
Prehomogeneous tensor spaces

Federico Venturelli

Abstract

We re�ne the classi�cation of prehomogeneous vector spaces provided by Sato and Kimura in
the case of tensor spaces, presenting a quick way to determine whether a given tensor space is
prehomogeneous or not.

Introduction

The group GLa1(C) × · · · × GLan(C) acts naturally on Ca1 ⊗ · · · ⊗ Can : our goal is to determine
for which (a1, . . . , an) the above tensor space is prehomogeneous. We will assume n ≥ 3, otherwise the
problem is trivial.

In 1977 Sato and Kimura obtained a classi�cation of prehomogeneous vector spaces, also covering
the case of tensor spaces, based on castling transforms. Representing the space Ca1 ⊗ · · · ⊗ Can by
the n-tuple (a1, . . . , an), we say that (b1, . . . , bn) with bi ≥ 0 is a castling transform of (a1, . . . , an) (or,
equivalently, that (b1, . . . , bn) results from applying a castling transformation to (a1, . . . , an)) if there
exists σ ∈ Sn such that

(b1, . . . , bn) = (aσ(1), . . . , aσ(n−1),
n−1∏
i=1

aσ(i) − aσ(n))

We say that two n-tuples (a1, . . . , an), (b1, . . . , bn) with ai, bi ≥ 0 are castling-equivalent, and we
write (a1, . . . , an) ∼ (b1, . . . , bn), if one results from applying a �nite number of castling transformations
to the other. This is in fact an equivalence relation. We call a space Ca1 ⊗ · · · ⊗ Can (an n-tuple
(a1, . . . , an) with ai ≥ 0) minimal if it has minimal dimension (minimal product

∏n
i=1 ai) among those

of its castling-equivalence class.
Now that we have introduced the necessary de�nitions and terminology (which will be motivated

and made more precise in the next Section), we can state the classi�cation obtained by Sato and
Kimura in the case we focus on (see [SK, Section 2 Prop. 12, Section 6 Prop. 1, Section 5 Prop. 16]):

Theorem (Sato-Kimura).

1. Each castling-equivalence class contains a unique minimal space.

2. A tensor space (a1, . . . , an) is prehomogeneous if and only if it is castling-equivalent to either:

(a) A minimal space (a′1, . . . , a
′
n) satisfying

∏n−1
i=1 a

′
σ(i) > a′σ(n) ≥ 3 for some σ ∈ Sn.

(b) (1, . . . , 1, 2, 2, 2) or (1, . . . , 1, 2, 3, 3).

For example, (2, 5, 5) is minimal in its castling-equivalence class but it is not prehomogeneous, as
it does not satisfy 2 (a) nor 2 (b) (we will examine the case (2, k, k) in detail in the next Section).
However, it is in general not easy to use Sato-Kimura's theorem since, a priori, one needs to apply the
castling transformation several times: to give another example, (3, 35, 92) becomes (3, 13, 35) after a
�rst castling transformation and (3, 4, 13) after a second one; the latter space falls under case 2 (a) of
Sato-Kimura's theorem, and as such is prehomogeneous.
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Our result allows to detect in a simpler way when (a1, . . . , an) is prehomogeneous: we de�ne the
value

N(a1, . . . , an) :=

n∑
i=1

(a2i − 1)− (

n∏
i=1

ai − 1)

Notice that N is invariant under castling transformation (see Proposition 1.5) and that N(2, k, k) =
2, N(2, k, k + 1) = 3. What we obtain is that:

Theorem 1. Let n ≥ 3 and (a1, . . . , an) ∈ Nn:

1. If N(a1, . . . , an) ≤ −1 then (a1, . . . , an) is not prehomogeneous.

2. If N(a1, . . . , an) = 0 or N(a1, . . . , an) = 1 then (a1, . . . , an) is prehomogeneous.

3. If N(a1, . . . , an) = 2 then (a1, . . . , an) is castling-equivalent to either a minimal space (a′1, . . . , a
′
n)

with n ≥ 4 whose smallest element is at least 2, in which case (a1, . . . , an) is prehomogeneous,

or to a minimal space of type (1, . . . , 1, 2, k, k) for a unique k ∈ N, in which case (a1, . . . , an) is

prehomogeneous if and only if k ≤ 3.

4. If N(a1, . . . , an) ≥ 3 then (a1, . . . , an) is prehomogeneous.

The theorem shows that in order to determine whether (a1, . . . , an) is prehomogeneous or not, we
need to use castling transformations only if N(a1, . . . , an) = 2. Referring back to the previous example,
since N(3, 35, 92) = 36 we can immediately conclude that (3, 35, 92) is prehomogeneous.

Our paper is structured as follows:

1. A brief introduction on castling transformation and group actions, including an important result
by Kac (Theorem 1.6).

2. The proof of Theorem 1 for n = 3. Another proof of this case, carried out in a di�erent way,
already appeared in J. Weyman's notes [Wey] (up to a few misprints).

3. The proof of Theorem 1 in the general case.

For basic facts about prehomogeneous vector spaces and for the tensor product case we found the
notes [Man] particularly useful; a more extensive treatment can be found in [Kim]. The suggestion of
using Theorem 1.6 to investigate the prehomogeneity of tensor spaces came from G. Ottaviani.

1 Castling transformation and group actions

De�nition 1.1. Let G be an a�ne algebraic group and V be a G-module; we say V is prehomogeneous

if it contains a dense orbit for the action of G (with respect to the Zariski topology).

Remark 1. Let G be an a�ne algebraic group acting on an irreducible algebraic variety X, and de�ne
dm as dm := minx∈X{dim(Gx)}, where Gx is the isotropy group of x; X is prehomogeneous for the
action of G if and only if the following condition holds:

dim(G)− dm ≥ dim(X) (1.1)

This condition is clearly not very practical, as the computation of dm could be di�cult (in the
last paragraph of this Section we will provide an example of a relatively easy computation). Another
su�cient condition for the prehomogeneity of a vector space is provided by the next proposition and
corollary; this condition is both signi�cantly easier to check and weaker than (1.1).

Proposition 1.1. Let V be a G-module of dimension n and m be an integer; if m ≥ n then V ⊗ Cm
is prehomogeneous for the action of G×GLm(C), de�ned on decomposable tensors by

(G×GLm(C))× (V ⊗ Cm) −→ V ⊗ Cm | ((g,A), v ⊗ u)→ (g · v)⊗Au
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Proof. Let ρ : G → GL(V ) be the linear map describing the action of G on V ; since V ⊗ Cm '
Hom(V ∗,Cm) ' Mm×n(C), if B ∈ ρ(G), A ∈ GLm(C) and M ∈ V ⊗ Cm the action of G × GLm(C)
can be rewritten as follows:

(ρ(G)×GLm(C))×Hom(V ∗,Cm) −→ Hom(V ∗,Cm) | ((B,A),M)→ AMBt

Since m ≥ n, if M has maximum rank it can be reduced to the form



1
. . .

. . .

1
0 . . . . . . 0
...

...
0 . . . . . . 0


simply by multiplying it on the left by a suitable matrix A; this means that the matrices of maximum

rank, which are a dense open subset of Mm×n(C), form an orbit of the action (the G-action is not
necessary).

Corollary 1.2. Let a1, . . . , an ∈ N; if aj ≥
∏
i 6=j ai for some j ∈ {1, . . . , n}, then Ca1 ⊗ · · · ⊗ Can is

prehomogeneous for the action of GLa1(C)× · · · ×GLan(C).

Proof. This follows immediately from the previous proposition (V :=
⊗

i 6=j Cai , G :=
∏
i 6=j GLai(C),

m := aj).

Starting from a prehomogeneous G-module V , castling transformations allow us to �nd possibly in-
�nitely many other prehomogeneous vector spaces; they work as described in the following proposition,
whose proof can be found in [Man, Prop. 28].

Proposition 1.3. Let V be a G-module of dimension n and p, q be non-negative integers such that

p + q = n; then V ⊗ Cp is prehomogeneous for the action of G × GLp(C) if and only if V ∗ ⊗ Cq is

prehomogeneous for the action of G×GLq(C).

Remark 2. Clearly V ∗⊗Cq ' V ⊗Cq, but in general it is not true that the latter space is prehomoge-
neous for the action of G×GLq(C) if and only if the former is, as that isomorphism is not equivariant;
what is true, however, is that a space V ⊗W is prehomogeneous for the action of a reductive group
G×H acting respecting the tensor structure if and only if the space V ∗ ⊗W is prehomogeneous (for
a proof of this statement, see [Kim, Prop. 2.21, Prop. 7.40]).

Let us give an example of how castling transformations work in the situation we consider in this
article, i.e. when the group G := GLa1(C) × · · · × GLan(C) acts on the vector space V := Ca1 ⊗
· · · ⊗ Can (this will also justify the de�nition of castling transformation we gave in the introduction).
Assume the G-module V is prehomogeneous, and pick n− 1 numbers ai (say the �rst n− 1 ones, for
simplicity); if we call p := an and q :=

∏n−1
i=1 ai − an, as long as q ≥ 0 Proposition 1.3 grants that

(Ca1 ⊗ · · · ⊗Can−1)∗ ⊗Cq is prehomogeneous for the action of GLa1(C)× · · · ×GLan−1(C)×GLq(C).
We now make use of Remark 2 and conclude that Ca1 ⊗ · · · ⊗ Can−1 ⊗ Cq is prehomogeneous for the
action of GLa1(C)× · · · ×GLan−1(C)×GLq(C).
Remark 3. From now on we will often represent the space Ca1 ⊗ · · · ⊗Can by the n-tuple (a1, . . . , an),
and we will speak indi�erently of prehomogeneous n-tuples (a1, . . . , an) or prehomogeneous vector
spaces Ca1 ⊗ · · · ⊗ Can .

Thus, starting from a prehomogeneous n-tuple (a1, . . . , an) we can obtain a `tree' of prehomogeneous
n-tuples related to (a1, . . . , an) using castling transformations and Remark 2 (we say these n-tuples
are castling-equivalent); as an example, assume that n = 3 and that (a, b, c) is prehomogeneous: the
corresponding 'castling tree' is
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(a, b, c)

(bc− a, b, c)

(a, b, c)

(a, ac− b, c)

(a, b, c)

(a, b, ab− c)(bc− a, b, c)

(b, bc− a, (bc− a)b− c)

(bc− a, b, c)

(c, bc− a, (bc− a)c− b)

(a, b, ab− c)

(...)

(a, b, ab− c)

(...)

(a, ac− b, c)

(a, ac− b, (ac− b)a− c)

(a, ac− b, c)

(c, ac− b, (ac− b)c− a)

of course provided all the elements of a given triplet are non-negative (we could also disregard
trivial prehomogeneous n-tuples, i.e. those in which at least one element is 0).

The fact that castling-equivalent vector spaces can be arranged in trees, and not just in graphs
with possibly more than one minimal element, follows from this proposition (again, see [Man, Prop.
29] for a proof):

Proposition 1.4. Every castling-equivalence class contains a unique element of minimal dimension,

up to duality.

Remark 4. For the natural action of GLa1(C)×· · ·×GLan(C) on Ca1 ⊗· · ·⊗Can every isotropy group
contains H := {(λ1Ia1 , . . . , λnIan)|λ1 · . . . ·λn = 1} ⊂ G, which has dimension n−1; hence, a necessary
condition Ca1 ⊗ · · · ⊗ Can needs to satisfy in order to be prehomogeneous is (recall (1.1))

n∑
i=1

a2i −
n∏
i=1

ai − (n− 1) ≥ 0 (1.2)

The previous remark suggests that we investigate the prehomogeneity of (a1, . . . , an) looking at the
value

N(a1, . . . , an) :=

n∑
i=1

a2i −
n∏
i=1

ai − n+ 1 (1.3)

This approach is also consistent with the castling transformation, since

Proposition 1.5. If (a1, . . . , an) and (b1, . . . , bn) are castling-equivalent, then N(a1, . . . , an) = N(b1, . . . , bn).

Proof. It is enough to prove the statement for n-tuples related by a single castling transformation, so
we can assume (without loss of generality) ai = bi for i = 1, . . . , n − 1 and bn =

∏n−1
i=1 ai − an; we

obtain

N(b1, . . . , bn) =

n−1∑
i=1

a2i + a2n + (a1 · . . . · an−1)2 − 2a1 · . . . · an−

− (

n−1∏
i=1

ai)(a1 · . . . · an−1 − an)− n+ 1 =

n∑
i=1

a2i −
n∏
i=1

ai − n+ 1 =

= N(a1, . . . , an)

Notice that the converse of Proposition 1.5 does not hold: (1, 1, 3) and (2, 2, 4) are not castling-
equivalent, but N(1, 1, 3) = N(2, 2, 4) = 6.
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1.1 Kac's theorem

Pick a natural number a ≥ 2 and de�ne the numbers ai as follows:
a0 = 0

a1 = 1

ai = aai−1 − ai−2
(1.4)

If a = 2 then the ai are all natural numbers together with 0, while for a = 3 we obtain Fibonacci
numbers of odd position. The next theorem, due to Kac (see [Kac, Theorem 4]), states that any
generic element (i.e. any element contained in a certain dense open subset) of Ca ⊗ Cb ⊗ Cc, where
2 ≤ a ≤ b ≤ c, can be reduced to a canonical form under the action of GLb(C) × GLc(C) provided
a, b, c satisfy a certain relation:

Theorem 1.6. Let a, b, c ∈ N such that 2 ≤ a ≤ b ≤ c and

c2 + b2 − abc ≥ 1 (1.5)

Then there exist unique n,m, i ∈ N ∪ {0} satisfying{
b = nai +mai+1

c = nai+1 +mai+2

(1.6)

such that any generic element of Ca⊗Cb⊗Cc decomposes via the action of GLb(C)×GLc(C) in n
blocks of dimension a×ai×ai+1 and m blocks of dimension a×ai+1×ai+2, which are called Fibonacci

blocks.

What this means is that, assuming Ca = Span{u1, . . . , ua}, Cb = Span{v1, . . . , vb} and Cc =
Span{w1, . . . , wc}, any generic tensor x of Ca⊗Cb⊗Cc can be transformed by the action of GLb(C)×
GLc(C) into a tensor x′ =

∑a
j=1

∑b
k=1

∑c
l=1 λjkluj ⊗ vk ⊗ wl whose sole possibly non-zero entries are

the λjkl with, respectively:

1. k = ai(t−1)+1, . . . , ait and l = ai+1(t−1)+1, . . . , ai+1t for t = 1, . . . , n (these are the n blocks
of dimension a× ai × ai+1).

2. k = ain+ ai+1(s− 1) + 1, . . . , ain+ ai+1s and l = ai+1n+ ai+2(s− 1) + 1, . . . , ai+1n+ ai+2s for
s = 1, . . . ,m (these are the m blocks of dimension a× ai+1 × ai+2).

For example, in the case (3, 10, 27) we �nd n = 1, m = 3 and i = 1 (so that ai=1, ai+1 = 3 and
ai+2 = 8), which means the generic tensor of (3, 10, 27) decomposes under the action of GL10(C) ×
GL27(C) into a tensor x′ =

∑3
j=1

∑10
k=1

∑27
l=1 λjkluj ⊗ vk ⊗wl whose sole possibly non-zero entries are

the λjkl with, respectively:

1. k = 1, l = 1, 2, 3 (the only block of dimension 3× 1× 3).

2. k = 2, 3, 4, l = 4, . . . , 11 (a �rst block of dimension 3× 3× 8).

3. k = 5, 6, 7, l = 12, . . . , 19 (a second block of dimension 3× 3× 8).

4. k = 8, 9, 10, l = 20, . . . , 27 (a third block of dimension 3× 3× 8).

Remark 5. Kac's original proof was carried out in the framework of quiver representation theory; this
subject is not directly related to the problem of prehomogeneity of vector spaces, but it is possible to
prove that castling transformations work on vector spaces exactly as re�ection functors do on quiver
representations (see [BGP] and [KR]). Since this paper does not need any other tool provided by
quiver representation theory, we do not show the proof of Theorem 1.6.

The importance of Kac's theorem for this paper is explained by the next proposition.
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Proposition 1.7. Let a, b, c ∈ N such that 2 ≤ a ≤ b ≤ c and (1.5) is satis�ed; then (a, b, c) is

prehomogeneous.

In order to prove it, we need a lemma.

Lemma 1.8. Ca ⊗Cai ⊗Cai+1, where the ai are de�ned by (1.4), is prehomogeneous for the action of

GLai(C)×GLai+1(C) (i.e. Fibonacci blocks are prehomogeneous).

Proof. We proceed by induction on i. If i = 1 then ai = 1 and ai+1 = a, and clearly Ca ⊗ Ca '
Ca⊗C⊗Ca is prehomogeneous for the action of GL1(C)×GLa(C). Assume now i ≥ 2: Ca⊗Cai⊗Cai+1

is prehomogeneous for the action of GLai(C) × GLai+1(C) (by the induction hypothesis), hence if
we call V := Ca ⊗ Cai+1 , G := GLai+1(C), p := ai and q := aai+1 − ai = ai+2, Proposition 1.3
and Remark 2 grant us that V ⊗ Cai+2 = Ca ⊗ Cai+1 ⊗ Cai+2 is prehomogeneous for the action of
G×GLai+2(C) = GLai+1(C)×GLai+2(C).

In order to prove Proposition 1.7, we will want to consider the groups GLai(C) × GLai+1(C) and
GLai+1(C)×GLai+2(C) as embedded in the larger group GLb(C)×GLc(C) in the following way: we
will call block elements of GLb(C)×GLc(C) those elements (M,N) whose sole possibly non-zero entries
are:

1. mkl for k, l = ai(t−1)+1, . . . , ait with t = 1, . . . , n (this gives n blocks ai×ai along the diagonal
ofM provided ai 6= 0, n 6= 0) and for k, l = ain+ai+1(s−1)+1, . . . , ain+ai+1s with s = 1, . . . ,m
(this gives m blocks ai+1 × ai+1 along the diagonal of M provided m 6= 0).

2. nkl for k, l = ai+1(t − 1) + 1, . . . , ai+1t with t = 1, . . . , n (this gives n blocks ai+1 × ai+1 along
the diagonal of N provided n 6= 0) and for k, l = ai+1n+ ai+2(s− 1) + 1, . . . , ai+1n+ ai+2s with
s = 1, . . . ,m (this gives m blocks ai+2 × ai+2 along the diagonal of N provided m 6= 0)

For example, considering again (3, 10, 27), the block elements of GL10(C) × GL27(C) are (M,N)
with M and N having as only possibly non-zero elements:

1. m11 and mkl for k, l = 2, 3, 4, k, l = 5, 6, 7 or k, l = 8, 9, 10 (one block of dimension 1 × 1 and
three blocks of dimension 3× 3).

2. nkl for k, l = 1, 2, 3, k, l = 4, . . . , 11, k, l = 12, . . . , 19 or k, l = 20, . . . , 27 (one block of dimension
3× 3 and three blocks of dimension 8× 8).

We can now prove Proposition 1.7:

Proof. Using Theorem 1.6 we can say there are unique n,m, i ∈ N ∪ {0} such that b = nai +mai+1

and c = nai+1 + mai+2, and a proper closed subset C ⊆ Ca ⊗ Cb ⊗ Cc such that any element of
Ca⊗Cb⊗Cc−C decomposes under the action of GLb(C)×GLc(C) into a tensor consisting of n blocks
of dimension a× ai × ai+1 and m blocks of dimension a× ai+1 × ai+2 (the Fibonacci blocks).

Call now X := Ca ⊗Cb ⊗Cc, G := GLb(C)×GLc(C), Y the subset of X containing tensors made
of Fibonacci blocks, H the subgroup of block elements of G and W := G · Y = {g · y|g ∈ G, y ∈ Y };
then for any x ∈ X − C there exist g ∈ G, y ∈ Y such that g · x = y i.e. x = g−1 · y; this means
X − C ⊆W , so W is dense in X.

By the previous lemma H acts on Y with a dense orbit, which we can write as H · y for some
y ∈ Y ; this means Y ⊆ clX(H · y), from which it follows that Y ⊆ clX(G · y). Applying the action of
G we obtain X − C ⊆W = G · Y ⊆ G · clX(G · y) = clX(G · y), which means G · y is dense in X.

Kac's theorem thus gives us (thanks to Proposition 1.7) a su�cient condition for the prehomogeneity
of an n-tuple (a1, . . . , an) that is at the same time easier to check than (1.1) and much stronger than
the one provided by Corollary 1.2. Assume there are elements ai1 and ai2 in the n-tuple which are
both bigger than (or equal to) the product q of the remaining n − 2 elements ai (we can assume, up
to a permutation of the indices, i1 = n − 1, i2 = n): if q ≥ 2 and (q, an−1, an) satis�es (1.5), then
Cq ⊗ Can−1 ⊗ Can ' Ca1 ⊗ · · · ⊗ Can is prehomogeneous for the action of GLan−1(C)×GLan(C), so a

fortiori the n-tuple (a1, . . . , an) is prehomogeneous for the action of GLa1(C)× · · · ×GLan(C). As we
shall see, Kac's theorem is crucial when n = 3.
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1.2 Weierstrass' form

The following result dates back to Weierstrass, but we will give a partial proof of it for the conve-
nience of the reader.

Proposition 1.9. (2, k, k) is prehomogeneous ⇐⇒ k ≤ 3.

The implication ⇐ is well known. Indeed, for k = 2, 3 the space C2 ⊗ Ck ⊗ Ck has �nitely many
orbits (for a complete classi�cation of such spaces see [Par1] and [Par2], or the table at page 90 of
[Man]).

Proof. If C2 = Span{e1, e2} and Ck = Span{u1, . . . , uk}, any element x in (2, k, k) can be written as
a matrix pencil in this way:

x =

2∑
i=1

k∑
j=1

k∑
l=1

λijlei⊗uj⊗ul = e1⊗ (

k∑
j=1

k∑
l=1

λ1jluj⊗ul)+ e2⊗ (

k∑
j=1

k∑
l=1

λ2jluj⊗ul) = e1⊗A+ e2⊗B

where A,B ∈Mk(C) (they are the two `slices' of the element x). When viewing tensors of (2, k, k)
in this way, the action of the group GL2(C)×GLk(C)×GLk(C) can be read as

(L,M,N) · (e1⊗A+e2⊗B) =M(e1⊗A+e2⊗B)N t where A := l11A+ l12B,B := l21A+ l22B (1.7)

Assume A to be invertible and A−1B to be diagonalizable, i.e.

A ∈ GLk(C) and A−1B = G−1DG for some G ∈ GLk(C), D = diag(di) ∈Mk(C) (1.8)

Under these hypotheses, if we call y the tensor which is represented as e1 ⊗ Ik + e2 ⊗ D we can
write:

x = e1 ⊗A+ e2 ⊗B = A(e1 ⊗ Ik + e2 ⊗A−1B) = A(e1 ⊗ Ik + e2 ⊗G−1DG) =
= A(e1 ⊗G−1G+ e2 ⊗G−1DG) = AG−1(e1 ⊗ Ik + e2 ⊗D)G = (I2, AG

−1, Gt) · y

This means that x belongs to the same orbit as y, which implies x and y have isotropy groups of
the same dimension. If we set, for a diagonal matrix M = diag(mi), M

−1 := diag(m−1i ) (with the
convention that m−1i := 0 for mi = 0), using (1.7) we can see that Gy contains all elements of the form
(αI2, α

−1βD, β−1D−1) for α, β ∈ C, i.e. all elements of the form (αI2, α
−1C,C−1) where C ∈ Mk(C)

is diagonal; this means dim(Gx) = dim(Gy) ≥ k + 1.
The set of pairs (A,B) such that A is invertible and A−1B is diagonalizable contains a dense open

subset of Mk(C) ×Mk(C), so the tensors in (2, k, k) which do not satisfy the hypotheses (1.8) have
isotropy groups of dimension at least equal to that of isotropy groups of elements in (2, k, k) which
satisfy (1.8). As a consequence, for (2, k, k) we have dm = k + 1 thus the necessary condition for
prehomogeneity becomes

4 + 2k2 − (k + 1) ≥ 2k2 ⇐⇒ k ≤ 3

Of course something similar holds for n-tuples:

Corollary 1.10. The n-tuple (1, . . . , 1, 2, k, k) is prehomogeneous ⇐⇒ k ≤ 3.
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2 The case n = 3

Consider (a, b, c) with a, b, c ≥ 0: as we already said, if one of the entries is zero then the triplet is
trivially prehomogeneous; to avoid these trivial cases, we could restrict our examination to (a, b, c) ∈ N3.
However, it is possible for a triplet (a, b, c) ∈ N3 to belong to a castling-equivalence class whose minimal
element (a′, b′, c′) has a zero entry (for example (1, 1, 1) is castling-equivalent to (0, 1, 1), and (2, 2, 4) is
castling-equivalent to (0, 2, 2)). In what follows we will always start with (a, b, c) ∈ N3, to avoid cases
which are trivial from the beginning; in order not to give too much importance to the triplets (a, b, c)
with a zero entry, when speaking of minimal element (or space) of a castling-equivalence class we will
actually mean 'element (space) of minimal positive dimension' of the castling-equivalence class (this
element is still unique). For example, we will call (1, 1, 1) minimal.

A triplet (a, b, c) ∈ N3 not satisfying

N(a, b, c) ≥ 0 (2.1)

cannot be prehomogeneous (recall (1.2) and (1.3)); combining explicit computation (via Macaulay2)
and castling transformations, we found no other triplets but those of type (2, k, k) with k ≥ 4 (and
those castling-equivalent to them) which are not prehomogeneous but satisfy (2.1). This led us to
conjecture, and then prove, that this necessary condition is in most cases also su�cient.

Proposition 2.1. Let (a, b, c) ∈ N3; if N(a, b, c) = 0 then (a, b, c) = (1, 1, 1).

To prove this proposition (along with Proposition 2.3), we need to de�ne the following order relation
on (N ∪ {0})3 : given two triplets (a, b, c) and (a′, b′, c′) with a ≤ b ≤ c and a′ ≤ b′ ≤ c′, we write
(a, b, c) < (a′, b′, c′) if and only if a < a′ or a = a′, b < b′ or a = a′, b = b′ and c < c′.

Proof. Assume two elements of the triplet (a, b, c) are equal, say b = c: in this case we would have

a2 + 2b2 − ab2 − 2 = 0 i.e. b2(2 − a) = 2 − a2 which gives b =
√
2 + a− 2

(2−a) . The only a ∈ N such

that b ∈ Z is a = 1, which gives b = 1 too: this means (a, b, c) = (1, 1, 1).

But what if a 6= b 6= c 6= a? Assume, without loss of generality, a < b < c: we will now prove
that there exist (a′, b′, c′) castling-equivalent to (a, b, c) such that N(a′, b′, c′) = 0 and 0 < (a′, b′, c′) <
(a, b, c).

De�ne φ(x) = x2 − abx + a2 + b2 − 2: c is a root of φ(x), the other one being some c′ satisfying
cc′ = a2 + b2 − 2 and c+ c′ = ab; the former equality shows that c′ is positive, while the latter tells us
that c′ is an integer and that (a, b, c) and (a, b, c′) are castling-equivalent. This means c′ ∈ N and, by
Proposition 1.5, N(a, b, c′) = 0 too.

If we factor φ(x) using the roots c and c′ and then evaluate it in b we obtain

φ(b) = (b− c)(b− c′) = b2(2− a) + a2 − 2

Under our assumptions φ(b) < 0, unless a = 1, 2; let us check what happens in these cases.
If a = 1, b and c satisfy b2 + c2 − bc − 1 = 0 i.e. (b − c)2 + bc = 1, and the only solution of this

equation is given by b = c = 1 (contradiction). If a = 2, b and c satisfy b2 + c2 − 2bc + 2 = 0 i.e.
(b− c)2 = −2, which clearly cannot be.

Thus we can say φ(b) = (b − c)(b − c′) < 0, and since c > b we must conclude b > c′ > 0; this
means either 0 < (a, c′, b) < (a, b, c) (if c′ ≥ a) or 0 < (c′, a, b) < (a, b, c) (if c′ < a). In any case our
claim is proved.

We now have all we need to prove the proposition: starting from a triplet (a, b, c) ∈ N3 such that
N(a, b, c) = 0 we can follow these steps:

1. Check whether a 6= b 6= c 6= a.

2. If the answer to 1. is `no', then at least two elements of (a, b, c) are equal, and this means
(a, b, c) = (1, 1, 1); in this case we stop.
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3. If the answer to 1. is `yes', as we have just shown we can �nd a triplet (a′, b′, c′) castling-equivalent
to (a, b, c) such that 0 < (a′, b′, c′) < (a, b, c) and N(a′, b′, c′) = 0; in this case we start over from
1. using (a′, b′, c′).

Since the condition 0 < (a′, b′, c′) < (a, b, c) grants termination to the previous `algorithm', and
since termination can only happen when we start from point 1. with the triplet (1, 1, 1), what we have
proved is that all (a, b, c) ∈ N3 such that N(a, b, c) = 0 are castling-equivalent to (1, 1, 1); since (1, 1, 1)
is the only triplet with no zero entries in its castling-equivalence class (the other triplets in that class
are (0, 1, 1), (1, 0, 1) and (1, 1, 0)) the proposition is proved.

As an immediate consequence, we obtain that all the triplets (a, b, c) ∈ (N ∪ {0})3 such that
N(a, b, c) = 0 are prehomogeneous.

Proposition 2.2. There are no triplets (a, b, c) ∈ N3 such that N(a, b, c) = z for z = 1 + 9k or

z = 4 + 9k (with k ∈ Z).

Proof. For z as in the hypotheses, the equation N(a, b, c) = z becomes, modulo 3,

a2 + b2 + c2 − abc ≡ 0 (2.2)

which can be solved in integers only for a, b, c ≡ 0, as the following table shows:

(a, b, c) ≡ N(a, b, c) ≡
(0, 0, 0) 0
(0, 0, 1) 1
(0, 0, 2) 1
(0, 1, 1) 2
(0, 1, 2) 2
(0, 2, 2) 2
(1, 1, 1) 2
(1, 1, 2) 1
(1, 2, 2) 2
(2, 2, 2) 2

This means the only possible solutions of N(a, b, c) = z have the form (a, b, c) = (3α, 3β, 3γ)
for some α, β, γ ∈ Z; but if we substitute such a triplet in the equation N(a, b, c) = z, it becomes
9α2 + 9β2 + 9γ2 − 27αβγ − 2 = τ + 9k where τ = 1 if z = 1+ 9k and τ = 4 if z = 4+ 9k. So we have
to solve the equation

3(α2 + β2 + γ2)− 9αβγ − 3k = σ

where σ = 1 if z = 1 + 9k and σ = 2 if z = 4 + 9k. Since the left-hand side is a multiple of three
but the right-hand side is not, our equation has no solutions.

We have N(2, k, k) = 2, and these triplets are prehomogeneous if and only if k ≤ 3; triplets (2, k, k)
with k ≥ 4 are in fact the only non-prehomogeneous minimal triplets such that N(a, b, c) = 2, since:

Proposition 2.3. Let (a, b, c) ∈ N3; if N(a, b, c) = 2 then (a, b, c) is castling-equivalent to (2, k, k) for
a unique k ∈ N. In particular (a, b, c) is prehomogeneous if and only if k ≤ 3.

Proof. The last statement follows from Proposition 1.9; we only have to prove the �rst one.
Assume c = b. If b = 1 we obtain a2 − a − 2 = 0 i.e. a = 2 (so (a, b, c) = (2, 1, 1)); if b > 1 we

have a2 + 2b2 − ab2 = 4 i.e. a = 1
2(b

2 ±
√
b4 − 8b2 + 16) which means that a is either 2 or b2 − 2; thus

our triplet is (2, b, b) or (b, b, b2−2) (notice that these triplets are castling-equivalent, once we �x b > 1).

Assume now a 6= b 6= c 6= a and, without loss of generality, a < b < c; we will prove that there is a

triplet (a′, b′, c′) castling-equivalent to (a, b, c) such that N(a′, b′, c′) = 2 and 0 < (a′, b′, c′) < (a, b, c).
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Since N(a, b, c) = 2, c is a root of φ(x) = x2−abx+a2+b2−4, the other one being c′ which satis�es
c′ = ab − c and cc′ = a2 + b2 − 4; what this means is that c′ is a positive integer, that N(a, b, c′) = 2
and that (a, b, c) and (a, b, c′) are castling-equivalent.

If we factor φ(x) using c and c′ and evaluate it in b, we obtain

φ(b) = (b− c)(b− c′) = b2(2− a) + a2 − 4

The value on the right-hand side of the previous equality is strictly negative under our hypotheses.
In fact φ(b) < 0 if and only if 2 < a < b2 − 2; since a < b we also have a < b2 − 2, provided b2 − 2 ≥ b
(which is true unless b = 0 or b = 1, with both these cases excluded by hypothesis since a ∈ N and
b > a). Moreover, if we had a = 2 then b and c would satisfy b2 + c2− 2bc = 0 i.e. (b− c)2 = 0 and we
would obtain b = c (contradiction); if we had a = 1 instead, b and c would satisfy b2 + c2 − bc− 3 = 0
i.e. (b− c)2 + bc = 3 which is impossible because c > b ≥ 2. We can conclude that φ(b) < 0.

Since c > b, φ(b) < 0 means c′ < b which implies 0 < (a, c′, b) < (a, b, c) (if c′ ≥ a) or 0 < (c′, a, b) <
(a, b, c) (if c′ < a); our claim is thus proved. This means that starting from a triplet (a, b, c) ∈ N3 such
that N(a, b, c) = 2 we can follow these steps:

1. Check whether a 6= b 6= c 6= a.

2. If the answer to 1. is `no', then at least two elements of (a, b, c) are equal, and this means
(a, b, c) = (2, k, k) for a unique integer k ≥ 1 or (a, b, c) = (k, k, k2−2) for a unique integer k ≥ 2.
In the �rst case we stop immediately; in the second one, we apply a castling transformation to
obtain the triplet (2, k, k) with k ≥ 2 and then we stop.

3. If the answer to 1. is `yes', as we have just shown we can �nd a triplet (a′, b′, c′) castling-equivalent
to (a, b, c) such that 0 < (a′, b′, c′) < (a, b, c) and N(a′, b′, c′) = 2; in this case we start over from
1. using (a′, b′, c′).

Again, the condition 0 < (a′, b′, c′) < (a, b, c) grants termination of the previous procedure; since
upon termination we are left with a triplet (2, k, k) ∈ N3, the proposition is proved.

With this same `descent method' we can �nd all minimal triplets (a, b, c) ∈ N3 such that N(a, b, c) =
m for any value of m ∈ Z: for example, N(a, b, c) = 3 gives the minimal triplet (1, 2, 2) while
N(a, b, c) = 6 gives the minimal triplets (1, 1, 3) and (2, 2, 4). We identi�ed minimal triplets for several
values m ≥ 3 and noticed that either they contain a 1 (and so they are trivially prehomogeneous) or
they satisfy Kac's inequality (1.5) (and so they are prehomogeneous by Proposition 1.7). The following
proposition shows that this is no coincidence, but �rst we need a lemma:

Lemma 2.4. Assume N(a, b, c) ≥ 3, with 2 ≤ a ≤ b ≤ c; then ab ≤ 2c.

Proof. We can assume c ≥ 3, since under our hypotheses c = 2 would yield the triplet (2, 2, 2) which
gives N(2, 2, 2) = 2; let us now consider these hyperbolas in the plane (a, b):

Q1 : a
2 + b2 + c2 − abc− 5 = 0

Q2 : ab− 2c = 0

thinking of c as a parameter (the �gure shows the situation for c = 12, with Q1 drawn in black and
Q2 drawn in red).
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The origin (a, b) = (0, 0) belongs to the area P1 where a
2 + b2 + c2− abc ≥ 5 if and only if c ≥

√
5,

which is true since we have c ≥ 3; on the other hand, (0, 0) de�nitely belongs to the area P2 where
ab− 2c ≤ 0.

We have to prove that if (a, b) such that c ≥ a, b ≥ 0 belongs to P1 then it belongs to P2, too, i.e.
that (a, b) is in the greyed out area of the �gure; in order to do this, it is enough to show that the two
intersection points of Q1 and Q2 located in the �rst quadrant have respectively ordinate and abscissa
greater than or equal to c.

After applying the change of coordinates a 7→ 1√
2
a − 1√

2
b, b 7→ 1√

2
a + 1√

2
b (a counterclockwise

rotation of π/4) we can rewrite the hyperbolas as:

Q′1 : (1− c
2)a

2 + (1 + c
2)b

2 + c2 − 5 = 0

Q′2 : a
2 − b2 − 4c = 0

The intersection points of Q′1 and Q
′
2 are (±x,±y) where x :=

√
c2+4c+5

2 and y :=
√

c2−4c+5
2 , so the

intersection points of Q1 and Q2 in the �rst quadrant are (we apply the inverse change of coordinates)(
1√
2
x− 1√

2
y, 1√

2
x+ 1√

2
y
)
and

(
1√
2
x+ 1√

2
y, 1√

2
x− 1√

2
y
)
. We have to prove that the ordinate of the

�rst point and the abscissa of the second one (which are the same) are greater than or equal to c.
1
2

√
c2 + 4c+ 5+ 1

2

√
c2 − 4c+ 5 ≥ c⇔

√
c2 + 4c+ 5+

√
c2 − 4c+ 5 ≥ 2c⇔ c2 +4c+5+ c2− 4c+

5 + 2
√
(c2 + 4c+ 5)(c2 − 4c+ 5) ≥ 2c⇔

√
(c2 + 5)2 − 16c2 ≥ 5− c2; the hypothesis c ≥ 3 forces the

last term to be strictly negative, therefore we simply need to prove that the argument of the square
root is non-negative. This argument is c4 − 6c2 + 25 i.e. z2 − 6z + 25 after setting z := c2; since the
discriminant of the latter is negative we can conclude that the argument is indeed non-negative.

We can now show that

Theorem 2.5. Let (a, b, c) ∈ N3; if N(a, b, c) ≥ 3 then (a, b, c) is prehomogeneous.

Proof. Since N(a, b, c) is castling-invariant, we can assume (a, b, c) to be minimal; moreover, we can
assume a, b, c > 1 (if one of them is 1 then (a, b, c) is trivially prehomogeneous) and, without loss of
generality, 2 ≤ a ≤ b ≤ c. Under these hypotheses, the previous lemma tells us that ab ≤ 2c, i.e that
ab− c ≤ c.

If ab− c = c we would have (a, b, c) = (a, b, ab2 ), but N(a, b, ab2 ) = 2: in fact N(a, b, ab2 ) = a2 + b2 −
a2b2

4 − 2, which is smaller than or equal to 2 if and only if b2(1− a2

4 ) + a2− 4 ≤ 0, and this is certainly
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true for a = 2 (in this case we obtain the triplets (2, b, b)); if a ≥ 3 then (1− a2

4 ) < 0 and our claim is

true as long as b2 ≥ 4−a2

1−a2

4

= 4, which is true by hypothesis.

We can conclude that ab − c < c, but since (a, b, c) is minimal, this forces ab − c ≤ 0; this means
−ab ≥ −c which implies c2+b2−abc = c2+b2+c(−ab) ≥ c2+b2−c2 = b2 ≥ 1 since b ≥ 2 by hypothesis.
Thus (a, b, c) satis�es Kac's inequality (1.5) and by Proposition 1.7 it is prehomogeneous.

The next theorem, whose proof is contained in the previous propositions, sums up what we obtained
for the case n=3.

Theorem 2.6. Let (a, b, c) ∈ N3:

1. If N(a, b, c) ≤ −1 then (a, b, c) is not prehomogeneous.

2. If N(a, b, c) = 0 then (a, b, c) is prehomogeneous.

3. The case N(a, b, c) = 1 cannot happen (see Proposition 2.2).

4. If N(a, b, c) = 2 then (a, b, c) is castling-equivalent to (2, k, k) for a unique k ∈ N, and it is

prehomogeneous if and only if k ≤ 3.

5. If N(a, b, c) ≥ 3 then (a, b, c) is prehomogeneous.

3 The case n ≥ 4

We will use the same convention of Section 2, considering n-tuples (a1, . . . , an) ∈ Nn and reserving
the term 'minimal element (space)' for elements (spaces) of minimal positive dimension in a castling-
equivalence class.

The necessary condition that an n-tuple (a1, . . . , an) ∈ Nn has to satisfy to be prehomogeneous is
(recall again (1.2) and (1.3))

N(a1, . . . , an) ≥ 0 (3.1)

We also have two su�cient conditions, which we will state (without loss of generality) under the
assumption that a1 ≤ . . . ≤ an. The stronger one is given by Proposition 1.7 (recall the argument at
the end of Section 1): assuming an ≥ an−1 ≥

∏n−2
i=1 ai ≥ 2, it is

a2n + a2n−1 −
n∏
i=1

ai ≥ 1 (3.2)

The weaker one is stated in Corollary 1.2, and it is

an ≥
n−1∏
i=1

ai (3.3)

Quite surprisingly, in most cases an n-tuple satisfying the necessary condition (3.1) also satis�es
(3.3), as the following lemma shows:

Lemma 3.1. Let (a1, . . . , an) be a minimal n-tuple such that ai ≥ 2 for every i = 1, . . . , n and

N(a1, . . . , an) ≥ 0; if n ≥ 4, there exists j ∈ {1, . . . , n} such that aj ≥
∏
i 6=j ai. This means in

particular that (a1, . . . , an) is prehomogeneous.

Proof. The last assertion is just an immediate consequence of Corollary 1.2, so we only need to prove
the �rst one. Without loss of generality we can assume our n-tuple to be ordered, i.e. that 2 ≤ a1 ≤
. . . ≤ an; this means we have to prove that an ≥

∏n−1
i=1 ai. Let us call q :=

∏n−1
i=1 ai and see that it

cannot happen that an < q:
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1. If q2 < an < q then 0 < q−an < q− q
2 = q

2 < an which would mean 0 < (q−an)
∏n−1
i=1 ai <

∏n
i=1 ai;

but in this case (a1, . . . , an) would not be minimal, which is a contradiction. We have to conclude
that an ≤ q

2 .

2. The hypothesis 2 ≤ a1 ≤ . . . ≤ an allows us to write N(a1, . . . , an) ≤ na2n − qan − n + 1 =
an(nan − q)− n+ 1, and since this number is negative for an ≤ q

n it must be q
n < an ≤ q

2 .

3. Since ai ≥ 2 for every i = 1, . . . , n we have q2 ≥ 4n−2a2n−1 = 4n−2

n−1 (n− 1)a2n−1 ≥ 4n−2

n−1 (a
2
1 + · · ·+

a2n−1) (an−1 being greater than or equal to ai for every i = 1, . . . , n− 2); we can thus write

N(a1, . . . , an) ≤
n− 1

4n−2
q2 + a2n − qan − n+ 1 ≤ n− 1

4n−2
q2 + a2n − qan

If we view the right-hand side as a polynomial in the variable an, we can see that its discriminant
is 4n−3−n+1

4n−3 q2, which is non-negative for n ≥ 4; this means that under our hypotheses the
polynomial has two (distinct) roots

r =
1

2

[
q ±

√
q2 − n− 1

4n−3
q2

]
i.e.

r+ =
q

2

[
1 +

√
4n−3 − n+ 1

4n−3

]

r− =
q

2

[
1−

√
4n−3 − n+ 1

4n−3

]

We have r+ > q
2 , and most importantly r− ≤ q

n too: in fact after some computations we can
see that for this last relation to hold it is enough that 4n−2 ≥ n2, which is again true for n ≥ 4.
Thus we obtain ( qn ,

q
2 ] ⊆ [r−, r+], and since for an in the latter interval we get N(a1, . . . , an) ≤ 0

we deduce that for q
n < an ≤ q

2 we have N(a1, . . . , an) < 0.

Since the assumption an < q led us to a contradiction, our lemma is proved.

This lemma solves the problem of prehomogeneity for all n-tuples whose smallest element is at least
two, but what if some of the entries are ones? Luckily, as one can easily verify, if N(a1, . . . , an) = m
then N(1, . . . , 1, a1, . . . , an) = m too: this allows us to tackle the prehomogeneity problem for n-tuples
by induction.

Theorem 3.2. Assume n ≥ 4 and let (a1, . . . , an) ∈ Nn:

1. If N(a1, . . . , an) ≤ −1 then (a1, . . . , an) is not prehomogeneous.

2. If N(a1, . . . , an) = 0 or N(a1, . . . , an) = 1 then (a1, . . . , an) is prehomogeneous.

3. If N(a1, . . . , an) = 2 then (a1, . . . , an) is castling-equivalent to either a minimal n-tuple (a′1, . . . , a
′
n)

whose smallest element is at least 2, in which case (a1, . . . , an) is prehomogeneous, or to a minimal

n-tuple of type (1, . . . , 1, 2, k, k) for a unique k ∈ N, in which case (a1, . . . , an) is prehomogeneous

if and only if k ≤ 3.

4. If N(a1, . . . , an) ≥ 3 then (a1, . . . , an) is prehomogeneous.

Proof. Throughout this proof we assume that (a1, . . . , an) is minimal and that (without loss of gener-
ality) a1 ≤ . . . ≤ an.

1. Obvious, since such n-tuples do not satisfy (3.1).
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2. Case N(a1, . . . , an) = 0 - Let us start by n = 4. If a1 ≥ 2 the statement follows from Lemma 3.1;
if a1 = 1 then N(a2, a3, an) = 0 too, which means, by Proposition 2.1, that (a2, a3, a4) = (1, 1, 1)
and consequently (a1, . . . , a4) = (1, 1, 1, 1), which is prehomogeneous.

Let us now assume n > 4. If a1 ≥ 2 we can conclude using again Lemma 3.1; if a1 = 1
then N(a2, . . . , an) = 0 and by induction this (n − 1)-tuple is prehomogeneous, which means
(1, a2, . . . , an) is prehomogeneous too.

Case N(a1, . . . , an) = 1 - Let us start by n = 4. If a1 = 1 then N(a2, a3, an) = 1, but this cannot
happen (recall Proposition 2.2); then it must be a1 ≥ 2, and the statement follows from Lemma
3.1.

Let us now assume n > 4. If a1 ≥ 2 we can conclude using again Lemma 3.1; if a1 = 1
then N(a2, . . . , an) = 1 and by induction this (n − 1)-tuple is prehomogeneous, which means
(1, a2, . . . , an) is prehomogeneous too.

3. Let us start by n = 4. If a1 ≥ 2 we conclude using Lemma 3.1; if a1 = 1 then N(a2, a3, a4) = 2,
which means, by Proposition 2.3, (a2, a3, a4) = (2, k, k) for a unique k ∈ N. Since such a triplet
is prehomogeneous if and only if k ≤ 3 (see Proposition 1.9), the same goes for (1, 2, k, k).

Let us now assume n > 4. If a1 ≥ 2 we use again Lemma 3.1; if a1 = 1 then N(a2, . . . , an) = 2,
and by induction we can say that either (a2, . . . , an) is prehomogeneous (in which case the
same goes for (1, a2, . . . , an)) or (a2, . . . , an) = (1, . . . , 1, 2, k, k) with k ≥ 4. In this last case
(1, a2, . . . , an) = (1, . . . , 1, 2, k, k) with k ≥ 4 and as such it is not prehomogeneous.

4. Let us start by n = 4. If a1 ≥ 2 we conclude with Lemma 3.1; if a1 = 1 thenN(a2, a3, a4) = m ≥ 3
which means, by Theorem 2.6, that (a2, a3, a4) is prehomogeneous (and consequently the same
goes for (1, a2, a3, a4)).

Let us now assume n > 4. If a1 ≥ 2 we use Lemma 3.1; if a1 = 1 then N(a2, . . . , an) = m ≥ 3
and by induction we can say that (a2, . . . , an) is prehomogeneous. In this case (1, a2, . . . , an) is
prehomogeneous too.
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