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Introduction

Additive Manufacturing (AM) technologies introduce a completely new approach for the design of customized and optimized parts; AM allows producing complex parts with a limited increase in production
cost and time. Thanks to that, optimization approaches such as size, shape, and topology optimization are being re-discovered, since the models resulting from these methods are challenging to be
produced with traditional manufacturing techniques.

These methods enable designers to reinvent solutions of different structural problems with the aim of obtaining improved mechanical characteristics and higher overall performances, especially the
reduction of weight that comes with these new geometries.

High computational resources and advanced Computer-Aided Engineering software make possible to perform the optimization in the conceptual design stage, where the design has not yet been refined to
a specific topology. Doing so, the different resulting shapes present suboptimal designs that will drive the following design phases.

> Functional requirements >> Conceptual design >> Optimization Desigh Method >> Detailing + Validation >

The aim of this work is to illustrate the possibilities of new design procedures in relation with AM potentialities and limits.

Different geometric modeling opportunities and structural optimization techniques are presented: commercial software is used to perform topology optimization and redesign of the optimized results. As
alternative, a novel method, developed by the research group, allows to design conformal lattice structures with size optimization performed on the beams, which consents to automatically obtain a
smooth mesh model.

The proposed workflow is validated on a set of test cases, adopting different design methods based on Lattice structures, PolyNurbs, and parametric CAD to reach innovative solutions.
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Topology optimization = material is arranged in order to find the best distribution under a set of boundary conditions and respecting the structural and dimensional performances requirements.

The goal of the optimization can be to maximize the stiffness, imposing a desired reduction of mass; these targets are reached varying the density of each element of a polyhedral mesh, which is related to
the mechanical properties.

As a result, a density map is obtained, which is contoured to a specific level of density (threshold), obtaining a mesh surface. The optimized mesh of the design space is taken as an "inspiration" to the
further modeling of the part in a CAD environment, often operated manually. In conclusion Finite Element Analysis is needed to verify that the stress conditions are respected. As an alternative, the density
map can be used to assign the dimension to the elements of a lattice structure.

Size Optimization—> a conformal wireframe is obtained specifying the unit cell type and the minimum cell size; then, a size optimization is performed on the beams built on the wireframe, taking in
consideration boundary conditions and manufacturing constraints, such as minimum beam diameter and pore size for depowdering. As a result, the optimal diameter of each beam is obtained.

A lattice structure is then modeled from the wireframe and the optimized diameter. This can be done with two different modeling approaches: a mesh modeling method and a NURBS modeling method. In
the NURBS modeling method, the beams are modeled by cylinders with spherical caps; the method needs Boolean operations that require high computational resources, and the lattice obtained presents
sharp edges at nodal points

The mesh modeling method exploits the Catmull-Clark subdivision surface algorithm to obtain smooth surfaces starting from a coarse mesh; this allows to reduce stress concentration, especially at nodal
points, enhancing the mechanical properties and the fatigue life of the lattice, without the needs of additional filleting operations.
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