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Abstract

Axion and axion-like particle models are typically affected by a strong fine-tuning problem in conceiving 
the electroweak and the Peccei-Quinn breaking scales. Within the context of the Minimal Linear σ Model, 
axion-like particle constructions are identified where this hierarchy problem is solved, accounting for a 
TeV Peccei-Quinn breaking scale and a pseudoscalar particle with a mass larger than 10 MeV. Potential 
signatures at colliders and B-factories are discussed.
© 2019 The Author(s). Published by Elsevier B.V. This is an open access article under the CC BY license 
(http://creativecommons.org/licenses/by/4.0/). Funded by SCOAP3.

1. Introduction

A suggestive mechanism to protect the Higgs mass from radiative corrections arises when 
the Higgs field belongs to the Nambu Goldstone Boson (GB) sector of a model equipped with 
a global symmetry G spontaneously broken, by an unknown strongly interacting dynamics, to 
a subgroup H. In the Composite Higgs (CH) framework, the Standard Model (SM) GBs and 
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the Higgs field parametrise (some of) the coset G/H coordinates and are forced to be strictly 
massless [1–4]. The gauging of the SM symmetries and the introduction of fermionic Yukawa 
couplings introduce an explicit breaking of G, leading to a non-vanishing mass term for the Higgs 
and to the spontaneous breaking of the electroweak (EW) symmetry.

The minimal CH model (MCHM) [5], is based on the symmetric coset G/H = SO(5)/SO(4). 
Extended constructions have been presented in Refs. [6,7]. CH models are typically written in 
the language of effective field theories, parametrising the lack of knowledge of the strongly 
interacting sector with a large set of unknown coefficients. This description is consequently valid 
only up to a scale �s , where strong dynamics resonances are supposed to appear.

The Minimal Linear σ -Model (MLσM) [8–11] is, instead, a renormalisable model that rep-
resents a convenient and well-defined framework that, at need, by integrating out the extra scalar 
degree of freedom (dof) σ , matches the usual effective non-linear MCHM [5,12–14] Lagrangian, 
or the more general Higgs Effective Field Theory Lagrangian [15–35]. Following the treatment 
of Ref. [10], the symmetry content of the MLσM consists of a global SO(5) spontaneously bro-
ken to SO(4) when the scalar SO(5) quintuplet φ, containing the SM EW doublet Higgs H and 
the EW singlet σ , acquires a non-vanishing vacuum expectation value (VEV) f , assumed to be 
at the TeV scale in order to solve the Higgs naturalness problem. Besides the SM gauge bosons 
and fermions, the spectrum accounts for additional sets of vector-like exotic fermions, both in 
the trivial and in the fundamental representations of SO(5), in such a way that SO(5) invari-
ant Yukawa couplings can be introduced. Moreover, non-vanishing masses for the SM fermions 
originate through the partial-compositeness mechanism [36,37], by adding bilinear (SO(5) ex-
plicit breaking) operators between the SM and exotic fermions. Finally, the symmetry sector is 
customarily enlarged by an extra U(1)X symmetry to correctly account for the SM hypercharge 
assignment. By extending the MLσM spectrum with an additional complex scalar field s, singlet 
under SM and SO(5) symmetries, and by supplementing it with an additional global Abelian 
symmetry à la Peccei-Quinn (PQ) [38], U(1)PQ, an axion or an axion-like particle (ALP) can 
also be introduced. Such a framework has been dubbed Axion-MLσM (AMLσM) [39,40].

The tree-level renormalisable scalar potential associated to the AMLσM, describing the spon-
taneous SO(5)/SO(4) and PQ symmetry breaking, reads [40]

V (φ, s) =λ(φT φ − f 2)2 + λs(2s∗s − f 2
s )2+

− 2λsφ(s∗s)(φT φ) + . . . ,
(1)

where λ, λs and λsφ are dimensionless parameters, f and fs the SO(5) and U(1)PQ symmetry 
breaking scales, and the dots stand for all possible SO(5) and/or PQ explicit breaking terms nec-
essary to guarantee the EW symmetry breaking, a viable SM spectrum and the renormalisability 
of the model.

It is customary to parametrise the complex scalar singlet s, in the PQ symmetry broken phase, 
with an exponential notation,

s = vr + r√
2

ei a/fa , (2)

with r the radial component field and a the pseudoscalar field, to be identified with the axion or 
ALP dof. The axion (or ALP) decay constant fa ≡ 〈r〉 ≡ vr is typically of the order of the PQ 
breaking scale fs and may undergo strong constraints arising from the experimental limits on the 
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pseudoscalar coupling to photons. In the case of a being the QCD axion, with mass ma < 10 eV, 
the bound1 on the scale fa is [48–50]

fa � |gaγ γ | × 107 GeV , (3)

where gaγ γ is the adimensional effective coupling of the axion to two photons and depends on 
the fermionic spectrum and on the PQ charge assignment considered. For masses 10 eV < ma <

0.1 GeV the constraints become even stronger [51].
The bound in Eq. (3) strongly crashes with the requirement of a natural EW scale. Indeed, 

as explicitly shown in Ref. [40], either the coupling λsφ in Eq. (1) is unnaturally set to 0, or the 
“effective” SO(5)/SO(4) breaking scale, labelled fR , runs to the highest scale, fR ≈ fs ≈ fa , 
reintroducing a strong fine-tuning between the EW and the CH scale, ξ = v2/f 2

R � 1. This 
suggests that the AMLσM framework is “natural” only if fs , and therefore fa , are at the TeV 
scale.

To escape the constraint in Eq. (3), two approaches can be outlined. The first is still to rely 
on the QCD axion paradigm, as the solution to the strong CP problem: in this case a specific (ad 
hoc) choice of the PQ charges can be identified such that the aγ γ coupling is vanishing [52]
and consequently the astrophysical constraints are automatically evaded. The second approach 
consists in abandoning, partially or completely, the QCD ansatz and considering, instead, an 
ALP particle: then the inverse proportionality relation between the QCD axion mass and its 
decay constant does not need to be enforced anymore and a mass larger than 0.1 GeV can be 
achieved, relaxing the astrophysics bounds on the aγ γ coupling, fa � |gaγ γ | GeV.

In Ref. [40], a minimal ALP scenario in the AMLσM framework has been considered, as-
suming that the PQ dynamics does not intervene in the explicit breaking of the SO(5) symmetry, 
i.e. the two scales f and fs are independent. The scale f can be taken in the TeV range and the 
phenomenology associated to the SO(5)/SO(4) sector turns out to be very similar to the one 
described in the original MLσM in Ref. [10]; the scale fa , and therefore fs , can also be taken 
in the TeV range, opening the possibility to test this model both at colliders and at B-factories. 
Moreover, no fine-tuning between the two scales f and fs is necessary in this model.

In this letter, the mechanisms behind the PQ and the SO(5) symmetry breaking are instead 
identified assuming fs = f around the TeV scale (the possibility of fs ≈ f has already been 
considered in Ref. [39], where however only the QCD axion scenario has been investigated, 
with fs ≈ f 	 TeV). This is obtained by substituting the scales appearing in the SO(5) explicit 
breaking terms with the singlet scalar s: once this field develops a VEV, these terms break SO(5)

spontaneously and not explicitly, thus linking f with fs . In this context, where SO(5) is dynam-
ically broken, alternative constructions with respect to the ALP solution considered in Ref. [40]
can be considered. Moreover, as shown in Sect. 4, these AMLσM realisations can be testable at 
colliders and flavour factories.

In Sec. 2 the introduction of an ALP in the MLσM is reviewed, while in Sec. 3 viable, natural 
and minimal models are identified. The associated phenomenology is discussed in Sec. 4 and 
final remarks are deferred to Sec. 5. In the App. A, the ALP Lagrangian is reported with the 
explicit expression for the ALP-gauge boson couplings.

1 A recent analysis [41] shows a preferred region of the parameter space gaγ γ × gaee , being the latter the effective 
coupling of the axion with two electrons. When interpreted in terms of the DFSZ [42,43] or KSVZ [44,45] axion models, 
the best fit point is in the border of the perturbative unitarity of the Yukawas, while the fit is inconclusive at more than 
2σ . This region will be tested by future ARIADNE [46] and IAXO [47] experiments.
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Table 1
Decomposition of the exotic fermions and their transformation properties under 
the SM gauge symmetry.

SO(5) × U(1)X SU(3)C × SU(2)L × U(1)Y Qem

ψ (5, 2/3) K = (3,2,7/6) 5/3,2/3
Q = (3,2,1/6) 2/3,−1/3
T5 = (3,1,2/3) 2/3

χ (1, 2/3) T1 = (3,1,2/3) 2/3

ψ ′ (5, −1/3) Q′ = (3,2,1/6) 2/3,−1/3
K ′ = (3,2,−5/6) −1/3,−4/3
B5 = (3,1,−1/3) −1/3

χ ′ (1, −1/3) B1 = (3,1,−1/3) −1/3

2. Introducing U(1)PQ in the MLσM

The AMLσM [39,40] is characterised by the global symmetry SO(5) ×U(1)X ×U(1)PQ. The 
spectrum includes the SM gauge bosons, the SO(5) scalar quintuplet φ, the complex scalar s, the 
third family SM fermions and four exotic fermions, two SO(5) quintuplets ψ(′) and two SO(5)

singlets χ(′). Only the exotic fields transform under U(1)X, with the unprimed (primed) fields 
having a charge +2/3 (−1/3) respectively. The SM hypercharge Y is given by the following 
combination between the generators of SU(2)R ⊂ SO(5) and U(1)X :

Y = 

(3)
R + X . (4)

The decomposition of the exotic fermions and their transformation properties under the SM 
gauge symmetry can be found in Table 1.

Generalising the notation of Refs. [39,40], the SO(5) × U(1)X invariant Lagrangian contain-
ing the fermionic interactions can be written as follows:

Lf = qLi /D qL + tRi /D tR + bRi /D bR + ψ
[
i /D − M5

]
ψ + χ

[
i /D − M1

]
χ

+ ψ ′ [i /D − M ′
5

]
ψ ′ + χ ′ [i /D − M ′

1

]
χ ′

−
[
y1 ψL φ χR + y2 ψR φ χL + z1 χR χL s + z̃1 χR χL s∗

+ z5 ψR ψL s + z̃5 ψR ψL s∗+ (5)

+
(
�1 + k1 s + k̃1 s∗)(

qL�2×5
)
ψR +

(
�2 + k2 s + k̃2 s∗) ψL (�5×1tR)

+
(
�3 + k3 s + k̃3 s∗) χLtR + h.c.

]
+

−
[
y′

1 ψ ′
L φ χ ′

R + y′
2 ψ ′

R φ χ ′
L + z′

1 χ ′
R χ ′

L s + z̃′
1 χ ′

R χ ′
L s∗ + z′

5 ψ ′
R ψ ′

L s

+ z̃′
5 ψ ′

R ψ ′
L s∗+

+
(
�′

1 + k′
1 s + k̃′

1 s∗)(
qL�′

2×5

)
ψ ′

R +
(
�′

2 + k′
2 s + k̃′

2 s∗) ψ ′
L

(
�′

5×1bR

)
+

(
�′

3 + k′
3 s + k̃′

3 s∗) χ ′
LbR + h.c.

]
.

The first line contains the kinetic terms for all the fermions plus the direct mass terms, M(′)
1,5, of 

the exotic fields. The second and third lines refer to the top sector. The terms proportional to yi are 
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SO(5) invariant Yukawa terms between exotic fermions and the scalar quintuplet. The ones pro-
portional to zi and z̃i are Yukawa-type interactions, between the exotic fermions and the SO(5)

singlet scalar, which contribute to the exotic fermion masses once the PQ symmetry breaking oc-
curs. In the third line the partial compositeness operators linking the exotic fermions and the top 
quark are included, needed for providing a non-vanishing top mass. The first two terms, which 
are proportional to �i×j , explicitly break the SO(5) symmetry, while the last one is, instead, 
SO(5) preserving. The �i×j quantities play the role of spurions for the SO(5) × U(1)X sym-
metry. Finally the last two lines refer to the bottom sector and all the previous comments on the 
unprimed terms apply to their primed counterparts as well.

With the exotic fermions acquiring masses larger than the EW scale, a fermionic Seesaw 
mechanism provides the masses for the SM fermions [36,37]: the Leading Order (LO) contribu-
tion reads:

mt = y1 �1(vr )�3(vr ) vh

M1(vr )M5(vr ) − y1 y2 (v2
h + v2

σ )
+

− y1 y2 �1(vr )�2(vr ) vh vσ

M1(vr )M2
5 (vr ) − y1 y2 M5(vr ) (v2

r + v2
σ )

,

(6)

where vh, vσ and vr are the VEVs of the physical field h, σ and r , satisfying to v2
h + v2

σ = f 2, 
and the functions of vr are defined as

�i(vr) ≡ �i + (ki + k̃i )vr ,

Mi(vr) ≡ Mi + (zi + z̃i )vr .
(7)

Similar expressions hold for the bottom sector too.
A general comment has to be highlighted. In the Lagrangian in Eq. (5) and in the expressions 

for the SM fermion masses above, not all the terms can actually be present at the same time. 
Depending on the specific choice of the PQ charges, several terms are simply forbidden: in 
particular only one term among those proportional to �i , to ki and to k̃i is allowed for a given 
PQ charge assignment; a similar observation holds for the terms proportional to Mi , zi and z̃i .

Once the fermionic Lagrangian is fully determined, the computation of the 1-loop contribu-
tions to the scalar potential is straightforward: the Coleman-Weinberg (CW) formula [53] allows 
to extract the divergences generated at 1-loop with internal fermion and gauge boson lines. This 
aspect has been described in details in Refs. [10,40] for the MLσM without and with the presence 
of the PQ symmetry. In general, several divergent contributions arise at one loop that cannot be 
re-absorbed in the tree-level SO(5) invariant scalar potential in Eq. (1). In consequence, to have 
a renormalisable Lagrangian, consistent with a viable EW symmetry breaking, the correspond-
ing terms need to be added to the tree-level scalar potential. As two is the minimum number of 
explicit SO(5) breaking terms needed to have a viable EW breaking sector, constructions with 
only two extra parameters in Eq. (1) have been dubbed “minimal”.

3. Viable, natural & minimal AMLσM

A proper model should be viable, natural and minimal. In order to construct an AMLσM 
satisfying these three features, the following guiding conditions are required: i) third generation 
SM fermion masses are generated at LO and therefore the expression in Eq. (6) must not vanish; 
ii) no large hierarchy is present between the SO(5) and U(1)PQ breaking scales; iii) the model 
depends on the minimal possible number of parameters.
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In order to identify the PQ charge assignments compatible with these three requirements, it is 
useful to introduce the following five PQ charges differences: for the top sector,

�y1 ≡ nψL
− nχR

��1 ≡ nqL
− nψR

��3 ≡ nχL
− ntR

�χ ≡ nχL
− nχR

�ψ ≡ nψL
− nψR

.

(8)

Similar quantities can be defined for the bottom sector by replacing the unprimed fields with the 
primed ones.

Condition i) is satisfied by requiring that none among y1, �1(vr), �3(vr ), M1(vr ) and M5(vr )

is vanishing. Alternative possibilities with non-vanishing �2(vr ) turn out to be non-minimal. In 
terms of the quantities defined above, this corresponds to

�y1 = 0 , ��1 = {0, ±ns} , ��3 = {0, ±ns} ,

�χ = {0, ±ns} , �ψ = {0, ±ns} .

Whenever one of these quantities vanishes, the corresponding allowed term in the Lagrangian is 
the constant one: i.e. y1, �i and Mi . On the other hand, if any of the charge differences is equal 
to −ns (+ns ), the corresponding term, allowed in the Lagrangian, is proportional to s (s∗). As 
an example, �χ = 0 indicates that χL and χR transform under U(1)PQ with the same charge 
and therefore the term M1χRχL is invariant under U(1)PQ and should be kept in the Lagrangian. 
If, instead, �χ = −ns , then the z1 χR χL s term is the invariant one. There are 34 = 81 possible 
different configurations compatible with condition i) for a single fermion sector, while any value 
different from 0 or ±ns leads to vanishing SM fermion masses.

The naturalness requirement, condition ii), is satisfied only if all the scales in the Lagrangian, 
except for M1 and �3, are in the TeV range. The SO(5) and U(1)PQ breaking scales f and 
fs need to satisfy to this condition in order to avoid large fine-tunings in the tree-level scalar 
potential, as discussed in the Introduction. For the other quantities, such as M5, �1 and �2, 
the reason resides in the fact that they correct the scalar potential parameters at one-loop (see 
Ref. [40] for details). If these parameters are much larger than the TeV, large fine-tunings would 
be necessary in order to guarantee a viable EW VEV. M1 and �3 evade this condition because 
they do not enter the CW contributions: as already pointed out in Ref. [39], they only need to 
satisfy �3/M1 ∼ 1 in order to provide a viable value for the mass of third generation SM quarks 
– see Eq. (6) – assuming natural Yukawa couplings yi .

The minimality condition iii) only concerns the number of parameters that enter the scalar 
potential once considering the 1-loop contributions. Two divergent terms, proportional to h2 and 
h4, arise from the CW potential induced by the gauge bosons: these divergences are independent 
of the specific PQ charge assignment and therefore the corresponding terms necessarily enter the 
final scalar potential. Minimal constructions are those where the fermionic CW potential does not 
introduce any additional divergence that cannot be absorbed by a redefinition of the parameters 
in Eq. (1) or of h2 or h4, as discussed in Ref. [40].

Out of the 81 possible AMLσM constructions, only seven satisfy to all three conditions and 
they are listed in Table 2, defined by the PQ charges of the fermion fields, written as a function 
of the charge ns of the PQ scalar field. In the same table, the parameters entering the Lagrangian 
are explicitly reported. On the right side, the corresponding values for �ψ , �χ and

�t ≡ nqL
− ntR (9)

are listed, as they will be relevant in the phenomenological section that follows. A sibling for each 
configuration can be found by replacing ns → −ns , k̃3 → k3, z1 → z̃1, k1 ↔ k̃1 and z5 ↔ z̃5. 
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Table 2
List of the viable, natural and minimal AMLσM realisations, defined by the conditions on the PQ charges of the fermion 
fields written in terms of the charge ns of the PQ scalar field. The constants allowed in the Lagrangian are indicated with 
“�”, while all the remaining Lagrangian parameters that are not listed in this table are not allowed for symmetry reasons. 
On the right side, the corresponding values for �ψ , �χ and �t are listed.

Conditions on PQ charges y1 y2 �1 k1 k̃1 k̃3 z̃1 M5 z5 z̃5 �ψ �χ �t

M1 nψL
= nχR

= nψR
= nχL

− ns = nqL
= ntR − 2ns � � � � � 0 ns −2ns

M2 nψL
= nχR

= nψR
= nχL

− ns = nqL
+ ns = ntR − 2ns � � � � � 0 ns −3ns

M3 nψL
= nχR

= nψR
+ ns = nχL

− ns = nqL
+ 2ns = ntR − 2ns � � � � � ns ns −4ns

M4 nψL
= nχR

= nψR
+ ns = nχL

− ns = nqL
+ ns = ntR − 2ns � � � � � ns ns −3ns

M5 nψL
= nχR

= nψR
+ ns = nχL

− ns = nqL
= ntR − 2ns � � � � � ns ns −2ns

M6 nψL
= nχR

= nψR
− ns = nχL

− ns = nqL
− ns = ntR − 2ns � � � � � � −ns ns −ns

M7 nψL
= nχR

= nψR
= nχL

− ns = nqL
− ns = ntR − 2ns � � � � � 0 ns −ns

A charge assignment and its own sibling, for a given fermion sector, are completely equivalent. 
All the remaining Lagrangian parameters that are not listed in this table are not allowed for 
symmetry reasons. Similar considerations hold for the bottom quark sector, in terms of the PQ 
charge differences �ψ ′ , �χ ′ and

�b ≡ nqL
− nbR

. (10)

The top and bottom sectors are not completely independent as qL enters simultaneously in the 
quantities of Eqs. (9) and (10). The values listed in Table 2 hold simultaneously for the top and 
bottom sector, with an extra freedom of a global sign difference between the two. In what follows, 
the notation M+

i has been adopted for the same charge case, defined by �ψ = �ψ ′ , �χ = �χ ′
and �t = �b , while M−

i for the opposite charge case, where �ψ = −�ψ ′ , �χ = −�χ ′ and 
�t = −�b . The explicit charge assignment for each model can be read in Table 5.

The scalar potential associated to all the models listed in Table 2 has already been studied in 
Ref. [40], together with the phenomenology associated to the exotic fermions and scalar fields. 
As a consequence, the next section will only focus on the ALP phenomenology.

4. The ALP phenomenology

Performing fermion field redefinitions, the Lagrangian in Eq. (5) can be rewritten such that 
the axion or ALP has only derivative couplings with fermions. In particular, these models predict 
that the axion or ALP couples to both top and bottom quarks: these interactions can be written as

La ⊃ −caψψ ′
∂μa

2fa

ψ̄γ μγ5ψ
′ , (11)

where the couplings caψψ ′ depends on the specific model considered and can be read in Table 3.
Moreover, at the quantum level, the derivative of the axial current is non-vanishing, giving 

rise to the following effective axion-gauge boson couplings: in the physical basis for the gauge 
bosons,

δL eff
a ⊃ − αs

8π
cagg

a

fa

Ga
μνG̃

aμν − αem

8π
caγ γ

a

fa

FμνF̃
μν+

− αem

8π
caZZ

a

fa

ZμνZ̃
μν − αem

8π
caγZ

a

fa

FμνZ̃
μν+

− αem
caWW

a
W+

μνW̃
−μν ,

(12)
8π fa
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Table 3
Values of the coefficients 
caψψ ′ in terms of the 
charge ns for the top and 
bottom quarks.

catt cabb

M+
1 2ns 2ns

M−
1 2ns −2ns

M+
2 3ns 3ns

M−
2 3ns −3ns

M+
3 4ns 4ns

M−
3 4ns −4ns

M+
4 3ns 3ns

M−
4 3ns −3ns

M+
5 2ns 2ns

M−
5 2ns −2ns

M+
6 ns ns

M−
6 ns −ns

M+
7 ns ns

M−
7 ns −ns

where X̃μν ≡ εμνρσ Xρσ /2 and the convention ε1230 = +1 is used. The mass independent 
anomaly contributions to the coefficients cai are explicitly reported in Appendix Eq. (A.2), in 
terms of the PQ fermionic charges, while in Table 4 the anomalous coefficients for the seven 
models summarised in Table 2 are listed.2 These coefficients include the contributions of all the 
fermions that do couple with a.

It is now possible to discuss the phenomenological features of the seven AMLσM construc-
tions presented. Firstly, all models, but M±

7 , have a non-vanishing coupling between the ALP 
and two photons. As a consequence, the strong bound present on this coupling - reported in 
Eq. (3) - translates into a constraint on the scale fa that should be much larger than the EW scale, 
introducing a strong Hierarchy problem in the scalar potential (tree and loop level [54]). In order 
to avoid this fine-tuning problem, ma � 0.1 GeV has to be considered for all the models M±

1−6. 
As a drawback, none of these ALP models provide a solution to the Strong CP problem: such a 
large mass would correspond to an explicit breaking of the shift symmetry, perturbing the QCD 
potential and preventing the classical solution of the QCD axion models [38,42–45,55,56].

On the other hand, having fa in the TeV region opens the possibility of direct searches of 
ALP signatures at present and future experimental facilities [40,50,57]. An ALP with mass ma ∼
1 GeV will be considered in the following as an illustration.

For an ALP with a mass in the GeV region several constraints are present on its couplings 
to gauge bosons. Assuming that the ALP does not decay within the detector and therefore is 

2 Only one generation of SM fermions has been considered here, consistently with the formulation of the AMLσM 
presented in the previous section. Once extending this study to the realistic case of three generations, the values reported 
in Table 4 has to be modified: for example, assuming that the same charges will be adopted for all the fermion generations, 
the numerical values in the table would have to be multiplied by a factor 3.
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Table 4
Values of the coefficients cai in terms of the charge ns . tθ and sθ stand for the tangent 
and the sine of the Weinberg angle respectively.

cagg caγ γ caZZ caγZ caWW

M+
1 −2ns − 10

3 ns − 1
3 ns t

2
θ − 3ns

t2
θ

2
3 ns tθ − 6ns

tθ
− 6ns

s2
θM−

1 0 −2ns −2ns t
2
θ 4ns tθ 0

M+
2 −4ns − 20

3 ns − 13
6 ns t

2
θ − 9ns

2t2
θ

13
3 ns tθ − 9ns

tθ
− 9ns

s2
θM−

2 0 −4ns −4ns t
2
θ 8ns tθ 0

M+
3 4ns

92
3 ns

74
3 ns t

2
θ + 6ns

t2
θ

− 148
3 ns tθ + 12ns

tθ

12ns

s2
θM−

3 0 4ns 4ns t
2
θ −8ns tθ 0

M+
4 6ns 34ns

53
2 ns t

2
θ + 15ns

2t2
θ

−53ns tθ + 15ns
tθ

15ns

s2
θM−

4 0 6ns 6ns t
2
θ −12ns tθ 0

M+
5 8ns

112
3 ns

85
3 ns t

2
θ + 9ns

t2
θ

− 170
3 ns tθ + 18ns

tθ

18ns

s2
θM−

5 0 8ns 8ns t
2
θ −16ns tθ 0

M+
6 −10ns − 122

3 ns − 163
6 ns t

2
θ − 27ns

2t2
θ

163
3 ns tθ − 27ns

tθ
− 27ns

s2
θM−

6 0 −10ns −10ns t
2
θ 20ns tθ 0

M+
7 0 0 3

2 ns t
2
θ − 3ns

2t2
θ

−3ns tθ − 3ns
tθ

− 3ns

s2
θM−

7 0 0 0 0 0

treated as missing energy in data analyses, there are bounds from collider searches. In particular 
LEP data [58,59] has been used to constrain ALP coupling to two photons [60] once the axion is 
produced through a virtual photon: the corresponding bound on the scale fa reads

fa

|caγ γ | � 1 GeV . (13)

This bound may be improved by two order of magnitudes with dedicated analyses based on 
data from BaBar and from Belle-II [60–62]. Moreover, a similar sensitivity may be obtained 
considering the ϒ(nS) → γ + inv. decay [62,63].

Studies on mono-W and mono-Z present LHC data [64] lead to

fa

|caWW | � 0.7 GeV ,
fa

|caZZ| � 1.4 GeV , (14)

while LEP data [58,59] on the radiative Z decays has been used to infer a bound on aγZ one [62]:

fa

|caγZ| � 18 GeV . (15)

Future LHC sensitivity prospects on mono-W and mono-Z considering an integrated luminosity 
of 3000 fb−1 improve the first two bounds of an order of magnitude [64].

On the other side, rare meson decays provide strong constraints on the ALP coupling to two 
W ’s. In the case of an invisible ALP, the most stringent bounds arise from Belle limits on B(B →
Kνν̄) [65]. By assuming that only caWW contributes, it leads to

fa � 10 GeV . (16)
|caWW |
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Belle-II expected sensitivity improves this bound of approximately one order of magnitude [61,
66].

Finally, considering the ALP coupling to top and bottom quarks, B and ϒ decays provide 
interesting bounds. Once considering that B+ → K+a proceeds only via a loop diagram con-
taining the catt coupling, the bound that can be extracted from Belle data [65] for ma ≈ 1 GeV
reads [67]

fa

|catt | � 200 TeV , (17)

while Belle-II may improve this bound of a factor of 5. In general, both caWW and catt contribute 
to this decay and may exist part of the parameter space where a cancellation take place, relaxing 
the bounds in Eqs. (16) and (17). As discussed in Ref. [67], this cancellation is possible only if 
both caWW and catt are loop-induced: this is not the case in the models discussed here, where 
catt is at tree-level.

Finally, data from BaBar [68,69] and Belle [70] on ϒ(ns) → γ + inv. put bounds on fa/|cabb|, 
but they are sub-dominant with respect to the previous bound from B decays, reaching a sensi-
tivity of a few TeV [63]: for 10 keV � ma � 5 GeV,

fa

|cabb| � 2.5 TeV . (18)

Also for ϒ(ns) → γ + inv., in general, the branching ratio would depend on both cabb and caγ γ : 
however, in the models considered here, caγ γ is weighed by loop factors and then its contribution 
is negligible with respect to the one proportional to cabb (for the generic analysis see Ref. [63]). 
For heavier ALPs, there are only very weak bounds from colliders or B-factories, that would 
allow fa/|cabb| to be in the TeV range. On the other side, for lighter masses, ma � 10 keV, much 
stronger bounds from stellar cooling data [71] are obtained:

fa

|catt | � 1.2 × 106 TeV for the top

fa

|cabb| � 6.1 × 102 TeV for the bottom .

(19)

These constraints have been derived translating the existing bounds on axion coupling to elec-
trons into constraints on the axion emission occurring via a top or bottom loop.

When the ALP decays within the detector, other observables need to be considered. Focussing 
on the radiative ALP decay, LEP data [58,59] on the radiative Z decays can again be used to infer 
a bound on aγZ coupling [62]:

fa

|caγZ| � 1.8 GeV , (20)

under the assumption that B(a → γ γ ) = 1. These bounds may be improved by two order of 
magnitude with dedicated analyses both at B-factories and at LHC [60–62].

Although a decays dominantly into photons in the models considered here (caγ γ > cagg), the 
coupling with gluons can provide interesting phenomenology and can be bounded considering 
the BaBar results on the branching ratio of ϒ(2s, 3s) → γ a(→ jj) [72]: for ma = 1 GeV,

fa � 80 GeV . (21)
|cagg|
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This bound is expected to reach values of 0.2 TeV at Belle-II [73].
Finally, considering the ALP coupling with bottom quarks, data on b → sg or b → sqq from 

CLEO collaboration [74] allows to put bound on fa/|cabb| [75]: for 0.4 GeV � ma � 4.8 GeV,

fa

|cabb| � 2 TeV . (22)

On the other side, B± → K± a(→ 2γ ) decay, that could be studied at Belle-II, may be ex-
tremely useful to improve on these bound and will work as a test for the models presented here. 
Assuming that Belle-II reached a sensitivity of 10−6 on B(B → Kγγ ), strong bound can be in-
ferred to aWW and att couplings: values of fa as large as |caWW | ×60 GeV and |catt | ×300 TeV
could be probed.

To understand which bounds apply to the models listed above, the ALP decay length must be 
considered. It is generically given by [64]

d ∼ 10−2

c2
ai

(
GeV

ma

)4 (
fa

TeV

)2 ( |pa |
GeV

)
. (23)

For an ALP of ma ∼ 1 GeV, fa ∼ 1 TeV and typical momentum |pa| ∼ 100 GeV, the travelling
distance before decaying into two photons (the dominant channel as |caγ γ | 	 |cagg|) is around 
1/c2

aγ γ m, that is in the interval 1 mm − 0.1 m for ns = 1, depending on the specific value of 
caγ γ reported in Table 4. Therefore, all the ALPs described in the models M±

1−6 decay within 
the detector and the bounds in Eqs. (20)–(22) apply. The models M±

7 , instead, predict vanishing 
ALP couplings with both photons and gluons and therefore these ALPs are stable at tree level 
for masses up to ∼ 10 GeV: for these models the bounds in Eqs. (13)-(18) apply.

Considering the explicit values of the axion coupling, taking ns = 1, the strongest bounds on 
fa for each model M±

1−6 read as follows:

M±
1 −→ fa � 4 TeV , M±

2 −→ fa � 6 TeV ,

M±
3 −→ fa � 8 TeV , M±

4 −→ fa � 6 TeV ,

M±
5 −→ fa � 4 TeV , M±

6 −→ fa � 2 TeV .

(24)

For all these cases, fa can be in the TeV range, where the SO(5) breaking mechanism is expected 
to occur.

On the other side, to summarise the most relevant constraints for M±
7 , the plots in Fig. 1

are shown. As can be seen, pretty strong constraints are present for ma � 4.8 GeV: in this case, 
fa � 200 TeV and therefore a mild tuning is present in the scalar potential of the models M±

7 . 
For masses larger than this value, but up to 10 GeV the constraints are milder and fa ∼O(1) TeV, 
avoiding any tuning in the scalar potential.

Finally, it is possible to comment a posteriori on the assumed value for ma . In ALP models, 
corrections to the QCD potential are expected to be present such that the inverse proportionality 
between ma and fa gets broken: this is achieved with breaking terms at least of the order of 
�QCD ≈ 100 MeV. As a consequence, the ALP mass is expected to be of the same order of 
these breaking terms and then larger than ∼ 0.1 GeV. On the order side, the ALP Lagrangian is 
written as an expansion in inverse powers of fa , and for the EFT description to be meaningful, 
the ALP should be lighter than fa . The benchmark scenario of ma = 1 GeV enters in this range 
of values.
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Fig. 1. Exclusions regions for the models M±
7 . The blue region corresponds to the bound from B+ → K+a in Eq. (17). 

The red region to the bound from ϒ(ns) → γ + inv. in Eq. (18). The green region to the collider bound from the radiative 
Z decay in Eq. (15). The latter does not apply to the M−

7 model because ALP only couples at tree level to bottom and 
top quarks. (For interpretation of the colours in the figure, the reader is referred to the web version of this article.)

5. Conclusions

The strong bounds on axion/ALP couplings to photons and electrons imply very high values 
for the PQ breaking scale fa . This represents the origin of a hierarchy problem present in most of 
the axion models: the quartic coupling in the potential between the Higgs field and the complex 
scalar field, associated to the axion, can be hardly ever prevented by symmetry arguments. As a 
consequence, avoiding fine-tuning among parameters, any other energy scale tends to be close to 
fa . The AMLσM is a well defined and renormalisable framework where to address this problem. 
To delimitate the landscape of possible PQ charge assignments, three criteria have been imposed: 
i) third generation SM fermion masses are generated at LO; ii) the SO(5) and U(1)PQ breaking 
scales coincide; iii) the model depends on the minimal possible number of parameters. Seven 
possible scenarios have been identified.

For ALPs with masses larger than 10 MeV, the aforementioned astrophysical bounds on 
couplings to photons and electrons are avoided. For concreteness, a mass of 1 GeV has been 
considered. This value is within the expected range of values for an ALP, that naturally has a 
mass larger than �QCD but smaller than fa . In six of the models, the ALP decays within the 
detector and the most relevant bounds come from CLEO: they can be translated into constraints 
of the scale of the ALP, fa � 2 ÷ 8 TeV. For the seventh model, the ALP does not decay and the 
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strongest constraints arise from B+ → K+a decay, the radiative ϒ decay and collider analysis on 
radiative Z decay: in this case, for ALP with masses up to 4.5 GeV, fa = f ∼ 200 TeV, while 
for larger masses up to ∼ 10 GeV much weaker bounds are present and fa = f ∼ O(1) TeV. 
Therefore, in all the realisations presented, the PQ and SO(5) breaking scales can satisfy to 
fa = f ≈ O(1) TeV and then these models have the possibilities to be tested soon both at col-
liders and at Belle-II (the only exception is M±

7 and for ALP masses up to ∼ 4.8 GeV). In 
conclusion, these are testable and natural AMLσM, free from any fine-tuning in the scalar po-
tential, and where the typical hierarchy problem that affects axion and ALP models is avoided.
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Appendix A. Axion Lagrangian

The axion or ALP Lagrangian in the basis where axion-fermion couplings are only derivative 
is given by

La = −∂μa

2fa

[
�ψψ̄γ μψ +�χχ̄γ μχ +�ψ ′ψ̄ ′γ μψ ′ +�χ ′ χ̄ ′γ μχ ′ +�t t̄γ

μt +�bb̄γ μb
]
.

(A.1)

The axion or ALP couplings with gauge bosons arise due to the anomalous nature of the PQ 
symmetry. They can be read out in the following effective Lagrangian that encodes the traditional 
1-loop contributions of all the fermions:
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Table 5
Definition of all the models in terms of the PQ charges of the fields as a function of ns .

M+
1 nψL

= nχR
= nψR

= nχL
− ns = nqL

= ntR − 2ns=nψ ′
L

= nχ ′
R

= nψ ′
R

= nχ ′
L

− ns = nbR
− 2ns

M−
1 nψL

= nχR
= nψR

= nχL
− ns = nqL

= ntR − 2ns = nψ ′
L

= nχ ′
R

= nψ ′
R

= nχ ′
L

+ ns = nbR
+ 2ns

M+
2 nψL

= nχR
= nψR

= nχL
− ns = nqL

+ ns = ntR − 2ns = nψ ′
L

= nχ ′
R

= nψ ′
R

= nχ ′
L

− ns = nqL
+ ns = nbR

− 2ns

M−
2 nψL

= nχR
= nψR

= nχL
− ns = nqL

+ ns = ntR − 2ns = nψ ′
L

+ 2ns = nχ ′
R

+ 2ns = nψ ′
R

+ 2ns = nχ ′
L

+ 3ns = nbR
+ 4ns

M+
3 nψL

= nχR
= nψR

+ ns = nχL
− ns = nqL

+ 2ns = ntR − 2ns = nψ ′
L

= nχ ′
R

= nψ ′
R

+ ns = nχ ′
L

− ns = nbR
− 2ns

M−
3 nψL

= nχR
= nψR

+ ns = nχL
− ns = nqL

+ 2ns = ntR − 2ns = nψ ′
L

+ 4ns = nχ ′
R

+ 4ns = nψ ′
R

+ 3ns = nχ ′
L

+ 5ns = nbR
+ 6ns

M+
4 nψL

= nχR
= nψR

+ ns = nχL
− ns = nqL

+ ns = ntR − 2ns = nψ ′
L

= nχ ′
R

= nψ ′
R

+ ns = nχ ′
L

− ns = nbR
− 2ns

M−
4 nψL

= nχR
= nψR

+ ns = nχL
− ns = nqL

+ ns = ntR − 2ns = nψ ′
L

+ 2ns = nχR
+ 2ns = nψR

+ ns = nχL
+ 3ns = nbR

+ 4ns

M+
5 nψL

= nχR
= nψR

+ ns = nχL
− ns = nqL

= ntR − 2ns = nψ ′
L

= nχ ′
R

= nψ ′
R

+ ns = nχ ′
L

− ns = nbR
− 2ns

M−
5 nψL

= nχR
= nψR

+ ns = nχL
− ns = nqL

= ntR − 2ns = nψ ′
L

= nχ ′
R

= nψ ′
R

− ns = nχ ′
L

+ ns = nbR
+ 2ns

M+
6 nψL

= nχR
= nψR

− ns = nχL
− ns = nqL

− ns = ntR − 2ns = nψ ′
L

= nχ ′
R

= nψ ′
R

− ns = nχ ′
L

− ns = nbR
− 2ns

M−
6 nψL

= nχR
= nψR

− ns = nχL
− ns = nqL

− ns = ntR − 2ns = nψ ′
L

− 2ns = nχ ′
R

− 2ns = nψ ′
R

− ns = nχ ′
L

− ns = nbR

M+
7 nψL

= nχR
= nψR

= nχL
− ns = nqL

− ns = ntR − 2ns = nψ ′
L

= nχ ′
R

= nψ ′
R

= nχ ′
L

− ns = nbR
− 2ns

M−
7 nψL

= nχR
= nψR

= nχL
− ns = nqL

− ns = ntR − 2ns = nψ ′
L

− 2ns = nχ ′
R

− 2ns = nψ ′
R

− 2ns = nχ ′
L

− ns = nbR

δL eff
a ⊃ − αs

8π

[
5
(
�ψ + �ψ ′

) + �χ + �χ ′ + �t + �b

]
GμνG̃

μν+

− αem

8π

[
6�ψ

(
1 + 2

(
Y 2

K + Y 2
Q

)
+ Y 2

T5

)
+ 6�ψ ′

(
1 + 2

(
Y 2

K ′ + Y 2
Q′

)
+ Y 2

B5

)
+

+ 6
(
�χY 2

T1
+ �χ ′Y 2

B1

)
+ 6

(
�tY

2
tR

+ �bY
2
bR

)]
FμνF̃

μν+

− αem

8π

6

sin2 θW

[
2
(
�ψ + �ψ ′

) + �t + �b

4

]
W+

μνW̃
−μν+

− αem

8π

[
6�ψ

(
1

tan2 θW

+ tan2 θW

(
2
(
Y 2

K + Y 2
Q

)
+ Y 2

T5

))
+ 6�χ tan2 θWY 2

T1
+

+ 6�ψ ′
(

1

tan2 θW

+ tan2 θW

(
2
(
Y 2

K ′ + Y 2
Q′

)
+ Y 2

B5

))
+ 6�χ ′ tan2 θWY 2

B1
+

+ 3
�t + �b

4

(
1

tan2 θW

− tan2 θW

)
+ 6 tan2 θW

(
�tY

2
t + �bY

2
b

)]
ZμνZ̃

μν+

− αem

8π

[
12�ψ

(
1

tan θW

− tan θW

(
2
(
Y 2

K + Y 2
Q

)
+ Y 2

T5

))
− 12 tan θW�χY 2

T1
+

+ 12�ψ ′
(

1

tan θW

− tan θW

(
2
(
Y 2

K ′ + Y 2
Q′

)
+ Y 2

B5

))
− 12 tan θW�χ ′Y 2

B1
+

+ 3
�t + �b

2

(
1

tan θW

+ tan θW

)
− 12 tan θW

(
�tY

2
t + �bY

2
b

)]
FμνZ̃

μν .

(A.2)

In the previous expression, �f are defined in Eqs. (8), (9) and (10), while nf is the PQ charge of 
the generic field f that are reported for simplicity in Table 5.
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