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Featured Application: to protect orchards and vineyards from pests, the correct speed of air that
carries the agrochemical drops in the canopy is very important. Too slow an air jet compromises
the uniformity of spray deposition, while an excessive air speed leads to significant loss of
agrochemicals in the environment (≥50%). The present work proposes a mathematical tool to
develop a self-regulation system for the air-fans of orchard sprayers.

Abstract: The velocity of air that crosses the canopy of tree crops when using orchard sprayers is
a variable that affects pesticide dispersion in the environment. Therefore, having an equation to
describe air velocity decay through the canopy is of interest. It was necessary to start from a more
general non-linear ordinary differential equation (ODE) obtained from the momentum theorem. After
approximating the non-linearity with some piecewise linear terms, analytic solutions were found.
Subsequently, to obtain a single equation for velocity decay, a combination of these solutions was
proposed by using rectangle functions formed through the hyperbolic tangent function. This single
equation was assessed in comparison to the experimental value obtained on a vineyard row by
measuring the air velocity at exit of canopy. The results have shown good correspondence, with a
mean relative error of 6.6%; moreover, there was no significant difference. To simplify, a combination
of only two linearized solutions was also proposed. Again, there was no significant difference between
the experimental value and the predicted one, but the mean relative error between the two equations
was 3.6%.

Keywords: non-linear ODE; mathematical solution; air jet velocity; air-assisted sprayer; environmental
pollution

1. Introduction

In agrochemical applications on orchards and vineyards, the idea of producing droplets by using
nozzles and transporting them to vegetation, by using an air jet generated by a fan, is now the generally
accepted method. Some studies [1–6] have demonstrated that stream speed strongly influences the
effectiveness of spray treatment. If the speed is too low, the distribution of chemicals on vegetation
tends to be non-uniform. On the contrary, if the speed is too high, the leaves align with the air stream,
and much of the spray is not captured by the vegetation. Spray drift increases with velocity until
approximately 50% of the spray does not land on the vegetation [3,4] and, consequently, causes both
economic loss and environmental pollution.

Therefore, to help understand the experimental results, it is useful to find an equation that relates
the air jet velocity vs. the distance from the output of the sprayer fan when air passes through the
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canopy. This equation could also be helpful to equip sprayers with an automatic controller that sets
the fan speed in order to maintain the optimum air jet velocity at exit of the canopy, both for the row
width [1] and for the growth stage [7].

In recent work [8], an equation was developed for the air velocity decay when the air jet crosses
the canopy of tree rows. The equation was obtained by applying the momentum theorem under three
assumptions:

(a) The foliage is uniformly distributed in space, and subsequently, the LAD (leaf area density)
is constant.

(b) The forward motion of the sprayer is ignored since its velocity is one order of magnitude lower
than the air velocity from fan exit, and no effect of travel speed on spray deposition in the canopy
was experimentally observed [9].

(c) The inverse relationship between the drag coefficient and air velocity is considered.

Assumption (c), also proposed by other authors [10,11], was verified by wind tunnel tests [8]. All
three works confirmed this hypothesis for air jet velocity vx, which is higher than a fixed value (inferior
limit value).

Due to the third assumption, (c), the result of applying the momentum theorem was a linear
ordinary differential equation (ODE). By integrating the ODE, an equation to describe air speed decay
through the vegetation was found.

If the air speed is under an inferior limit value, the decay equation is not valid because the third
assumption, (c), is no longer valid.

However, air jet velocity was observed during experiments [8]; in some situations, when the
vegetation is highly developed, the air jet velocity decreases under the limit set by the model.
Consequently, the aim of the present work was to find a new equation for the decay speed that would
also be valid under the limit when vx approaches zero. In order to obtain the equation, we started from
the non-linear ODE and found analytic solutions by approximating the non-linearity with piecewise
linear terms. The method to approximate non-linearity by linear pieces has previously been conducted
in other situations [12–16]. We used the approach here to obtain a series of analytical solutions. Finally,
to obtain a unique equation for the vx decay, a combination of piecewise solutions was proposed here,
which used multipliers consisting of rectangle functions.

2. Mathematical Modeling of the Air Jet Velocity in the Canopy

2.1. Previous Results

In a previous paper [8], an approach to obtain the speed decay equation was presented. It was
based applying the momentum theorem on the control volume within the canopy. Here, we now
applied the momentum theorem, but only under the first two assumptions (assumption (a) and (b))
listed above:

(a) Foliage is uniformly distributed in space,
(b) Forward motion of the sprayer is ignored.

Using these two assumptions, we obtained the subsequent non-linear ODE:

dvx

dx
+

(2x− x0 + r0)

2(x− x0)(x + r0)
vx +

1
4
ρl · cr(vx) · vx = 0, (1)

where (see Figure 1 and [8]) vx is the maximum air jet velocity at the centerline (m/s); x is the distance
travelled by the air jet from the output (m); xo is the distance, which is normally negative, between the
vertex of the diffusion triangle and the output section (m); ro is the radius of the edge of the air outlet
from the sprayer (vertical view of Figure 1); cr(vx) is an adimensional drag coefficient of the canopy
that is dependent on vx; and ρl (m–1) is coincident with the LAD.
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Figure 1. Sprayer during agrochemical applications to the vineyard: vertical view (right) and plane 
view (left). 

 
Figure 2. Relationship between the k parameter and mean air velocity within the tunnel, vxm. 
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Figure 1. Sprayer during agrochemical applications to the vineyard: vertical view (right) and plane
view (left).

In the previous paper [8], the result of experimental activity conducted in a wind tunnel was
presented in order to find the function cr = cr(vx).

This function was formally transformed into cr =
k(vx)

vx
, and the result is presented as in Figure 2,

where parameter k(vx) vs. vx appears. For a higher air velocity in the tunnel (vx = vxm ≥ 3 m/s),
parameter k(vx) is nearly constant and equal to a mean value of 1.1 m/s, with an error <5%, thus
substantially confirming the results found by [17] and the validity of the third assumption (c) “inverse
relationship between the drag coefficient and air velocity, cr =

k
vx

= 1.1
vx

, for vx ≥ 3 m/s”. The fact that a
velocity limit exists under which the inverse relationship between the drag coefficient and air velocity
is not valid is shown in Figure 2, where k decreases approximately linearly until the null value when
air velocity vx tends to zero, which is also confirmed by [11,12].
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Figure 2. Relationship between the k parameter and mean air velocity within the tunnel, vxm.

Therefore, under assumption (c), the previous non-linear ODE (1) becomes linear and
non-homogeneous:

dvx

dx
+

(2x− x0 + r0)

2(x− x0)(x + r0)
vx +

1
4
ρl · k = 0. (2)

Whereas, as previously stated, the non-linear ODE (1), when vx < 3 m/s, remains to be solved:

dvx

dx
+

(2x− x0 + r0)

2(x− x0)(x + r0)
vx +

1
4
ρl · k(vx) = 0. (3)



Appl. Sci. 2019, 9, 5440 4 of 9

2.2. Linearization of the Non-Linear ODE

The form (Figure 2) of function k(vx) can be approximated with a polygonal curve made up of
four linear segments.

As a result, the emulator curve k(vx) will be:

k = a · vx + b, (4)

where constants a and b are shown in Table 1 for each linear piecewise section.

Table 1. Values of the constants a and b of the emulator curve and vxin, xin, and vxen for each piecewise
linear n.

n◦ Linear Piecewise n ∆vx (m/s) a b (m/s) vxin (m/s) xin (m) vxen (m/s)

1 ≥3 0 1.10 7.70 0.71 3.00
2 3 ÷ 2 0.18 0.56 3.00 1.35 2.00
3 2 ÷ 1 0.33 0.26 2.00 1.63 1.00
4 1 ÷ 0 0.59 0 1.00 1.95 0

Therefore, the ODE (3) becomes a linear-ODE:

dvx

dx
+

[
(2x− x0 + r0)

2(x− x0)(x + r0)
+
ρl

4
· a

]
vx +

ρl

4
· b = 0. (5)

2.3. Solution of the Linear ODE Series and Their Combination

For the first linear piecewise n (n = 1 of Table 1), the solution of (5) is the same as that obtained in
previous work [8] and refers to the ODE (2) when it is posed as k = b:

vx = vxin
G(xin)

G(x)
−
ρl

16
b
[
(2x− xo + ro) − (2xin − xo + ro)

G(xin)

G(x)

]
, (6)

where: n = 1; G(x) =
√
(x− xo) · (x + ro); and G(xin) = G(xi1) =

√
(xi1 − xo) · (xi1 + ro). The

integration constant was obtained by imposing the conditions vx = vxi1 for x = xi1 (Table 1, n
= 1 row); xi and vxi are the experimental values of the coordinate and the velocity of air entering
the foliage, respectively; xo is the distance (normally negative) between the vertex of the diffusion
triangle and the outlet section (m; Figure 1); and ro is the radius of the border of the air outlet from
the sprayer (vertical view of Figure 1). Equation (6), as indicated in [8], is an approximation of the
analytical solution that is useful for making the same (6) more manageable. The error introduced with
the approximation is limited to less than 2% because of the low values of x0 and r0 with respect to x in
the tree crops. It would be zero if x0 and r0 were null, and this fact corresponds to having dG(x)/dx = 1.

For the second and third piecewise portions (n◦ 2 and 3 of Table 1), the solution of the L-ODE (5)
becomes:

vx = 16b
ρ2

l a3G(xin)
2

{[
−2 + ρl

4 a(2x + ro − xo) −
ρ2

l
16 a2G(x)2

]
−

[
−2 + ρl

4 a(2xin + ro − xo) −
ρ2

l
16 a2G(xin)

2
]
e−

ρl
4 a(x−xin)

}
+

+vxin
G(xin)

2

G(x)2 e−
ρl
4 a(x−xin)

(7)

where: the constant of integration was obtained by imposing the initial conditions vx = vxin for x = xin;
and xin is the coordinate corresponding to air velocity, vxin. For the second linear piecewise n, x = xin =

xi2 was obtained (Table 1) by the solution of the implicit equation (6) by imposing vx = 3 m/s (Table 1).
Whereas, for the third linear piecewise n, the new x = xin = xi3 was obtained (Table 1) by the solution of
the implicit Equation (7), relative to the second linear piecewise n, by imposing vx = 2 m/s. Solution (7)
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can be applied to the second linear piecewise n by inserting n = 2 and taking the number (7′). Similarly,
the same (7) can be applied to the third linear piecewise n by inserting n = 3 and taking the number (7”).

vx = 16b
ρ2

l a3G(xi2)
2

{[
−2 + ρl

4 a(2x + ro − xo) −
ρ2

l
16 a2G(x)2

]
−

[
−2 + ρl

4 a(2xi2 + ro − xo) −
ρ2

l
16 a2G(xi2)

2
]
e−

ρl
4 a(x−xi2)

}
+

+vxi2
G(xi2)

2

G(x)2 e−
ρl
4 a(x−xi2)

(7’)

vx = 16b
ρ2

l a3G(xi3)
2

{[
−2 + ρl

4 a(2x + ro − xo) −
ρ2

l
16 a2G(x)2

]
−

[
−2 + ρl

4 a(2xi3 + ro − xo) −
ρ2

l
16 a2G(xi3)

2
]
e−

ρl
4 a(x−xi3)

}
+

+vxi3
G(xi3)

2

G(x)2 e−
ρl
4 a(x−xi3)

(7”)

Finally, for the fourth linear piecewise n, (n◦ 4 of Table 1), the solution of the L-ODE (5) is:

vx =
G(xin)

G(x)
vxin · exp

[
−
ρl

4
a(x− xin)

]
=

G(xi4)

G(x)
vxi4 · exp

[
−
ρl

4
a(x− xi4)

]
, (8)

where: x = xin = xi4 was obtained by the solution of implicit equation (7”), relative to the third piecewise
n, by imposing vx = 1 m/s (Table 1).

Now, there needs to be a unique equation to be able to completely represent the function vx = f(x)

along the entire domain of variable x. To solve this problem, a combination of the solutions of (6), (7′),
(7”), and (8), found for each L-ODE obtained in correspondence with each linear piecewise presented
in Table 1, was studied and proposed here. In this combination, the coefficients were obtained by using
a rectangle function built through the hyperbolic tangent function. For each (Table 1) linear stepwise n,

Πn =
1
2

tanh[103(vxn − vxen)] −
1
2

tanh[(103(vxn − vxin)], (9)

where: vxn is obtained by introducing Equations (6), (7′), (7”) and (8), respectively, for n = 1, 2, 3, and 4;
and vxin and vxen are reported in Table 1 for each n value.

For example, the rectangle function, Π2 vs. vx = vx2, is shown in Figure 3.
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Finally, the obtained combination is:

vx =
4∑

n=1

Πn · vxn = Π1 · vx1 + Π2 · vx2 + Π3 · vx3 + Π4 · vx4. (10)

3. Experimental Evaluation

Theoretical Equations (6), (7′), (7”), and (8) and their combination (10) were verified by experimental
measurements of the velocity of air when exiting (vxe) a vineyard row. A vane probe (10-mm diameter)
was connected to a data logger and calibrated to record each test as a mean of 64 values. Each test was
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replicated five times by moving the sprayer forward 1 meter each time along the inter-rows. Each
repetition considered the measurement at a constant height from the ground at 1 meter.

The velocity of air, vxi, entering the foliage was 7.70 m/s, and the values (as an average of
five measurements at a constant 1 meter from the ground) of the ingoing and outgoing horizontal
coordinates of the row, xi and xe respectively, are reported in Table 2. In the same table, the values of
the quantities ro and bo (measured on the sprayer) and xo and ρl (calculated in previous work [8]) are
also shown.

Table 2. Geometrical data measured on the crops and on the sprayer as well as measured and predicted
air velocities.

Geometrical Data Value

ro (m) 0.47
bo(m) 0.075
xo (m) –0.085
xt (m) 0.373
xi (m) 0.71
xe (m) 1.94

vxi (m/s) 7.70
vxe (m/s) experim. 0.98

S.D. of vxe 0.25
ρl (s−1) 11.1

vxe (m/s) Equation (10) 1.05
vxe (m/s) Equation (11) 0.96

4. Results

Table 2 reports the results of the field test reflecting the mean values of maximum air velocity vxe

out of the vineyard row and the relative standard deviation (S.D.).
To compare the maximum velocities (centerline) of the air jet within the canopy that was predicted

by combination (10) (- - -�- - -) with the one that was predicted by Equation (6) (- - - - - - -), Figure 4 shows
the respective curves of the air velocity decay, vx, vs. the horizontal distance, x, from the outlet of the
sprayer. Equation (6) gives incorrect negative values for high x values. In addition, the experimental
vxe value and the relative standard deviation bars are shown in correspondence with the foliage exit
xe. There was no significant difference between the experimental value and the predicted value by
combination (10).Appl. Sci. 2019, 9, x FOR PEER REVIEW 8 of 10 
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(- - -�- - -), is shown in comparison to the predicted maximum velocity by Equation (6) (- - - - - - -),
which can result in incorrect negative values and in the experimental value (•).
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Due to the complexity of Equation (7), which was carried over to the second and third linear
piecewise portions, (7′) and (7”), respectively, a simpler combination was made based only on Equations
(6) and (8). Equation (6) was extended from 7.70 to 2 m/s, and (8) was extended from 0 to 2 m/s, as
shown in Table 3.

Table 3. Values of the constants a and b of the emulator curve and vxin, xin, and vxen for each linear
piecewise n.

n◦ Linear Piecewise n ∆vx (m/s) a b (m/s) vxin (m/s) xin (m) vxen (m/s)

1 ≥2 0 1.10 7.70 0.71 2.00
2 2 ÷ 0 0.55 0 2.00 1.59 0

The new simplified combination is:

vx =
2∑

n=1

Πn·vxn = Π1·vx1 + Π2·vx2, (11)

where: vx1 is provided by Equation (6) and vx2 is provided by Equation (8).
The new curve (11) of air velocity decay vx vs. the horizontal distance x is shown in Figure 5 with

curve (6) and the experimental vxe value. There was no significant difference between the experimental
value and the one that was predicted by combination (11). The mean relative error (MRE) of Equation
(11) vs. Equation (10) was 3.6%, and the maximum error was 10.7% at x = 1.63 m.
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Figure 5. The maximum velocity (centerline) of the air jet in the foliage, predicted by simplified
combination (11) (- - -�- - -), is shown in comparison to the predicted maximum velocity by Equation
(6) (- - - - - -) and to the experimental value (•).

5. Conclusions

The results of several experimental works have widely demonstrated the importance of the correct
velocity of air carrying agrochemicals drops to the canopy of an orchard or vineyard, which must be
protected. It has been known that a slow air jet compromises the uniformity of the spray deposition,
while an excessive air speed produces significant losses of pesticide to the environment (≥50%).

An equation was obtained in previous work [8] to predict the decay of air velocity during tree
row crossings in an attempt to furnish a mathematical instrument to improve the interpretation of
previous experimental data and to foresee the development of a self-adjusting system for orchard and
vineyard fan sprayers. The velocity decay equation that was proposed was not valid under a limit
velocity of vx = 3 m/s because the equation was obtained assuming an inverse relationship between the
drag coefficient cr and velocity vx.
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However, a previous experiment [8] has shown that, in some situations when the vegetation is
highly developed, the air speed decreases under this limit of 3 m/s.

Therefore, finding a solution to the more general non-linear ODE is important in order to have a
velocity decay equation for the entire domain of vx, namely, until its null value.

Therefore, starting from the non-linear ODE, four analytic solutions were found by approximating
the non-linearity with four piecewise linear terms. Subsequently, to obtain a single equation for decay
vx (10), a combination of these solutions was proposed by using multipliers consisting of rectangle
functions built by the hyperbolic tangent function, tanh. Finally, the obtained equation (10) was verified
in-field on a vineyard row by measuring air velocity vxe at exit of the canopy. The results showed good
correspondence between the experimental mean value and the predicted one, with a relative error of
6.6%. In addition, there was no significant difference between the experimental and predicted curves.

As the procedure to build a unique equation by combining the four solutions of the four differential
linearized equations tends to be challenging, we simplified the procedure by reducing the number of
linearized equations from four to two. Therefore, the combination of only two solutions produced
a velocity decay equation (11) that was much more manageable. Again, there was no significant
difference between the experimental value and the predicted one by combination (11), but the mean
relative error (MRE) of Equation (11) vs. Equation (10) was 3.6%, and the maximum error was 10.7% at
x = 1.63 m. This is an acceptable error, compared to the variation of experimental measurements of air
velocity vxe at the exit of the foliage, which was confirmed by the wide standard deviation.
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