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Abstract

In this paper, we analyze some theoretical properties of the problem of minimizing a quadratic func-

tion with a cubic regularization term, arising in many methods for unconstrained and constrained

optimization that have been proposed in the last years. First we show that, given any stationary

point that is not a global solution, it is possible to compute, in closed form, a new point with a

smaller objective function value. Then, we prove that a global minimizer can be obtained by comput-

ing a �nite number of stationary points. Finally, we extend these results to the case where stationary

conditions are approximately satis�ed, discussing some possible algorithmic applications.

Keywords. Unconstrained optimization. Cubic regularization. Global minima

1 Introduction

In this paper, we address the solutions of the following (possibly non-convex) optimization problem:

min
s∈Rn

m(s) := cT s+
1

2
sTQs+

1

3
σ‖s‖3, (1)

where c ∈ Rn, Q is a symmetric n × n matrix, σ is a positive real number and, here and in the rest

of the article, ‖·‖ is the Euclidean norm.

In recent years, there has been a growing interest in studying the properties of problem (1),

since functions of the form of m(s) are used as local models (to be minimized) in many algorithmic

frameworks for unconstrained optimization [14, 18, 19, 17, 6, 7, 12, 1, 2, 4, 11, 3, 5], which have been
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even extended to the constrained case [16, 8, 2]. To be more speci�c, let us consider the unconstrained

optimization problem

min
x∈Rn

f(x),

where f : Rn → R is a twice continuously di�erentiable function. The class of methods proposed in

the above cited papers is mostly characterized by the iteration xk+1 = xk + sk, being sk a (possibly

approximate) minimizer of the cubic model

mk(s) := f(xk) +∇f(xk)T s+
1

2
sT∇2f(xk)s+

1

3
σk‖s‖3,

where σk is a suitably chosen positive real number. Interestingly, it can be shown that, under suitable

assumptions, this algorithmic scheme is able to achieve quadratic convergence rate and a worst-case

iteration complexity better than the gradient method. In particular, if ∇2f(x) is Lipschitz continuous

and sk is a global minimizer of mk(s), Nesterov and Polyak [18] proved a worst-case iteration count

of order O(ε−3/2) to obtain ‖∇f(xk)‖ ≤ ε. Cartis, Gould and Toint [6, 7] generalized this result,

obtaining the same complexity bound, but allowing for a symmetric approximation of ∇2f(xk) to be

used inmk(s) and relaxing the condition that sk is a global minimizer ofmk(s). Moreover, superlinear

and quadratic convergence rate were proved under appropriate assumptions, but without requiring

∇2f(xk) to be globally Lipschitz continuous.

The intuition behind the algorithm proposed by Cartis, Gould and Toint is that the parameter σk

plays the same role as the (reciprocal of the) trust-region radius in trust-region methods. Moreover,

some theoretical properties of trust-region models can be extended to (1), such as the existence of

necessary and su�cient conditions for global minimizers even when m(s) is non-convex [14, 18, 6]. In

this fashion, Cartis, Gould and Toint proposed the Adaptive Regularization algorithm using Cubics

(ARC) that, besides having the theoretical convergence properties mentioned above, is in practice

comparable with state-of-the-art trust-region methods.

In this respect, in the above cited papers di�erent strategies were proposed to minimize mk(s). In

particular, in [18, 6] some iterative techniques were devised to compute global minimizers, that are

based on solving a one-dimensional non-linear equation.

Starting from these considerations, here we focus on the solutions of problem (1), pointing out

some theoretical properties that, besides their own interest, may be useful from an algorithmic point

of view. In particular, we �rst extend the results obtained in [15] for trust-region models and we

show that, given any stationary point of (1) that is not a global minimizer, we can compute, in closed

form, a new point that reduces m(s). So, a global minimizer of (1) can be obtained by repeating this

step a �nite number of times, that is, computing at most 2(k + 1) stationary points, where k is the

number of distinct negative eigenvalues of the matrix Q. Further, we show how this strategy can be

generalized to the case where stationary conditions are approximately satis�ed, opening to a possible

practical usage of the proposed results.

The rest of the paper is organized as follows. Section 2 is the core of the paper, where we point

out some theoretical properties of the stationary points of (1) and analyze how to compute global

minima by escaping from stationary points that are not global minimizers. In Section 3 we generalize

these properties, considering approximate stationary points, and we brie�y discuss how these results

can used in a more general framework. Finally, we draw some conclusions in Section 4.
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2 Properties of stationary points

In this section, we present the main results of the paper. First, let us report the de�nition of stationary

points of problem (1) and recall a known result on necessary and su�cient conditions for global

optimality, whose proof can be found in [6]. From now on, we indicate with I the n × n identity

matrix.

De�nition 1. We say that s∗ ∈ Rn is a stationary point of problem (1) if

∇m(s∗) = c+Qs∗ + σ‖s∗‖s∗ = 0,

or equivalently,

c+Qs∗ + λs∗ = 0, (2)

λ = σ‖s∗‖. (3)

Theorem 1. A point s∗ ∈ Rn is a global minimizer of problem (1) if and only if it satis�es stationary

conditions (2)�(3) and the matrix (Q + σ‖s∗‖I) is positive semide�nite. Moreover, s∗ is unique if

(Q+ σ‖s∗‖I) is positive de�nite.

Now, exploiting the close relation between problem (1) and the trust-region model (see [9] for an

overview on trust-region methods), we extend the results obtained in [15] to show that

(i) given a stationary point s̄ of (1) that is not a global minimizer, we can compute, in closed form,

a new point ŝ such that m(ŝ) < m(s̄);

(ii) a global minimizer of (1) can be obtained by computing at most 2(k + 1) stationary points,

where k is the number of distinct negative eigenvalues of the matrix Q.

We start by proving the �rst point, as stated in the following theorem.

Theorem 2. Let s̄ be a stationary point of problem (1). We de�ne the point ŝ as follows:

(a) if cT s̄ > 0, then

ŝ := −s̄;

(b) if cT s̄ ≤ 0 and a vector d ∈ Rn exists such that dT (Q+ σ‖s̄‖I)d < 0,

(i) if s̄ = 0, then

ŝ := s̄+ αd,

with

0 < α < − 3 dTQd

2σ‖d‖3
;

(ii) if s̄ 6= 0 and s̄T d 6= 0, then

ŝ := s̄− 2
s̄T d

‖d‖2
d;

(iii) if s̄ 6= 0 and s̄T d = 0, then

ŝ := s̄− 2
s̄T z

‖z‖2
z,

where z := s̄+ αd and

α >
cT d−

√
(cT d)2 + (cT s̄)

[
dT (Q+ σ‖s̄‖I)d

]
dT (Q+ σ‖s̄‖I)d

.
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We have that

m(ŝ) < m(s̄).

Proof. In case (a), we can write

m(ŝ) = m(−s̄) = cT (−s̄) +
1

2
s̄TQs̄+

1

3
σ‖s̄‖3

< cT s̄+
1

2
s̄TQs̄+

1

3
σ‖s̄‖3 = m(s̄).

Now, we consider case (b) and distinguish the three subcases.

(i) From (2)�(3), we have that c = 0. Thus, we can write

m(s̄+ αd) = m(αd) =
1

2
α2dTQd+

1

3
σα3‖d‖3, ∀α ∈ Rn.

Consequently,

m(s̄+ αd) =
1

6
α2(3dTQd+ 2σα‖d‖3) < 0 = m(s̄),

for all 0 < α < − 3 dTQd

2σ‖d‖3
.

(ii) First, we observe that∥∥∥∥s̄− 2
s̄T d

‖d‖2
d

∥∥∥∥2 = ‖s̄‖2 +

(
2
s̄T d

‖d‖2

)2

‖d‖2 − 4
s̄T d

‖d‖2
(s̄T d) = ‖s̄‖2. (4)

Moreover, the function m(s) can be written as

m(s) = cT s+
1

2
sT (Q+ σ‖s‖I)s− 1

6
σ‖s‖3. (5)

Using (4) and (5), we can write m

(
s̄− 2

s̄T d

‖d‖2
d

)
as

cT
(
s̄− 2

s̄T d

‖d‖2
d

)
+

1

2

(
s̄− 2

s̄T d

‖d‖2
d

)T
(Q+ σ‖s̄‖I)

(
s̄− 2

s̄T d

‖d‖2
d

)
− 1

6
σ‖s̄‖3.

Rearranging and taking into account that ∇m(s̄) = Qs̄+ σ‖s̄‖s̄+ c, we obtain

m

(
s̄− 2

s̄T d

‖d‖2
d

)
= m(s̄) +

1

2

(
2
s̄T d

‖d‖2

)2

dT (Q+ σ‖s̄‖I)d− 2
s̄T d

‖d‖2
∇m(s̄)T d. (6)

Stationary conditions (2)�(3) imply that ∇m(s̄) = 0. Exploiting the fact that dT (Q+σ‖s̄‖I)d <

0, we get m

(
s̄− 2

s̄T d

‖d‖2
d

)
< m(s̄).

(iii) Using the de�nition of z, we can write

zT (Q+ σ‖s̄‖I)z = (s̄+ αd)T (Q+ σ‖s̄‖I)(s̄+ αd)

= s̄T (Q+ σ‖s̄‖I)s̄+ α2dT (Q+ σ‖s̄‖I)d+ 2αdT (Q+ σ‖s̄‖I)s̄.
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From stationary conditions (2)�(3), we have that Qs̄+ σ‖s̄‖s̄ = −c. So, we obtain

zT (Q+ σ‖s̄‖I)z = α2dT (Q+ σ‖s̄‖I)d− 2αcT d− cT s̄.

It is straightforward to verify that the right-hand side of the above equality is negative for all

α > α̃, where

α̃ =
cT d−

√
(cT d)2 + (cT s̄)

[
dT (Q+ σ‖s̄‖I)d

]
dT (Q+ σ‖s̄‖I)d

.

Consequently, since z = s̄ + αd with α > α̃, it follows that zT (Q + σ‖s̄‖I)z < 0. We can thus

proceed as in case (ii) by de�ning the point ŝ = s̄− 2
s̄T z

‖z‖2
z and we get the result.

Remark 1. Conditions of Theorem 2 are satis�ed if and only if the stationary point s̄ is not a global

minimizer. It follows from the fact that, if (a) or (b) hold at s̄, then s̄ is not a global minimizer; vice

versa, if s̄ is not a global minimizer, then (Q + σ‖s̄‖I) is not positive semide�nite (see Theorem 1)

and then (b) holds.

Now, we show how the above result can be exploited to obtain a global minimizer of (1) by

computing a �nite number of stationary points. We �rst need the following lemma, stating that two

stationary points of problem (1) with the same norm produce the same objective value.

Lemma 1. Let ŝ and s̄ be two points satisfying stationary conditions (2)�(3) with the same λ. Then,

m(ŝ) = m(s̄).

Proof. For every pair (s, λ) satisfying (2)�(3), we can write

m(s) = cT s+
1

2
sT (−c− λs) +

1

3
σ‖s‖3

=
1

2
cT s− 1

2
λ‖s‖2 +

1

3
σ‖s‖3 =

1

2
cT s− 1

6
σ‖s‖3.

Then,

m(ŝ) =
1

2
cT ŝ− 1

6
σ‖ŝ‖3 = −1

2
s̄T (Q+ λI)ŝ− 1

6
σ‖s̄‖3

=
1

2
cT s̄− 1

6
σ‖s̄‖3 = m(s̄).

The following proposition establishes a bound on the maximum number of stationary points with

di�erent norm. The proof follows the same line of arguments used in [6] to characterize global

minimizers of the cubic model. It is entirely reported here for the sake of completeness.

Proposition 1. At most 2(k + 1) points that satisfy (2)�(3) with distinct values of λ exist, where k

is the number of distinct negative eigenvalues of Q.
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Proof. First, we observe that if λ = 0, then s = 0 is the only point that satis�es (2)�(3). So, in the

following we consider the case in which λ > 0 (i.e., s 6= 0). Let V ∈ Rn×n be an orthonormal matrix

such that

V TQV = M,

where M := diagi=1,...,n{µi} and µ1 ≤ . . . ≤ µn are the eigenvalues of Q. Now, we can introduce the

vector a ∈ Rn and consider the transformation

s = V a.

Pre-multiplying (2) by V T , we get

V T (Q+ λI)s = −V T c,

and then

(M + λI)a = −β,

where β = −V T c.
The above expression can be equivalently written as

ai = − βi
µi + λ

, i = 1, . . . , n. (7)

Moreover, from (3) we get

λ2 = σ2‖s‖2 = σ2‖V a‖2 = σ2‖a‖2. (8)

Using (7) and (8), we can rewrite the stationary conditions as follows:g(λ) =
1

σ2
,

λ > 0,
(9)

where

g(λ) :=
1

λ2

n∑
i=1

β2
i

(µi + λ)2
.

Now, we have two cases.

(i) βi = 0 for all i = 1, . . . , n (i. e., c = 0). It follows that g(λ) = 0 in all the domain and system (9)

does not admit solutions. In this case, only s = 0 satis�es stationary conditions (2)�(3).

(ii) An index i ∈ {1, . . . , n} exists such that βi 6= 0 (i. e., c 6= 0). Without loss of generality, we

assume that µ1, . . . , µp ≤ 0, with p ≤ n. Then g(λ) is de�ned in the following n+2 subintervals:

(−∞,−µn) ∪ (−µn,−µn−1) ∪ . . . ∪ (−µp+1, 0) ∪
(0,−µp) ∪ . . . ∪ (−µ2,−µ1) ∪ (−µ1,+∞).

Computing the derivatives of g(λ), we obtain

d

dλ
g(λ) = −2

n∑
i=1

β2
i [λ(µi + λ)]−3(µi + 2λ),

d2

dλ2
g(λ) = 2

n∑
i=1

β2
i [λ(µi + λ)]−4

[
10λ2 + 10µiλ+ 3µ2

i ].
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It is straightforward to verify that
d2

dλ2
g(λ) > 0 in all the points where g(λ) is de�ned, that is,

g(λ) is strictly convex in all the non-empty subintervals that de�ne its domain.

Taking into account that lim
λ→0

g(λ) = +∞, lim
λ→−µi

g(λ) = +∞ for all βi 6= 0 and lim
λ→±∞

g(λ) = 0,

we get that g(λ) has at most 2(n + 1) roots: at most one in each extreme subinterval and at

most two in all the other subintervals.

Now, let k ≤ p be the number of distinct negative eigenvalues µi. It follows that system (9) has at

most 2k+ 1 solutions: at most two in each subinterval (0,−µk), (−µk,−µk−1), . . . , (−µ2,−µ1),

and at most one in the subinterval (−µ1,+∞). Taking into account the case λ = 0, we conclude

that there exist at most 2(k + 1) distinct values of λ satisfying stationary conditions (2)�(3).

From Lemma 1 and Proposition 1, we easily get the following corollary, establishing a bound on

the maximum number of distinct values assumed by the objective function m(s) at stationary points.

Corollary 1. The maximum number of distinct values of the objective function m(s) at stationary

points is 2(k + 1), where k is the number of distinct negative eigenvalues of Q.

At least from a theoretical point of view, Theorem 2 and Corollary 1 suggest a possible iterative

strategy to obtain a global minimizer of problem (1). Namely, we can compute a stationary point s̄

by some local algorithm and check the conditions of Theorem 2: if none of them is satis�ed, then s̄

is a global minimizer (see Remark 1); otherwise, we get a new point ŝ such that m(ŝ) < m(s̄) and,

starting from ŝ, we can compute a new stationary point and iterate. Corollary 1 ensures that this

procedure is �nite and returns a global minimizer of problem (1).

To be rigorous, the above strategy is well de�ned under the assumption that stationary points can

be computed in a �nite number of iterations by a local algorithm. Unfortunately, optimization meth-

ods only ensure asymptotic convergence and, in practice, a point s̄ is returned such that ‖∇m(s̄)‖ ≤ ε,
being ε a desired tolerance. In the next section, we show how Theorem 2 can be generalized to cope

with this case and discuss possible algorithmic applications.

3 Extension to approximate stationary points

In this section, �rst we extend Theorem 2 to the case where stationary conditions are approximately

satis�ed, and then we brie�y discuss how these results may be used in an algorithmic framework,

showing some numerical examples.

Assuming that s̄ ∈ Rn is a non-stationary point of problem (1), of course we have ‖∇m(s̄)‖ > 0, or

equivalently, |∇m(s̄)T d| > 0 for some d ∈ Rn. The next theorem states some conditions to compute

a point ŝ such that m(ŝ) < m(s̄).

Theorem 3. Given s̄ ∈ Rn, let us de�ne the point ŝ as follows:

(a) if cT s̄ > 0, then

ŝ := −s̄;

(b) if cT s̄ ≤ 0 and a vector d ∈ Rn exists such that dT (Q+ σ‖s̄‖I)d < −ε2‖d‖2,
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(i) if s̄ = 0 and ε2 ≥ 0, then, assuming without loss of generality that cT d ≤ 0,

ŝ := s̄+ αd,

with 0 < α < − 3 dTQd

2σ‖d‖3
;

(ii) if s̄ 6= 0, s̄T d 6= 0 and ε2 ≥
∣∣∣∣∇m(s̄)T d

s̄T d

∣∣∣∣, then
ŝ := s̄− 2

s̄T d

‖d‖2
d;

(iii) if s̄ 6= 0, s̄T d = 0 and ε2 >
|∇m(s̄)T s̄|
‖s̄‖2

, then, assuming without loss of generality that

∇m(s̄)T d ≥ 0,

ŝ := s̄− 2
s̄T z

‖z‖2
z,

where z := s̄+ αd and α > 0 is su�ciently large to satisfy

zT (Q+ σ‖s̄‖I)z < −ε2‖z‖2.

We have that

m(ŝ) < m(s̄).

Proof. The proof of case (a) is the same as for Theorem 2. Now, we consider case (b) and distinguish

the three subcases.

(i) Since we are assuming that cT d ≤ 0, we can write

m(s̄+ αd) = m(αd) = αcT d+
1

2
α2dTQd+

1

3
σα3‖d‖3

≤ 1

2
α2dTQd+

1

3
σα3‖d‖3

and we obtain the result by the same arguments used in the proof of point (b)-(i) of Theorem 2.

(ii) Using (6), and exploiting the fact that dT (Q+ σ‖s̄‖I)d < −ε2‖d‖2, we get

m

(
s̄− 2

s̄T d

‖d‖2
d

)
< m(s̄)− 1

2

(
2
s̄T d

‖d‖2

)2

ε2‖d‖2 − 2
s̄T d

‖d‖2
∇m(s̄)T d

≤ m(s̄)− 1

2

(
2
s̄T d

‖d‖2

)2

ε2‖d‖2 + 2
|s̄T d|
‖d‖2

|∇m(s̄)T d|

= m(s̄)− 2
|s̄T d|
‖d‖2

(
|s̄T d|ε2 − |∇m(s̄)T d|

)
≤ m(s̄),

where the last inequality follows from the fact that ε2 ≥
∣∣∣∣∇m(s̄)T d

s̄T d

∣∣∣∣.
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(iii) Since d 6= 0, we can �rst assume that α > 0 is su�ciently large to satisfy z 6= 0. Replacing d

with z in (6), we obtain

m

(
s̄− 2

s̄T z

‖z‖2
z

)
= m(s̄) +

1

2

(
2
s̄T z

‖z‖2

)2

zT (Q+ σ‖s̄‖I)z − 2
s̄T z

‖z‖2
∇m(s̄)T z.

Taking into account that z = s̄+ αd and s̄T z = s̄T (s̄+ αd) = ‖s̄‖2, we can write

m

(
s̄− 2

s̄T z

‖z‖2
z

)
= m(s̄) +

1

2

(
2
‖s̄‖2

‖z‖2

)2

zT (Q+ σ‖s̄‖I)z − 2
‖s̄‖2

‖z‖2
∇m(s̄)T (s̄+ αd)

≤ m(s̄) +
1

2

(
2
‖s̄‖2

‖z‖2

)2

zT (Q+ σ‖s̄‖I)z − 2
‖s̄‖2

‖z‖2
∇m(s̄)T s̄

≤ m(s̄) + 2
‖s̄‖2

‖z‖2

(
‖s̄‖2 z

T (Q+ σ‖s̄‖I)z

‖z‖2
+ |∇m(s̄)T s̄|

)
,

(10)

where the �rst inequality follows from the fact that ∇m(s̄)T d ≥ 0 and α > 0. Now, let us de�ne

θ ∈ (0, 1) such that ε2 =
1

θ

|∇m(s̄)T s̄|
‖s̄‖2

. Exploiting the fact that θ ∈ (0, 1) and dT (Q+σ‖s̄‖I)d <

−ε2‖d‖2, for su�ciently large α > 0 we have(
s̄

α
+ d

)T
(Q+ σ‖s̄‖I)

(
s̄

α
+ d

)
‖s̄‖2

α2
+ ‖d‖2

=
(s̄+ αd)T (Q+ σ‖s̄‖I)(s̄+ αd)

‖s̄‖2 + α2‖d‖2
< −θε2.

Taking into account that z = s̄ + αd and ‖z‖2 = ‖s̄‖2 + α2‖d‖2, it follows that, for su�ciently

large α > 0,

zT (Q+ σ‖s̄‖I)z

‖z‖2
< −θε2.

Combining this inequality with (10), for su�ciently large α > 0 we can write

m

(
s̄− 2

s̄T z

‖z‖2
z

)
< m(s̄) + 2

‖s̄‖2

‖z‖2
(
−θε2‖s̄‖2 + |∇m(s̄)T s̄|

)
= m(s̄),

where the equality follows from the fact that ε2 =
1

θ

|∇m(s̄)T s̄|
‖s̄‖2

.

Remark 2. It is straightforward to verify that, when s̄ is a stationary point, Theorem 3 coincides

with Theorem 2.

Remark 3. Using (6), Theorem 3 can be strengthened by replacing the condition b-(ii) with the

condition that a direction d exists such that s̄ 6= 0, s̄T d 6= 0 and

1

2

(
2
s̄T d

‖d‖2

)2

dT (Q+ σ‖s̄‖I)d− 2
s̄T d

‖d‖2
∇m(s̄)T d < 0.
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Remark 4. From a computational point of view, condition (a) of Theorem 3 can be easily checked

with a negligible cost. To check condition (b), we have to verify if there exists a negative curvature

direction with respect to the matrix (Q + σ‖s̄‖I). This can be done, for example, by calculating the

smallest eigenvalue and the associate eigenvector of that matrix. If such a direction exists, we see that,

for case (b)-(i), this is enough to ensure that m(ŝ) < m(s̄). For case (b)-(ii) and (b)-(iii), we have

to check if ε2 is su�ciently large. It is easy to verify that, if ‖∇m(s̄)‖ ≤ ε, then condition (b)-(ii) is

veri�ed whenever ε2 ≥ ε‖d‖/|s̄T d|, and condition (b)-(iii) is veri�ed whenever ε2 > ε/‖s̄‖. Therefore,
the threshold value of ε2 for satisfying conditions b-(ii) and b-(iii) is related to ‖∇m(s̄)‖, that is, the
tolerance we have chosen to solve problem (1).

Let us concluding this section by discussing some possible algorithmic applications of our results,

even if de�ning a proper optimization method is beyond the scope of the paper. A �rst naive strategy

to exploit Theorem 3 is checking if one of its conditions holds after that an approximate stationary

point s̄ of problem (1) is computed with the desired tolerance by a local algorithm. If this is the case,

then we can compute the point ŝ and restart the local algorithm from ŝ. To provide some numerical

examples, we have inserted this strategy within the ARC algorithm described in [6, 7] to minimize

the cubic model at each iteration, giving rise to an algorithm that we name ARC+. In particular,

at every iteration of ARC+ and ARC, a truncated-Newton method has been used as local solver for

the minimization of the cubic model, starting from a randomly chosen point. The codes have been

written in Matlab, using built-in functions to compute eigenvalues and eigenvectors needed to check

the conditions of Theorem 3. We have considered a set of 130 unconstrained test problems of the

form minx∈Rn f(x) from the CUTEst collection [13] and, among them, we have then selected the

39 for which the two algorithms performed di�erently and both converged to a point x∗ such that

‖∇f(x∗)‖∞ ≤ 10−5 within a maximum number of iterations, set equal to 105. The results on this

subset of problems are reported in Table 1, where obj and iter denote the �nal objective value and

the number of iterations, respectively. We see that, in 28 out 39 cases, ARC+ converged in fewer

iterations. Taking a look to the performance pro�le [10] reported in Figure 1, we also observe that, on

the considered subset of problems, ARC+ is more robust than ARC in terms of number of iterations.

We have then repeated the same experiments by using the Cauchy point as starting point for the

minimization of the cubic model, but no signi�cative di�erence emerged between ARC+ and ARC.

This opens a question about possible relations between the Cauchy point and the global minimizers,

which can be subject of future research.

It is worth pointing out that the above described ARC+ method could be too expensive in terms

of CPU time, since it requires the computation of eigenvalues and eigenvectors at the end of each

local minimization. Nevertheless, a more re�ned way to exploit Theorem 3 for algorithmic pur-

poses can be based on checking if one of its conditions is satis�ed during the iterations of the local

method, instead of at the end. This can be done e�ciently when the local method is able to detect

negative curvature directions. Assuming that a sequence of points {sk} and a sequence of direc-

tions {dk} are produced by the local algorithm, since ∇2m(sk) = Q + σ‖sk‖I + σ
sk(sk)T

‖sk‖
, we have

(dk)T (Q+ σ‖sk‖I)dk = (dk)T∇2m(sk)dk − σ ((sk)T dk)2

‖sk‖
. Therefore, if dk is a negative curvature di-

rection with respect to ∇2m(sk), condition (b) of Theorem 3 is veri�ed for some ε2 ≥ 0, provided

cT s̄ ≤ 0. Then, a new point that ensures a decrease in the objective function may be easily computed.

In this case, condition (b) of Theorem 3 can therefore be checked without the need of computing eigen-

values and eigenvectors. Finally, other checks can be included in the scheme to ensure convergence of
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Table 1: Numerical results of ARC+ and ARC on CUTEst problems. ARC+ di�ers from ARC in that

a globalization strategy, outlined in Theorem 3, is used to minimize the cubic model at each iteration.

For each problem, the smallest number of iterations is highlighted in bold.

Problem n
ARC+ ARC

obj iter obj iter

BROWNAL 200 1.00e−07 103 1.00e−07 472

BROWNBS 2 7.40e−12 27552 0.00e+00 27560

CURLY10 100 −1.00e+04 82 −1.00e+04 281

CURLY20 100 −1.00e+04 53 −1.00e+04 288

CURLY30 100 −1.00e+04 39 −1.00e+04 590

DECONVU 63 9.10e−07 162 8.52e−07 167

DENSCHND 3 2.63e−07 2154 2.82e−07 2293

DIXMAANH 300 1.00e+00 424 1.00e+00 423

DIXMAANJ 300 1.00e+00 4762 1.00e+00 4739

DIXMAANK 300 1.00e+00 5335 1.00e+00 5265

DIXMAANL 300 1.00e+00 5008 1.00e+00 4941

EIGENCLS 462 4.70e−09 254 4.37e−09 258

ENGVAL2 3 8.49e−16 30 2.04e−20 50

FLETCHBV 10 −2.04e+06 551 −2.09e+06 460

GENHUMPS 10 4.49e−12 8968 2.77e−11 9283

GENROSE 100 1.00e+00 119 1.00e+00 120

GENROSEB 500 1.00e+00 505 1.00e+00 511

GROWTHLS 3 1.00e+00 271 1.00e+00 4557

GULF 3 3.51e−06 4642 3.51e−06 4640

HAIRY 2 2.00e+01 108 2.00e+01 158

HEART8LS 8 4.91e−12 86 6.97e−17 130

HUMPS 2 1.91e−10 1611 8.40e−11 1858

JENSMP 2 1.24e+02 28 1.24e+02 47

LIARWHD 100 1.39e−19 12 2.97e−20 14

LOGHAIRY 2 1.82e−01 5177 1.82e−01 5316

MEXHAT 2 −4.00e−02 523 −4.00e−02 68

NONCVXU2 100 2.33e+02 571 2.33e+02 572

NONDIA 100 1.57e−18 7 9.66e−26 9

OSCIPATH 10 1.00e+00 39 1.00e+00 22

PALMER6C 8 1.64e−02 21678 1.64e−02 17418

PALMER7C 8 6.02e−01 31863 6.02e−01 24683

PALMER8C 8 1.60e−01 33434 1.60e−01 14945

PARKCH 15 1.62e+03 65 1.62e+03 250

PFIT1LS 3 2.10e−10 501 4.75e−04 2810

SINEVAL 2 2.13e−17 101 5.40e−12 137

SPARSINE 100 1.83e−14 38 1.13e−10 39

SROSENBR 100 4.02e−14 12 2.13e−17 500

VARDIM 200 6.90e−31 36 7.29e−27 37

WATSON 12 3.57e−06 82 2.84e−06 91
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Figure 1: Performance pro�le for the number of iterations related to the numerical experiments

reported in Table 1.

such modi�cation of the local algorithm.

4 Conclusions

In this paper, we have highlighted some theoretical properties of the stationary points of problem (1),

whose solutions are of interest for many optimization methods. We have shown that, given a stationary

point of problem (1) that is not a global minimizer, it is possible to compute, in closed form, a new

point that reduces the objective function value. Then, we have pointed out how a global minimum

point of problem (1) can be obtained by computing at most 2(k+ 1) stationary points, where k is the

number of distinct negative eigenvalues of the matrix Q. Further, we have extended these results to

the case where stationary conditions are approximately satis�ed, sketching some possible algorithmic

applications.

We think that the most natural extension of the results presented in this paper is the de�nition of a

proper algorithm for unconstrained optimization, based on the iterative computation of the solutions

of problem (1), for which some preliminary ideas have been proposed at the end of Section 3. This

can be a challenging task for future research.
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