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We consider the classical functional of the Calculus of Variations of the form

I(u) =

∫
Ω

F (x, u(x),∇u(x)) dx

where Ω is a bounded open subset of Rn and F : Ω×R×Rn → R is a given Carathéodory function;
the admissible functions u coincide with a given Lipschitz function on ∂Ω. We formulate some
conditions under which a given function in ϕ+W 1,p

0 (Ω) with I(u) < +∞ can be approximated
by a sequence of functions uk ∈ ϕ+W 1,p

0 (Ω)∩L∞ converging to u in the norm of W 1,p, and such
that I(uk) → I(u). The problem is strictly related with the non occurrence of the Lavrentiev
gap.
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1. Introduction

Consider the classical functional of the Calculus of Variations of the form

I(u) =

∫
Ω

F (x, u(x),∇u(x)) dx

where Ω is a bounded open subset of Rn and F : Ω × R × Rn → R is a given
Carathéodory function. We also consider a prescribed boundary function ϕ that
we will assume to be Lipschitz.
The existence of a minimizer of I among the functions that share the same bound-
ary datum is well established in the Sobolev spaces W 1,p

ϕ (Ω) := ϕ+W 1,p
0 (Ω), p ≥ 1,
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under some suitable assumptions. For practical purposes, e.g., numerical approx-
imations of the minimizer and of the minimum level of I, it may be useful to
approximate a given function u such that F (x, u(x),∇u(x)) ∈ L1(Ω) with a se-
quence of functions (uk)k of a dense subset X ∩W 1,p

ϕ (Ω) of W 1,p
ϕ (Ω), both in the

norm of W 1,p and in energy, i.e., limk→+∞ I(uk) = I(u): when this happens we
say that F is X-regular at u in W 1,p

ϕ (Ω). When X = W 1,∞
ϕ (Ω), the validity of such

an approximation is referred to as the non occurrence of the Lavrentiev gap at u.
Its occurrence represents a difficulty in estimating the value of I(u) via standard
numerical methods.
In [2] we considered the autonomous functional

I(v) =

∫
Ω

F (v,∇v) dx,

with F (s, ξ) convex, and we proved that this phenomenon does not occur, when-
ever I(u) is finite. A first and crucial step in the proof of [2, Theorem 1] is to
show that there exists a sequence (uk)k of bounded functions approximating u in
W 1,p
ϕ (Ω) such that limk→+∞ I(uk) = I(u), so that, using the definition above, F

is L∞-regular.
It is worth mentioning that, on the one hand, a key point in the proof of [2,
Theorem 1] is the convexity of the Lagrangian and, on the other hand, no examples
of the occurrence of the Lavrentiev phenomenon are known in the autonomous
case. This remark suggests that it is of some interest to try to detect classes of
Lagrangians, larger than the class of convex ones, that are W 1,∞-regular.
In this paper we make a first step in this direction studying the problem of en-
larging the class of functionals that are at least L∞-regular. This problem is
interesting also for numerical approximations of the minimum.
We emphasize the fact that, in the definition of X-regularity, we require the se-
quence of approximating functions to share the same boundary datum ϕ. Building
approximating functions without this constraint is much simpler. For instance,
the minimizer of the celebrated example of the occurrence of the Lavrentiev phe-
nomenon in [1] may be easily approximated in norm and in energy by a sequence
of Lipschitz functions if one does not take care of the boundary datum.
Approximating a given function both in W 1,1(Ω) and in energy with a sequence
of bounded functions of W 1,1(Ω) is not always possible; a counterexample is given
in Example 3.3.
We formulate here in Theorem 3.5 a condition, other than convexity, that ensures
the L∞-regularity for F at a given u ∈ W 1,p

ϕ (Ω) and give several examples of
Lagrangians for which the assumptions of Theorem 3.5 are satisfied. In particular
we introduce various classes of Lagrangians of the form

F (u,∇u) = a(u)g(∇u) + b(u)

that are L∞-regular at any u ∈ W 1,p
ϕ (Ω) for which I(u) is finite. Our methods are

inspired by those of [4, 5, 2] and on Stampacchia truncation method.
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Notation
• The scalar product of x, y in Rn is denoted by 〈x, y〉.
• The pointwise maximum (resp. minimum) of two functions u, v is denoted

by u ∨ v (resp. u ∧ v), u+ = u ∨ 0 (resp u− = (−u) ∨ 0) is the positive
(resp. negative) part of u.

• The subdifferential in the sense of Moreau-Rockafellar of a (non necessarily
convex) function g : Rm → R at ξ0 ∈ Rm is the set

∂g(ξ0) := {ν ∈ Rm : g(ξ)− g(ξ0) ≥ 〈ν, ξ − ξ0〉 ∀ξ ∈ Rm}.

• For E ⊆ Rn, λ(E) is the n-dimensional Lebesgue measure of E.
• 1E is the indicator function of a set E, i.e.

1E(x) =

{
1, if x ∈ E

0, otherwise.

.
2. Assumptions
• F : R × R × Rn → R, (x, s, ξ) 7→ F (x, s, ξ) is a Carathéodory function,

bounded below by 〈α(x), ξ〉+ β(x) for some α ∈ L1(Ω;Rn), β ∈ L1(Ω).
• Ω ⊂ Rn is an open and bounded set.

• We define I(u) :=
∫
Ω

F (x, u,∇u) dx (the “energy”).

• ϕ is a Lipschitz function on Ω.

3. L∞-regularity

Definition 3.1. Let X be a set of functions. Let u ∈ W 1,p
ϕ (Ω) be such that

F (x, u,∇u) ∈ L1(Ω). The Lagrangian F is said to be X-regular at u (in W 1,p
ϕ (Ω))

if there is a sequence (uk)k in X ∩W 1,p
ϕ (Ω) such that (uk)k converges in norm and

in energy to u, namely

(i) lim
k→+∞

‖uk − u‖W 1,p = 0; and (ii) lim
k→+∞

I(uk) = I(u).

F is said to be X-regular if it is X-regular at every u ∈ W 1,p
ϕ (Ω) with the property

F (x, u,∇u) ∈ L1(Ω).

Remark 3.2. When X = W 1,∞
ϕ (Ω), the X-regularity of F is equivalent to the

fact that, for every u ∈ W 1,p(Ω), there is no Lavrentiev gap at u. We emphasize
the fact that the sequence of approximating functions is required to satisfy the
same boundary condition as u. When X = L∞(Ω) we will simply refer to L∞(Ω)-
regularity as to L∞-regularity.

Example 3.3. (A Lagrangian that is not L∞-regular) Let Ω be the unit disk of
R2. Let ϕ ∈ W 1,1(Ω) \ L3(Ω) be Lipschitz in a neighbourhood of ∂Ω.
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Then ϕ minimizes

I(u) =

∫
Ω

|u− ϕ|3 dx

in W 1,1
ϕ (Ω). However, I(u) = +∞ for any bounded function u. Indeed, if I(u) <

+∞, then u−ϕ ∈ L3(Ω), so that if u is bounded then ϕ ∈ L3(Ω), a contradiction.

Example 3.4. When the Lagrangian F (v,∇v) is autonomous and convex in the
joint variables, there is W 1,∞ regularity for every u ∈ W 1,p

ϕ (Ω) with the property
F (u,∇u) ∈ L1(Ω) (see [2]).
When F is non autonomous, a celebrated example [1] shows a polynomial F (x, s, ξ)
in R3 that is convex and superlinear in ξ, that is not W 1,∞-regular in the space
of the absolutely continuous functions.

Theorem 3.5. Consider two sequences of affine functions

φk,−(x) := 〈ξ−, x〉+ τk,−, φk,+(x) := 〈ξ+, x〉+ τk,+ (k ∈ N)

where ξ−, ξ+ are given vectors in Rn and
(
τk,−

)
k

and
(
τk,+

)
k

are monotonic se-
quences satisfying

lim
k→∞

τk,− = −∞, lim
k→∞

τk,+ = +∞ (1)

Let u ∈ W 1,p
ϕ (Ω) be such that F (x, u,∇u) ∈ L1(Ω) and

lim
k→+∞

∫
{u>φk,+}

F (x, φk,+,∇φk,+) dx = 0, (2)

lim
k→+∞

∫
{u<φk,−}

F (x, φk,−,∇φk,−) dx = 0. (3)

Then F is L∞-regular at u in W 1,p(Ω).

The next elementary result, based on the Convergence Dominated Theorem, will
be widely used in the proof of Theorem 3.5.

Lemma 3.6. Let u, h ∈ L1(Ω) and let (ψk)k be a sequence of measurable functions

such that lim
k→+∞

ψk(x) = +∞ a.e. x ∈ Ω.

Then lim
k→+∞

∫
{u>ψk}

|h| dx = 0.

Proof of Theorem 3.5. The proof is based on the truncation method. Let

uk :=


φk,− if u < φk,−,

u if φk,− ≤ u ≤ φk,+,

φk,+ if u > φk,+.



C. Mariconda, G. Treu / Non-Occurrence of a Gap ... 5

Since (φk,+)k (resp. (φk,−)k) converges uniformly to +∞ (resp. −∞), then uk = ϕ
on ∂Ω as soon as k is such that

−‖ϕ‖∞ > max{φk,−(x) : x ∈ Ω}, ‖ϕ‖∞ < min{φk,+(x) : x ∈ Ω}.

It follows that the sequence (uk)k converges to u in W 1,p(Ω). Indeed, for k big
enough in such a way that φk,+ > 0 and φk,− < 0, from Lemma 3.6 we obtain∫

Ω

|uk − u|p dx =

∫
{u<φk,−}

|u− φk,−|p dx+
∫
{u>φk,+}

|u− φk,+|p dx

≤
∫
{u<φk,−}

|u|p dx+
∫
{u>φk,+}

|u|p dx→ 0 as k → +∞.

Analogously,∫
Ω

|∇uk −∇u|p dx =

∫
{u<φk,−}

|∇φk,−|p dx+
∫
{u>φk,+}

|∇φk,+|p dx

=

∫
{u<φk,−}

|ξ− −∇u|p dx+
∫
{u>φk,+}

|ξ+ −∇u|p dx

≤ 2p

(∫
{u<φk,−}

|ξ−|p + |∇u|p dx+
∫
{u>φk,+}

|ξ+|p + |∇u|p dx

)

tends to 0 as k → +∞. Moreover

I(uk) =

∫
φk,−≤u≤φk,+

F (x, u,∇u) dx+

+

∫
{u<φk,−}

F (x, φk,−,∇φk,−) dx+
∫
{u>φk,+}

F (x, φk,+,∇φk,+) dx. (4)

It follows from (2) and (3) that

lim
k→+∞

I(uk) = lim
k→+∞

∫
φk,−≤u≤φk,+

F (x, u,∇u) dx = I(u),

due to the integrability of F (x, u,∇u).

In [2] we showed that if F (s, ξ) is autonomous, then F is W 1,∞ regular in W 1,p
ϕ (Ω)

at every u ∈ W 1,p
ϕ (Ω) such that I(u) is finite. Here is a condition, other than

convexity, that ensures the L∞-regularity of F .

Proposition 3.7. Let F (s, ξ) = a(s)g(ξ) where a : R → [0,+∞[, g : Rn → R are
continuous, and g(ξ) ≥ c|ξ| for some c > 0.
Then F is L∞-regular at any u ∈ W 1,1(Ω) such that F (u,∇u) ∈ L1(Ω).



6 C. Mariconda, G. Treu / Non-Occurrence of a Gap ...

Proof. Let u∈W 1,1
ϕ (Ω) be such that F (u,∇u)∈L1(Ω). We show the existence of

sequences (τk,−)k and (τk,+)k that satisfy (1) and (2) with ξ+ = ξ− = 0. Notice that∫
{u≥t}

F (t, 0) dx = λ({u ≥ t})a(t)g(0) ∀t ≥ 0. (5)

Denoting A(t) :=
∫ t

0

a(s) ds, we have

∫ +∞

0

λ({u ≥ t})a(t) dt =
∫ +∞

0

a(t)

∫
Ω

1{u≥t} dx dt

=

∫
{u≥0}

∫ u(x)

0

a(t) dt dx =

∫
{u≥0}

A(u(x)) dx. (6)

We claim that A(u) ∈ L1({u ≥ 0}). (7)

Since F (u,∇u) = a(u)g(∇u) ∈ L1(Ω) then the growth assumption on g implies
that a(u)|∇u| ∈ L1(Ω). Let

ak := a1{a≤k}, Ak(t) :=

∫ t

0

ak(s) ds ∀k ∈ N.

Since ak ∈ L∞(Ω) and Ak(0) = 0 then, from [3, Theorem 1.74],

Ak(u) ∈ W 1,1(Ω), ∇Ak(u) = ak(u)1{a(u)≤k}∇u.

The Sobolev inequality then yields

‖Ak(u)− Ak(ϕ)‖1 ≤ C‖ak(u)∇u‖1 ≤ C‖a(u)∇u‖1,

for some constant C depending just on Ω: in particular

‖Ak(u)‖1 ≤ ‖Ak(ϕ)‖1 + C‖a(u)∇u‖1 ≤ ‖A(ϕ)‖1 + C‖a(u)∇u‖1

for all k ≥ ‖ϕ‖∞. Now, for u(x) ≥ 0,

Ak(u(x)) =

∫ u(x)

0

ak(s) ds ↑k
∫ u(x)

0

a(s) ds = A(u(x)).

Beppo Levi’s monotonic convergence Theorem implies that A
(
u1{u≥0}

)
∈ L1(Ω),

proving (7).
It follows from (7) and (6) that λ({u ≥ t})a(t) ∈ L1([0,+∞[); thus

lim inf
t→+∞

λ({u ≥ t})a(t) = 0.

As a consequence, there exists a sequence (τk,+)k satisfying

lim
k→+∞

λ{u ≥ τk,+})a(τk,+) = 0,
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so that, by (5), lim
k→+∞

∫
{u>τk,+}

F (τk,+, 0) dx = 0.

Analogously, one obtains a sequence (τk,−)k with the desired properties. Theo-
rem 3.5 yields the conclusion.

4. The non-oscillatory condition at infinity (NOC)

We introduce here Condition (NOC) that will ensure in Section 5 the L∞-regu-
larity of a Lagrangian F . It is a property that is inspired by convex, auto-
nomous Lagrangians. If F (s, ξ) is autonomous and convex let, for every k ∈ N≥1,
(qk, ζk,+) ∈ ∂F (k, 0). Then

∀s ∈ R F (s, ξ)− F (k, 0) ≥ qk(s− k) + 〈ζk,+, ξ〉. (8)

Thus, if (q, ζ) ∈ ∂F (0, 0), the monotonicity of the convex subdifferential gives

0 ≤ (qk − q)(k − 0) + (ζk − ζ)(0− 0) = (qk − q)k,

so that qk ≥ q and (8) yields

∀s ≥ k F (s, ξ)− F (k, 0) ≥ q(s− k) + 〈ζk,+, ξ〉 ≥ −|q|sp∗ + 〈ζk,+, ξ〉. (9)

Analogously, it turns out that there are ζk,− ∈ Rn and d ≥ 0 such that

∀s ≤ −k F (s, ξ)− F (−k, 0) ≥ −d|s|p∗ + 〈ζk,−, ξ〉. (10)

The non-oscillatory condition (NOC) imposes more general conditions than (9)–
(10) and is satisfied by a wider class of functions than autonomous and convex
ones. If 1 < p < n, we set p∗ = np

n−p ; recall that the embedding W 1,p(Ω) ⊂ Lp
∗
(Ω)

is compact. If p = 1 we set p∗ = p = 1.

Definition 4.1. (Non-oscillatory condition at infinity (NOC)) The Lagrangian

F : Ω× R× Rn → R

satisfies the non-oscillatory condition (NOC) if there are:
(1) sequences (φk,−)k and (φk,+)k of affine functions of the form

φk,−(x) := 〈ξ−, x〉+ τk,−, φk,+(x) := 〈ξ+, x〉+ τk,+ ∀x ∈ Ω;

where ξ+, ξ− are prescribed vectors in Rn and (τk,+)k and (τk,−)k are real
monotonic sequences with

lim
k→+∞

τk,− = −∞, lim
k→+∞

τk,+ = +∞, (11)

(2) a ∈ L∞
loc(R), c > 0, d ≥ 0;

(3) sequences (ζk,+)k and (ζk,−)k in Rn

such that, for all k ∈ N, the following conditions hold:
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(a) The maps x 7→ F (x, φk,−,∇φk,−), x 7→ F (x, φk,+,∇φk,+) are summable;
(b) for all x ∈ Ω, s ∈ R and ξ ∈ Rn,

F (x, s, ξ) ≥ a(s)〈ζk,+, ξ − ξ+〉+ cF (x, φk,+,∇φk,+)− d|s|p∗ , s ≥ φk,+(x), (12)
F (x, s, ξ) ≥ a(s)〈ζk,−, ξ − ξ−〉+ cF (x, φk,−,∇φk,−)− d|s|p∗ , s ≤ φk,−(x). (13)

Remark 4.2. When ξ− = ξ+ = 0, points (1) and (2) in (NOC) become:
(1) The maps x 7→ F (x, τk,−, 0), x 7→ F (x, τk,+, 0) are in L1(Ω);
(2) For all x ∈ Ω, s ∈ R and ξ ∈ Rn,

F (x, s, ξ) ≥ a(s)〈ζk,+, ξ〉+ cF (x, τk,+, 0)− d|s|p∗ ∀s ≥ τk,+, (14)
F (x, s, ξ) ≥ a(s)〈ζk,−, ξ〉+ cF (x, τk,−, 0)− d|s|p∗ ∀s ≤ τk,−. (15)

There are several cases in which an autonomous Lagrangian is allowed to satisfy
(NOC).
Proposition 4.3. (Validity of (NOC)) Condition (NOC) holds with ξ+ = ξ− = 0
whenever

F : R× Rn → R, (s, ξ) 7→ F (s, ξ)

is autonomous and one of the following conditions is fulfilled:
(1) The map F is continuous. There exist real numbers α+, α− and sequences

(τk,−)k, (τk,+)k as in (11) such that, for all k,

∃qk,+ ≥ α+, (qk,+, ζ
+
k ) ∈ ∂F (τk,+, 0),

∃qk,− ≤ α−, (qk,−, ζk,−) ∈ ∂F (τk,−, 0).
(16)

(2) The map (s, ξ) 7→ F (s, ξ) is convex.
(3) There exist continuous a, b : R → R, a ≥ 0, L : Rn → R with ∂L(0) 6= ∅ and

F (s, ξ) = L(a(s)ξ) + b(s) ∀s ∈ R, ξ ∈ Rn. (17)

(4) F (s, ξ) = a(s)g(ξ) + b(s) for some a, b : R → R continuous, a ≥ 0, g : Rn →
R continuous. Moreover ∂g(0) 6= ∅ and there are c > 0, d ≥ 0 and
(τk,−)k, (τk,+)k as in (11) such that, setting σ(s) := a(s)g(0) + b(s),

∀k ∈ N σ(s) ≥ cσ(τk,+)− d|s|p∗ ∀s ≥ τk,+,

∀k ∈ N σ(s) ≥ cσ(τk,−)− d|s|p∗ ∀s ≤ τk,−.

Proof. Notice first that the continuity of F ensures the validity of point (1) of
Condition (NOC). It remains to prove that of point (2) of Definition 4.1; we
restrict ourselves to the proof of (12), that of (13) can be obtained by following
the same path. In what follows we consider (s, ξ) ∈ R× Rn.
(1) Assume (16). For every s ∈ R and ξ ∈ Rn and k ∈ N,

[F (s, ξ) ≥ F (τk,+, 0) + qk,+(s− τk,+) + 〈ζk,+, ξ〉.
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Since qk,+ ≥ α+, for s ≥ max{τk,+, 1} we obtain

F (s, ξ) ≥ F (τk,+, 0) + α+(s− τk,+) + 〈ζk,+, ξ〉
≥ F (τk,+, 0)− |α+||s|p∗ + 〈ζk,+, ξ〉,

showing the validity of (14), and thus of point (2) of Condition (NOC).
(2) The validity of (12) was shown in (9). It is nevertheless a consequence of (1).
Indeed let τk,+ := k + 1. Then if (qk, ζk) ∈ ∂F (τk, 0), and (α+, ζ∗) ∈ ∂F (0, 0), the
monotonicity of the convex subdifferential gives

0 ≤ (qk − α+)(k + 1) + 〈ζk − ζ∗, 0〉,

from which one deduces qk ≥ α+.
(3) Let ζ ∈ ∂L(0). Since L(a(s)ξ) ≥ a(s)〈ζ, ξ〉+ L(0), then, for any k ∈ N

F (s, ξ) = L(a(s)ξ) + b(s) ≥ a(s)〈ζ, ξ〉+ L(0) + b(s)

= F (k, 0) + a(s)〈ζ, ξ〉,

so that (12) holds true, with τk,+ := k and ξ+ = 0.
(4) If ζ ∈ ∂g(0) then, for all k ∈ N and s ≥ τk,+,

F (s, ξ) = a(s)g(ξ) + b(s) ≥ a(s)
(
g(0) + 〈ζ, ξ〉

)
+ b(s)

≥
(
a(s)g(0) + b(s)

)
+ a(s)〈ζ, ξ〉

≥
(
c
(
a(τk,+)g(0) + b(τk,+)

)
− d|s|p∗

)
+ a(s)〈ζ, ξ〉

= cF (τk,+, 0) + a(s)〈ζ, ξ〉 − d|s|p∗ ,

proving the validity of (12).

Remark 4.4. Point (4) of Proposition 4.3 was expressed in a less general setting
in [2, (1.4a)–(1.4b)].

Example 4.5. Let a : R → R be continuous, a ≥ 0. Then F (s, ξ) = a(s)|ξ|p satis-
fies the conditions expressed in (3) of Proposition 4.3 with L(z) = |z|p, b(s) = 0.

In the case where F (s, ξ) = a(s)g(ξ)+ b(s), point (5) of Proposition 4.3 is fulfilled
under the following circumstances.
Proposition 4.6. Assume that F (s, ξ) = a(s)g(ξ) + b(s) for some a, b : R → R
continuous, a ≥ 0, g : Rn → R continuous. Then F fulfils the non-oscillatory
Condition (NOC) if at least one of the following conditions hold:
(1) F (s, ξ) = a(s)g(ξ) for some a : R → R convex, a ≥ 0, g : Rn → R continu-

ous. Moreover g(0) ≥ 0 and ∂g(0) 6= ∅.
(2) The function g has a nonempty convex subdifferential at 0 and

σ(s) := a(s)g(0) + b(s) = σ1(s) + σ2(s)

where, for some r > 0 and D > 0,
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• The map σ1 is decreasing on ]−∞,−r] and increasing on [r,+∞[;
• the map σ2 is C1 and satisfies |σ′

2(s)| ≤ D|s|p∗−1 for every |s| ≥ r.

Proof. (1) If a is convex, let p(s) ∈ ∂a(s) for all s ∈ R and set σ(s) := a(s)g(0).
For all k ∈ N and s ≥ k we have

σ(s)− σ(k) = (a(s)− a(k))g(0) ≥ p(k)(s− k)g(0) ≥ p(0)(s− k)g(0),

so that σ(s) ≥ σ(k)− |p(0)g(0)||s|p∗ ∀s ≥ max{k, 1}.

Analogously one obtains that

σ(s) ≥ σ(−k)− |p(0)g(0)||s|p∗ ∀s ≤ −max{k, 1}.

Therefore, the conditions of point (4) are fulfilled, with τk,+ := max{k, 1},
τk,− := −τk,+, c = 1, d = |p(0)g(0)|.
(2) Let k ∈ N, k ≥ r. For all s ≥ τk,+,

σ(s)− σ(k) = (σ1(s)− σ1(k)) + (σ2(s)− σ2(k))

≥ σ2(s)− σ2(k) ≥ −C|s− k|p∗−1(s− k) ≥ −C|s|p∗ .

Analogously, for s ≤ −k ≤ −r, σ(s) ≥ σ(−k)− C|s|p∗ . Therefore, σ satisfies the
conditions of point (4) of Proposition 4.3, proving the claim.

Example 4.7. F (s, ξ) = a(s)g(ξ) + b(s) satisfies the (NOC) condition if the
functions a, b : R → R are continuous, a ≥ 0, g : Rn → R is continuous, ∂g(0) 6= ∅
and, moreover, a, b are decreasing on ] −∞,−r], increasing on [r,+∞[ for some
r ≥ 0. Indeed, in this case σ(s) = a(s)g(0) + b(s) satisfies the monotonicity
condition expressed in point (2) of Proposition 4.6, with σ1 = σ, σ2 = 0.

5. L∞-regularity under the (NOC)

The non-oscillatory condition (NOC) is sufficient for the L∞-regularity.
Theorem 5.1. Assume that F satisfies (NOC). Then F is L∞-regular.

Proof. Let u ∈ W 1,p
ϕ (Ω) with F (x, u,∇u) ∈ L1(Ω). From Theorem 3.5 it is

enough to show that (2) holds.
(a) We prove that

lim sup
k→+∞

∫
{u>φk,+}

F (x, φk,+,∇φk,+) dx ≤ 0. (18)

Let us first remark that a(u)〈∇u − ξ+, ζk,+〉 is bounded above by a summable
function. Indeed from (12) we know that, if u > φk,+,

a(u)〈∇u− ξ+, ζk,+〉 ≤ F (x, u,∇u)− cF (x, φk,+,∇φk,+) + d|u|p∗ ,
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and point (1) of Definition 4.1 ensures the integrability of F (x, φk,+,∇φk,+). It
follows from (12) that∫

{u>φk,+}
F (x, u,∇u) dx ≥

∫
{u>φk,+}

a(u)〈ζk,+,∇u− ξ+〉 dx+

+ c

∫
{u>φk,+}

F (x, φk,+,∇φk,+) dx− d

∫
{u>φk,+}

|u|p∗ dx,

so that ∫
{u>φk,+}

F (x, φk,+,∇φk,+) dx ≤ 1

c

∫
{u>φk,+}

F (x, u,∇u) dx+

+
d

c

∫
{u>φk,+}

|u|p∗ dx− 1

c

∫
{u>φk,+}

a(u)〈ζk,+,∇u− ξ+〉 dx. (19)

Of course

lim
k→+∞

∫
{u>φk,+}

F (x, u,∇u) dx = lim
k→+∞

∫
{u>φk,+}

|u|p∗ dx = 0. (20)

Claim: There is kϕ depending only on ϕ such that∫
{u>φk,+}

a(u)〈ζk,+,∇u− ξ+〉 dx = 0 ∀k > kϕ. (21)

Let v ∈ W 1,p
ϕ (Ω) ∩ L∞(Ω). For each s ∈ R we set A(s) :=

∫ s

0

a(r) dr. Then

A(v) ∈ W 1,p(Ω), ∇A(v) = a(v)∇v.

From (11) we may choose kϕ, depending only on ϕ, to be large enough in such a
way that

‖ϕ‖∞ < min{φk,+(x) : x ∈ Ω} ∀k > kϕ.

In this case we have

v ∨ φk,+ = φk,+ on ∂Ω, A(v ∨ φk,+) = A(φk,+) on ∂Ω.

It follows that
∫
Ω

〈∇(A(v ∨ φk,+)− A(φk,+)), ζk,+〉 dx = 0,

or, equivalently,∫
{v>φk,+}

a(v)〈ζk,+,∇v − ξ+〉 dx = 0 ∀v ∈ W 1,p(Ω) ∩ L∞(Ω), ∀k ≥ kϕ.

Fix i ∈ N. Applying the above equality to v := u+ ∧ i ∈ W 1,p
ϕ (Ω)∩L∞(Ω) we get∫

{i≥u>φk,+}
a(u)〈ζk,+,∇u− ξ+〉 dx = 0, ∀k ≥ kϕ. (22)
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By Fatou’s Lemma, from (22), for k ≥ kϕ we obtain

0 = lim sup
i→+∞

∫
{i≥u>φk,+}

a(u)〈ζk,+,∇u− ξ+〉 dx ≤
∫

{u>φk,+}

a(u)〈ζk,+,∇u− ξ+〉 dx,

from which we deduce that∫
{u>φk,+}

a(u)〈ζk,+,∇u− ξ+〉 dx ≥ 0 ∀k ≥ kϕ.

We deduce (21) by applying the latter inequality both to the functions a(s) and
to its opposite −a(s).
The validity of (18) now follows from (19), together with (20) and (21).
(b) Let k ∈ N. By applying (12), replacing s with φk,+, ξ with ξ+ and k with 0
and taking into account the monotonicity of (φk,+(x))k we obtain

F (x, φk,+,∇φk,+) ≥ cF (x, φ0,+,∇φ0,+)− d(φk,+)
p∗ ,

thus ∫
{u>φk,+}

F (x, φk,+,∇φk,+) dx ≥ c

∫
{u>φk,+}

F (x, φ0,+,∇φ0,+) dx− d

∫
{u>φk,+}

|u|p∗ dx.

The integrability of F (x, φ0,+,∇φ0,+) and of |u|p∗ together with Lemma 3.6 yield

lim inf
k→+∞

∫
{u>φk,+}

F (x, φk,+,∇φk,+) dx ≥ 0,

which, together with (18), give the first equality in (2); the second one follows
similarly. Theorem 3.5 yields the conclusion.

6. An example

The procedure followed here is based on the truncation method illustrated in
Theorem 3.5. It may happen that the latter does not apply, and nevertheless that
the Lagrangian is L∞-regular.

Example 6.1. Consider the functional

I(v) =

∫
B1

∣∣∣∣|∇v| − 1

2
|v|3
∣∣∣∣p dx v ∈ 1 +W 1,1

0 (B1), (23)

where B1 is the unit disk in R2. The function u(x) = |x|−1/2 ∈ 1 +W 1,1
0 (B1) is a

minimizer of I. Indeed I(v) ≥ 0, for every v ∈ 1 +W 1,1
0 (B1) and I(u) = 0.



C. Mariconda, G. Treu / Non-Occurrence of a Gap ... 13

We consider the truncation of u with the sequence of functions
φk,− ≡ −k, φk,+ ≡ k, k ∈ N,

i.e., uk(x) =


k if u(x) > k, i.e., |x| < 1

k2
,

|x|−1/2 if u(x) < k i.e., 1

k2
≤ |x| < 1.

(24)

We remark that uk converges to u in W 1,1(B1) and

I(uk) =
1

2p
k3pλ

(
B 1

k2

)
=

π

2p
k3p−4. (25)

However, for p ≥ 3/4, the truncated sequence (uk)k is not a minimizing one.
Nevertheless it is quite easy to check that F is W 1,∞-regular (and therefore L∞-
regular) at u, so that the Lavrentiev phenomenon does not occur. Let us consider
the sequence (vk)k of functions in 1 +W 1,∞

0 (B1) defined by

vk(x) =

{(
|x|+ 1

k

)−1/2 if |x| < 1− 1
k
,

1 if 1− 1
k
≤ |x| < 1.

(26)

Then (vk)k converges to u in W 1,p(Ω) and I(vk) =
π

2p
(
1− (1− 1

k
)2
)
→ 0 as k →

+∞, proving the claim. This example suggests that, in dealing with Lagrangians
that are not convex in both the variables u and ∇u, there may be approximating
sequences, different from those used in the proof of Theorem 3.5, that may in any
case lead to the L∞-regularity, or even to the non occurrence of the Lavrentiev
gap.
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