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Abstract

We provide a MATLAB package for the computation of near-optimal sam-
pling sets and weights (designs) for n-th degree polynomial regression on
discretizations of planar, surface and solid domains. This topic has strong
connections with computational statistics and approximation theory. Op-
timality has two aspects that are here treated together: cardinality of the
sampling set, and quality of the regressor (its prediction variance in statis-
tical terms, its uniform operator norm in approximation theoretic terms).
The regressor quality is measured by a threshold (design G-optimality) and
reached by a standard multiplicative algorithm. Low sampling cardinality
is then obtained via Caratheodory-Tchakaloff discrete measure concentra-
tion. All the steps are made by native MATLAB functions, such as the qr

factorization and the lsqnonneg quadratic minimizer.
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Required Metadata

Current code version

Nr. Code metadata description Please fill in this column

C1 Current code version v1.0
C2 Permanent link to code/repository

used for this code version
https://github.com/marcovianello
/CaTchDes

C3 Code Ocean compute capsule
C4 Legal Software License GNU/General Public License
C5 Code versioning system used none
C6 Software code languages, tools, and

services used
MATLAB

C7 Compilation requirements, operat-
ing environments & dependencies

C8 If available Link to developer docu-
mentation/manual

C9 Support email for questions marcov@math.unipd.it

Table 1: Code metadata (mandatory)

1. Motivation and significance1

The software package CaTchDes contains two main MATLAB functions2

for the computation of near-optimal sampling sets and weights (designs) for3

polynomial regression on discrete design spaces (for example grid discretiza-4

tions of planar, surface and solid domains). This topic has strong connections5

with computational statistics and approximation theory. As a relevant appli-6

cation we may quote for example geo-spatial analysis, where one is interested7

in reconstructing/modelling a scalar or vector field (such as the geo-magnetic8

field) on a region with a possibly complex shape, by placing a relatively small9

sensor network.10

In the regression context, optimality has two aspects that are here treated11

together: cardinality of the sampling set, and quality of the regressor (its12

prediction variance in statistical terms, its uniform operator norm in approx-13

imation theoretic terms). Concerning cardinality, a key theoretical tool is14

the Tchakaloff theorem [15], which in its general version essentially says that15

for any finite measure there exists a discrete measure that has the same mo-16

ments up to a given polynomial degree, with cardinality not greater than the17

dimension of the corresponding polynomial space; cf., e.g., [13].18
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We briefly recall the statistical notion of optimal design. A design is19

in general a probability measure µ supported on a continuous or discrete20

compact set X (the design space). In this paper we deal essentially with21

finite discrete design spaces. Below, we shall denote by P
d
n(X) the space of d-22

variate polynomials of total degree not exceeding n and by Nn its dimension.23

There are several notions of design optimality, we are here mainly inter-24

ested in G-optimality, that is the Christoffel polynomial (the reproducing25

kernel diagonal) has the smallest possible max-norm on X among all designs26

max
x∈X

Kµ∗

n (x, x) = Nn = min
µ

max
x∈X

Kµ
n(x, x) , (1)

where Kµ
n(x, x) =

∑Nn

j=1 φ
2
j(x) ∈ P

d
2n(X), {φj}Nn

j=1 being any µ-orthonormal27

polynomial basis for degree n. Observe that maxx∈X Kµ
n(x, x) ≥ Nn for28

any design, since
∫

X
Kµ

n(x, x) dµ = Nn. This essentially means that a G-29

optimal design µ∗ minimizes both, the maximum prediction variance by n-th30

degree regression (statistical interpretation), and the uniform norm of the31

corresponding weighted least-squares operator which has the minimal bound32 √
Nn (approximation theoretic interpretation). In approximation theory, this33

is also called an optimal measure [1, 2].34

The min-max problem above is hard to solve, but by the celebrated Kiefer-35

Wolfowitz equivalence theorem [8] the notion is equivalent to D-optimality,36

that is the determinant of the Gram matrix in a fixed polynomial basis is37

maximum among all designs. This implies that an optimal measure exists,38

since the set of Grammatrices of probability measures is compact and convex;39

see, e.g., [1, 3] for a general proof of these facts. By the Tchakaloff theorem,40

it is then easily seen that an optimal discrete measure exists, with Nn ≤41

card(supp(µ∗)) ≤ N2n.42

The computational literature on D-optimal designs is quite vast, with43

a long history and new active research directions, see e.g. [6, 11] with44

the references therein; a typical approach in the continuous case consists45

in the discretization of the compact set and then iterative D-optimization46

over the discrete set. We stress that in the discrete case D-optimization47

is ultimately a convex programming problem, being equivalent to minimiz-48

ing − log(det(V tD(w)V )) with the constraints w ≥ 0, ‖w‖1 = 1 (where49

V = (pj(xi)) ∈ R
M×Nn is the Vandermonde (evaluation) matrix at X = {xi},50

1 ≤ i ≤ M := card(X), in a fixed polynomial basis {pj}, 1 ≤ j ≤ Nn, and51

D(w) is the diagonal probability weights matrix), due to convexity of the52

scalar matrix function −log(det(·)). We remark that the matrix V tD(w)V53

is equal to the Gram matrix of the polynomial basis {pj}, with respect to54

the discrete measure supported on X with weights w.55
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2. Software description56

Being interested in G-optimality, a relevant indicator is the so-called G-57

efficiency, namely58

θ = Nn/maxx∈XK
µ
n(x, x) (2)

(the percentage of G-optimality reached). We have pursued the following59

approach, recently proposed in [4]:60

• apply a standard iterative algorithm like Titterington’s multiplicative61

algorithm [17, 18], to get a design µ̃ with weights w̃ (i.e., µ̃ is a discrete62

measure supported on X with weights w̃i ≥ 0, 1 ≤ i ≤ M) possessing63

a good G-efficiency (say e.g. 95% to fix ideas) in few iterations;64

• compute the Caratheodory-Tchakaloff concentration of the design µ̃ at65

degree 2n, keeping the same orthogonal polynomials and thus the same66

G-efficiency, with a much smaller support.67

We recall that Titterington’s multiplicative iteration is simply68

wi(k + 1) = Kµ(w(k))
n (xi, xi) wi(k) , 1 ≤ i ≤ M = card(X) , k ≥ 0 , (3)

starting for example from w(0) = (1/M, . . . , 1/M), and is known to con-69

verge sublinearly (producing an increasing sequence of Gram determinants)70

to an optimal design on X ; cf., e.g., [18]. Since a huge number of iterations71

would be needed to concentrate the measure on the optimal support, our72

approach gives a reasonably efficient hybrid method to nearly minimize both73

the regression operator norm and the regression sampling cardinality.74

Indeed, in the discrete case the Tchakaloff theorem can be stated in75

terms of the existence of a sparse nonnegative solution to the underdeter-76

mined linear system V tu = V tw̃. Such a solution exists by the celebrated77

Caratheodory theorem on finite-dimensional conic combinations [5], applied78

to the columns of V t. Moreover, it can be conveniently implemented by79

solving the NNLS (NonNegative Least Squares) problem80

min{‖V tu− V tw̃‖22 , u ≥ 0} (4)

via the Lawson-Hanson active-set iterative method [9], that seeks a sparse81

solution and is implemented by the basic MATLAB function lsqnonneg:82

then, the nonzero components of u determine the Caratheodory-Tchakaloff83

concentrated support. Let us denote by u∗ the resulting compressed vector84

of non-zero weights.85

This kind of approach to discrete (probability) measures concentration,86

that can be obtained also via Linear Programming, emerged only recently;87
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cf., e.g., [10, 12, 14, 16]. We notice that sparsity cannot here be recovered by88

standard Compressive Sensing algorithms (ℓ1 minimization or penalization,89

cf. [7]), since we deal with probability measures and thus the 1-norm of the90

weights is constrained to be equal to 1.91

In the software package CaTchDes the near-optimization algorithm above92

is implemented by the MATLAB function NORD (Near-Optimal Regression93

Design computation), which in turn calls the function CTDC (Caratheodory-94

Tchakaloff Design Concentration). The Vandermonde-like matrix V is con-95

structed using the Chebyshev product basis of the minimal box containing96

the discrete set X . Both routines automatically adapt to the actual poly-97

nomial space dimension, by QR with column pivoting and numerical rank98

determination for V (this rank gives the numerical dimension of the poly-99

nomial space on X). In such a way we can treat cases where X is not100

determining for the full polynomial space, for example where X lies on an101

algebraic curve or surface.102

All the relevant steps (polynomial orthogonalization and computation of103

the Christoffel function, basic iteration, measure concentration) are made by104

standard MATLAB functions, such as the qr factorization and the lsqnonneg105

quadratic minimizer.106

3. Illustrative Examples107

In order to show the potentialities of the package, we present below a108

bivariate example on a nonconvex polygonal region with 27 sides, say Ω,109

resembling a flat and rough model of the whole continental France; see Fig.110

1. The region has been discretized by intersection with a 100 × 100 point111

grid of the minimal surrounding box, which in practice would correspond112

geographically to a discretization with stepsize of about 10 Km of the French113

territory. All the computations have been made in MATLAB R2017b on a114

2.7 GHz Intel Core i5 CPU with 16GB RAM. The whole discretization mesh115

X of about 5700 points is concentrated at regression degree n = 8 into 153116

sampling nodes and weights (a compression ratio around 38) keeping 95%117

G-efficiency (θ = 0.95), in approximately 2 seconds.118

In terms of deterministic regression error estimates, denoting by Lu
∗

n the
weighted least-squares operator corresponding to the Caratheodory-Tchakaloff
concentration, u∗, of the near-optimal design and by f a continuous function
defined on the region, we can write

max
x∈X

∣

∣f(x)− Lu
∗

n f(x)
∣

∣ ≤
(

1 +
√

Nn/θ
)

min
p∈P2

n

max
x∈X

|f(x)− p(x)|
119

≤
(

1 +
√

Nn/θ
)

min
p∈P2

n

max
x∈Ω

|f(x)− p(x)| . (5)
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More precisely, in this example we get that the uniform regression error esti-120

mate on X (by sampling only at the Caratheodory-Tchakaloff concentrated121

support) is within a factor 1 +
√

N8/θ = 1 +
√

45/0.95 ≈ 7.88 times the122

best uniform polynomial approximation of degree n = 8 to f on Ω (to be123

compared with a factor 1 +
√
N8 = 1 =

√
45 ≈ 7.71 at full design opti-124

mality). If the resulting polynomial is not to one’s satisfaction, one could125

always reconstruct the function f on the whole region from the grid values126

{Lu
∗

n f(x) , x ∈ X} with a good accuracy (depending on smoothness), by any127

local or global interpolation scheme, such as splines or radial basis functions.128

Figure 1: Caratheodory-Tchakaloff concentrated support (153 from 5746 points) for re-
gression degree n = 8 on a nonconvex polygonal region after 27 iterations of Titterington’s
multiplicative algorithm (G-efficiency θ = 0.95).

4. Impact129

The computation of optimal designs for multivariate polynomial regres-130

sion is a relevant issue in computational statistics and data analysis. The131

approach proposed here is hybrid, in the sense that it starts by computing132

a design with a given threshold of G-optimality, say 95% to fix ideas, that133

could be more than appropriate in most applications, by performing only few134

iterations of a basic multiplicative algorithm for design optimization.135

At this level, the regressor quality is very good in the sense that the136

resulting approximation is nearly as good as it possibly can be relative to137
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the best polynomial approximation (it should be noted that, of course, not138

all datasets can be well-fitted by polynomials). However, the cardinality139

of the support is typically still very high. Nevertheless, it is possible to140

strongly reduce the sampling cardinality, simply by resorting to recent im-141

plementations of Caratheodory-Tchakaloff discrete measure concentration.142

Only native MATLAB functions are involved in the computational process,143

namely qr factorizations of the relevant Vandermonde-like matrices and the144

lsqnonneg quadratic minimizer for the sparse nonnegative solution of the145

underlying moment system.146

We are confident that the MATLAB package CaTchDes, in spite of its sim-147

plicity, will be useful in many applied contexts where bivariate and trivariate148

regression is a relevant tool, including, but not limited to, geo-spatial analy-149

sis.150
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