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1 Introduction

In this paper we analyze the behavior of the energy integral of a family of solutions of a two-parameter
homogenization problem for the Poisson equation with nonlinear Robin boundary conditions in a periodically
perforated domain with small holes which has been introduced in [23] as the size of the periodicity cells and
of the holes degenerate to 0. We fix once for all

n ∈ N \ {0, 1} , and (q11, . . . , qnn) ∈]0,+∞[n ,

and we introduce a periodicity cell
Q ≡ Πn

j=1]0, qjj [ .

Then we denote by q the diagonal matrix

q ≡


q11 0 . . . 0
0 q22 . . . 0
. . . . . . . . . . . .
0 0 . . . qnn


and by mn(Q) the n dimensional measure of the fundamental cell Q. Clearly, qZn ≡ {qz : z ∈ Zn} is the
set of vertices of a periodic subdivision of Rn corresponding to the fundamental cell Q.

Then we consider m ∈ N \ {0} and α ∈]0, 1[ and a subset Ω of Rn satisfying the following assumption.

Let Ω be a bounded open connected subset of Rn of class Cm,α.

Let Rn \ clΩ be connected. Let 0 ∈ Ω . (1.1)
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Next we fix p ∈ Q. Then there exists ε0 ∈]0,+∞[ such that

p+ εclΩ ⊆ Q ∀ε ∈]− ε0, ε0[ , (1.2)

where cl denotes the closure. To shorten our notation, we set

Ωp,ε ≡ p+ εΩ ∀ε ∈ R .

Then we introduce the periodic domains

S[Ωp,ε] ≡
⋃
z∈Zn

(qz + Ωp,ε) , S[Ωp,ε]
− ≡ Rn \ clS[Ωp,ε] ,

for all ε ∈]−ε0, ε0[. Then a function u defined either on clS[Ωp,ε] or on clS[Ωp,ε]
− is q-periodic if u(x+qhheh) =

u(x) for all x in the domain of u and for all h ∈ {1, . . . , n}. Here {e1,. . . , en} denotes the canonical basis of
Rn. Next we introduce a dilation of the periodic domain S[Ωp,ε]

− by setting

S(ε, δ)− ≡ δS[Ωp,ε]
− ∀(ε, δ) ∈]0, ε0[×]0,+∞[ .

The parameter δ determines the size of the periodic cells of S(ε, δ)−. Next we turn to introduce the data
of our problem. To do so, we fix ρ ∈]0,+∞[ and we consider the Roumieu function space C0

q,ω,ρ(Rn) of
q-periodic real analytic functions from Rn to R (see (2.2)), and we assume that

{fε}ε∈]−ε0,ε0[ is a real analytic family in C0
q,ω,ρ(Rn) , (1.3)

i.e., that the map from ]−ε0, ε0[ to C0
q,ω,ρ(Rn) which takes ε to fε is real analytic, and we assign a (nonlinear)

continuous real valued function
G ∈ C0(∂Ω× R)

satisfying certain regularity assumptions which we specify later (cf. (3.3), (3.13).) Then we consider the
following periodic nonlinear problem for the Poisson equation for each (ε, δ) ∈]0, ε0[×]0,+∞[

∆u(x) = f(δ−1x) ∀x ∈ S(ε, δ)− ,
u is δq − periodic in S(ε, δ)− ,

∂
∂νδΩp,ε

u(x) +G(δ−1ε−1(x− δp), u(x)) = 0 ∀x ∈ δ∂Ωp,ε ,
(1.4)

where νδΩp,ε is the outward unit normal to δΩp,ε on δ∂Ωp,ε.
In [23], we have identified a family of solutions of problem (1.4) for ε and δ close to 0 and we have

analyzed what happens to the family of solutions when ε and δ tend to the degenerate value 0. In order to
do so, we have distinguished two cases which depend on the behavior of

∫
Q
fε dx as ε is close to zero.

If
∫
Q
fε dx is not identically zero in ε ∈]− ε0, ε0[, our assumption (1.3) implies that there exist a unique

nf ∈ N and a unique analytic function F from ]− ε0, ε0[ to R such that∫
Q

fε dx = εnfF (ε) ∀ε ∈]− ε0, ε0[ , F (0) 6= 0 . (1.5)

If instead
∫
Q
fε dx is identically zero, we set by definition nf ≡ +∞. Then we consider separately case

nf ≥ n− 1 and case nf < n− 1.
In case nf ≥ n− 1, we assume that there exists c� ∈ R such that∫

∂Ω

G(t, c�) dσt = 0 ,

∫
∂Ω

Gu(t, c�) dσt 6= 0 , Gu(t, c�) ≥ 0 ∀t ∈ ∂Ω , (1.6)

where Gu denotes the partial derivative of G with respect to the second argument. Then by [23] for ε and δ
small, problem (1.4) has a solution

u(ε, δ, ·) ∈ Cm,α(clS(ε, δ)−) ,

where Cm,α(clS(ε, δ)−) denotes the Schauder space of functions of class Cm(clS(ε, δ)−) with α-Hölder con-
tinuous derivatives of order m.
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In case nf < n− 1, we assume that there exist c∗ ∈ R and γ0 ∈ [0,+∞[ such that∫
∂Ω

G(t, c∗) dσt − F (0)γ0 = 0 ,

∫
∂Ω

Gu(t, c∗) dσt 6= 0 , Gu(t, c∗) ≥ 0 ∀t ∈ ∂Ω . (1.7)

Again by [23], for all functions ε̂(·) such that

ε̂(·) is a function from ]0,+∞[ to ]0, ε0[ , (1.8)

lim
δ→0

ε̂(δ) = 0 , lim
δ→0

δ

ε̂(δ)(n−1)−nf
= γ0 ,

and for δ small, problem (1.4) with ε = ε̂(δ) has a solution

u(δ, ·) ∈ Cm,α(clS(ε̂(δ), δ)−) .

In [23], we have investigated the behavior of u(ε, δ, ·) and of u(δ, ·) and we have shown that they can be
represented in terms of real analytic maps of (ε, δ) and in terms of possibly singular at (0, 0), but known
functions of (ε, δ) in case nf ≥ (n − 1) and in terms of real analytic maps of (ε̂(δ), δ/ε̂(δ)(n−1)−nf ) and in
terms of possibly singular at (0, γ0), but known functions of (ε̂(δ), δ/ε̂(δ)(n−1)−nf ) in case nf < (n− 1).

In the present paper, we turn to analyze the behavior of the corresponding energy integrals

En[ε, δ] ≡
∫
Q∩S(ε,δ)−

|Dxu(ε, δ, x)|2 dx , En[δ] ≡
∫
Q∩S(ε̂(δ),δ)−

|Dxu(δ, x)|2 dx (1.9)

in the cell Q as (ε, δ) and δ tend to (0, 0) and to 0, respectively. In particular, we pose the following question.

(∗) What can we say on the function (ε, δ) 7→ En[ε, δ] as (ε, δ) is close to (0, 0) in ]0, ε0[×]0,+∞[ and what
can we say on the function δ 7→ En[δ] as δ is close to 0 in ]0,+∞[?

The asymptotic behavior of solutions of problems in periodically perforated domains has long been in-
vestigated in the frame of Homogenization Theory. It is perhaps difficult to provide a complete list of
contributions, and here we mention, e.g., Cioranescu and Murat [6, 7], Marčenko and Khruslov [25], and for
nonlinear Robin problems the work of Cabarrubias and Donato [4]. We also mention Maz’ya and Movchan
[26], where the assumption of periodicity of the array of inclusions has been released.

More generally, problems in singularly perturbed domains have been largely studied with the methods
of asymptotic expansions. Here, we mention, e.g., Ammari and Kang [1], Ammari, Kang, and Lee [2],
Bonnaillie-Noël, Dambrine, Tordeux, and Vial [3], Dauge, Tordeux, and Vial [10], Kozlov, Maz’ya, and
Movchan [15], Maz’ya, Movchan, and Nieves [27], Maz’ya, Nazarov, and Plamenewskij [28], Novotny and
Soko lowski [30].

Here instead, we wish to represent the functions in (∗) in terms of real analytic maps as done for u(ε, δ, ·)
and u(δ, ·).

The approach we exploited in [23] and in this paper for the analysis of nonlinear homogenization problems
has already been applied to investigate singular perturbation problems in domains with small holes (cf. e.g.,
[17].) Such a method has been exploited for singularly perturbed boundary value problems for the Laplace
equation in [18], for linearized elastostatics in [9] and for the Stokes equations in [8]. Concerning problems in
periodic domains we refer to [20], and in particular to [21] where the analysis of a two-parameter anisotropic
homogenization problem for a Dirichlet problem for the Poisson equation is carried out.

We also observe that boundary value problems in domains with periodic inclusions can be analyzed, at
least for the two dimensional case, with the method of functional equations. Here we mention, e.g., Castro,
Pesetskaya, and Rogosin [5] and Kapanadze, Mishuris, and Pesetskaya [14].

This paper is organized as follows. Section 2 is a section of preliminaries. In Section 3, we collect some
results of [23], where we analyze the behavior of the solutions of problem (1.4). In Section 4, we study the
behavior of the energy integral of the solutions of an auxiliary problem. In Section 5, we prove our main
results on the behavior of En[ε, δ] as (ε, δ) is close to (0, 0) and of En[δ] as δ is close to 0. At the end of the
paper, we have enclosed an Appendix with some technical results exploited throughout the paper.
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2 Preliminaries and notation

We denote the norm on a normed space X by ‖ · ‖X . Let X and Y be normed spaces. We endow the
space X × Y with the norm defined by ‖(x, y)‖X×Y ≡ ‖x‖X + ‖y‖Y for all (x, y) ∈ X × Y, while we use the
Euclidean norm for Rn. The symbol N denotes the set of natural numbers including 0. Let A be a matrix.
Then Aij denotes the (i, j)-entry of A. If A is invertible, At and A−1 denote the transpose and the inverse
matrix of A, respectively. Let D ⊆ Rn. Then clD denotes the closure of D and ∂D denotes the boundary of
D. We also set

D− ≡ Rn \ clD .

For all R > 0, x ∈ Rn, xj denotes the j-th coordinate of x, |x| denotes the Euclidean modulus of x in Rn,
and Bn(x,R) denotes the ball {y ∈ Rn : |x− y| < R}. Let Ω be an open subset of Rn. The space of m times
continuously differentiable real-valued functions on Ω is denoted by Cm(Ω,R), or more simply by Cm(Ω).

Let r ∈ N \ {0}. Let f ∈ (Cm(Ω))
r
. The s-th component of f is denoted fs, and Df denotes the

Jacobian matrix
(
∂fs
∂xl

)
s=1,...,r,
l=1,...,n

. Let η ≡ (η1, . . . , ηn) ∈ Nn, |η| ≡ η1 + · · ·+ηn. Then Dηf denotes ∂|η|f
∂x
η1
1 ...∂xηnn

.

The subspace of Cm(Ω) of those functions f whose derivatives Dηf of order |η| ≤ m can be extended with
continuity to clΩ is denoted Cm(clΩ). The subspace of Cm(clΩ) whose functions have m-th order derivatives
that are Hölder continuous with exponent α ∈]0, 1] is denoted Cm,α(clΩ) (cf. e.g., Gilbarg and Trudinger [13].)
The subspace of Cm(clΩ) of those functions f such that f|cl(Ω∩Bn(0,R)) ∈ Cm,α(cl(Ω ∩ Bn(0, R))) for all R ∈
]0,+∞[ is denoted Cm,αloc (clΩ). Let D ⊆ Rr. Then Cm,α(clΩ,D) denotes {f ∈ (Cm,α(clΩ))

r
: f(clΩ) ⊆ D}.

We say that a bounded open subset Ω of Rn is of class Cm or of class Cm,α, if clΩ is a manifold with
boundary imbedded in Rn of class Cm or Cm,α, respectively (cf. e.g., Gilbarg and Trudinger [13, §6.2].) We
denote by νΩ the outward unit normal to ∂Ω. For standard properties of functions in Schauder spaces, we
refer the reader to Gilbarg and Trudinger [13] (see also [16, §2, Lem. 3.1, 4.26, Thm. 4.28], [24, §2].)

If M is a manifold imbedded in Rn of class Cm,α, with m ≥ 1, α ∈]0, 1[, one can define the Schauder
spaces also on M by exploiting the local parametrizations. In particular, one can consider the space Ck,α(∂Ω)
on ∂Ω for 0 ≤ k ≤ m with Ω a bounded open set of class Cm,α, and the trace operator from Ck,α(clΩ) to
Ck,α(∂Ω) is linear and continuous. We denote by dσ the area element of a manifold M imbedded in Rn. We
retain the standard notation for the Lebesgue space Lp(M) of p-summable functions. Also, if X is a vector
subspace of L1(M), we find convenient to set

X0 ≡
{
f ∈ X :

∫
M

f dσ = 0

}
. (2.1)

We note that throughout the paper ‘analytic’ means always ‘real analytic’. For the definition and properties
of analytic operators, we refer to Deimling [11, §15].

We set δi,j = 1 if i = j, δi,j = 0 if i 6= j for all i, j = 1, . . . , n.
If Ω is an arbitrary open subset of Rn, k ∈ N, β ∈]0, 1], we set

Ckb (clΩ) ≡ {u ∈ Ck(clΩ) : Dγu is bounded ∀γ ∈ Nn such that |γ| ≤ k} ,

and we endow Ckb (clΩ) with its usual norm

‖u‖Ckb (clΩ) ≡
∑
|γ|≤k

sup
x∈clΩ

|Dγu(x)| ∀u ∈ Ckb (clΩ) .

Then we set

Ck,βb (clΩ) ≡ {u ∈ Ck,β(clΩ) : Dγu is bounded ∀γ ∈ Nn such that |γ| ≤ k} ,

and we endow Ck,βb (clΩ) with its usual norm

‖u‖Ck,βb (clΩ) ≡
∑
|γ|≤k

sup
x∈clΩ

|Dγu(x)|+
∑
|γ|=k

|Dγu : clΩ|β ∀u ∈ Ck,βb (clΩ) ,

where |Dγu : clΩ|β denotes the β-Hölder constant of Dγu.
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Next, we turn to introduce the Roumieu classes. For all bounded open subsets Ω of Rn and ρ > 0, we set

C0
ω,ρ(clΩ) ≡

{
u ∈ C∞(clΩ) : sup

β∈Nn

ρ|β|

|β|!
‖Dβu‖C0(clΩ) < +∞

}
,

and

‖u‖C0
ω,ρ(clΩ) ≡ sup

β∈Nn

ρ|β|

|β|!
‖Dβu‖C0(clΩ) ∀u ∈ C0

ω,ρ(clΩ) ,

where |β| ≡ β1+· · ·+βn for all β ≡ (β1, . . . , βn) ∈ Nn. As is well known, the Roumieu class
(
C0
ω,ρ(clΩ), ‖ · ‖C0

ω,ρ(clΩ)

)
is a Banach space.

Next we turn to periodic domains. If Ω is an arbitrary subset of Rn such that clΩ ⊆ Q, then we set

S[Ω] ≡
⋃
z∈Zn

(qz + Ω) = qZn + Ω , S[Ω]− ≡ Rn \ clS[Ω] .

If k ∈ N, β ∈]0, 1], then we set

Ckq (clS[Ω]) ≡
{
u ∈ Ckb (clS[Ω]) : u is q − periodic

}
,

which we regard as a Banach subspace of Ckb (clS[Ω]), and

Ck,βq (clS[Ω]) ≡
{
u ∈ Ck,βb (clS[Ω]) : u is q − periodic

}
,

which we regard as a Banach subspace of Ck,βb (clS[Ω]). Then Ckq (clS[Ω]−) and Ck,βq (clS[Ω]−) can be defined
similarly. If ρ ∈]0,+∞[, then we set

C0
q,ω,ρ(Rn) ≡

{
u ∈ C∞q (Rn) : sup

β∈Nn

ρ|β|

|β|!
‖Dβu‖C0(clQ) < +∞

}
, (2.2)

where C∞q (Rn) denotes the set of q-periodic functions of C∞(Rn), and

‖u‖C0
q,ω,ρ(Rn) ≡ sup

β∈Nn

ρ|β|

|β|!
‖Dβu‖C0(clQ) ∀u ∈ C0

q,ω,ρ(Rn) .

The Roumieu class
(
C0
q,ω,ρ(Rn), ‖ · ‖C0

q,ω,ρ(Rn)

)
is a Banach space. As is well known, if f is a q-periodic real

analytic function from Rn to R, then there exists ρ ∈]0,+∞[ such that

f ∈ C0
q,ω,ρ(Rn) .

As is well known, there exists a q-periodic tempered distribution Sq,n such that

∆Sq,n =
∑
z∈Zn

δqz −
1

mn(Q)
,

where δqz denotes the Dirac measure with mass in qz (cf. e.g., [19, p. 84].) The distribution Sq,n is determined
up to an additive constant, and we can take

Sq,n(x) = −
∑

z∈Zn\{0}

1

mn(Q)4π2|q−1z|2
e2πi(q−1z)·x ,

in the sense of distributions in Rn. Moreover, Sq,n is even, and real analytic in Rn\qZn, and locally integrable
in Rn (cf. e.g., Ammari and Kang [1, p. 53], [19, §3].)

Let Sn be the function from Rn \ {0} to R defined by

Sn(x) ≡
{ 1

sn
log |x| ∀x ∈ Rn \ {0}, if n = 2 ,
1

(2−n)sn
|x|2−n ∀x ∈ Rn \ {0}, if n > 2 ,
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where sn denotes the (n− 1) dimensional measure of ∂Bn. Sn is well-known to be the fundamental solution
of the Laplace operator.

Then the function Sq,n−Sn admits an analytic extension to (Rn \ qZn)∪{0} (cf. e.g., Ammari and Kang
[1, Lemma 2.39, p. 54].) We find convenient to set

Rq,n ≡ Sq,n − Sn in (Rn \ qZn) ∪ {0} .

Obviously, Rq,n is not a q-periodic function. We note that the following elementary equality holds

Sq,n(εx) = ε2−nSn(x) +
1

2π
(δ2,n log ε) +Rq,n(εx) ,

for all x ∈ Rn \ ε−1qZn and ε ∈]0,+∞[.

If Ω is a bounded open subset of Rn and f ∈ L∞(Ω), then we set

Pn[Ω, f ](x) ≡
∫

Ω

Sn(x− y)f(y) dy ∀x ∈ Rn .

If we further assume that Ω ⊆ Q, then we set

Pq,n[Ω, f ](x) ≡
∫

Ω

Sq,n(x− y)f(y) dy ∀x ∈ Rn .

Let Ω be a bounded open subset of Rn of class C1,α for some α ∈]0, 1[. If H is any of the functions Sq,n,
Rq,n and clΩ ⊆ Q or if H equals Sn, we set

v[∂Ω, H, µ](x) ≡
∫
∂Ω

H(x− y)µ(y) dσy ∀x ∈ Rn ,

w[∂Ω, H, µ](x) ≡
∫
∂Ω

∂

∂νΩ(y)
H(x− y)µ(y) dσy

= −
∫
∂Ω

νΩ(y) ·DH(x− y)µ(y) dσy ∀x ∈ Rn ,

w∗[∂Ω, H, µ](x) ≡
∫
∂Ω

∂

∂νΩ(x)
H(x− y)µ(y) dσy

=

∫
∂Ω

νΩ(x) ·DH(x− y)µ(y) dσy ∀x ∈ ∂Ω ,

for all µ ∈ L2(∂Ω), where DH is the Jacobian matrix of H. As is well known, if µ ∈ C0(∂Ω), then
v[∂Ω, Sq,n, µ] and v[∂Ω, Sn, µ] are continuous in Rn, and we set

v+[∂Ω, Sq,n, µ] ≡ v[∂Ω, Sq,n, µ]|clS[Ω] v−[∂Ω, Sq,n, µ] ≡ v[∂Ω, Sq,n, µ]|clS[Ω]−

v+[∂Ω, Sn, µ] ≡ v[∂Ω, Sn, µ]|clΩ v−[∂Ω, Sn, µ] ≡ v[∂Ω, Sn, µ]|clΩ− .

Also, if µ is continuous, then w[∂Ω, Sq,n, µ]|S[Ω] admits a continuous extension to clS[Ω], which we denote
by w+[∂Ω, Sq,n, µ] and w[∂Ω, Sq,n, µ]|S[Ω]− admits a continuous extension to clS[Ω]−, which we denote by
w−[∂Ω, Sq,n, µ] (cf. e.g., [19, §3].)

Similarly, w[∂Ω, Sn, µ]|Ω admits a continuous extension to clΩ, which we denote by w+[∂Ω, Sn, µ] and
w[∂Ω, Sn, µ]|Ω− admits a continuous extension to clΩ−, which we denote by w−[∂Ω, Sn, µ] (cf. e.g., Mi-
randa [29], [24, Thm. 3.1].)

In the specific case in which H equals Sn, we omit Sn and we simply write v[∂Ω, µ], w[∂Ω, µ], w∗[∂Ω, µ]
instead of v[∂Ω, Sn, µ], w[∂Ω, Sn, µ], w∗[∂Ω, Sn, µ], respectively. Similarly, if H equals Sq,n, we omit Sq,n
and we simply write vq[∂Ω, µ], wq[∂Ω, µ], wq,∗[∂Ω, µ] instead of v[∂Ω, Sq,n, µ], w[∂Ω, Sq,n, µ], w∗[∂Ω, Sq,n, µ],
respectively.
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3 Formulation of problem (1.4) in terms of integral equations

In [23], we have converted problem (1.4) in terms of integral equations. The first step consists in transforming
our problem so as to remove the parameter δ from the domain of problem (1.4) and can be done by exploiting
the rule of change of variables. Indeed, a function u ∈ Cm,α(clS(ε, δ)−) satisfies problem (1.4) if and only if
the function

u](·) = u(δ·) ∈ Cm,α(clS(ε, 1)−) ,

satisfies the following auxiliary boundary value problem
∆u](x) = δ2f(x) ∀x ∈ S(ε, 1)− ,
u] is q − periodic in S(ε, 1)− ,

∂
∂νΩp,ε

u](x) + δG(ε−1(x− p), u](x)) = 0 ∀x ∈ ∂Ωp,ε .
(3.1)

We now wish to transform problem (3.1) into an integral equation. To do so, we need some notation. In
particular, if G ∈ C0(∂Ω×R), we denote by TG the (nonlinear nonautonomous) composition operator from
C0(∂Ω) to itself which maps v ∈ C0(∂Ω) to the function TG[v] defined by

TG[v](t) ≡ G(t, v(t)) ∀t ∈ ∂Ω .

Then we have the following result of [23].

Theorem 3.2 Let m ∈ N \ {0}, α ∈]0, 1[. Let p ∈ Q. Let Ω be as in (1.1). Let ε0 be as in (1.2). Let
{fε}ε∈]−ε0,ε0[ be as in (1.3). Let G ∈ C0(∂Ω× R) be such that

TG maps Cm−1,α(∂Ω) to itself . (3.3)

Let (ε, δ) ∈]0, ε0[×]0,+∞[. Then the map u][ε, δ, ·, ·] from the set of pairs (θ, c) ∈ Cm−1,α(∂Ω)0 × R that
solve the equation

1

2
θ(t) +

∫
∂Ω

νΩ(t)DSn(t− s)θ(s) dσs + εn−1

∫
∂Ω

νΩ(t)DRq,n(ε(t− s))θ(s) dσs (3.4)

+G

(
t, δε

∫
∂Ω

Sn(t− s)θ(s) dσs + δεn−1

∫
∂Ω

Rq,n(ε(t− s))θ(s) dσs + c

+δ2

[
Pq,n[Q, fε](p+ tε)−

∫
Q

fε dsRq,n(εt)

]
− δ2ε2−n

∫
Q

fε dsSn(t)

)
+δνΩ(t)

[
DPq,n[Q, fε](p+ εt)−

∫
Q

fεdxDRq,n(εt)

]
−δε1−n

∫
Q

fεdxνΩ(t)DSn(t) = 0 ∀t ∈ ∂Ω ,

to the set of u] ∈ Cm,α(clS[Ωp,ε]
−) which solve the auxiliary problem (3.1) and which takes (θ, c) to the

function

u][ε, δ, θ, c] ≡ ω][ε, δ, θ, c] (3.5)

+δ2

[∫
Q

Sq,n(· − s)fε(s) ds−
∫
Q

fε dsSq,n(· − p)
]

where

ω][ε, δ, θ, c] ≡ v[∂Ωp,ε, Sq,n, δθ(ε
−1(· − p))] + c+ δ2,nδ

2

∫
Q

fε ds
log ε

2π
, (3.6)

is a bijection.
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As observed in [23], the right hand side of equation (3.4) contains two terms which may not converge as
(ε, δ) tends to (0, 0):

δ2ε2−n
∫
Q

fε ds and δε1−n
∫
Q

fεdx . (3.7)

If nf = +∞, i.e., if
∫
Q
fεdx = 0 for all ε ∈] − ε0, ε0[, then the above terms are identically equal to zero. If

instead nf < +∞, the above terms can be rewritten as

δ2εnf+2−nF (ε) and δεnf+1−nF (ε) , (3.8)

(cf. (1.5)).
Hence, we need to distinguish two cases: if nf ≥ (n − 1), then the above terms in (3.7) have limit as

(ε, δ) tends to (0, 0). Thus if nf ≥ (n − 1) we can take the limit as (ε, δ) tends to (0, 0) in equation (3.4)
under appropriate regularity assumptions and obtain an equation which we address to as ‘limiting integral
equation’. Namely,

1

2
θ(t) +

∫
∂Ω

νΩ(t)DSn(t− s)θ(s) dσs +G(t, c) = 0 ∀t ∈ ∂Ω . (3.9)

If instead nf < n − 1, then the second term in (3.7) (or (3.8)) cannot have a limit as (ε, δ) tends to (0, 0),
and accordingly, we cannot take the limit as (ε, δ) tends to (0, 0) in equation (3.4) and we cannot identify a
‘limiting integral equation’. Hence, case nf < n − 1 requires a different treatment. Here we observe that if
we fix γ0 ∈ [0,+∞[ and if we consider the pairs (ε, δ) of the graph of a function ε̂ from ]0,+∞[ to ]0, ε0[ such
that (1.8) holds, then we can take the limit as δ tends to 0 in the terms of (3.7) (or of (3.8)) with ε = ε̂(δ)
and obtain

lim
δ→0

δ2ε̂(δ)2−n
∫
Q

fε̂(δ) ds = 0 and lim
δ→0

δε̂(δ)1−n
∫
Q

fε̂(δ)dx = γ0F (0) .

Hence, we can take the limit as δ tends to 0 in equation (3.4) with ε = ε̂(δ) under appropriate regularity
assumptions and obtain an equation which we address to as ‘limiting integral equation associated to γ0’.
Namely,

1

2
θ(t) +

∫
∂Ω

νΩ(t)DSn(t− s)θ(s) dσs +G(t, c)− γ0F (0)νΩ(t)DSn(t) = 0 ∀t ∈ ∂Ω . (3.10)

3.1 Analysis of the integral equation (3.4) in case nf ≥ n− 1.

In order to analyze equation (3.4) around the degenerate case in which (ε, δ) = (0, 0) and under the assump-
tion that nf ≥ (n − 1) and to treat both case nf < +∞ and case nf = +∞ at the same time, we find
convenient to set

ñf ≡ nf if nf < +∞ , ñf ≡ n− 1 if nf = +∞ ,

and to set F (ε) ≡ 0 for all ε ∈]− ε0, ε0[ in case nf = +∞. Indeed, if so we have∫
Q

fε dx = εñfF (ε) ∀ε ∈]− ε0, ε0[ , (3.11)

both in case nf < +∞ and case nf = +∞. Then we have the following result of [23].

Theorem 3.12 Let m ∈ N \ {0}, α ∈]0, 1[. Let p ∈ Q. Let Ω be as in (1.1). Let ε0 be as in (1.2). Let
{fε}ε∈]−ε0,ε0[ be as in (1.3). Let nf ≥ n− 1. Let G ∈ C0(∂Ω× R) be such that

TG is real analytic in Cm−1,α(∂Ω) . (3.13)

Let c� ∈ R be such that (1.6) holds. Let Λ� be the map from ]− ε0, ε0[×R×Cm−1,α(∂Ω)0×R to Cm−1,α(∂Ω)
defined by

Λ�[ε, δ, θ, c](t) ≡
1

2
θ(t) +

∫
∂Ω

νΩ(t)DSn(t− s)θ(s) dσs
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+εn−1

∫
∂Ω

νΩ(t)DRq,n(ε(t− s))θ(s) dσs

+G

(
t, δε

∫
∂Ω

Sn(t− s)θ(s) dσs + δεn−1

∫
∂Ω

Rq,n(ε(t− s))θ(s) dσs + c

+δ2
[
Pq,n[Q, fε](p+ tε)− εñfF (ε)Rq,n(εt)

]
− δ2ε2−nεñfF (ε)Sn(t)

)
+δνΩ(t)

[
DPq,n[Q, fε](p+ εt)− εñfF (ε)DRq,n(εt)

]
−δε1−nεñfF (ε)νΩ(t)DSn(t) ∀t ∈ ∂Ω ,

for all (ε, δ, θ, c) ∈]− ε0, ε0[×R× Cm−1,α(∂Ω)0 × R. Then the following statements hold.

(i) Equation Λ�[0, 0, θ, c�] = 0 is equivalent to the limiting integral equation (3.9) with c = c� and has one
and only one solution θ� ∈ Cm−1,α(∂Ω)0 (see (2.1).)

(ii) If (ε, δ) ∈]0, ε0[×]0,+∞[, then equation Λ�[ε, δ, θ, c] = 0 is equivalent to equation (3.4) in the unknown
(θ, c) ∈ Cm−1,α(∂Ω)0 × R.

(iii) There exist (ε′, δ′) ∈]0, ε0[×]0,+∞[ and an open neighborhood U of (θ�, c�) in Cm−1,α(∂Ω)0 × R, and
a real analytic map (Θ�, C�) from ]− ε′, ε′[×]− δ′, δ′[ to U such that the set of zeros of the map Λ� in
]− ε′, ε′[×]− δ′, δ′[×U coincides with the graph of (Θ�, C�). In particular,

(Θ�[0, 0], C�[0, 0]) = (θ�, c�) .

By Theorem 3.12, we can now define our family of solutions of the auxiliary problem (3.1) in case
nf ≥ n− 1.

Definition 3.14 Let the assumptions of Theorem 3.12 hold. Then we set

ω](ε, δ, x) ≡ ω][ε, δ,Θ�[ε, δ], C�[ε, δ]](x) ∀x ∈ clS(ε, 1)− ,

u](ε, δ, x) ≡ ω][ε, δ,Θ�[ε, δ], C�[ε, δ]](x)

+δ2

[∫
Q

Sq,n(x− s)fε(s) ds−
∫
Q

fε dsSq,n(x− p)
]

∀x ∈ clS(ε, 1)− ,

for all (ε, δ) ∈]0, ε′[×]0, δ′[.

Then {u](ε, δ, ·)}(ε,δ)∈]0,ε′[×]0,δ′[ is a family of solutions of the auxiliary problem (3.1) in case nf ≥ n− 1.

3.2 Analysis of the integral equation (3.4) in case nf < n− 1.

In order to analyze the integral equation (3.4) in case nf < n − 1, we replace the term δεnf+1−n which
appears in (3.8) and which has no limit as (ε, δ) tends to (0, 0) by a new variable γ as in [23]. By doing so,
we obtain a new equation which depends on ε and γ and which is not singular in ε and γ and to analyze the
dependence of θ and c upon ε and γ, and we have the following result of [23].

Theorem 3.15 Let m ∈ N \ {0}, α ∈]0, 1[. Let p ∈ Q. Let Ω be as in (1.1). Let ε0 be as in (1.2). Let
{fε}ε∈]−ε0,ε0[ be as in (1.3). Let nf < n − 1. Let G ∈ C0(∂Ω× R) satisfy (3.13). Let c∗ ∈ R, γ0 ∈ [0,+∞[
satisfy (1.7) (cf. (1.5).) Let Λ∗ be the map from ]− ε0, ε0[×R×Cm−1,α(∂Ω)0×R to Cm−1,α(∂Ω) defined by

Λ∗[ε, γ, θ, c](t) ≡
1

2
θ(t) +

∫
∂Ω

νΩ(t)DSn(t− s)θ(s) dσs

+εn−1

∫
∂Ω

νΩ(t)DRq,n(ε(t− s))θ(s) dσs

+G

(
t, γεn−nf

∫
∂Ω

Sn(t− s)θ(s) dσs + γε2(n−1)−nf
∫
∂Ω

Rq,n(ε(t− s))θ(s) dσs + c
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+γ2ε2(n−1)−2nf [Pq,n[Q, fε](p+ tε)− εnfF (ε)Rq,n(εt)]− γ2εn−nfF (ε)Sn(t)

)
+γεn−1−nf νΩ(t)

[
DPq,n[Q, fε](p+ εt)− εnfF (ε)DRq,n(εt)

]
−γF (ε)νΩ(t)DSn(t) ∀t ∈ ∂Ω ,

for all (ε, γ, θ, c) ∈]− ε0, ε0[×R× Cm−1,α(∂Ω)0 × R. Then the following statements hold.

(i) Equation Λ∗[0, γ0, θ, c∗] = 0 is equivalent to the limiting integral equation associated to γ0 (3.10) with
c = c∗ and has one and only one solution θ∗ ∈ Cm−1,α(∂Ω)0 (see (2.1).)

(ii) Let ε̂ be as in (1.8). Let δ ∈]0,+∞[, ε̂(δ) < ε0. Then equation Λ∗[ε̂(δ), δε̂(δ)
nf−n+1, θ, c] = 0 is

equivalent to the integral equation (3.4) with ε = ε̂(δ) in the unknown (θ, c) ∈ Cm−1,α(∂Ω)0 × R.

(iii) There exist ε′ ∈]0, ε0[ and an open neighborhood Γ0 of γ0 in R, and an open neighborhood U of (θ∗, c∗)
in Cm−1,α(∂Ω)0 × R, and a real analytic map (Θ∗, C∗) from ] − ε′, ε′[×Γ0 to U such that the set of
zeros of the map Λ∗ in ]− ε′, ε′[×Γ0 × U coincides with the graph of (Θ∗, C∗). In particular,

(Θ∗[0, γ0], C∗[0, γ0]) = (θ∗, c∗) .

Next we observe that the limiting relations in (1.8) imply that there exists δ′ ∈]0,+∞[ such that

ε̂(δ) ∈]0, ε′[
δ

ε̂(δ)(n−1)−nf
∈ Γ0 ∀δ ∈]0, δ′[ . (3.16)

In the following definition, we define our family of solutions of the auxiliary problem (3.1) in case nf < n−1.
We do so by means of the following.

Definition 3.17 Let the assumptions of Theorem 3.15 hold. Let δ′ ∈]0,+∞[ be as in (3.16). Then we set

ω](δ, x) ≡ ω][ε̂(δ), δ,Θ∗[ε̂(δ), δε̂(δ)
nf−n+1], C∗[ε̂(δ), δε̂(δ)

nf−n+1]](x) ∀x ∈ clS(ε̂(δ), 1)− ,

u](δ, x) ≡ ω][ε̂(δ), δ,Θ∗[ε̂(δ), δε̂(δ)
nf−n+1], C∗[ε̂(δ), δε̂(δ)

nf−n+1]](x)

+δ2

[∫
Q

Sq,n(x− s)fε̂(δ)(s) ds−
∫
Q

fε̂(δ) dsSq,n(x− p)
]
∀x ∈ clS(ε̂(δ), 1)− ,

for all δ ∈]0, δ′[ (see also (3.5), (3.6).)

By Theorem 3.15, {u](δ, ·)}δ∈]0,δ′[ is a family of solutions of the auxiliary problem (3.1) in case nf < n− 1.

3.3 A functional analytic representation theorem for the family of solutions
{u](ε, δ, ·)}(ε,δ)∈]0,ε′[×]0,δ′[ and {u](δ, ·)}δ∈]0,δ′[ of the auxilary problem (3.1)

As we shall see, in order to compute the energy integrals of the family of solutions {u](ε, δ, ·)}(ε,δ)∈]0,ε′[×]0,δ′[

and {u](δ, ·)}δ∈]0,δ′[ we will exploit the Divergence Theorem. By doing so, we will need the analyze the

behavior of (suitable restrictions of) the families {u](ε, δ, ·)}(ε,δ)∈]0,ε′[×]0,δ′[ and {u](δ, ·)}δ∈]0,δ′[.

We first have the following representation theorem for the family {u](ε, δ, ·)}(ε,δ)∈]0,ε′[×]0,δ′[ (cf. [23].)

Theorem 3.18 Let m ∈ N \ {0}, α ∈]0, 1[. Let p ∈ Q. Let Ω be as in (1.1). Let ε0 be as in (1.2). Let
{fε}ε∈]−ε0,ε0[ be as in (1.3). Let nf ≥ n − 1. Let G ∈ C0(∂Ω × R) satisfy condition (3.13). Let c� ∈ R be
such that (1.6) holds. Let ε′, δ′ be as in Theorem 3.12 (iii). Then there exist a real analytic map V r�,∂Ω from
]− ε′, ε′[×]− δ′, δ′[ to Cm,α(∂Ω) and a real analytic map Pr∂Ω from ]− ε0, ε0[ to Cm,α(∂Ω) such that

ω](ε, δ, p+ εt) = εδV r�,∂Ω[ε, δ](t) + C�[ε, δ] + δ2,nδ
2

∫
Q

fε ds
log ε

2π
∀t ∈ ∂Ω ,

u](ε, δ, p+ εt) = εδV r�,∂Ω[ε, δ](t) + C�[ε, δ] + δ2Pr∂Ω[ε](t) ∀t ∈ ∂Ω ,
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for all (ε, δ) ∈]0, ε′[×]0, δ′[. Moreover,

V r�,∂Ω[0, 0](t) = u]�(t) Pr∂Ω[0](t) =

∫
Q

Sq,n(p− s)f0(s) ds ∀t ∈ ∂Ω , (3.19)

where u]� is the unique solution in Cm,αloc (Rn \ Ω) of the ‘limiting boundary value problem’
∆u = 0 in Rn \ clΩ ,
∂u
∂νΩ

(x) +G(x, c�) = 0 ∀x ∈ ∂Ω ,

limx→∞ u(x) = 0 .

Finally,
u]� = v−[∂Ω, θ�] , (3.20)

where θ� is as in Theorem 3.12 (i).

Next we turn to introduce a representation theorem for the family of solutions {u](δ, ·)}δ∈]0,δ′[ in case
nf < n− 1 (cf. [23].)

Theorem 3.21 Let m ∈ N \ {0}, α ∈]0, 1[. Let p ∈ Q. Let Ω be as in (1.1). Let ε0 be as in (1.2). Let
{fε}ε∈]−ε0,ε0[ be as in (1.3). Let nf < n − 1. Let G ∈ C0(∂Ω × R) satisfy condition (3.13). Let c∗ ∈ R,
γ0 ∈ [0,+∞[ satisfy (1.7). Let ε′ ∈]0, ε0[, be as in Theorem 3.15 (iii). Let Γ0 be an open neighborhood of γ0

in R as in Theorem 3.15 (iii). Let ε̂ be as in (1.8). Let δ′ ∈]0,+∞[ be as in (3.16). Then there exist a real
analytic map V r∗,∂Ω from ]− ε′, ε′[×Γ0 to Cm,α(∂Ω) and a real analytic map Pr∂Ω from ]− ε0, ε0[ to Cm,α(∂Ω)
such that

ω](δ, p+ ε̂(δ)t) = ε̂(δ)δV r∗,∂Ω[ε̂(δ), δε̂(δ)nf−(n−1)](t)

+C∗[ε̂(δ), δε̂(δ)
nf−(n−1)] + δ2,nδ

2

∫
Q

fε̂(δ) ds
log ε̂(δ)

2π
∀t ∈ ∂Ω ,

u](δ, p+ ε̂(δ)t) = ε̂(δ)δV r∗,∂Ω[ε̂(δ), δε̂(δ)nf−(n−1)](t)

+C∗[ε̂(δ), δε̂(δ)
nf−(n−1)] + δ2Pr∂Ω[ε̂(δ)](t) ∀t ∈ ∂Ω ,

for all δ ∈]0, δ′[. Moreover,

V r∗,∂Ω[0, γ0](t) = u]∗(t) Pr∂Ω[0](t) =

∫
Q

Sq,n(p− s)f0(s) ds ∀t ∈ ∂Ω ,

where u]∗ is the unique solution in Cm,αloc (Rn \ Ω) of the ‘limiting boundary value problem’
∆u = 0 in Rn \ clΩ ,
∂u
∂νΩ

(x) +G(x, c∗)− F0γ0νΩ(x)DSn(x) = 0 ∀x ∈ ∂Ω ,

limx→∞ u(x) = 0 ,

Finally,
u]∗ = v−[∂Ω, θ∗] , (3.22)

where θ∗ is as in Theorem 3.15 (i).

4 A functional analytic representation theorem for the energy in-
tegrals of the family of solutions {u](ε, δ, ·)}(ε,δ)∈]0,ε′[×]0,δ′[ and of the
family of solutions {u](δ, ·)}δ∈]0,δ′[ of the auxilary problem (3.1)

As an intermediate step, in this section we first prove a formula for the energy integral of all solutions of
problem (3.1) by means of the following two elementary lemmas.
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Lemma 4.1 Let the assumptions of Theorem 3.2 hold. Let (ε, δ) ∈]0, ε0[×]0,+∞[. Let (θ, c) ∈ Cm−1,α(∂Ω)0×
R. Let u][ε, δ, θ, c], ω][ε, δ, θ, c] be as in (3.5), (3.6). Then we have∫

Q\clΩp,ε

|Dxu
][ε, δ, θ, c](x)|2 dx (4.2)

= −
∫
∂Ω

u][ε, δ, θ, c](p+ εs)νΩ(s)Ds

(
ω][ε, δ, θ, c](p+ εs)

)
εn−2 dσs

−δ2

∫
∂Ω

P [ε, p+ εs]νΩ(s)Ds

(
ω][ε, δ, θ, c](p+ εs)

)
εn−2 dσs + δ4

∫
Q\clΩp,ε

|DxP [ε, x]|2 dx ,

where

P [ε, x] ≡
∫
Q

Sq,n(x− s)fε(s) ds−
∫
Q

fε dsSq,n(x− p) ∀x ∈ Rn \ (p+ qZn) . (4.3)

Proof. Since ω][ε, δ, θ, c] is harmonic in S[Ωp,ε]
−, equality (3.5) and the Leibnitz rule imply that∫

Q\clΩp,ε

|Dxu
][ε, δ, θ, c](x)|2 dx

=

∫
Q\clΩp,ε

|Dxω
][ε, δ, θ, c](x) + δ2DxP [ε, x]|2 dx

=

∫
Q\clΩp,ε

|Dxω
][ε, δ, θ, c](x)|2 dx+ 2δ2

∫
Q\clΩp,ε

Dxω
][ε, δ, θ, c](x) ·DxP [ε, x] dx

+δ4

∫
Q\clΩp,ε

|DxP [ε, x]|2 dx

=

∫
Q\clΩp,ε

div
(
ω][ε, δ, θ, c](x)Dxω

][ε, δ, θ, c](x)
)
dx

+2δ2

∫
Q\clΩp,ε

Dxω
][ε, δ, θ, c](x) ·DxP [ε, x] dx+ δ4

∫
Q\clΩp,ε

|DxP [ε, x]|2 dx .

By the Divergence Theorem and by the q-periodicity of the harmonic function ω][ε, δ, θ, c], we have∫
Q\clΩp,ε

div
(
ω][ε, δ, θ, c](x)Dxω

][ε, δ, θ, c](x)
)
dx

= −
∫
∂Ωp,ε

ω][ε, δ, θ, c](x)νΩp,ε(x)Dxω
][ε, δ, θ, c](x) dσx

= −
∫
∂Ω

ω][ε, δ, θ, c](p+ εs)νΩ(s)Dω][ε, δ, θ, c](p+ εs)εn−1 dσs

= −
∫
∂Ω

ω][ε, δ, θ, c](p+ εs)νΩ(s)Ds

(
ω][ε, δ, θ, c](p+ εs)

)
εn−2 dσs ,

and

2δ2

∫
Q\clΩp,ε

Dxω
][ε, δ, θ, c](x) ·DxP [ε, x] dx

= 2δ2

∫
Q\clΩp,ε

div
(
Dxω

][ε, δ, θ, c](x)P [ε, x]
)
dx

= −2δ2

∫
∂Ωp,ε

P [ε, x]νΩp,ε(x)Dxω
][ε, δ, θ, c](x) dσx

= −2δ2

∫
∂Ω

P [ε, p+ εs]νΩ(s)Dω][ε, δ, θ, c](p+ εs) dσsε
n−1

= −2δ2

∫
∂Ω

P [ε, p+ εs]νΩ(s)Ds

(
ω][ε, δ, θ, c](p+ εs)

)
dσsε

n−2 .
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Then we have ∫
Q\clΩp,ε

|Dxu
][ε, δ, θ, c](x)|2 dx

= −
∫
∂Ω

ω][ε, δ, θ, c](p+ εs)νΩ(s)Ds

(
ω][ε, δ, θ, c](p+ εs)

)
εn−2 dσs

−2δ2

∫
∂Ω

P [ε, p+ εs]νΩ(s)Ds

(
ω][ε, δ, θ, c](p+ εs)

)
dσsε

n−2

+δ4

∫
Q\clΩp,ε

|DxP [ε, x]|2 dx .

Hence, equality (4.2) follows by the identity

u][ε, δ, θ, c](p+ εs) = ω][ε, δ, θ, c](p+ εs) + δ2P [ε, p+ εs] ∀s ∈ ∂Ω

(cf. equality (3.5).) 2

Lemma 4.4 Let m ∈ N \ {0}, α ∈]0, 1[. Let p ∈ Q. Let Ω be as in (1.1). Let ε0 be as in (1.2). Let
{fε}ε∈]−ε0,ε0[ be as in (1.3). Let P [ε, ·] be as in (4.3) for all ε ∈] − ε0, ε0[. Then there exists an analytic
function F from ]− ε0, ε0[ to R such that∫

Q\clΩp,ε

|DxP [ε, x]|2 dx = F(ε)− ε2−n
∫
∂Ω

Sn
∂Sn
∂νΩ

dσ

(∫
Q

fε(s) ds

)2

(4.5)

−δ2,n
2π

log ε

(∫
Q

fε(s) ds

)2

∀ε ∈]0, ε0[ .

Moreover,

F(0) =

∫
Q

|DA(x)|2 dx− 2

(∫
Q

f0(s) ds

)∫
∂Q

A(x)
∂Sn
∂νQ

(x− p) dσx (4.6)

+2

(∫
Q

f0(s) ds

)
A(p) +

(∫
Q

f0(s) ds

)2 ∫
∂Q

Sn(x− p)∂Sn
∂νQ

(x− p) dσx ,

where

A(x) ≡
∫
Q

Sq,n(x− s)f0(s) ds−
∫
Q

f0 dsRq,n(x− p) ∀x ∈ (Rn \ (p+ qZn)) ∪ {0} .

Proof. In order to shorten our notation, we set

A[ε, x] ≡
∫
Q

Sq,n(x− s)fε(s) ds−
∫
Q

fε dsRq,n(x− p) ∀x ∈ (Rn \ (p+ qZn)) ∪ {0} ,

and

ϕ(ε) ≡
∫
Q

fε ds

for all ε ∈]− ε0, ε0[. Next we note that∫
Q\clΩp,ε

|DxP [ε, x]|2 dx =

∫
Q\clΩp,ε

|Dx[A[ε, x]− ϕ(ε)Sn(x− p)]|2 dx (4.7)

=

∫
Q\clΩp,ε

|DxA[ε, x]|2 dx− 2ϕ(ε)

∫
Q\clΩp,ε

DxA[ε, x] ·DxSn(x− p) dx

+ϕ(ε)2

∫
Q\clΩp,ε

|DxSn(x− p)|2 dx

13



=

∫
Q\clΩp,ε

|DxA[ε, x]|2 dx− 2ϕ(ε)

∫
∂Q

A[ε, x]
∂Sn
∂νQ

(x− p) dσx

+2ϕ(ε)

∫
∂Ωp,ε

A[ε, x]
∂Sn
∂νΩp,ε

(x− p) dσx

+ϕ(ε)2

∫
∂Q

Sn(x− p)∂Sn
∂νQ

(x− p) dσx − ϕ(ε)2

∫
∂Ωp,ε

Sn(x− p) ∂Sn
∂νΩp,ε

(x− p) dσx ,

for all ε ∈]0, ε0[, and that∫
∂Ωp,ε

A[ε, x]
∂Sn
∂νΩp,ε

(x− p) dσx (4.8)

=

∫
∂Ω

A[ε, p+ εs]νΩ(s)DSn(εs) dσsε
n−1 =

∫
∂Ω

A[ε, p+ εs]νΩ(s)DSn(s) dσs ,

for all ε ∈]0, ε0[, and that∫
∂Ωp,ε

Sn(x− p) ∂Sn
∂νΩp,ε

(x− p) dσx =

∫
∂Ω

Sn(εs)
∂Sn
∂νΩ

(εs) dσsε
n−1 (4.9)

= ε2−n
∫
∂Ω

Sn(s)
∂Sn
∂νΩ

(s) dσs +
δ2,n
2π

log ε

∫
∂Ω

∂Sn
∂νΩ

(s) dσs ,

for all ε ∈]0, ε0[, and that if we choose a ∈]0,+∞[ such that clBn(0, a) ⊆ Ω, we have∫
∂Ω

∂Sn
∂νΩ

(s) dσs =

∫
∂Bn(0,a)

∂Sn
∂νBn(0,a)

(x) dσx =

∫
∂Bn(0,a)

x

|x|
· x

sn|x|n
dσs = 1 . (4.10)

We first consider the integral
∫
Q\clΩp,ε

|DxA[ε, x]|2 dx. Let V be an open bounded connected subset of Rn of

class C1 such that
clQ ⊆ V, clV ∩ (p+ q(Zn \ {0})) = ∅ .

Since Rq,n(· − p) is analytic in Rn \ (p+ q(Zn \ {0})), then Rq,n(· − p) is analytic in an open neighborhood
of clV and there exists ρ ∈]0,+∞[ such that Rq,n(· − p) ∈ C0

ω,ρ(clV ). By assumption (1.3) and by [22,
Prop. A.2], possibly shrinking ρ, we can assume that the map from ]− ε0, ε0[ to C0

ω,ρ(clV ) which takes ε to
Pq,n[Q, fε]|clV is real analytic. Then once more by (1.3), the map from ] − ε0, ε0[ to C0

ω,ρ(clV ) which takes
ε to A[ε, ·]|clV is real analytic. Then Proposition A.2 (i) implies the existence of an analytic map F1 from
]− ε0, ε0[ to R such that

F1(ε) =

∫
Q\clΩp,ε

|DxA[ε, x]|2 dx ∀ε ∈]0, ε0[ .

The linearity and continuity of the restriction map from C0
ω,ρ(clV ) to L1(∂Ω) and the analyticity of A[ε, ·]|clV

in the variable ε ∈]− ε0, ε0[ imply that the map

F2(ε) ≡
∫
∂Q

A[ε, x]
∂Sn
∂νQ

(x− p) dσx ∀ε ∈]− ε0, ε0[ ,

is analytic. By Proposition A.1 of the Appendix, and by the analyticity of A[ε, ·]|clV in the variable ε ∈
]− ε0, ε0[, we deduce that the map from ]− ε0, ε0[ to C0(∂Ω) which takes ε to the function A[ε, p+ εt] of the
variable t ∈ ∂Ω is analytic, and accordingly that the map F3 from ]− ε0, ε0[ to R defined by

F3(ε) ≡
∫
∂Ω

A[ε, p+ εs]νΩ(s)DSn(s) dσs ∀ε ∈]− ε0, ε0[ ,

is analytic. Then equalities (4.7)–(4.9) imply that∫
Q\clΩp,ε

|DxP [ε, x]|2 dx = F1(ε)− 2ϕ(ε)F2(ε) + 2ϕ(ε)F3(ε) (4.11)
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+ϕ(ε)2

∫
∂Q

Sn(x− p)∂Sn
∂νQ

(x− p) dσx − ε2−n
∫
∂Ω

Sn
∂Sn
∂νΩ

dσϕ(ε)2 − δ2,n
2π

log εϕ(ε)2 ∀ε ∈]0, ε0[ .

Hence, formula (4.5) follows by choosing F as the sum of the first four terms in the right hand side of (4.11).
We also note that

F(0) =

∫
Q

|DxA[0, x]|2 dx− 2ϕ(0)

∫
∂Q

A[0, x]
∂Sn
∂νQ

(x− p) dσx

+2ϕ(0)

∫
∂Ω

A[0, p]νΩ(s)DSn(s) dσs + ϕ(0)2

∫
∂Q

Sn(x− p)∂Sn
∂νQ

(x− p) dσx .

Since
∫
∂Ω
νΩ(s)DSn(s) dσs = 1, formula (4.6) holds true (see (4.10).) 2

Then we can prove the following representation theorem for the energy integral of the solutions of the
auxiliary problem (3.1).

Theorem 4.12 Let m ∈ N \ {0}, α ∈]0, 1[. Let p ∈ Q. Let Ω be as in (1.1). Let ε0 be as in (1.2). Let
{fε}ε∈]−ε0,ε0[ be as in (1.3). Let G ∈ C0(∂Ω × R) satisfy condition (3.13). Then the following statements
hold.

(i) Let nf ≥ n− 1. Let c� ∈ R be such that (1.6) holds. Let ε′, δ′ be as in Theorem 3.12 (iii). Then there

exist a real analytic map E]� from ]− ε′, ε′[×]− δ′, δ′[ to R and a real analytic map F from ]− ε′, ε′[ to
R such that∫

Q\clΩp,ε

|Dxu
](ε, δ, x)|2 dx = E]�[ε, δ]εnδ2 + δ4

{
F(ε)

−ε2−n
∫
∂Ω

Sn
∂Sn
∂νΩ

dσ

(∫
Q

fε(s) ds

)2

− δ2,n
2π

log ε

(∫
Q

fε(s) ds

)2}
,

for all (ε, δ) ∈]0, ε′[×]0, δ′[. Moreover, F(0) is delivered by formula (4.6) and

E]�[0, 0] =

∫
Rn\clΩ

|Du]�|2 dx . (4.13)

(ii) Let nf < n− 1. Let c∗ ∈ R, γ0 ∈ [0,+∞[ satisfy (1.7). Let ε′ ∈]0, ε0[, be as in Theorem 3.15 (iii). Let
Γ0 be an open neighborhood of γ0 in R as in Theorem 3.15 (iii). Let ε̂ be as in (1.8). Let δ′ ∈]0,+∞[

be as in (3.16). Then there exist a real analytic map E]∗ from ] − ε′, ε′[×Γ0 to R and a real analytic
map F from ]− ε′, ε′[ to R such that∫

Q\clΩp,ε

|Dxu
](δ, x)|2 dx = E]∗[ε̂(δ), δε̂(δ)nf−(n−1)]ε̂(δ)nδ2 + δ4

{
F(ε̂(δ)) (4.14)

−ε̂(δ)2−n
∫
∂Ω

Sn
∂Sn
∂νΩ

dσ

(∫
Q

fε̂(δ)(s) ds

)2

− δ2,n
2π

log ε̂(δ)

(∫
Q

fε̂(δ)(s) ds

)2}
,

for all δ ∈]0, δ′[. Moreover, F(0) is delivered by formula (4.6) and

E]∗[0, γ0] =

∫
Rn\clΩ

|Du]∗|2 dx . (4.15)

Proof. (i) Let ε′, δ′ be as in Theorem 3.12 (iii). By the definition of ω](ε, δ, ·), u](ε, δ, ·) and by Lemma 4.1,
we have∫

Q\clΩp,ε

|Dxu
](ε, δ, x)|2 dx

= −
∫
∂Ω

u](ε, δ, p+ εt)νΩ(t)Dt

(
ω](ε, δ, p+ εt)

)
εn−2 dσt
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−δ2

∫
∂Ω

P [ε, p+ εt]νΩ(t)Dt

(
ω][ε, δ, θ, c](p+ εt)

)
εn−2 dσt + δ4

∫
Q\clΩp,ε

|DxP [ε, x]|2 dx

for all (ε, δ) ∈]0, ε′[×]0, δ′[. Next we replace u](ε, δ, p+εt) in the right hand side by its representation formula
of Theorem 3.18. Since Pr∂Ω[·] is analytic, there exists an analytic map Pr1,∂Ω[·] from ]− ε0, ε0[ to Cm,α(∂Ω)
such that

Pr∂Ω[ε] = Pr∂Ω[0] + εPr1,∂Ω[ε] = Pq,n[Q, f0](p) + εPr1,∂Ω[ε] ∀ε ∈]− ε0, ε0[ ,

(see (3.19).) We also mention that

P [ε, p+ εt] = Pq,n[Q, fε](p+ εt)−
∫
Q

fε dsSq,n(εt)

= Pq,n[q, fε](p+ εt)−
∫
Q

fε dsε
2−nSn(t)−

∫
Q

fε ds
δ2,n
2π

log ε−
∫
Q

fε dsRq,n(εt)

= Pr∂Ω[ε](t)−
∫
Q

fε ds
δ2,n
2π

log ε ∀t ∈ ∂Ω ,

for all ε ∈]0, ε′[. Then we have∫
Q\clΩp,ε

|Dxu
](ε, δ, x)|2 dx (4.16)

= −εn−2

∫
∂Ω

{
εδV r�,∂Ω[ε, δ](t) + εδ2Pr1,∂Ω[ε](t)

}
×νΩ(t)Dt

(
ω](ε, δ, p+ εt)

)
dσt

−εn−2

{
C�[ε, δ] + δ2Pq,n[Q, f0](p)

}∫
∂Ω

νΩ(t)Dt

(
ω](ε, δ, p+ εt)

)
dσt

−εn−2δ2

∫
∂Ω

{
Pq,n[Q, f0](p) + εPr1,∂Ω[ε](t)−

∫
Q

fε ds
δ2,n
2π

log ε

}
×νΩ(t)Dt

(
ω](ε, δ, p+ εt)

)
dσt

+δ4

∫
Q\clΩp,ε

|DxP [ε, x]|2 dx

for all (ε, δ) ∈]0, ε′[×]0, δ′[. Since ω](ε, δ, ·) is harmonic in Q \ clΩp,ε and q-periodic, we have

εn−2

∫
∂Ω

νΩ(t)Dt

(
ω](ε, δ, p+ εt)

)
dσt (4.17)

=

∫
∂Ωp,ε

∂

∂νΩp,ε

ω](ε, δ, x) dσx =

∫
∂Q

∂

∂νQ
ω](ε, δ, x) dσx = 0 ,

for all (ε, δ) ∈]0, ε′[×]0, δ′[. Next we consider the first integral in the right hand side of (4.16). By the
definition of ω](ε, δ, ·), we have

ω](ε, δ, p+ εt) = εδ

∫
∂Ω

Sn(t− s)Θ�[ε, δ](s) dσs

+

∫
∂Ω

εn−1δRq,n(ε(t− s))Θ�[ε, δ](s) dσs + C�[ε, δ] + δ2,nδ
2

∫
Q

fε ds
log ε

2π
,

for all t ∈ ε−1 (clS[Ωp,ε]
− − p) and for all (ε, δ) ∈]0, ε′[×]0, δ′[, and accordingly, the known formula for the

normal derivative of a single layer potential implies that

νΩ(t)Dt

(
ω](ε, δ, p+ εt)

)
(4.18)

= εδ
1

2
Θ�[ε, δ](t) + εδ

∫
∂Ω

νΩ(t)DSn(t− s)Θ�[ε, δ](s) dσs
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+εnδ

∫
∂Ω

νΩ(t)DRq,n(ε(t− s))Θ�[ε, δ](s) dσs ∀t ∈ ∂Ω ,

for all (ε, δ) ∈]0, ε′[×]0, δ′[. Then (4.16)–(4.18) imply that∫
Q\clΩp,ε

|Dxu
](ε, δ, x)|2 dx (4.19)

= εn−2(εδ)2

{
−
∫
∂Ω

[
V r�,∂Ω[ε, δ](t) + δPr1,∂Ω[ε](t)

][1

2
Θ�[ε, δ](t) + w∗[∂Ω,Θ�[ε, δ]](t)

+εn−1

∫
∂Ω

νΩ(t)DRq,n(ε(t− s))Θ�[ε, δ](s) dσs
]
dσt

−
∫
∂Ω

δPr1,∂Ω[ε](t)
[1

2
Θ�[ε, δ](t) + w∗[∂Ω,Θ�[ε, δ]](t)

+εn−1

∫
∂Ω

νΩ(t)DRq,n(ε(t− s))Θ�[ε, δ](s) dσs
]
dσt

}
+δ4

∫
Q\clΩp,ε

|DxP [ε, x]|2 dx

for all (ε, δ) ∈]0, ε′[×]0, δ′[. Since for all j ∈ {1, . . . , n} the map from ] − ε0, ε0[×L1(∂Ω) to Cm−1,α(∂Ω),
which takes (ε, θ) to the function∫

∂Ω

∂xjRq,n(ε(t− s))θ(s) dσs ∀t ∈ ∂Ω

is analytic, and Θ�, C� are analytic (cf. Theorem 3.12 (iii)) and w∗[∂Ω, ·]|∂Ω is linear and continuous from

Cm−1,α(∂Ω) to itself and V r�,∂Ω, Pr1,∂Ω are analytic (cf. Theorem 3.18), we conclude that the map E]� from

] − ε′, ε′[×] − δ′, δ′[ to R which takes ε to the coefficient of εn−2(εδ)2 in the right hand side of (4.19) is real
analytic. Then Theorem 3.12 (iii) and equality (3.19) imply that

E]�[0, 0] = −
∫
∂Ω

V r�,∂Ω[0, 0](t)

{
1

2
θ�(t) + w∗[∂Ω, θ�](t)

}
dσt

= −
∫
∂Ω

u]�
∂

∂νΩ
u]� dσ =

∫
Rn\clΩ

|Du]�|2 dx

(cf. (3.20).) Indeed, u]� is harmonic at infinity (see also Folland [12, Props. 2.74, 2.75, proof of Prop. 3.4].)
Then we take F as in Lemma 4.4.

We now prove statement (ii). Let V r∗,∂Ω be as in Theorem 3.21. By arguing as in statement (i), Lemma
4.1 implies that equality (4.14) holds if we set

E]∗[ε, γ] ≡ −
∫
∂Ω

{
V r∗,∂Ω[ε, γ](t) + 2γε(n−1)−nfPr1,∂Ω[ε](t)

}
×
{

1

2
Θ∗[ε, γ](t) + w∗[∂Ω,Θ∗[ε, γ]](t)

+εn−1

∫
∂Ω

νΩ(t)DRq,n(ε(t− s))Θ∗[ε, γ](s) dσs

}
dσt

for all (ε, γ) ∈]− ε′, ε′[×Γ0 and if we take F as in Lemma 4.4. Then equality (4.15) also holds true and the

analyticity of E]∗ follows by Theorems 3.15, 3.21 and by the same argument of the proof of the analyticity of
E]�. 2
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5 A functional analytic representation theorem for the energy in-
tegral of the family of solutions {u(ε, δ, ·)}(ε,δ)∈]0,ε′[×]0,δ′[ and of the
family of solutions {u(δ, ·)}δ∈]0,δ′[ of the original problem (1.4)

We now turn to analyze the behavior of the energy integrals (1.9) of u(ε, δ, ·) and of u(δ, ·) in the periodic
cell Q as (ε, δ) tends to (0, 0) and as δ tends to 0, respectively. In the spirit of this paper, we now represent
En[ε, δ] in terms of analytic maps of (ε, δ) in case nf ≥ n − 1, and En[δ] in terms of analytic maps of
(ε̂(δ), δε̂(δ)nf−(n−1)) in case nf < n− 1 when δ is such that δQ is an integer fraction of the cell Q. In other
words, we require that δ equals the reciprocal of some integer l ∈ N \ {0}.

Theorem 5.1 Let m ∈ N \ {0}, α ∈]0, 1[. Let p ∈ Q. Let Ω be as in (1.1). Let ε0 be as in (1.2). Let
{fε}ε∈]−ε0,ε0[ be as in (1.3). Let G ∈ C0(∂Ω × R) satisfy condition (3.13). Then the following statements
hold.

(i) Let nf ≥ n− 1. Let c� ∈ R be such that (1.6) holds. Let ε′, δ′ be as in Theorem 3.12 (iii). Let E]�, F
be as in Theorem 4.12 (i). Then there exists le ∈ N \ {0} such that

En[ε, l−1] = εnE]�[ε, l−1] + l−2

{
F(ε) (5.2)

−ε2−n
∫
∂Ω

Sn
∂Sn
∂νΩ

dσ

(∫
Q

fε(s) ds

)2

− δ2,n
2π

log ε

(∫
Q

fε(s) ds

)2}
,

for all ε ∈]0, ε′[ and l ∈ N \ {0} such that l ≥ le (cf. (1.9).)

(ii) Let nf < n− 1. Let c∗ ∈ R, γ0 ∈ [0,+∞[ satisfy (1.7). Let ε′ ∈]0, ε0[, Γ0 be as in Theorem 3.15 (iii).

Let ε̂ be as in (1.8). Let ε′, E]∗, F be as in Theorem 4.12 (ii). Then there exists le ∈ N \ {0} such that

En[l−1] = ε̂(l−1)nE]∗[ε̂(l−1), l−1ε̂(l−1)nf−(n−1)] + l−2

{
F(ε̂(l−1))

−ε̂(l−1)2−n
∫
∂Ω

Sn
∂Sn
∂νΩ

dσ

(∫
Q

fε̂(l−1)(s) ds

)2

− δ2,n
2π

log ε̂(l−1)

(∫
Q

fε̂(l−1)(s) ds

)2}
,

for all l ∈ N \ {0} such that l ≥ le (cf. (1.9).)

Proof. We first consider statement (i). We first note that

En[ε, δ] =

∫
Q∩S(ε,δ)−

|Dxu(ε, δ, x)|2 dx =

∫
Q∩S(ε,δ)−

|Dx(u](ε, δ, x/δ))|2 dx

=

∫
Q∩S(ε,δ)−

|δ−1Du](ε, δ, x/δ)|2 dx =

∫
Q

∣∣δ−1E(ε,1)|Du](ε, δ, ·)|(x/δ)
∣∣2 dx ∀(ε, δ) ∈]0, ε′[×]0, δ′[ .

Next we apply Lemma A.3 to the function v(x) ≡ E(ε,1)|Dxu
](ε, δ, ·)|2 with δ = l−1, for l ∈ N\{0}, l−1 < δ′,

and we deduce that∫
Q

∣∣(l−1)−1E(ε,1)|Dxu
](ε, l−1, ·)|(x/l−1)

∣∣2 dx
=

∫
Q

|E(ε,1)|Dxu
](ε, l−1, ·)|(y)|2 dyl2 =

∫
Q\clΩp,ε

|Dxu
](ε, l−1, y))|2 dyl2 .

Then Theorem 4.12 (i) implies that formula (5.2) holds for all l ∈ N \ {0} such that l ≥ le ≡ [(δ′)−1] + 1,
and the proof of statement (i) is complete. The proof of statement (ii) follows the same lines of the proof of
statement (i) by exploiting Theorem 4.12 (ii) instead of Theorem 4.12 (i). 2

Next we introduce an estimate for the energy integrals of (1.9). To do so, we denote by [·]− the function
from R to itself defined by

[a]
−

=

{
[a] if a ∈ R \ Z ,
[a]− 1 if a ∈ Z , (5.3)

18



where [a] denotes the integer part of a for all a ∈ R, and we prove the following.

Proposition 5.4 Let m ∈ N \ {0}, α ∈]0, 1[. Let p ∈ Q. Let Ω be as in (1.1). Let ε0 be as in (1.2). Let
{fε}ε∈]−ε0,ε0[ be as in (1.3). Let G ∈ C0(∂Ω × R) satisfy condition (3.13). Let F be as in Lemma 4.4. Let
G be the map from ]0, ε0[ to R defined by

G(ε) ≡ F(ε)− ε2−n
∫
∂Ω

Sn
∂Sn
∂νΩ

dσ

(∫
Q

fε(s) ds

)2

− δ2,n
2π

log ε

(∫
Q

fε(s) ds

)2

,

for all ε ∈]0, ε0[. Then the following statements hold.

(i) Let nf ≥ n − 1. Let c� ∈ R be such that (1.6) holds. Let ε′, δ′ be as in Theorem 3.12 (iii). Let E]� be
as in Theorem 4.12 (i). Then the following inequalities hold

[δ−1]nδn
{
εnE]�[ε, δ] + δ2G(ε)

}
(5.5)

≤
∫
Q∩S(ε,δ)−

|Dxu(ε, δ, x)|2 dx ≤ ([δ−1]− + 1)nδn
{
εnE]�[ε, δ] + δ2G(ε)

}
,

for all (ε, δ) ∈]0, ε′[×]0, δ′[. In particular, we have the asymptotic relation∫
Q∩S(ε,δ)−

|Dxu(ε, δ, x)|2 dx ∼ εnE]�[ε, δ] + δ2G(ε) as (ε, δ)→ (0, 0) ,

(see also (3.11), (4.6), (4.13).)

(ii) Let nf < n− 1. Let c∗ ∈ R, γ0 ∈ [0,+∞[ satisfy (1.7). Let ε′ ∈]0, ε0[ be as in Theorem 3.15 (iii). Let
Γ0 be an open neighborhood of γ0 in R as in Theorem 3.15 (iii). Let ε̂ be as in (1.8). Let δ′ ∈]0,+∞[

be as in (3.16). Let E]∗ be as in Theorem 4.12 (ii). Then the following inequalities hold

[δ−1]nδn
{
ε̂(δ)nE]∗[ε̂(δ), δε̂(δ)nf−(n−1)] + δ2G(ε̂(δ))

}
≤
∫
Q∩S(ε̂(δ),δ)−

|Dxu(δ, x)|2 dx

≤ ([δ−1]− + 1)nδn
{
ε̂(δ)nE]∗[ε̂(δ), δε̂(δ)nf−(n−1)] + δ2G(ε̂(δ))

}
,

for all δ ∈]0, δ′[. In particular, we have the asymptotic relation∫
Q∩S(ε̂(δ),δ)−

|Dxu(δ, x)|2 dx ∼ ε̂(δ)nE]∗[ε̂(δ), δε̂(δ)nf−(n−1)] + δ2G(ε̂(δ)) ,

as δ → 0 tends to 0 (see also (1.5), (4.6), (4.15).)

Proof. (i) By applying Lemma A.3 of the Appendix to the function |Dxu
](ε, δ, ·)|, and by the δq-periodicity

of the function |Dxu(ε, δ, ·)|, and by Lemma A.5 of the Appendix and by Theorem 4.12 (i), we have∫
Q∩S(ε,δ)−

|Dxu(ε, δ, x)|2 dx

≥
∑

z∈Z−(δ)

∫
δ(qz+(Q\Ωp,ε))

|Dxu(ε, δ, x)|2 dx = [δ−1]n
∫
δ(Q\Ωp,ε)

|Dxu(ε, δ, x)|2 dx

= [δ−1]n
∫
δ(Q\Ωp,ε)

|δ−1Dxu
](ε, δ, x/δ)|2 dx = [δ−1]nδn−2

∫
Q\Ωp,ε

|Dyu
](ε, δ, y)|2 dy

= [δ−1]nδn
{
εnδ2δ−2E]�[ε, δ] + δ2G(ε)

}
∀(ε, δ) ∈]0, ε′[×]0, δ′[ ,

where
Z−(δ) ≡ {z ∈ Zn : δ (qz +Q) ⊆ Q} .
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Similarly, we have∫
Q∩S(ε,δ)−

|Dxu(ε, δ, x)|2 dx ≤ ([δ−1]− + 1)nδn
{
εnδ2δ−2E]�[ε, δ] + δ2G(ε)

}
,

for all (ε, δ) ∈]0, ε′[×]0, δ′[. Then the last part of the statement follows by (1.5), and by inequalities (5.5)
and by the limiting relation

lim
δ→0

[δ−1]nδn = lim
δ→0

([δ−1]− + 1)nδn = 1 .

To prove statement (ii), it suffices to argue as above for statement (i) and to exploit statement (ii) of Theorem
4.12 instead of statement (i). 2

A Appendix

We first introduce the following variant of a result of Preciso [31, Prop. 1.1, p. 101].

Proposition A.1 Let n1, n2 ∈ N \ {0}, ρ ∈]0,+∞[, m ∈ N, α ∈]0, 1]. Let Ω1 be a bounded open subset of
Rn1 . Let Ω2 be a bounded open connected subset of Rn2 of class C1. Then the composition operator T from
C0
ω,ρ(clΩ1)× Cm,α(clΩ2,Ω1) to Cm,α(clΩ2) defined by

T [u, v] ≡ u ◦ v ∀(u, v) ∈ C0
ω,ρ(clΩ1)× Cm,α(clΩ2,Ω1) ,

is real analytic.

Next we introduce the following technical statement.

Proposition A.2 Let m ∈ N \ {0}, α ∈]0, 1[. Let p ∈ Q. Let Ω be as in (1.1). Let ε0 be as in (1.2).

(i) Let ρ ∈]0,+∞[. Let W be an open neighborhood of clQ. Then there exists a real analytic map G from
]− ε0, ε0[×C0

ω,ρ(clW ) to R such that∫
Q\Ωp,ε

h dx = G[ε, h] ∀(ε, h) ∈]0, ε0[×C0
ω,ρ(clW )

G[0, h] =

∫
Q

h dx ∀h ∈ C0
ω,ρ(clW ) .

(ii) There exists a real analytic function G1 from ]− ε0, ε0[ to R such that∫
Q\Ωp,ε

Sq,n(x− p) dx = G1(ε)− δ2,n
ε2 log ε

2π
mn(Ω) ∀ε ∈]0, ε0[ .

Moreover,

G1(0) =

∫
Q

Sq,n(x− p) dx .

Next we introduce the following lemma for dilated q-periodic functions.

Lemma A.3 Let v ∈ L2
loc(Rn) be a q-periodic function. Let Vv,δ be the function from Rn to C defined by

Vv,δ(x) = δ−1v(x/δ) ∀x ∈ Rn ,

for all δ ∈]0,+∞[. Then we have∫
δQ

|Vv,δ(x)|2 dx = δn−2

∫
Q

|v|2 dx ∀δ ∈]0,+∞[ ,∫
Q

|Vv,l−1(x)|2 dx = l2
∫
Q

|v|2 dx ∀l ∈ N \ {0} .
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Proof. We first note that if δ ∈]0,+∞[, then we have∫
δQ

|Vv,δ(x)|2 dx =

∫
δQ

|δ−1v(x/δ)|2 dx = δn−2

∫
Q

|v|2 dx . (A.4)

Next we note that if δ = l−1, then Q differs by a set of measure zero from the set

Q ∩

( ⋃
z∈Zn

l−1(qz +Q)

)
=

⋃
z∈Zn, 0≤zj≤l−1

(
l−1qz + l−1Q

)
,

which is the union of a family of ln sets, all of which are a translation of the cube l−1Q. Hence, formula
(A.4) implies that∫

Q

|Vv,l−1(x)|2 dx = ln
∫
l−1Q

|Vv,l−1(x)|2 dx = ln(l−1)n−2

∫
Q

|v|2 dx = l2
∫
Q

|v|2 dx .

2

Then we have the following elementary lemma.

Lemma A.5 Let δ ∈]0,+∞[.

(i) The set Z−(δ) ≡ {z ∈ Zn : δ (qz +Q) ⊆ Q} has [δ−1]n elements.

(ii) The set Z+(δ) ≡ {z ∈ Zn : δ (qz +Q) 6= ∅} has ([δ−1]− + 1)n elements (see (5.3).)

(iii) ⋃
z∈Z−(δ)

(δqz + δQ) ⊆ Q ⊆
⋃

z∈Z+(δ)

(δqz + δclQ) ,

and

mn

 ⋃
z∈Z±(δ)

(δqz + δclQ) \
⋃

z∈Z±(δ)

(δqz + δQ)

 = 0 .

Proof. (i) Clearly
Z−(δ) =

{
z ∈ Zn : 0 ≤ zj ≤ N−j (δ)− 1, ∀j ∈ {1, . . . , n}

}
,

where N−j (δ) denotes the largest natural number such that

N−j (δ)δqjj ≤ qjj ,

i.e., such that
N−j (δ) ≤ δ−1 ∀j ∈ {1, . . . , n} ,

i.e.,
N−j (δ) = [δ−1] ∀j ∈ {1, . . . , n} .

As a consequence, the number of elements of Z−(δ) equals [δ−]n. Next we compute the number of elements
of the set Z+(δ). Clearly,

Z+(δ) =
{
z ∈ Zn : 0 ≤ zj ≤ N+

j (δ)− 1, ∀j ∈ {1, . . . , n}
}
,

where N+
j (δ) denotes the smallest natural number such that

qjj ≤ N+
j (δ)δqjj ,

i.e., such that
δ−1 ≤ N+

j (δ) ∀j ∈ {1, . . . , n} ,
i.e.,

N+
j (δ) = [δ−1]− + 1 .

Hence, statement (ii) holds true. Statement (iii) is an immediate consequence of the definition of Z±(δ) and
of the equality mn(clQ \Q) = 0. 2
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