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Abstract

In this work we deal with general reactive systems involving N species and M elementary reac-

tions under applicability of the mass-action law. Starting from the dynamic variables introduced

in two previous works [P. Nicolini and D. Frezzato, J. Chem. Phys., 138, 234101 (2013); ibid.,

J. Chem. Phys., 138, 234102 (2013)], we turn to a new representation in which the system state

is specified in a (N ×M)2-dimensional space by a point whose coordinates have physical dimen-

sion of inverse-of-time. By adopting hyper-spherical coordinates (a set of dimensionless ”angular”

variables and a single ”radial” one with physical dimension of inverse-of-time), and by examining

the properties of their evolution law both formally and numerically on model kinetic schemes, we

show that the system evolves towards the equilibrium as being attracted by a sequence of fixed

subspaces (one at a time) each associated with a compact domain of the concentration space. Thus,

we point out that also for general non-linear kinetics there exist fixed “objects” on the global scale,

although they are conceived in such an abstract and extended space. Moreover we propose a link

between the persistence of the belonging of a trajectory to such subspaces and the closeness to

the slow manifold which would be perceived by looking at the bundling of the trajectories in the

concentration space.
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I. INTRODUCTION

Since one and a half century, the mass-action law is the theoretical paradigm to describe

the time evolution of macroscopic and well-stirred reactive systems under isothermal con-

ditions. Mathematically, it leads to a system of polynomial ordinary differential equations

(ODEs) for the species volumetric concentrations taken as dynamic variables[1]. If the con-

centrations of N involved species are collected in the vector x, the ODE system is ẋ = F(x),

with Fj(x) multivariate polynomials.

In a couple of recent works, “Part I”[2] and “Part II”[3], we have shown that the con-

version of the original ODE system into “canonical formats” can be an efficient strategy to

unveil some ubiquitous features which would remain otherwise hidden due to the non-linear

nature of the evolution. With the expression “canonical format” we mean an evolution

law whose mathematical structure is “universal”, namely related to the given class of dy-

namics but devoid of any specific parameter of the system under consideration. All the

system-dependent parameters (stoichiometric coefficients, values of the kinetic constants,

initial state of the reactive system in the concentration space) should affect only the initial

conditions. In our perspective, a canonical format may be achieved by means of a suitable

change/extension of the set of dynamic variables. Such an extension clearly implies mutual

constraints among the new variables, which keep the number of degrees of freedom equal

to N . If some “characteristic feature” emerges from the examination of a canonical format,

then one returns back to the original physical space to see what such a feature implies in

terms of traits that can be observed (or expected a priori). This kind of approach has been

adopted in Ref. [2], where a “quadratization” procedure was applied to work out a universal

ODE system with quadratic equations in the new variables. By means of a combined for-

mal/heuristic examination of such a format, we could provide a definition of the slow(est)

manifold (SM). Qualitatively, the SM is the perceived hyper-surface in whose neighborhood

the trajectories of the reactive system bundle before approaching the equilibrium states[3].

Formal definition and operative identification of the SM play a crucial role in strategies

aimed to achieve a simplification of the kinetics description via a dimensionality reduction

of the problem (i.e., a reduction of the number of relevant degrees of freedom) in the final

and slowest tail of evolution. For a review on this topic we address the interested reader

to the excellent introductions of Refs. [4–6] (see also our outline in Ref. [3] and references

therein).

In this “Part III” of our investigation into deterministic chemical kinetics, we consider

the following question:

In spite of the non-linearity of the original ODEs, is there a canonical representation
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of the reactive system capable to “let emerge” the existence of fixed subspaces (in the

extended space of the new dynamic variables) which attract the system during its evolution?

Such a question arises by the consideration that, in linear kinetics (i.e., with only

first-order elementary reactions/steps so that the system evolution can be written as

ẋ = −Kx, with K fixed), the eigenvectors of the kinetic matrix K define a hierarchy

of fixed subspaces in the physical concentration space. The projections of the system

state x(t) on these subspaces give the picture of trajectories going through a sequence of

attracting subspaces[7]. The same picture is kept when passing to non-linear kinetics, that

is, the trajectories pass though a ”cascade” of manifolds [8] of lower and lower dimension.

However, the analysis sketched above becomes local in the sense of point-dependent (see for

example the construction of intrinsic low dimensional manifolds, ILDMs, based on a local

linearization of the velocity field [9, 10]) and the formal definition of such ”global” objects

is challenging. Here we focus on such an issue and demonstrate that one can still specify

fixed subspaces which attract the trajectories when the system evolution is represented in

a suitable abstract and extended space. Turning back to the physical variables x, one can

then make a partition of the concentration space into domains, each of them corresponding

to one of these attracting subspaces. Thus the evolution in the physical space becomes a

transition between these distinct domains.

To achieve the goal we shall restart from the universal format of ODEs presented in

Ref. [2], and perform a further transformation to achieve what we term a “hyper-spherical

representation” of the reactive system in an extended space. In fact, in such a new repre-

sentation, the dynamic variables are a “radial” coordinate S, which has physical units of

inverse-of-time, and a normalized “state-vector” ψ, whose components can be assimilated to

dimensionless “angular” coordinates. The evolution equations of the (S,ψ) variables con-

stitute a new canonical format of ODEs. The examination of such a format will let emerge

the existence of subspaces which, one by one, attract ψ during the system evolution.

To develop the methodological path, in Section II we outline the essential features of our

past works and integrate them with some remarks which are due for this continuation. In

Section III we introduce the hyper-spherical representation of the reactive system, and derive

the canonical format of ODEs for the new variables (S,ψ). In Section IV we analyze such

a format, define the attracting subspaces, and illustrate the concepts by adopting a simple

kinetic scheme, namely the Lindemann-Hinshelwood mechanism also studied by Fraser in

Ref. [11] and already adopted by us in our previous works[2, 3]. Then we formulate a tenta-

tive relation between the persistence of a trajectory within the attracting subspaces and the

closeness to the perceived SM. Such ideas will be elaborated in a subsequent work targeted

to devise a low-computational-cost route (and related code) to produce candidate points in
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the SM proximity. In the Supporting Information[12] we present some preliminary outcomes

obtained with a tentative algorithmic implementation of the concepts here formulated. In

Section V we draw the main conclusions.

II. BACKGROUND AND PRELIMINARIES

By applying the mass-action law to the elementary reactions, the original ODE system

reads

ẋj =
M∑

m=1

(
ν
(m)
Pj
− ν(m)

Rj

)
rm(x) , rm(x) = km

N∏
i

x
ν
(m)
Ri

i (1)

being km the kinetic constant of the m-th elementary step/reaction, ν
(m)
Rj

and ν
(m)
Pj

the

stoichiometric coefficients of species j as reactant and product respectively (coefficients are

null if the species does not appear in the elementary reaction) and rm(x) the reaction rate of

step m. The starting point in Ref. [2] is to pursue the following change of dynamic variables:

x→ h(x) , hjm(x) := x−1
j rm(x) (2)

These new variables are positive-valued and have physical dimension of inverse-of-time. One

deals with N ×M of such variables which are, however, mutually related by a number of

non-linear constraints so that only N of them are independent. From the knowledge of the

set hjm(x), the state of the system in the concentration space can be retrieved by means of

an inversion transformation[13].

Although derived by us in Ref. [2], the kind of transformation in Eq. (2) turned out to be

already known for decades and was even re-discovered independently by several authors with

minor variations, at least (to the best of our knowledge) by Brenig and Goriely in the context

of general transformations amongst equivalence classes of representation for continuous-time

systems[14], by Fairén and Hernández-Bermejo[15, 16], and by Gouzé[17]. Notably, in Ref.

[15], the authors argue that the resulting quadratic structure can facilitate the achievement

of power-series approximations of the solution of the ODE system[18, 19].

The subsequent step is to introduce the square matrix V with elements

Vjm,j′m′(x) =Mjm,j′m′hj′m′(x) (3)

where M is the fixed “connectivity” matrix whose elements are

Mjm,j′m′ =
(
ν
(m′)
Pj′
− ν(m

′)
Rj′

)(
δj,j′ − ν(m)

Rj′

)
(4)

where δ denotes the Kronecker delta function. The elements of V form a further enlarged

set of dynamic variables. By knowing M, the physical state of the reactive system can be
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retrieved by a two-step backward transformation V(t) → h(t) → x(t)[20]. By introducing

the cumulative index Q = (j,m) for the species-step pair, with Q = 1, 2, · · · , Qs where

Qs = N ×M , the evolution of any mass-action based system is finally put into the following

extended system of ODEs:

V̇Q,Q′ = −VQ,Q′

∑
Q′′

VQ′,Q′′ (5)

The quadratic format of Eq. (5) is universal (i.e., it can represent any kinetic scheme

regardless of the number of species and elementary reactions) and parameter-free. In the

Appendix we demonstrate the crucial property that while the factors hj′m′(x) in Eq. (3)

may diverge to +∞ tending to the stationary state, the elements of matrix V take always a

finite value for any possible kinetic scheme. Thus, according to Eq. (5), each of the VQ,Q′(t)

can be either constantly null or never null. In the latter case, the element cannot change

sign along a trajectory, and tends to a limit value (possibly zero) at the stationary state.

Notably, at this level the reactive system can be represented as a weighted/oriented graph

with Qs nodes, and Eq. (5) specifies the evolution of its links if VQ,Q′(t) is interpreted as the

connection from node Q to node Q′. The equation states that the rate of evolution of VQ,Q′(t)

is proportional to the magnitude of the connection itself, and to the sum of the connections

between the arrival node and all the nodes of the graph. A pictorial representation is given

in Figure 1. In ref. [2] we have shown that some properties of these sums play a crucial role

in relation with the SM, as summarized here below.

Let us define

zQ(x) :=
∑
Q′

VQ,Q′(x) (6)

where zQ(x) are point-dependent “rates” which control the evolution of the hQ variables

via ḣQ = −hQzQ, and hence of the connections VQ∗Q for all starting nodes Q∗ in the graph

representation. These rates are mutually related by linear constraints so that at most N

of them are independent, as detailed in the Supporting Information of Ref. [2]. Note that

some rates may be identically null (in these cases the corresponding hQ coincide with kinetic

constants of first-order steps). Moreover, it may happen that some rate zQ is identically

equal to some other, say zQ1(x) = zQ2(x) = . . . . This means that the corresponding hQ1(x),

hQ2(x), . . . are multiples one of the others. By means of phenomenological observations,

we could formulate the conjecture that a trajectory enters a region of the concentration

space, termed by us “Attractiveness Region” (AR). Within the AR, the high-order time-

derivatives z
(n)
Q (x(t)) ≡ dnzQ(x(t))/dt

n tend to become multiples one of the others and

monotonically decay to zero towards the equilibrium. In terms of point-dependent functions,

these derivatives are expressed as z
(n)
Q (x) = (F(x) ·∂/∂x)nzQ(x) and are easily computed by

exploiting recursive formulas derived by the quadratic form of Eq. (5) (see the Supporting
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Information of Ref. [2]). The SM is then defined as the hyper-surface formed by points x,

within the AR, where z
(n)
Q (x) = 0 for all Q as n→∞ (while on the equilibrium manifold one

has the stronger and exact condition z
(n≥1)
Q (x) = 0). This provides a geometric definition of

SM as a global object in the concentration space.

III. HYPER-SPHERICAL REPRESENTATION OF THE REACTIVE SYSTEM

Let us introduce the index J through the association

J ≡ (Q,Q′) , J = 1, 2, · · · , Q2
s (7)

and use it to “unroll” the matrix V into a column-array v

vJ ≡ VQQ′ (8)

Let C be the Q2
s ×Q2

s matrix

CJ1≡(Q1,Q′
1),J2≡(Q2,Q′

2)
=

{
0 if Q′

1 ̸= Q2

1 if Q′
1 = Q2

(9)

The ODE system in Eq. (5) turns into

v̇J = −vJ
∑
J ′

CJJ ′vJ ′ (10)

In this vectorial representation, the actual state of the system is described by a point v(x)

in a Q2
s-dimensional space spanned by the orthogonal unit vectors

eJ =


0

· · ·
1

· · ·
0

← at J−th pos. , eJ · eJ ′ = δJJ ′ (11)

The final step consists in turning to an equivalent hyper-spherical representation of v by

writing it as a product of a normalized and dimensionless state vector ψ (with Q2
s − 1

independent components) and a single positive-valued variable S with physical units of

inverse-of-time. There are several possibilities to define S (each one based on a specific kind

of norm in the space of the vJ elements) and thus to build ψ; here we pursue the use of the

Euclidean norm ∥ · ∥. Namely, as state vector we consider

ψ := v/S , ψ ·ψ = 1 (12)
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with

S := ||v|| =
√
Tr(VTV) (13)

where the last identity shows that S is also the Frobenius norm of the matrix V. Then

we introduce the auxiliary (dimensionless) array ρ := Cv/Z, with Z the root-mean-square

average rate computed on the ensemble of rates in Eq. (6),

Z(x) =

√
Q−1

s

∑
Q

zQ(x)2 (14)

The Q2
s components of ρ are explicitly given by

ρJ≡(Q,Q′) = zQ′/Z (15)

and their mean-square average is constantly equal to 1 by construction. Such an array is

related to ψ via

P1 =
Z

S
ρ , PJJ ′ := CJJ ′ψJ ′ (16)

where 1 stands for the Q2
s-dimensional column-array with all entries equal to 1.

The equations for the time evolution of S and of the vector ψ are readily obtained with

few steps of algebra by using Eqs. (12) and (13) with Eq. (10) written as v̇J = −ZSψJρJ .

One gets[21]

ψ̇J = −Z(ρJ − Φ1)ψJ , Φ1 = ψ · diag(ρ)ψ (17)

and

Ṡ = −Z S Φ1 (18)

Equations (17) and (18) form an autonomous set of ODEs for the variables ψ(t) and S(t)[22]

which can be solved by providing the initial conditions ψ(0) and S(0), corresponding to the

starting point x(0) in the concentration space. At any time, the actual state x(t) can

be retrieved by applying the inversion route: S(t)ψ(t) = v(t) → V(t) → h(t) → x(t).

Moreover, the evolution equation for ρ turns out to be

ρ̇ = −S(P− Φ2I)ρ , Φ2 := Q−2
s ρ ·Pρ (19)

As demonstrated in the Supporting Information,[12] the following bounds (to be possibly

sharpened) apply to the factors Φ1 and Φ2: |Φ1| ≤ Qs and |Φ2| ≤ Qs. Finally, it also follows

Ż = −Z S Φ2 (20)
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IV. DYNAMICAL FEATURES

A. Attracting subspaces in the Q2
s-dimensional space

Let us first provide some preliminary definitions. Given a point x, let

zmin(x) := min
Q
{zQ(x)} (21)

There may be a number d of identically degenerate zQ(x) rates whose value is the lowest

one. Then, let JA = (J1, J2, · · · , JDA) be the set of indexes J = (Q,Q′) with no restrictions

on Q, while Q′ is such that zQ′(x) = zmin(x). The number of entries of such a set is

DA = Qs × d (22)

Then, let us associate to each of the indexes J ∈ JA a (fixed) versor eJ defined in Eq. (11).

let A be the DA-dimensional subspace

A = span(eJ1 , eJ2 , · · · , eJDA
) (23)

Finally, let c(A) be a compact domain in the concentration space such that x ∈ c(A) if the
functions zQ(x) individuate the set JA and hence the subspace A.

With these positions, in what follows we show that

While x(t) ∈ c(A) then ψ(x(t))→ A (24)

The attractiveness of ψ(x(t)) towards the actual A, indicated by the arrow in Eq. (24),

can be revealed by looking at the Euclidean distance dA of the point ψ on the unit Q2
s-

dimensional hyper-sphere from the subspace itself:

dA(x(t)) =

√∑
J /∈JA

ψJ(x(t))2 (25)

In essence, as long as the set of degenerate smallest zQ functions remains unaltered (re-

gardless of their magnitude that may change), the vector ψ tends to the subspace A which,

therefore, we call an “attracting subspace”.[23] Figure 2 gives a schematic of the concept.

The proof of such a behavior starts by combining Eqs. (17) and (18) to get the formal

integrated forms of ψ(t) and S(t) (that can be checked by back substitution):

ψ(t) =
exp{−

∫ t

t0
dt′Z(t′)diag(ρ(t′))}ψ(t0)

∥ exp{−
∫ t

t0
dt′Z(t′)diag(ρ(t′))}ψ(t0)∥

S(t) = S(t0)

∥∥∥∥exp{− ∫ t

t0

dt′Z(t′)diag(ρ(t′))

}
ψ(t0)

∥∥∥∥ (26)

8



For each component J , let us introduce the time-averaged rates

ωJ(t, t0) :=
1

t− t0

∫ t

t0

dt′Z(t′)ρJ(t
′) (27)

Note that ωJ≡(Q,Q′)(t, t0) = (t− t0)−1
∫ t

t0
dt′zQ′(t′). This implies that if the trajectory x(t) is

contained in a certain domain c(A) during some interval [t0, t], then

ωJ /∈JA(t, t0) > ωmin(t, t0) , ωmin(t, t0) := ωJ∈JA(t, t0) (28)

For each component J , the first of Eqs. (26) becomes

ψJ(t) =
ψJ(t0) e

−(t−t0)(ωJ (t,t0)−ωmin(t,t0))√∑
J ′ ψJ ′(t0)2 e−2(t−t0)(ωJ′ (t,t0)−ωmin(t,t0))

(29)

Now consider a situation in which ψ(t0) has a non-null projection on the subspace A. In

this case, by taking the absolute value at both members in Eq. (29), one sees that all

|ψJ(t)| with J ∈ JA monotonically increase as time passes (since the numerator of the

ratio is constantly equal to |ψJ(t0)| but the denominator monotonically decreases), while

all |ψJ(t)| with J /∈ JA monotonically decrease (since the numerator decreases faster than

the denominator). In practice, this means that the state vector ψ tends to the attracting

subspace A, as t increases, in the sense that the Euclidean distance in Eq. (25) decreases[24].

Since the instants t0 and t > t0 are arbitrarily chosen under the sole condition[25] that the

corresponding physical points x(t′) for t0 ≤ t′ ≤ t belong to the same domain c(A), the
global message is that ψ tends to A while the trajectories are contained in c(A). Hence we

have proved Eq. (24).

Although not explicitly indicated in Eq. (24) for sake of notation, A clearly depends

on the actual point in the concentration space. However, A is the same for all the points

within a compact domain c(A). This means that even if the kinetic scheme is non-linear,

there still exist such fixed subspaces which persistently attract ψ within delimited domains

of the physical space. A trajectory may cross several of these domains, each characterized

by a specific attracting subspace. Note that the subspaces are mutually orthogonal (in the

sense that they have null mutual projections), and that their dimension may differ. Given

the kinetic scheme, the number of attracting subspaces is finite, at most Qs in case of no

degeneracies between the zQ functions. However, the number of corresponding domains in

the concentration space can be larger since ψ(x(t)), along a trajectory, can be in principle

attracted by the same subspace A within different disjointed domains. In all generality, by

labeling with letters n, n′, n′′, · · · the domains in the concentration space, one expects that

ψ(x(t)) will move as attracted, one by one, by the terms of a sequence

· · · → An → An′ → An′′ → · · · (30)
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while the trajectory goes across the domains ..., c(An), c(An′), c(An′′), ... As stated above,

each term in the sequence Eq. (30) is ”picked” by an ensemble of at most Qs elements.

The switch of attracting subspace is a consequence of the existing mutual constraints on

the vJ components, hence on the ψJ components. Because of these constraints, the vector ψ

cannot lie on the actual A, hence such a subspace cannot be reached otherwise the dynamics

would stop there. The exception is indeed represented by the last term in the sequence in

Eq. (30), which will be reached in the infinitely long timescale.

In relation with the slowest manifold features, and regardless of the specific situation,

we stress that if a SM is observed in the concentration space, there must be an ensemble

of attracting subspaces which are visited by trajectories once they lie in the SM proximity.

In particular, in case of a uni-dimensional SM it is for sure that all trajectories will share

a common sub-sequence of terms. In a pictorial fashion, the reactive system quickly goes

through the first terms of the sequence in Eq. (30) and then “falls” into a “funnel” of terms

associated to the SM neighborhood. This might be a new way of looking at the bundles of

trajectories in a coarse-grained fashion.

B. Illustration for a simple kinetic scheme

To illustrate the main features of our approach we adopt the Lindemann-Hinshelwood

kinetic scheme [1] reported here below:

2X
k1−→X+Y

X+ Y
k2−→ 2X (Scheme A)

Y
k3−→P

The corresponding system of ODEs, here omitted, is readily generated by applying the

mass-action law to the elementary steps. All quantities are dimensionless, meaning that the

time variable and the volumetric concentrations (hereafter indicated with [·]) are implicitly

expressed in some units ts and cs, respectively. Values of the kinetic constants are k1 = 2,

k2 = 1, k3 = 0.6 (the same values adopted by Fraser in Ref. [11] and by us in Refs. [2, 3]).

Trajectories have been generated by using the DVODE solver[26] as implemented in the

routine from Ref. [27]. FORTRAN codes have been written for the specific computations.

Concerning the numbering Q ↔ (j,m), an outer loop is made on the species j and an

inner loop on the elementary steps m. The species are labeled by j = 1, 2, 3 following the

sequence X, Y, P. For such a scheme, Qs = 9. However, since the species P is irreversibly

formed, the concentrations of the species X and Y evolve autonomously and [P] can be

obtained by exploiting the mass-conservation constraint [X] + [Y] + [P] = const. for a given
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initial composition. Thus it suffices to consider the reduced system of ODEs for [X] and

[Y] only, that is, in practice, to focus on the projection on the sub-dimensional space of

the reactant concentrations. Correspondingly, only the “reduced” set of the first 6 elements

Q = 1, · · · , 6 is required in the analysis. All considerations will refer to such a reduced

set[28]. For the explicit expressions of the hQ functions and related rates zQ we address

the reader to Refs. [2, 3]. In particular it can be seen that z6(x) = 0 and z1(x) = z5(x)

identically.

Several trajectories have been generated from initial points drawn at random in the

reactant concentration region displayed in Fig. 3. Red and blue lines are a pair of “pilot

trajectories” (laying above and below the perceived SM), which will be used to illustrate

the relevant features. Each colored area corresponds to a domain within which the state

vector ψ(x(t)) tends to a specific attracting subspace A. The domains have been identified

by constructing a dense grid with homogeneous partition on the logarithms of [X] and [Y],

and by increasing the sampling in the proximity of the perceived SM where a narrow domain

appears. Since only the first six components of the z vector are used in the analysis, the full

space of the ψ vector is 36-dimensional. For each meshing point, A was assigned by looking

at the smallest zQ rates and accounting for possible degeneracies as discussed above. In the

specific case no degeneracies are found (i.e., d = 1 in all situations), hence all attracting

subspaces, which are listed in the lower panel of the figure, are 6-dimensional. Figure 4

shows, for the two pilot trajectories, the belonging of the trajectory to the domains (the

integer number on the ordinate axis is the n given in the lower panel of Fig. 3). From

Figures 3 and 4 it is possible to see that the initial (fast) part of the pilot trajectories take

place within the wide domains 1 and 2, while the slow tail of evolution occurs for both

trajectories within the domain 1 (namely at the border of such a domain) and domain 3

(the narrow one in Fig. 3). The vertical lines are placed at times which correspond to points

close to the perceived SM.

For the two pilot trajectories, in the panels of Fig. 5 we show both the time evolution

of the distances dA defined in Eq. (25) (solid lines) and of the functions Z (dashed lines).

The vertical lines indicate a “switch” of attracting subspace. One can see that, in the global

time scale here inspected, Z rapidly decreases, as it will be rationalized in the following.

For the trajectory “from above”, the drop is of about 3 orders of magnitude, while for the

trajectory “from below” a huge drop of about 9 orders is observed. Note that the decrease

is non-monotonic when approaching the SM from above, as revealed by the slight increase

of Z at t ≃ 10−1.

At the same time, ψ tends to the specific local A but the quick change of attracting

subspace makes that the time of stay within a domain is so short that the approach to A
could be little. Notably, at the entrance into a domain it appears that the distance from A
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is very close to 1. This means that the state vector ψ is almost orthogonal to A and the

attractiveness to A is weak. Thus, at least for this kinetic scheme, it happens that where

Z is “large” (far from the SM), the state vector reorients but remains almost orthogonal

to the attracting subspace. Conversely, once the magnitude of Z is decreased, the time of

persistence within a domain increases, ψ approaches more effectively the actual A, and a

relevant drop of the distance parameter dA is detected.

C. Proximity to the SM

Up to here the rationale of the dynamics in the (ψ, S)-space is rigorous. From here, the

non-linearity of the problem forces us to proceed on qualitative and speculative grounds

which will need to be supported by direct checks on model systems.

Let us start from the phenomenological evidence that a trajectory x(t) slows down as

the neighborhood of the SM is approached. This could be reflected in the fact that also the

evolution of the coordinates (S,ψ) in the hyper-spherical representation of the same trajec-

tory becomes smoother. Firstly, note that the average rate Z appears in both differential

equations (17) and (18) as multiplier at the right-hand members. Let us focus on Eq. (17)

alone. While the other factors are dimensionless and bounded numbers, Z can change even

by orders of magnitude along a trajectory, as shown for the model scheme adopted above.

Thus, it is “natural” to expect that the magnitude of Z drops in the course of the reac-

tion so that going toward the SM the “angular” coordinates ψ may evolve more and more

slowly. Moreover, as Z becomes smaller, from Eq. (18) also the evolution of the “radial”

coordinate S is expected to become smoother (although the correlation between S and Z

prevents a sound statement). As a whole, where the average rate Z takes small values, one

likely expects that the SM proximity has been approached. Also note that the variation of

Z is governed by Eq. (20) in which Z itself enters the right-hand member as multiplica-

tive factor. Thus, starting from points x(0) far from the equilibrium, the magnitude of Z

should likely display a rapid depletion (as indeed it has been observed for Scheme A)[29].

By following a trajectory x(t), as long as Z(x(t)) is large, ψ(x(t)) should tend rapidly to

the actual attracting subspace but, at the same time, such a large Z also promotes a rapid

change of the components of ρ(x(t)), hence a possible change of ordering of the zQ rates.

Ultimately, the attracting subspace also “switches” rapidly.

Thus, the likely (typical) picture should be the following. In the initial (transient) phase

of a trajectory, if it starts far enough from the equilibrium manifold, one observes a quick

drop of Z(x(t)) along with rapid transitions between attracting subspaces. Such a transient

phase is followed by a slower and smoother evolution for both Z(x(t)) and ψ(x(t)) once the

trajectory x(t) has approached the SM neighborhood and the magnitude of Z has largely
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decreased.

The primary condition of smallness of Z is here termed as slowness of the trajectory

progress. The additional condition of smooth evolution of Z itself, and hence of ψ(x(t)), is

more related to the persistence of the slowness, since such a property is observed and kept

once the primary condition holds. For the simple scheme here adopted, from Figures 4 and 5

it appears that the latter property arises in terms of persistence of the attracting subspaces.

We may guess that, in general cases, a trajectory “slides” over a series of domains whose

attracting subspaces A (a sub-sequence of Eq. (30)) last for long times.

On the basis of such a guess, for the actual attracting subspace to be persistent, the set

of indexes JA must remain unaltered as long as possible. A strong condition to meet this

requisite is that the whole array ρ varies smoothly in time. As a global measure of such a

smoothness we take the root-mean-square average of the derivatives ρ̇J . With few algebraic

steps one gets √
Q−2

s

∑
J

ρ̇2J = Z−1

√
Z 2

1 − Ż2 (31)

where Z1(x) is the analogous of Eq. (14) for the first-order derivatives:

Z1(x) =

√
Q−1

s

∑
Q

z
(1)
Q (x)2 (32)

Equation (31) shows that where Z is almost constant (slowness), it is required that Z1

be small for ρ to vary smoothly. Thus, in the neighborhood of the SM one likely expects

that both Z and Z1 take small values. To translate the expression “small values” into

quantitative and operative terms, one may exploit the landscapes of functions Z(x) and

Z1(x). Such landscapes are expected to feature “grooves” which fall close to the perceived

SM. As example, in Fig. 6 we show the landscapes of Z(x) and Z1(x) as functions of the

reactant concentrations for Scheme A. The expected grooves are indeed observed.

These ideas will be elaborated in a following article where we shall devise a computational

route, with related implementation, to produce “candidate points” to the proximity of the

SM. At this preliminary stage, in the Supporting Information[12] the interested reader may

find an early algorithmic implementation of the procedure together with the outcomes for

Scheme A and for a higher non-linear scheme with elementary steps up to the fourth order.

It is interesting to note that the reasoning above can be extended by accounting for the

higher-order time-derivatives of the rates zQ. By recursively differentiating the components

of ρ and then considering their root-mean-square average where Z ≃ const., it follows that

in the region of slowness also the averages Zn(x) =
√
Q−1

s

∑
Q z

(n)
Q (x)2 of any order should

feature a “groove” close to the SM. Notably, a (constrained) minimization of Zn to locate

such a groove implies that all components z
(n)
Q are globally minimized. Such an outcome can
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be taken as an approximate version of the definition of SM[3] recalled in the Introduction,

stating that on the SM all components z
(n)
Q vanish as n tends to infinity. We recall that such

a condition strictly holds within the Attractiveness Region in the concentration space, thus

only the “right groove” of Zn(x) within such a region has to be considered.

V. CONCLUSIONS

In this work we have shown that the mathematical description of any reactive system

involving N chemical species, under applicability of mass-action law to its M elementary

reactions, can be put into a hyper-spherical format in a Q2
s-dimensional space where Qs =

N ×M . Such a format has been obtained by further elaborating the quadratic ODE system

derived in Ref. [2]; hence also in the present case the achieved formulation is “universal”

and parameter-free. Thus, any consideration which emerges from the examination of such a

mathematical structure holds in all generality for the mass-action class of evolving chemical

systems.

In particular we have shown that also for general non-linear kinetic schemes there exist

fixed subspaces, each one with dimension at most equal to Qs, which monotonically attract

the state vector ψ. For general non-linear kinetics, these subspaces replace the ones which,

only for linear schemes, are spanned (in the concentration space) by the eigenvectors of the

kinetic matrix. This result may open new lines to inspect the paths of a reactive system

under a coarse-grained-like view, where the focus is not on the trajectory, rather on the

sequence of “visited” domains, each one associated to an attracting subspace.

The next step is to attribute to these domains some characteristic properties which are

recognizable in the physical space. Along this line we have formulated a tentative link

between persistence of the attracting subspaces (in the extended space) and closeness of tra-

jectories to the perceived slow manifold (in the concentration space). This opens perspectives

to devise low cost computational strategies to locate candidate points in the proximity of

the slow manifold. These strategies could employ just the lowest order time-derivatives of

the rates zQ to build “potential functions” whose landscape can guide the individuation of

candidate points. Work on this line is currently underway but the preliminary results pre-

sented in the Supporting Information[12] are already encouraging. Efforts in this direction

are worthwhile since once a set of candidate points is evaluated and spurious solutions are

rejected a posteriori, interpolation routes could yield an approximation of the slow manifold.

Such an interpolating surface is clearly non-invariant with respect to the system’s dynamics,

but it could be taken as starting guess for various iterative refinement methods [30, 31]. The

resulting surface can be then employed in a procedure to reduce the dimensionality of the

14



kinetics description in the slow part of the evolution.
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APPENDIX. Finite value of the elements of the matrix V

As stated in the main text, the functions hjm may diverge to +∞ as the system evolves

toward equilibrium along a trajectory x(t). This could happen if there are species which

are completely consumed in the global reactive process. Let j∗ be the label of such a

kind of species, i.e., limt→∞ xj∗(t) = 0, and let m′ be a generic step. Then, hj∗m′(x(t)) =

xj∗(t)
−1 rm′(x(t)) may diverge. Regardless of these possible divergences, in the following we

show that none of the matrix elements Vjm,j∗m′(x(t)) =Mjm,j∗m′ hj∗m′(x(t)) diverges in the

course of the evolution of a chemical system for any pair j,m.

Let us consider the three possible cases that may be encountered: 1) the species j∗ enters

as reactant in the step m′ (regardless of it appearance also as product in the same step); 2)

the species j∗ is not involved in the step m′; 3) the species j∗ enters only as product in the

step m′.

In case 1) one has that hj∗m′(x(t)) = x−1
j∗ rm′(x(t)) = x

ν
(m′)
Rj∗

−1

j∗ km′
∏N

i̸=j∗ x
ν
(m′)
Ri

i Since ν
(m′)
Rj∗
≥

1, it follows that limt→∞ hj∗m′(x(t)) = 0 in this case. Thus any matrix element Vjm,j∗m′ for

such a kind of elementary steps vanish at equilibrium.

In case 2) there may be actually situations in which the terms hj∗m′ diverge at equilibrium.

However one has ν
(m′)
Rj∗

= ν
(m′)
Pj∗

= 0, hence Mjm,j∗m′ =
(
ν
(m′)
Pj∗
− ν(m

′)
Rj∗

)(
δj,j∗ − ν(m)

Rj∗

)
= 0 for

any pair j,m. This implies that the elements Vjm,j∗m′ =Mjm,j∗m′hj∗m′ are identically null.

In case 3), firstly consider that the rates of all the elementary steps in which j∗ is pro-

duced or consumed must vanish as tending to the stationary state. To see this, let us divide

the steps into a set of production processes, labelled by m+, and consumption processes,
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labelled by m−. All the rates rm−(x(t)) go to zero, hence also all the rates rm+(x(t)) must

vanish to have ẋj∗(t) → 0. In this situation, hj∗m′(x(t)) = rm′(x(t))/xj∗(t) takes an indef-

inite form “0/0”, whose limit is however finite. In fact, approaching the stationary state

the magnitude of the maximum rate amongst the steps of production of j∗, rmax
m+

(x(t)) =

maxm+

{
rm+(x(t))

}
, will become an infinitesimal of the same (or greater) order of the max-

imum rate amongst the steps of consumption of j∗, rmax
m− (x(t)) = maxm−

{
rm−(x(t))

}
. By

considering that the step m′ belongs to the set m+, it follows

t→∞ : hj∗m′(x(t)) =
rm′(x(t))

xj∗(t)
≤
rmax
m+

(x(t))

xj∗(t)
<
∼
rmax
m− (x(t))

xj∗(t)

where the symbol <∼ indicates that rmax
m+

(x(t)) goes to zero, towards the stationary state, with

a velocity comparable or faster than that of rmax
m− (x(t)). Since xj∗(t) enters each of the rates

rm−(x(t)) (and thus also the dominant term rmax
m− (x(t))) with a power of order at least 1,

the latter ratio tends always to a finite limit, and thus also hj∗m′ and Vjm,j∗m′ take a finite

value approaching the stationary state.

Since the analysis above holds for any trajectory x(t), we have shown that all elements

of the matrix V(x) take a finite value in all points of the concentration space.
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CAPTIONS TO FIGURES

Figure 1

Schematic of the quadratic ODE system in Eq. (5) in terms of evolution of the connections

of a weighted/oriented graph with Qs nodes, each labelling a pair species/reaction.

Figure 2

Schematic of the connection between a trajectory x(t) in the concentration space, and the

set of lowest zQ faunctions that specify the actual attracting subspace for the corresponding

dynamics of the state vector ψ(x(t)) in the hyper-spherical representation. As long as

the trajectory lies within a domain c(A) such that the set of the smallest zQ functions

remains unaltered, the state vector is monotonically attracted towards the subspace A
(unequivocally specified) in the Q2

s-dimensional extended space.

Figure 3

Projection of the concentration space portrait on the reactants plane for Scheme A. Black

lines are trajectories generated from initial points drawn at random. Red and blue lines

are “pilot trajectories” (which are tracked in the following figures) starting from above

and from below the perceived projection of SM. Each colored domain corresponds to the

related attracting subspace A associated to the smallest zQ function (in this case d = 1

with reference to the schematic of Fig. 2). The legend for the color code is provided in the

lower panel.

Figure 4

Associations of the pilot trajectories of Scheme A to the attracting subspaces (same colors

as in Fig. 3). The number on the ordinate axis identifies each attracting subspace A
according to the associations given in the lower panel of Fig. 3. The inset magnifies the

initial fast evolution by means of logarithmic scale on the time axis. The vertical dashed

lines are placed at times which correspond, for the two trajectories, to points close to the

perceived SM.

Figure 5
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Approach of ψ(t) to the actual attracting subspace A in terms of Euclidean distance dA

(solid lines), and evolution of Z (dashed lines), for the two pilot trajectories of Scheme A

displayed in Fig. 3 (red and blue colors refer to the corresponding trajectories). Vertical

lines indicate the change of attracting subspace (i.e., the change of domain in Fig. 3).

Figure 6

Landscapes of Z(x) and Z1(x) as functions of the reactants concentrations for Scheme A

(only the first six zQ components are considered). The insets show the contour plots with

colors from red to blue corresponding to the decrease of magnitude.
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