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Abstract: We consider a dilute and ultracold bosonic gas of weakly-interacting atoms. Within the
framework of quantum field theory, we derive a zero-temperature modified Gross–Pitaevskii
equation with beyond-mean-field corrections due to quantum depletion and anomalous density.
This result is obtained from the stationary equation of the Bose–Einstein order parameter coupled
to the Bogoliubov–de Gennes equations of the out-of-condensate field operator. We show that,
in the presence of a generic external trapping potential, the key steps to get the modified
Gross–Pitaevskii equation are the semiclassical approximation for the Bogoliubov–de Gennes
equations, a slowly-varying order parameter and a small quantum depletion. In the uniform
case, from the modified Gross–Pitaevskii equation, we get the familiar equation of state with
Lee–Huang–Yang correction.
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1. Introduction

In 1924, Bose and Einstein introduced the concept of Bose–Einstein statistics and also
Bose–Einstein condensation, i.e., the macroscopic occupation of the lowest single-particle state of a
system of bosons [1,2]. In 1938, London suggested that the normal-superfluid phase transition of
4He is related to the Bose–Einstein condensation and to the existence of a macroscopic wavefunction
for the Bose condensate [3,4]. In 1947, Bogoliubov calculated, for a uniform weakly-interacting Bose
gas, the quantum depletion, i.e., the fraction of bosons that are not in the Bose condensate at zero
temperature due to a repulsive interaction strength [5]. In 1957, Lee, Huang and Yang evaluated the
first correcting term to the mean-field equation of state of a uniform and weakly-interacting Bose gas [6].
In 1961, Gross and Pitaevskii derived the mean-field equation for the space-dependent macroscopic
wavefunction of a weakly-interacting Bose gas in the presence of an external trapping potential [7,8].
The Gross–Pitaevskii equation is the main tool used to describe the properties of the Bose–Einstein
condensates, which are now routinely produced with ultracold and dilute alkali-metal atoms [9].

Some years ago, experiments with atomic gases reported evidence of beyond-mean-field effects
on the equation of state of repulsive bosons [10,11]. These experimental results are quite well
reproduced [12] by a modified Gross–Pitaevskii equation, which includes a beyond-mean-field
correction that is the local version of the Lee–Huang–Yang term. A few years ago, Petrov suggested
theoretically the existence of self-bound quantum droplets in an attractive Bose-Bose mixture, where the
collapse is suppressed by a beyond-mean-field term [13]. Very recent experiments [14,15] with two
internal states of 39K atoms in a three-dimensional configuration substantially confirm these theoretical
predictions based on a modified Gross–Pitaevskii equation.
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Beyond-mean-field correcting terms into the Gross–Pitaevskii equation [16–18], or into similar
nonlinear Schrödinger equations for superfluids [19,20], are usually introduced heuristically in the
spirit of the density functional theory. Here, we derive the modified Gross–Pitaevskii equation in a
self-consistent way, starting from the Heisenberg equation of motion of the bosonic field operator
ψ̂(r, t) and the familiar Bogoliubov prescription of writing the quantum field operator as the sum
of a classical complex field ψ0(r), which is the order parameter or macroscopic wavefunction of the
Bose–Einstein condensate, and a quantum field η̂(r, t), which takes into account quantum and thermal
fluctuations [21,22]. The presence of a generic external trapping potential U(r) is circumvented by
adopting a semiclassical approximation for the Bogoliubov–de Gennes equations of the fluctuating
quantum field [23,24]. In this way, at zero temperature, we obtain the local density ñ(r) of the
out-of-condensate bosons as a function of the classical field ψ0(r) and the corresponding equation
for ψ0(r), that is the stationary modified Gross–Pitaevskii equation with beyond-mean-field terms.
From these terms, we recover the Lee–Huang–Yang correction [6] in the case of a uniform and real
Bose–Einstein order parameter.

2. Quantum Field Theory of Bosons

Let us consider the bosonic quantum field operator ψ̂(r, t) describing a non-relativistic system
of confined and interacting identical atoms in the same hyperfine state. Its Heisenberg equation of
motion is given by [21]:

ih̄
∂

∂t
ψ̂(r, t) =

[
− h̄2

2m
∇2 + U(r)− µ

]
ψ̂(r, t) + g ψ̂+(r, t)ψ̂(r, t)ψ̂(r, t) . (1)

where m is the mass of the atom, U(r) is the confining external potential, g is the strength of the
interatomic potential and µ is the chemical potential, which is fixed by the conservation of the particle
number N, that is an eigenvalue of the number operator:

N̂ =
∫

d3r ψ̂+(r, t)ψ̂(r, t) . (2)

The bosonic field operator ψ̂(r, t) satisfies the familiar equal-time commutation rules. In Equation (1),
we have assumed that the system is very dilute and such that the scattering length and the range of
the interatomic interaction are much smaller than the average interatomic distance. Thus, the true
interatomic potential is approximated by a local pseudo-potential:

V(r, r′) = g δ3(r− r′) , (3)

where:

g =
4πh̄2as

m
(4)

is the scattering amplitude of the spin triplet channel with as the s-wave scattering length [21].

3. Bogoliubov Prescription and Quantum Fluctuations

In a bosonic system, one can separate Bose-condensed particles from non-condensed ones by
using of Bogoliubov prescription [21,22]:

ψ̂(r, t) = ψ0(r) + η̂(r, t) , (5)

where:
ψ0(r) = 〈ψ̂(r, t)〉 (6)

is the time-independent, but space-dependent complex order parameter (macroscopic wavefunction)
of the Bose–Einstein condensate with 〈...〉 the thermal average over an equilibrium ensemble.
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Notice that we work at thermal equilibrium, and consequently, the thermal averages are time
independent. The field η̂(r, t) is the operator of quantum and thermal fluctuations, which describes
out-of-condensate bosons.

The Bogoliubov prescription for the field operator ψ̂(r, t) enables us to write the three-body
thermal average in the following way:

〈ψ̂+(r, t)ψ̂(r, t)ψ̂(r, t)〉 = |ψ0(r)|2ψ0(r) + 2ñ(r) ψ0(r) + m̃(r) ψ∗0 (r) + s̃(r) , (7)

where ñ(r) = 〈η̂+(r, t)η̂(r, t)〉 is the density of non-condensed particles, while m̃(r) = 〈η̂(r, t)η̂(r, t)〉
is the anomalous density and s̃(r) = 〈η̂+(r, t)η̂(r, t)η̂(r, t)〉 is the anomalous correlation [22].

Now, we obtain an equation for ψ0(r) by taking the thermal average on Equation (1). In this way,
we find:

µ ψ0(r) =
[
− h̄2

2m
∇2 + U(r) + g|ψ0(r)|2 + 2gñ(r)

]
ψ0(r) + gm̃(r)ψ∗0 (r) + gs̃(r) , (8)

which is the exact equation of motion of the Bose–Einstein order parameter ψ0(r) [22,23]. This is not a
closed equation due to the presence of the non-condensed density ñ(r) and of the anomalous densities
m̃(r) and s̃(r). Neglecting the non-condensed density and the anomalous densities, the previous
equation becomes:

µ ψ0(r) =
[
− h̄2

2m
∇2 + U(r) + g|ψ0(r)|2

]
ψ0(r) , (9)

which is the familiar Gross–Pitaevskii equation [7,8]. A less drastic approximation, which is called the
Bogoliubov–Popov–Beliaev approximation [22–24], neglects only the term s̃(r). Then, the equation of
motion of the Bose–Einstein order parameter ψ0(r) becomes:

µ ψ0(r) =
[
− h̄2

2m
∇2 + U(r) + g|ψ0(r)|2 + 2gñ(r)

]
ψ0(r) + gm̃(r)ψ∗0 (r) . (10)

Furthermore, this equation is not closed. We must add an equation for the non-condensed density
ñ(r) and the anomalous density ñ(r) by studying the fluctuation operator η̂(r, t) [22,23].

The equation of motion of the fluctuation operator η̂(r, t) is obtained by subtracting Equation (10)
from Equation (1). The standard Bogoliubov–Popov approximation [22,23] neglects both the
non-condensate density and the anomalous terms, and it takes only linear terms of η̂(r, t) and η̂+(r, t).
In this way, the linearized equation of motion of the fluctuation operator reads:

ih̄
∂

∂t
η̂(r, t) =

[
− h̄2

2m
∇2 + U(r)− µ + 2g|ψ0(r)|2

]
η̂(r, t) + gψ0(r)2η̂+(r, t) . (11)

4. Bogoliubov–de Gennes Equations and Their Semiclassical Approximation

The fluctuation operator can be written as:

η̂(r, t) = ∑
j

[
uj(r)e

−iEjt/h̄ âj + vj(r)e
iEjt/h̄ â+j

]
, (12)

where âj and â+j are bosonic operators and the real functions uj(r) and vj(r) are the wavefunctions of
the quasi-particle and quasi-hole excitations of energy Ej [23]. As a consequence, one finds:

ñ(r) = ∑
j

[(
uj(r)2 + vj(r)2

)
〈â+j âj〉+ vj(r)2

]
, (13)

and:
〈â+j âj〉 =

1

eEj/kBT − 1
(14)
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is the Bose factor at temperature T with kB the Boltzmann constant. We stress that at zero temperature,
one gets:

ñ(r) = ∑
j

vj(r)2 , (15)

and also:
m̃(r) = ∑

j
uj(r) vj(r) . (16)

By inserting Equation (12) into Equation (11), we obtain the Bogoliubov–de Gennes equations:

L̂uj(r) + gψ0(r)2vj(r) = Ejuj(r) , (17)

L̂vj(r) + gψ∗0 (r)
2uj(r) = −Ejvj(r) . (18)

where:

L̂ = − h̄2

2m
∇2 + U(r)− µ + 2g|ψ0(r)|2 . (19)

The solution of these equation can be done numerically by choosing the external potential U(r).
However, an analytical solution can be obtained within the semiclassical approximation, where
−i∇→ k and ∑j →

∫
d3k/(2π)3 [23]. It follows that the Bogoliubov differential equations become

algebraic equations:

Lk(r) uk(r) + gψ0(r)2vk(r) = Ek(r) uk(r) , (20)

Lk(r) vk(r) + gψ∗0 (r)
2uk(r) = −Ek(r) vk(r) , (21)

where:

Lk(r) =
h̄2k2

2m
+ U(r)− µ + 2g|ψ0(r)|2 , (22)

and that the zero-temperature non-condensed density reads:

ñ(r) =
∫ d3k

(2π)3 vk(r)2 . (23)

This quantity is also called local quantum depletion of the Bose–Einstein condensate. In addition,
the local anomalous density is given by:

m̃(r) =
∫ d3k

(2π)3 uk(r) vk(r) . (24)

5. Local Quantum Depletion and Generalized Gross–Pitaevskii Equation

Assuming a slowly-varying order parameter, such that the gradient term can be neglected, but also
a small quantum depletion, from Equation (10), the chemical potential µ can be approximated as:

µ ' g|ψ0(r)|2 + U(r) . (25)

It is then straightforward to derive the elementary excitations:

Ek(r) =

√√√√ h̄2k2

2m

(
h̄2k2

2m
+ 2g|ψ0(r)|2

)
, (26)
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and the real quasi-particle amplitudes:

uk(r) =
1√
2

(
h̄2k2

2m + g|ψ0(r)|2

Ek(r)
+ 1

)1/2

(27)

vk(r) = − 1√
2

(
h̄2k2

2m + g|ψ0(r)|2

Ek(r)
− 1

)1/2

. (28)

We can now insert Equation (28) into (23), and after integration over the linear momenta,
we obtain:

ñ(r) =
√

2
12π2

(
2mg
h̄2

)3/2
|ψ0(r)|3 . (29)

This is the local version of the familiar Bogoliubov term for the quantum depletion, originally
obtained for a uniform bosonic system, i.e., with U(r) = 0. For the local anomalous average density,
after dimensional regularization [12], we find instead:

m̃(r) = 3 ñ(r) . (30)

Finally, inserting this expression into Equation (10), we get:

µ ψ0(r) =
[
− h̄2

2m
∇2 + U(r) + g|ψ0(r)|2 +

√
2

6π2

(
2m
h̄2

)3/2
g5/2|ψ0(r)|3

]
ψ0(r)

+

√
2

4π2

(
2mg
h̄2

)3/2
g5/2|ψ0(r)|3ψ∗0 (r) .

(31)

This is a modified Gross–Pitaevskii equation containing beyond-mean-field corrections due the
the presence of local quantum depletion and anomalous average density. The chemical potential µ of
Equation (31) is fixed by the normalization condition:

N =
∫

d3r
[
|ψ0(r)|2 + ñ(r)

]
=
∫

d3r

[
|ψ0(r)|2 +

√
2

12π2

(
2mg
h̄2

)3/2
|ψ0(r)|3

]
(32)

with N the total number of bosons.
It is important to stress that, in the case of a uniform and real Bose–Einstein condensate,

Equation (31) gives:

µ = gn0 + 2gñ + 3gñ = gn + 4gñ = gn + gn0
32

3
√

π

√
n0a3

s , (33)

which is the chemical potential with the familiar beyond-mean-field Lee–Huang–Yang correction [6]
under the assumption of small quantum depletion. Clearly, one does not obtain this zero-temperature
result neglecting the anomalous average density m̃.

6. Conclusions

We have shown that a modified Gross–Pitaevskii equation with local beyond-mean-field
terms can be obtained in a straightforward way from a quantum-field-theory formulation without
invoking the density functional theory. However, the derivation is not exact because one
performs some approximations on the spectrum of elementary excitations and on the spatial
dependence of the macroscopic wavefunction of the Bose–Einstein condensate. In [25], a different
derivation of a zero-temperature stationary modified Gross–Pitaevskii equation without external
confinement is shown, but which also takes into account anomalous averages. A more formal and
mathematical approach to the Hartree–Fock–Bogoliubov methods to obtain time-dependent modified
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Gross–Pitaevskii equations can be found in [26]. In the near future, we want to derive and use coupled
modified Gross–Pitaevskii equations for studying Bose-Bose mixtures under double-well confinement
and spin-orbit coupling, extending our previous results [27,28].
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