraction, i.e., �a, has to be
strong enough. For example, at �a = −5.1a0, σz remains
two times larger than the radial width even at N = 10 000,

while for �a = −10.6a0 the system approaches a spherical
configuration already at approximately 5000 particles. For
weak attractive interactions (small negative �a) the shift from
one bound state to the other occurs via a smooth crossover
(see, e.g., Fig. 1 for �a = −8.7a0). At stronger interactions
(large negative �a) the system undergoes a bistability where
competing minima are present in the energy functional and lead
to a sharp structural change of the condensate as in Fig. 1 at
�a = −10.6a0 [26]. A similar picture emerges by considering
a fixed particle number and tuning the effective mean-field
attraction as in Figs. 1(d)–1(f).

III. COLLECTIVE MODES IN THE VARIATIONAL
APPROACH

A deeper insight into the differences between solitonic
and droplet states can be reached by examining collective
excitations frequencies around the minimum of the variational
energy of Eq. (6), given the Gaussian ansatz (5). The variational
Gaussian approach ends up being particularly reliable in
predicting collective excitations frequencies for a wide range of
superfluid systems. As an example, in [34] a detailed analysis
has been carried out by comparing the variational approach
with numerical solutions of the Gross-Pitaevskii equation in
purely 1D binary Bose mixtures. Concerning excitation fre-
quencies, numerical and analytical predictions are shown to be
in excellent agreement. Moreover, our theoretical framework
was also applied to study droplet configurations and surface
effects in confined fermionic superfluids as in [48], where
variational results are well reproduced by density-functional-
theory simulations. By solving the eigenvalue problem of
the Hessian matrix H(E) = ∂2E

∂σi∂σj
computed in the solitonic

(or droplet) minimum, three different oscillation modes are
allowed. In Fig. 2 we represent the three oscillation frequencies
(ωI , ωII , and ωIII ) as predicted by the Gaussian ansatz.
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FIG. 1. Widths of the ground-state energy predicted by the variational Gaussian energy in Eq. (6). Widths σi with i = x,y,z are expressed
in units of the oscillator length a⊥ = √

h̄/mω⊥ for several values of �a(a0) (units of Bohr’s radius). Plotted are σz (solid black line), the
Gaussian width along the longitudinal direction, and σρ (red dashed line) along the transverse plane. Due to cylindrical symmetry of the
confinement, σx = σy . The variational widths are plotted as a function of the particle number N for (a) �a = −10.6a0, (b) �a = −8.7a0, and
(c) �a = −5.1a0. In (a) a sharp change of σr and σz is observed for N ≈ 4200, signaling a bistability. Also shown are the variational widths
as a function of �a for (d) N = 2000, (e) N = 6000, and (f) N = 10 000.
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FIG. 2. Excitation frequencies ωI , ωII , and ωIII and the particle-emission threshold −μ, in units of h̄ω⊥ as functions of �a in units
of Bohr’s radius a0. The emission threshold (blue triangles) is shown only on the droplet side of the crossover. The excitation frequencies
correspond to the eigenvalues of the Hessian matrix of Eq. (6). Frequencies are shown as a function of the particle number N for the parameter
(a) �a = −10.6a0, (b) �a = −8.7a0, and (c) �a = −5.1a0. In (b) the gray region denotes the interval of particle numbers where the monopole
mode is lower than the particle emission spectrum in the droplet phase. See Fig. 3 for a magnification of this area. Also shown are the frequencies
as a function of �a for (d) N = 2000, (e) N = 6000, and (f) N = 10 000.

In the solitonic state one frequency, labeled ωI , can be
easily excited, reflecting the absence of confinement along a
direction. The other two modes are degenerate and converge
to 2 (in units of h̄ω⊥) as in a weakly interacting BEC [47].
The degeneracy of ωII and ωIII is an obvious consequence
of the cylindrical symmetry of the radial confinement. This
structure is clear in Fig. 2(d), where mode frequencies are
depicted for the N = 2000 case: ωII = ωIII 
 2, two order
of magnitude higher than ωI . The same feature survives by
increasing the particles number [Figs. 2(b), 2(c), 2(e), and 2(f)]
on the solitonic side of the crossover for low values of �a.

On the droplet side of the crossover, Fig. 2 also shows the
particle emission threshold −μ. The chemical potential μ is
obtained by differentiating the total energy (4) with respect to
N within the Gaussian ansatz (5). In the solitonic state, μ > 0
for every value of �a and lies above ωI and consequently
this frequency can be excited and experimentally revealed.
The eigenvector corresponding to ωI displays the monopole
character of this excitation, since vI = ±α(1,1,1)T . Moving
to the droplet side of the crossover, frequencies lie above
the emission threshold, in agreement with the prediction of
[19,27]. This implies that excitations of the system are damped
by expelling particles from the droplet in a peculiar self-
evaporation process. We also verified that, for �a = −5.1a0,
as in Fig. 2(c), upon increasing the particle number to larger
values one enters the self-evaporation regime (5.2 × 104 <

N < 1.4 × 105). Increasing even more the system size, self-
evaporation ceases and the excitations are, at least in principle,
observable. It is also interesting to observe that droplet length
increases almost linearly with the particle number already for
N � 4 × 104.

IV. SPIN-DIPOLE OSCILLATIONS

In this section we consider the relative dynamics between
the two components of the mixture. We describe the oscillatory

motion occurring when the two components are displaced from
the center of the harmonic trap. To model their collective
dynamics, we go beyond the assumption where the two
components occupy the same spatial mode. We may introduce a
weak confinement also along the z axis with the corresponding
aspect ratio λz = ωz/ω⊥.

Then we define a center-of-mass coordinate of each of the
two components. The resulting Gaussian variational ansatz
now reads

ψj =
√

Nj

π3/2σ 2
r σz

e−(x2+y2)/2σ 2
r exp

[
− (z − zj )2

2σ 2
z

+ iαj z

]
,

(7)

where the fields ψ1 and ψ2 obey the normalization condition∫
d3r|ψj |2 = Nj . In Eq. (7) we assumed cylindrical symme-

try σx = σy = σr . Here {αi}i=1,2 describe the corresponding
slopes of {zi}i=1,2. The set of variational parameters is then
given by {z1,z2,α1,α2}.

Substituting (7) for the Euclidean action in Eq. (1), we
derive the Lagrangian

L =
∑

j

{
−h̄Njzj α̇j − h̄2Nj

2m
α2

j − h̄2Nj

2m

(
1

σ 2
r

+ 1

2σ 2
z

)

− Nj

4
mω2

0

(
2σ 2

r + λ2
zσ

2
z + 2λ2

zz
2
j

) − 1

2

gjjN
2
j

2
√

2π3/2σ 2
r σz

}

−
g12N1N2 exp

[− (zj −zk )2

2σ 2
z

]
2
√

2π3/2σ 2
r σz

+ EBMF, (8)

where the quantum fluctuations contribution in Eq. (3) is
simplified by assuming g2

12 = g11g22, meaning that we are
dealing with the system close to the mean-field instability
threshold [49]. The beyond-mean-field term in the action then
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reads

EBMF =
(

m

h̄2

)3/2 ∫
d3r(g11|ψ1|2 + g22|ψ2|2)5/2. (9)

In addition, to keep the calculation as analytical as possible,
we consider a symmetric mixture, by taking g11 = g22 with the
corresponding equilibrium numbers N1 = N2. Given the vec-
tor of variational parameters q, the Euler-Lagrange equations
are computed from Eq. (8) via d

dt
∂L
∂q̇i

− ∂L
∂qi

= 0. Accordingly,
the equation for the slope αi = mżi/h̄ is elementary, so its
dynamics is completely determined by that of zi . A closed
system of (linearized) differential equation can thus be derived
straightforwardly

z̈1 + ω2
0λ

2
zz1 =

√
2

π

(
a12h̄

2N1

m2σ 2
r σ 3

z

)
(z1 − z2)

− 1024

25π1/4

(
a

5/2
11 h̄2N

3/2
1

m2σ 3
r σ

7/2
z

)
(z1 − z2)(z1 � z2).

(10)

The equation for z2 has the same structure except for a global
sign on the right-hand side of (10). The sum of these two
equations leads to the equation for the longitudinal motion
of the center of mass oscillating with the trap frequency ω0λz

(Kohn’s theorem).
Concerning the relative coordinate z̃ = z1 − z2, we get

¨̃z + ω2
relz̃ = 0. (11)

By rescaling the length in units of a⊥ and the energies in units
of h̄ω⊥, the frequency ωrel of the spin-dipole oscillations reads
(in units of ω−1

⊥ )

ω2
rel

ω2
⊥

= λ2
z −

√
8

π

N1(a12/a⊥)

σ 2
r σ 3

z

+ 2048

25π1/4

(a11/a⊥)5/2N
3/2
1

σ 2
r σ

7/2
z

, (12)

which, in absence of longitudinal confinement (i.e., λz =
0), is always a positive defined quantity when the effective
mean-field interaction is attractive (�a � 0). The results of
the numerical analysis of the spin-dipole frequencies are
summarized in Fig. 4 for a wide range of interactions and
different particle numbers. We observe that only in the soliton
regime do spin oscillations become observable (N = 1000). In
the droplet phase self-evaporation is the dominant mechanism.

Concerning Eq. (12), we highlight the different sources
of the two terms contributing to spin-dipole oscillations. The
first one represents the mean-field attraction between the two
components and thus depends only on a12. Since we are
considering the mutual dynamics between the components, it is
reasonable that purely intracomponent terms do not contribute
to ωrel. One has to consider however that Gaussian fluctuations
are encoded in Eq. (9) in such a way that it is not possible to
split it into two terms, each one referring to one component.

Equation (12) provides another peculiar feature of self-
bound states in binary Bose mixtures: The occurrence of
spin-dipole oscillations is not inhibited by turning off the longi-
tudinal confinement, i.e., λz = 0. Indeed, the interplay between

N
6400 6500 6600 6700 6800 6900 7000 7100 720010-2

10-1

1

10

Δ a = −8.7 a0

ω
/
ω
⊥

FIG. 3. Excitation spectrum at the crossover soliton droplet at
�a = −8.7aho, shown as a magnification of the gray region of
Fig. 2(b) with N = 6400–7200. In the range 6780 � N � 6950
monopole oscillations (black line with dots) are higher than the
particle emission spectrum (dashed blue line with triangles).

the mean-field intercomponent attraction and the repulsion
arising from quantum fluctuations establishes a restoring force.
Then, differently from the mean-field scenario depicted in [44],
the presence of a longitudinal confinement is not essential for
spin-dipole oscillations to take place due to the attractive nature
of the mean-field interaction between the two species.

V. EXPERIMENTAL NUMBERS

Experiments on self-bound states of binary Bose mixtures
have been performed by considering a mixture of 39K atoms
in two different internal states |1〉 = |F = 1,mF = −1〉 and
|2〉 = |F = 1,mF = 0〉. By tuning an external magnetic field,
Feshbach resonances provide the possibility of exploring a
wide range of intra- and interparticle scattering lengths. More
precisely [46], by tuning the magnetic field between B =
54 and 57.5 G, where a11 = 33.5a0 and a12 = −53.6a0, the
variation of a22 provides a whole range of values for �a from
−15a0 to 10a0. Collective oscillations in binary mixtures can
be probed in an experimental setup similar to the one developed
in [26]. The existence of the soliton-droplet crossover can
be revealed by engineering a cigar-shaped mixture and then
removing the trapping along the z axis and observing that the
system still has a well-defined longitudinal length.

Our analytical results are compatible with the occurrence of
self-evaporation for a large interval of experimental parame-
ters. Only in a small window in the parameters space do we have
that where monopole or quadrupole collective oscillations can
in principle be observed as highlighted in Fig. 3. Moreover,
we developed our analysis in a zero-temperature framework,
leaving unanswered the question about what happens for small
but finite temperatures.

In order to test our analytical results concerning the spin-
dipole oscillations in Eq. (12) and Fig. 3, we require a tighter
range of experimental values. In particular, as in [33], we
consider the symmetric mean-field ground state given by the
condition a11 
 a22 
 33.5a0 at B = 54.5 G, where a12 =
−54a0. Reference [44] reported the experimental protocol
to probe spin-dipole oscillations after a careful tuning of
intra- and intercomponent scattering lengths. Indeed, each
components in an overlapping initial state can be displaced
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FIG. 4. Spin-dipole oscillations frequencies: spin-dipole oscilla-
tions frequency (red circles) and single-particle emission threshold
−μ (blue triangles) for N = 1000,4000,10 000 particles. For N =
1000 the chemical potential is positive in the range shown in the figure
(soliton regime). In all cases the spin-dipole frequency is higher than
−μ by more than one order of magnitude. The plots shown are done
with equal intraspecies interaction g11 = g22.

by applying a magnetic-field gradient δB along the longi-
tudinal axis, generated by two coils in an anti-Helmholtz
configuration. Also, as stated in the preceding section, a
longitudinal trapping is not mandatory to experimentally probe
spin-dipole oscillations because of the peculiar structure of the
Gaussian fluctuation contribution to the energy density and
the attractive mean-field interaction. We emphasize that from
an experimental perspective our study may provide insight
into the observation of spin-dipole oscillations of solitons in
a parameter regime which is complementary to that of [44].
Finally, we mention that the effect of three-body losses could
be included in a full description of the excitation dynamics.
This can done with the inclusion of the term −ih̄ L3

2 |ψ |4 on

the right-hand side of the Gross-Pitaevskii equation [50]. A
dedicated study is left for future work.

VI. CONCLUSION

In this work we analyzed the behavior of collective modes of
two-component BECs with attractive interparticle interactions
along the crossover from soliton to self-bound droplets in
a quasi-one-dimensional waveguide. We observed a sharp
difference in the collective modes in the two regimes. In the
soliton regime modes vary smoothly upon the variation of
particle number or interaction strength. On the droplet side
collective modes are inhibited by the emission of particles.
This mechanism turns out to be dominant for a wide range
of particle numbers and interactions. In a small window of
particle number range and for intermediate interactions we find
that a monopole frequency is likely to be observed. We have
studied the spin-dipole modes for the case of equal intraspecies
interactions and equal equilibrium particle numbers in the
presence of a weak longitudinal confinement. We have found
that such modes might again be unobservable as their frequency
is higher than the particle emission spectrum by at least one
order of magnitude in the droplet phase. In conclusion, we have
found that collective modes provide a complementary way to
characterize two-component BECs in an optical waveguide.
Moreover, they provide a strong signature to distinguish
between solitonlike configurations and self-bound droplets.
We expect that our work, inspired by experiments by Cabrera
and co-workers, may provide a useful indication for further
experiments with multicomponent BECs.
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