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Asymmetric many-body loss in a bosonic double well
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A Bose gas in a double well is investigated in the presence of single-particle, two-body, and three-body
asymmetric loss. The loss induces an interesting decay behavior of the total population as well as a possibility
to control the dynamics of the system. In the noninteracting limit with asymmetric single-body dissipation, the
dynamics of the populations can be obtained analytically. The general many-body problem requires, however, an
adequate approximation. We use a mean-field approximation and the Bogoliubov back reaction beyond mean-field
truncation, which we extend up to three-body loss. Both methods are compared with exact many-body Monte
Carlo simulations.
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I. INTRODUCTION

Open many-body quantum systems offer a huge playground
of emergent phenomena. Of particular interest is a situation in
which the time scales of various processes are matched such as
to arrive at “resonant” dynamics of the system. A nice example
is the famous phenomenon of stochastic resonance [1,2], which
can be exported also onto the quantum level; see, e.g., [2,3].
Interestingly, local loss can also enhance the global coherence
properties of a many-body quantum system; see, e.g., [3–8].

In order to keep the discussion on a simple level, we address
here mostly the problem of a quantum mechanical double
well filled with interacting bosons. This system is well studied
experimentally with Bose-Einstein condensates (BEC). In such
experiments, typically a BEC of rubidium 87 atoms is loaded
into a double-well structure formed by the superposition of
a harmonic trap and a periodic light potential. The potential
and the number of atoms are well controlled, the latter almost
down to shot-noise precision; see, e.g., [9,10]. We allow for
asymmetric loss in the two wells, which can be of single-body,
two-body, or even three-body nature, modeling experimentally
relevant decay processes, which are either induced by external
out couplings [11–14], or by two- or three-body scattering
processes [15]. For instance, three-body recombination in an
optical lattice leads to decay into unbound states and thus to
loss from the lattice [16].

Our main findings are (i) a total decay of an initially
asymmetric population of the wells in the form of a “staircase”
which is robust with respect to interactions and the precise
form of the loss, and (ii) a way to control dynamically the
evolution of the system by an appropriate choice of the loss.
Both effects are induced by a time-scale matching between the
two-mode oscillation frequency, the loss rates, and possible
amendments arising from the interactions. We start discussing
these effects on a mean-field level with exact results in the

noninteracting case. Extensions beyond mean-field and many-
body simulations corroborate the stability of the findings. This
robustness should allow for an experimental observation of our
predictions with state-of-the-art apparatuses.

The paper is organized as follows: Section II presents the
two-site many-body Hamiltonian and the master equation for
the open system’s evolution. Section III reports the analytical
solution for the linear noninteracting problem, which is easily
extended in Appendix A to an arbitrarily large one-dimensional
system. The effect of nonlinear contributions, both by the
atom-atom interactions as well as the many-body loss, on
the observed decay is addressed in Sec. IV in a mean-field
approximation. Section V compares the quality of our mean-
field results with a beyond-mean-field expansion and exact
quantum trajectory simulations. Conclusions are presented in
Sec. VI.

II. DISSIPATIVE DOUBLE-WELL SYSTEM

Without the loss, our system is described by the following
Hamiltonian in second quantization:

Ĥ = −J (â†
1â2 + â

†
2â1) + U

2
(â†

1â
†
1â1â1 + â

†
2â

†
2â2â2). (1)

Here, âi and â
†
i are the annihilation and creation operators of

bosons for the two modes i = 1,2, respectively. h̄ is set to
1, thus measuring energies in frequency units. Including the
particle losses, we start from a master equation including the
imaginary shift of the Hamiltonian as well as the quantum
jumps from losing particles,

˙̂ρ = −i(Ĥeffρ̂ − ρ̂Ĥ
†
eff) +

∑
α

∑
�=1,2

γ
(α)
� â

α

� ρ̂â
†α
� . (2)
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FIG. 1. Schematic illustration of a dissipative double well. Tun-
neling, characterized by the energy scale J , is allowed between
the wells. Interactions are denoted by the energy scale U , and an
exemplary two-body loss process from the left well (with index 1) is
shown by the wiggly lines.

The effective Hamiltonian reads

Ĥeff = Ĥ − i
∑

α

∑
�=1,2

γ
(α)
�

2
â
†α
� â

α

� , (3)

where the index α stands for 1, 2, or 3, respectively, describing
any of the used forms of α-body loss, see Fig. 1.

We will start with a mean-field method introduced in
Ref. [17] and heavily used previously for bosons in lattice
structures subject to decay [18–20]. The method has the
advantage that the results are easily extendible to any number of
sites M (the number of terms scale just like M2 independently
of the particle number) and, at least in the noninteracting case,
we can come up with analytical expressions in the presence of
single-body loss.

The time-dependent populations of the two modes are given
by the diagonal elements of the single-particle reduced density
matrix (SPDM) σj,k = tr{â†

j âkρ̂} ≡ 〈â†
j âk〉 (j,k = 1,2). In the

mean-field approximation and for α-body losses, its four
elements obey the following equations of motion:

i
d

dt
σj,k = tr(â†

j âk[Ĥ ,ρ̂] + iâ
†
j âkLtotρ̂)

= −J (σj,k+1 + σj,k−1 − σj+1,k − σj−1,k)

+Uσj,k(σk,k−σj,j )+i
∑

α

tr{â†
j âkL(α)ρ̂}. (4)

We used the definitions

L(α)ρ̂ = −
∑
�=1,2

γ
(α)
�

2

(
â
†α
� â

α

� ρ̂ + ρ̂â
†α
� â

α

� − 2â
α

� ρ̂â
†α
�

)
, (5)

tr{â†
j âkL(α)ρ̂} MF= −

∑
�=1,2

γ
(α)
�

2
σj,k(δj� + δk�)fα(n�), (6)

with fα a polynomial of degree (α − 1):

f1(n�) = 1, f2(n�) = 2(n� − 1),

f3(n�) = 3
(
n2

� − 3n� + 2
)
. (7)

From Eq. (7), one observes that for N � α, α-body loss
terms scale as Nα−1 with respect to those of single-body loss.
Therefore, we henceforth rescale the α-body dissipation rates
by a factor Nα−1

0 for a better comparison between the various
losses. From the form of the equations, we see that loss with
α > 1 induces a time evolution, which depends on the local
densities in a nonlinear manner.

III. SINGLE-BODY DECAY

The time evolution of the SPDM has a particularly simple
form for single-body (α = 1) loss and without interactions. Its
four matrix elements obey the following linear equations of
motion:

i
d

dt
σj,k = −J (σj,k+1 + σj,k−1 − σj+1,k − σj−1,k)

+ γ
(1)
j + γ

(1)
k

2
σj,k. (8)

Let us denote by �σ (t) the vector consisting of the four
matrix elements of the SPDM. Rearranging Eq. (8) under the
form ∂t �σ (t) = A�σ (t), the general solution is then obtained by
integrating this equation expressed in the eigenbasis of the
matrix A. For any set of initial conditions, the solution can be
put into the form �σ (t) = U(t)�σ (0), from which one derives the
quantities of interest, for instance for asymmetric dissipation
(γ (1)

1 /J �= 0, γ
(1)
2 /J = 0):

N (t)

N0
= e− γ1 t

2

[
1 − ( x

4 )2 cosh(2Jyt)

1 − ( x
4 )2

− 	n(0)

N0

( x
4 ) sinh(2Jyt)

y

]
, (9)

	n(t)

N0
= e− γ1 t

2

[
−

x
4 sinh(2Jyt)

y
+ 	n(0)

N0
cosh(2Jyt)

]
, (10)

where x ≡ γ
(1)
1 /J , y ≡

√
(x/4)2 − 1, N = n1 + n2, and

	n = n1 − n2. These quantities exhibit two different regimes
depending on whether y ∈ R (γ (1)

1 /2 > 2J : monotonous de-
cay) or y ∈ iR (γ1/2 < 2J : damped oscillations at the fre-
quency ω = 2J |y|).

In the latter case, the total population exhibits a steplike
evolution; cf. Fig. 2. This can be understood by rewriting
Eq. (9) as

N (t)

N0
= e− γ1 t

2
1 − C sin(2J |y|t + ϕ0)

1 − (x/4)2
, (11)

with

C = (x/4)2
√

1 + (
	n(0)

N0

)2[( 4
x

)2 − 1
]
. (12)

The equidistant steps become sharper the larger the initial
imbalance is chosen, as the amplitude C of the damped
oscillations grows with that ratio. Moreover, one can observe
that C is zero for no dissipation or for a perfect match of
the two time scales γ1/2 = 2J (x/4 = 1). In both cases, the
steps disappear. This behavior is interesting since it shows the
relevance of the matching of time scales announced in Sec. I.
For a perfect match of them, the current of bosons tunneling
from the nondissipative well is resonant with that dissipated,
resulting in a uniform exponential decay in both wells. For
mismatched time scales and γ1/2 < 2J , the population of the
leaky well is driven by tunneling-induced oscillations and the
dissipation is therefore quenched periodically when most of
the population has tunneled to the nondissipative well. This
gives rise to the observed steplike plateau structure in N (t)
seen in Fig. 2(a).
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FIG. 2. Mean-field evolution of (a) the total N and (b) the
relative population 	n without (solid lines) and with (dashed lines)
interactions with single-body losses, for the parameters 	n(0)/N0 =
0.7, γ

(1)
1 /J = 0.5, γ

(1)
2 /J = 0.

Our solution above can be straightforwardly extended to a
higher number of modes as described in Appendix A, which
includes the explicit expression of the matrix U in the hereby
considered double-well case as well.

The addition of the usual quartic interaction term from
Eq. (1) results in the known Josephson effect, increasing
the frequency of the oscillations by a factor that scales as
2J

√
1 − UN/J [21], where U denotes the strength of the

interactions. In the presence of dissipation, the density decays
upon evolution so that this frequency shift is only observable
before times of the order of 2/γ

(1)
1 , resulting in a phase shift

of later oscillations (cf. Fig. 2).

IV. INTERACTIONS AND MANY-BODY LOSSES

In the presence of interactions and α-body losses
(α = 1,2,3), the four SPDM elements obey the full Eq. (4)
and can only be numerically computed upon time evolution.

Rich dynamics arise from the interplay of interactions and
dissipation. Indeed, both effects add new time scales to the
noninteracting and nondissipative characteristic tunneling time
scale 2J . While single-body losses shift the frequency of
the population oscillations by a constant amount, interactions
induce a dependence of the dynamics on the imbalance of the
two wells. Many-body loss (i.e., with α > 1) also induces a
nonlinear dependence on the instantaneous population of the
leaky well. This makes the decay nonexponential for early
times. Asymptotically in time, the decay becomes effectively
exponential again when the density is so weak that many-body
corrections can be neglected.

Interaction-induced nonexponential tunneling decay has
been found in different contexts of BEC evolutions; see, e.g.,
[22–25]. This effect probes the role of interactions and can,

FIG. 3. Mean-field evolution of N with interactions and α-body
losses in one site; see legend. The parameters are 	n(0)/N0 = 0.7,
UN0/J = 10. The inset shows the same data on a linear-logarithmic
scale that allows one to appreciate the transient nonexponential decay
in the cases of nonlinear two-body and three-body loss.

in principle, be used to engineer the tunneling decay; see
the example reported in Ref. [23], where the compensation
of an energy detuning from an internal resonance by the
interaction-induced energy shift is exploited. For our double-
well evolution, the difference between the studied α-body
decays is shown in Fig. 3. The inset there highlights the nonex-
ponential decay in a linear-logarithmic plot. While single-body
loss decays perfectly exponentially, a two- or three-body loss
dramatically deviates from the exponential form for short
times, even if the loss rates are scaled according to the scaling
rule found from Eq. (7). Our findings might be relevant for
experiments since different contributions to decay could, in
principle, be identified by their different temporal behavior.

The density dependence of the many-body losses just
discussed can be used for engineering the dynamics of the
SPDM by tuning the initial imbalance, the interactions, and the
asymmetry of the dissipation. For example, it is possible to start
from an imbalanced configuration and induce self-trapping in
the least occupied site after a three-body loss driven inversion
of the populations, as shown in Fig. 4. In this way, the
dissipation rate is naturally switched off dynamically by the
depletion of the leaky site.

In Fig. 5, three-body dissipation is switched on in well 1 in
the time interval from J t 
 4 to J t = 10. At J t = 10, three-
body loss is switched on in the opposite well, leading to a

FIG. 4. Mean-field evolution of the local populations n1, n2 and
the total population N with interactions and three-body losses in
one site; see legend. Parameters are 	n(0)/N0 = 0.7, UN0/J = 15,
γ

(3)
1 N 2

0 /J = 0.1.
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FIG. 5. Upper panel: Mean-field evolution of n1, n2, and N with
interactions and three-body losses in one site, for 	n(0)/N0 = 0.7,
UN0/J = 18. Lower panel: Decay rates vs time for the results in the
upper panel, with γ

(3)
1 N 2

0 /J = 0.4 for 4 < J t < 10, and γ
(3)
2 N 2

0 /J =
0.22 for J t > 10.

double inversion of the self-trapped population. Also here, the
dissipation in well 1 is subsequently almost switched off by
the depletion of the leaky site 2. Please note that the switching
of the rates, as shown in the lower panel of Fig. 5, does not
need to be instantaneous; it should just be fast with respect to
the tunneling time scale J−1.

We remark that the action of many-body dissipation in this
kind of small Bose-Hubbard chains differs considerably from
that of single-body loss. Indeed, whereas local single-body loss
acts uniformly on the amplitude of the population oscillations
by a factor e−γ t/2 on both wells, as one sees from Eqs. (9)
and (10), noting that n1,2(t) = [N (t) ± 	n(t)]/2, the density
dependence of many-body loss allows one to act separately on
each site. As oscillations in the populations are in opposition
of phase, one can act on the desired well when it reaches
a population maximum and expect that the opposite well be
protected to some extent by being at its population minimum,
as done in Fig. 5.

One important observation is that the steps in the evolution
of the total population are a general feature independent of
α, resulting from the mismatch of the two main time scales:
the tunneling rate between imbalanced wells and the loss rate,
properly rescaled by Nα−1

0 ; see Fig. 3 and the discussion after
Eq. (11).

V. BEYOND MEAN-FIELD EVOLUTION

The previous section discussed the effect of nonlinear mean-
field interactions and many-body loss. In the following, we
confirm the validity of these findings by comparing with (i)
the solutions of equations including a second-order corrections

FIG. 6. Exact, BBR, and mean-field evolution of (a) N and (b) n2

in the presence of interactions and two-body dissipation. Parameters
are N0 = 100, UN0/J = 5, and γ

(2)
1 N0/J = 2. The numerically

exact many-body data have been computed by using the quantum jump
method averaging over 200 trajectories. Please note the logarithmic
scale in both of the ordinate axes.

with respect to Eq. (4), and (ii) exact simulations based on
quantum trajectories for the many-body master equation (2).
Expected deviations are only found for very strong interactions
and if loss is so fast that too low particle numbers are reached.
In both cases, the mean-field expansions lose validity, as further
discussed in Appendix B 4.

The hierarchy of equations of motion arising from interac-
tions and many-body dissipation can be truncated to next order
in the correlations by using the equations of motion satisfied
by the covariances 	jmkn ≡ 〈â†

j âmâ
†
kân〉 − 〈â†

j âm〉〈â†
kân〉 to-

gether with Eq. (4) and truncating higher-order moments; cf.
Appendix B for details. This so-called Bogoliubov back reac-
tion (BBR) approximation takes approximately into account
covariances with a relative error of the order of 1/N2 [17,26].
It is thus only valid for close to pure Bose-Einstein condensates
and for sufficiently large populations in all the wells.

The performance of both mean-field and BBR approx-
imations is compared to exact many-body calculations in
Fig. 6, where the BBR approximation is seen to provide a
better description of the dynamics of the total population than
the mean-field approximation in the presence of interactions
and two-body dissipation. The nonexponential decay of the
population is brought to light by the logarithmic scale. From
this figure, one also notes that despite the low number of
particles, the presence of two-body loss, and the strength of the
interactions, the mean-field approximation still satisfactorily
describes the system’s evolution.

The performance of the BBR truncation with respect to
mean field in low-populated situations becomes more striking
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FIG. 7. Exact, BBR, and mean-field evolution of (a) N0 and (b) n2

in the presence of interactions and three-body dissipation. Parameters
are N0 = 100, UN0/J = 5, and γ

(3)
1 N 2

0 /J = 10. The numerically
exact many-body data have been computed by using the quantum
jump method averaging over 200 trajectories.

in the case of strong three-body loss. This is shown in Fig. 7,
where mean field systematically overestimates the populations
of the double well, whereas BBR still performs satisfactorily.

Finally, as shown in Fig. 8, BBR results for many-body
dissipation converge asymptotically to those of mean field as
the ratio U/J is decreased to the regime of validity of the
mean-field approximation at fixed UN0/J = 5, in this case by
increasing the initial total population N0.

The BBR approximation allows one to compute two-point
correlation functions, which, besides providing useful infor-
mation about the fluctuations, constitute a good criterion for
the validity of the approximation by evaluating whether the
system remains in a coherent pure BEC state suitable for
a mean-field study. As mean field is no longer valid when
variances cannot be neglected, a good criterion is provided
by the density-density correlation function g

(2)
1,2 �= 1, defined

FIG. 8. BBR and mean-field evolution of N in the presence of
interactions and two-body dissipation. Parameters are N0 = 1000,
UN0/J = 5, and γ

(3)
1 N 2

0 /J = 10.

FIG. 9. Exact and BBR evolution of the g
(2)
1,2 correlation function.

Parameters are N0 = 100, UN0/J = 5, and γ
(2)
1 N0/J = 2. The nu-

merically exact many-body data have been computed by using the
quantum jump method averaging over 200 trajectories. Both curves
essentially follow each other with a relative error of just a few percent.
Mean field would always give a value of one. The slow decay from
one indicates the deterioration of the mean-field approximation in this
case.

generally as follows:

g
(2)
j,k ≡ 〈â†

j âj â
†
kâk〉

njnk

≡ 1 + 	jjkk

njnk

. (13)

As shown in Fig. 9, interactions and dissipation generally
drive the system slowly away from a coherent BEC state and
induce density-density correlations between the two wells.
Nevertheless, the many-body evolution profile is well followed
by the BBR approximation. To summarize this section, both
the mean-field and the BBR approximations are rather good as
long as the populations remain large and self-trapping in one
well due to a too large imbalance and/or too large interaction
strength is avoided. This is corroborated by our many-body
quantum jump simulations, which would become very tedious
for a larger number of bosons, however.

VI. CONCLUSIONS

We have investigated and compared single-, two-, and
three-body asymmetric loss in a two-mode system filled with
bosons. The observed steplike decay in the system is observed
qualitatively in all cases, provided that the initial state popula-
tions are imbalanced between the two wells. Loss can attack
at both wells simultaneously, making a possible experimental
implementation simpler. It should only be asymmetric between
the two wells in order to introduce the discussed dynamics
arising from different loss rates in the wells. The quantitative
decay, however, depends on the type of loss, and in particular
we observe strong deviations from exponential decay for
nonlinear two- and three-body loss. The latter might be relevant
for probing different decay channels in experiments.

The single-body case, i.e., with no interactions and single-
body loss, can be solved analytically, even for an arbitrary
long chain of wells; please see Appendix A. The general case
has been treated here in mean-field and one-order-beyond-
mean-field approximations. Our BBR beyond-mean-field ap-
proximation, here extended to include many-body loss, proves
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reliable for particle numbers which lie in between the small
numbers for which exact simulations are still efficient and
very large numbers for which mean field is good enough, in
particular also for longer chains; see our general derivation in
Appendix B.

Future work may apply the reported possibilities of dy-
namically controlling the out-coupled populations to design
setups based on ultracold bosons for quantum synchronization
studies [27] or for atomtronic transport induced by a local leak
[20,28–30].
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APPENDIX A: NONINTERACTING CASE
WITH SINGLE-BODY LOSS

In the noninteracting limit, Eq. (4) corresponding to an M-
site Bose-Hubbard chain in the presence of single-body losses
can be put into the form ∂t �σ (t) = A�σ (t). The solution becomes
trivial when expressed in the basis of the matrix A; for any
set of initial conditions, the general solution is then given by
�σ (t) = U(t)�σ (0), with

U(t) ≡ T exp(Dt)T−1 = T diag({eλi t })T−1, (A1)

where D = diag({λi}), λi denotes the ith eigenvalue of A, and
T is the matrix formed from the corresponding eigenvectors
that operates the change of basis.

Rewriting Eq. (8) in this way makes the eigenfrequencies
that drive the system’s dynamics appear explicitly and allows
one to directly obtain a set of combinations of the SPDM’s
matrix elements ({(T−1 �σ )i}) for each of which the time
evolution is fully characterized by a single frequency ({λi}).

For instance, in the two-well case with single-body loss
occurring at the first well, �σ and A can be expressed as follows:

�σ =

⎛
⎜⎝

σ11

σ12

σ21

σ22

⎞
⎟⎠ ; A = −J

⎛
⎜⎝

x −i i 0
−i x/2 0 i

i 0 x/2 −i

0 i −i 0

⎞
⎟⎠, (A2)

with the spectrum Sp(A/J ) = {−x/2 + 2y, − x/2 − 2y,

− x/2, − x/2}. D is then given by

D = −γ1

2
I4 + 2Jy diag(1,−1,0,0). (A3)

The first term corresponds to a uniform damping that can be
factorized out of (A1). The second term exhibits two different
regimes depending on whether y is real or imaginary. For a
high enough rate of dissipation (γ1/2 > 2J ), the ±2Jy eigen-
values are real and correspond to a decaying evolution of the
populations n1 ≡ σ11 and n2 ≡ σ22; conversely, for a low rate

of dissipation (γ1/2 < 2J ), they become imaginary and the
solution presents oscillations in the SPDM’s matrix elements.
Finally, the second term vanishes for γ1/2 = 2J , leading to a
uniform exponential decay �σ = exp(−γ1t/2)�σ (0). Physically,
this behavior corresponds to the dissipation-induced lowering
of the frequency of the oscillations of the populations, encoded
in y, from the nondissipative case ω = 2J down to the
nonoscillatory regime.

A mere examination of the eigenvalues of A thus suffices to
identify the characteristic frequencies of the system evolution
and to distinguish its different regimes for any Bose-Hubbard
chain in the noninteracting limit. This provides a simple way
to scrutinize the behavior of longer chains.

In the case of an M-site Bose-Hubbard (BH) chain, the
frequencies of the nondissipative case that will be lowered
by the dissipation are given by the set {2J (λj − λn−j )}j ,
with n ∈ [1,M] and λ� = −2 cos[π�/(M + 1)], as can be
shown by diagonalizing the Heisenberg equation satisfied by
�a ≡ [â1(t), . . . ,âM (t)]T and expressing explicitly the SPDM
as the dyadic product σj,k = 〈(�a †(t) ⊗ �a(t))j,k〉. For periodic
boundary conditions, solving the Heisenberg equation satisfied
by �a reduces to diagonalizing a circulant matrix, and the T
matrix can be given for any arbitrary length of the BH chain,
leading to the same expression for the set of eigenfrequencies,
but instead with λ� = 2 cos(2π�/M).

In our example of a two-well system, T is subsequently
obtained from the eigenvectors of A:

T =

⎛
⎜⎜⎜⎜⎝

1 1 1 0

−i(y + x/4) i(y + x/4) 0 1

i(y + x/4) −i(y − x/4) ix/2 1
x(y−x/4)

2 − 1 1 − x(y−x/4)
2 1 0

⎞
⎟⎟⎟⎟⎠. (A4)

Finally, the analytical expression for the symmetric U(t) reads

U = e−γ1 t/2

4y2

⎛
⎜⎜⎜⎜⎝

a− ib+ −ib+ c

. 4y2 − c c −ib−

. . 4y2 − c ib−

. . . a+

⎞
⎟⎟⎟⎟⎠. (A5)

Here we used the definitions

a± = −2 + [(x/4)2 − 2] cosh(2Jyt) ± xy sinh(2Jyt),

(A6)

b± = ±x

2
[1 − cosh(2Jyt)] + 2y sinh(2Jyt), (A7)

c = 2[cosh(2Jyt) − 1]. (A8)

All the SPDM matrix elements can then be obtained from
�σ (t) = U(t)�σ (0).
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APPENDIX B: BBR APPROXIMATION FOR α-BODY LOSS

Contrary to the mean-field approximation, in the Bogoliubov back-reaction (BBR) approximation, variances are kept in Eq. (4)
while higher moments are truncated as follows [17,26]:

〈â†
j âmâ

†
kânâ

†
r âs〉

BBR≈ 〈â†
j âmâ

†
kân〉〈â†

r âs〉 + 〈â†
j âmâ†

r âs〉〈â†
kân〉 + 〈â†

kânâ
†
r âs〉〈â†

j âm〉 − 2〈â†
j âm〉〈â†

kân〉〈â†
r âs〉, (B1)

〈â†
j âmâ

†
kânâ

†
r âs â

†
aâb〉

BBR≈ 〈â†
j âmâ

†
kân〉〈â†

r âs â
†
aâb〉+〈â†

j âmâ†
r âs〉〈â†

kânâ
†
aâb〉+〈â†

j âmâ†
aâb〉〈â†

kânâ
†
r âs〉−2〈â†

j âm〉〈â†
kân〉〈â†

r âs〉〈â†
aâb〉.
(B2)

This approximation takes approximately into account two-point correlations with a relative error of 1/N2. It is thus only valid
for close to pure BEC states and large populations in all wells.

In the BBR approximation, the equations of motion of an M-site BH chain read

i
d

dt
σjk = −J (σj,k+1 + σj,k−1 − σj+1,k − σj−1,k) + U (	jkkk + σjkσkk − 	jjjk − σjjσjk) − i

M∑
�=1

γ
(α)
�

2
S

(α)
jk;�, (B3)

i
d

dt
	jmkn = −J (+	j,m,k,n+1 + 	j,m,k,n−1 + 	j,m+1,k,n + 	j,m−1,k,n − 	j,m,k+1,n − 	j,m,k−1,n − 	j+1,m,k,n − 	j−1,m,k,n)

+U [+σjm(	mmkn − 	jjkn) + σkn(	jmnn − 	jmkk) + 	jmkn(−σjj + σmm − σkk + σnn)] − i

M∑
�=1

γ
(α)
�

2
D

(α)
jmkn;�.

(B4)

Here the covariances are defined as 	jmkn ≡ 〈â†
j âmâ

†
kân〉 − 〈â†

j âm〉〈â†
kân〉 and the matrices S(α) and D(α) denote the α-body loss

dissipative terms. These are defined as follows:

S
(α)
jk;� = 〈[

â
†
j âk,â

†α
�

]
â

α

�

〉 + 〈
â
†α
�

[
â

α

� ,â
†
j âk

]〉
, (B5)

D
(α)
jmkn;� = 〈[

â
†
j âmâ

†
kân,â

†α
�

]
â

α

�

〉 + 〈
â
†α
�

[
â

α

� ,â
†
j âmâ

†
kân

]〉 − σj,mS
(α)
kn;� − σk,nS

(α)
jm;�. (B6)

The commutators in the above formulas can be identified from the traced α-body Liouvillian, as defined in Eq. (5), and the second
line of Eq. (B6) results from deriving the second term of the covariance definition. The explicit expressions of S(α) and D(α) are
given hereafter.

1. Single-body losses (α = 1)

For single-body loss, the calculation is straightforward and gives

S
(1)
jk;� = (δj,� + δk,�)σjk, (B7)

D
(1)
jmkn;� = (δj,� + δm,� + δk,� + δn,�)	jmkn;� − 2δm,�δk,�σjn, (B8)

which does not require any further truncation.

2. Two-body losses (α = 2)

For two-body loss, Eq. (B5) yields four-point correlation functions without the need of any truncation,

S
(2)
jk;� = (δj,� + δk,�)[2	j��k + σjkf2(n�)]. (B9)

Two-body loss, like interactions, thus induces a coupling of the equations of motion of n-point correlation functions and (n + 1)-
point correlation functions.

The additional difficulty of two-body loss comes from Eq. (B6). Indeed, moments composed of strings of six operators arise
from the commutators. Prior to performing their BBR truncation, these have to be rewritten into traces of products of three
densitylike operators, i.e., alternating creation and annihilation operators. The expression obtained after truncating six-point
correlation functions depends on the reordering of the operators’ indices, which is not unique. However, these different possible
expressions only differ by subdominant lower moments in the mean-field limit. We choose an order such that the indices appear
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in the order of those of the covariance, that is, jmkn, which yields

D
(2)
jmkn;� = 2(δj,� + δk,�)(〈â†

�â�â
†
j âmâ

†
kân〉 − 〈â†

j âmâ
†
kân〉) + 2(δm,� + δn,�)(〈â†

j âmâ
†
kânâ

†
�â�〉 − 〈â†

j âmâ
†
kân〉)

− 2(2δm,�δk,� + δj,�δk,� + δm,�δn,�)〈â†
j âmâ

†
kân〉 + 2 × 4δm�δk�σjn

− 2(δj,� + δm,�)	j��mσkn + 2(δk,� + δn,�)σjm	k��n − 2(δj,� + δm,� + δk,� + δn,�)σjmσknf2(n�)/2. (B10)

This ordering ensures that after truncating, the leading moment (∼N3) cancels the last line of Eq. (B10) in the mean-field limit.
Equation (B10) is then truncated as in Eq. (B1), leading to the final expression,

D
(2)
jmkn;� = (δj,� + δm,� + δk,� + δn,�)(n� − 1)	jmkn + (δj,�	��kn + δm,�	kn��)σjm

+ (δk,�	��jm + δn,�	jm��)σkn − (2δm,�δk,� + δj,�δk,� + δm,�δn,�)(	jmkn + σjmσkn) + 4δm�δk�σjn. (B11)

3. Three-body losses (α = 3)

Three-body loss involves the additional difficulty of having to perform the BBR truncation in the contribution to the SPDM’s
equation of motion as well, leading to

S
(3)
jk;� =

M∑
�=1

γ
(3)
�

2
(δj,� + δk,�){3	j��k(2n� − 3) + σjk[3	���� + f3(n�)]}. (B12)

Three-body loss thus induces an additional coupling of the equations of motion between the n-point correlation functions and the
(n + 2)-point correlation functions.

In this case, the reordering involves straightforward but lengthy calculations, leading to the following expression:

D
(3)
jmkn;�/3 = (δm,� + δn,�)(〈â†

j âmâ
†
kânâ

†
�â�â

†
�â�〉 − 3〈â†

j âmâ
†
kânâ

†
�â�〉 + 2〈â†

j âmâ
†
kân〉) + (δj,� + δk,�)(〈â†

�â�â
†
�â�â

†
j âmâ

†
kân〉

− 3〈â†
�â�â

†
j âmâ

†
kân〉 + 2〈â†

j âmâ
†
kân〉) − (δj,� + δm,�)σkn	j��m(2n� − 3) − (δk,� + δn,�)σjm	k��n(2n� − 3)

− (δj,� + δm,� + δk,� + δn,�)σjmσkn[	���� + f3(n�)/3] + [8δm,�δk,� + 4δj,�δk,� + 4δm,�δn,� + (δj,� + δn,�)δm,�δk,�]

×〈â†
j âmâ

†
kân〉 − 12δm,�δk,�〈â†

j ân〉. (B13)

Once again, this specific reordering of indices ensures that in Eq. (B13), the leading term (∼N4) that would emerge from the
BBR truncation of the first two products would cancel the first product of the third line in the mean-field limit.

In terms of the SPDM and the covariances, Eq. (B13) can be rewritten in the following way:

D
(3)
jmkn;�/3 = (δj,� + δm,� + δk,� + δn,�)	jmkn(	���� + n2

� − 3n� + 2) + 2(δj,� + δk,�)	��jm	��kn + 2(δm,� + δn,�)	jm��	kn��

+ (2n� − 3)σjm(δj,�	��kn + δm,�	kn��) + (2n� − 3)σkn(δk,�	��jm + δn,�	jm��)

+ 2[δm,�δk,�(4 − n�) + δj,�δk,�(2 − n�) + δm,�δn,�(2 − n�)] × (	jmkn + σjmσkn)

+ (δj,� + δn,�)δm,�δk,�(	jmkn + σjmσkn) − 12δm,�δk,�σjn − (δm,�δk,� + 2δm,�δn,�)(	jm��σkn + 	kn��σjm)

− (δm,�δk,� + 2δj,�δk,�)(	��jmσkn + 	��knσjm). (B14)

4. Validity and stability of the BBR method

The relative error committed in the covariances by the BBR approximation scales as 1/N2. Moreover, the state of the system
has to remain close to a pure BEC state so that the dominant quadratic dependence on the fields ensures that the moments can
be truncated as Gaussian variables, which amounts to consider close to mean-field situations. Therefore, it becomes exact in the
limit N → +∞, while keeping UN/J constant, and it naturally converges to mean field in this limit. As an indicator, the value
of the covariances should remain close to zero or, equivalently, the g

(2)
j,k matrix elements should remain close to one; please see

the discussion in Sec. V around Fig. 9.
Figures 6 and 7 show that the BBR approximation performs well even down to N ∼ 10 for UN0/J = 5 for two- and three-body

loss in the Josephson oscillations regime. Moreover, strong dissipation is known [18] to increase the precision of this method by
suppressing density-density correlations and thus making the covariances decline. However, in the case of self-trapping in the
presence of two- or three-body loss, if one of the populations becomes too low (in particular, less than ∼α), the BBR approximation
leads to numerically unstable behavior.
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