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Abstract

We construct norming meshes for polynomial optimization by the clas-
sical Markov inequality on general convex bodies in Rd, and by a tangen-
tial Markov inequality via an estimate of the Dubiner distance on smooth
convex bodies. These allow to compute a (1−ε)-approximation to the min-
imum of any polynomial of degree not exceeding n by O

(
(n/
√
ε)αd

)
sam-

ples, with α = 2 in the general case, and α = 1 in the smooth case. Such
constructions are based on three cornerstones of convex geometry, Bieber-
bach volume inequality and Leichtweiss inequality on the affine breadth
eccentricity, and the Rolling Ball Theorem, respectively.
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1 Introduction

Sampling methods, typically on suitable grids, are one of the possible approaches
in the vast literature on polynomial optimization theory, cf., e.g., [10, 11, 36]
with the references therein. In this paper we extend in the general framework
of convex bodies our previous work on sampling methods for polynomial opti-
mization, based on the multivariate approximation theory notions of norming
mesh and Dubiner distance, cf. [28, 27, 32, 33, 34].

Polynomial inequalities based on the notion of norming mesh mesh have been
recently playing a relevant role in multivariate approximation theory, as well in
its computational applications. We recall that a polynomial (norming) mesh of
a polynomial determining compact set K ⊂ Rd (i.e., a polynomial vanishing on
K vanishes everywhere), is a sequence of finite subsets An ⊂ K such that

‖p‖K ≤ C ‖p‖An , ∀p ∈ Pdn , (1)
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for some C > 1 independent of p and n, where card(An) = O(ns), s ≥ d. Here
and below we denote by Pdn the subspace of d-variate real polynomials of total
degree not exceeding n, and by ‖f‖X the sup-norm of a bounded real function
on a discrete or continuous compact set X ⊂ Rd.

Observe that An is Pdn-determining, consequently card(An) ≥ dim(Pdn) =(
n+d
d

)
∼ nd/d! (d fixed, n → ∞). A polynomial mesh is termed optimal when

s = d. All these notions can be given more generally for K ⊂ Cd but we restrict
here to real compact sets.

Polynomial meshes were formally introduced in the seminal paper [9] as a
tool for studying the uniform convergence of discrete least squares polynomial
approximation, and then studied from both the theoretical and the computa-
tional point of view throughout a series of papers. Among their features, we
recall for example that the property of being a polynomial mesh is stable under
invertible affine transformations and small perturbations (see [13, 25]). Also,
given the polynomial meshes A1

n and A2
n for the compact sets K1 and K2 re-

spectively, the sequence of sets A1
n∪A2

n and A1
n×A2

n are polynomial meshes for
K1∪K2 and K1×K2, with the constants being the maximum and the product
of the constants of K1 and K2 respectively. Moreover, if T : R2 → Rd is a
polynomial map of degree not greater than k and An is a polynomial mesh for
the compact set K ⊂ Rd, then T (Akn) is an admissible mesh for the compact
set T (K).

Polynomial meshes have been constructed by different analytical and ge-
ometrical techniques on various classes of compact sets, such as Markov and
subanalytic sets, polytopes, convex and starlike bodies; we refer the reader,
e.g., to [3, 9, 16, 23, 25, 29] and the references therein, for a comprehensive view
of construction methods.

Since polynomial meshes have first been introduced in the framework of
discrete least squares, their most direct application is in the approximation
of functions and data. As a consequence, polynomial meshes can be used as
a tool for spectral methods for the solution of PDEs, see [37, 38]. Perhaps
more surprisingly, near optimal interpolation arrays can be extracted from an
admissible mesh by standard numerical linear algebra tools [3]. Note that the
problem of finding unisolvent interpolation arrays with slowly increasing (e.g.,
polynomial in the degree) Lebesgue constant on a given compact set K ⊂ Rd
is very hard to attack numerically, even for small values of d > 1. Lastly, we
mention that polynomial meshes are the key ingredient for the approximation
algorithms proposed in [24], where the numerical approximation of the main
quantities of pluripotential theory (a non linear potential theory in Cd, d > 1)
is studied.

In many instances, by suitably increasing the mesh cardinality it is possible
to let C → 1, where C is the “constant” of the polynomial mesh in (1). This
opens the way for a computational use of polynomial meshes in the framework of
polynomial optimization, in view of the general elementary estimate given below.
It is however worth to mention that, in view of the exponential dependence
on d of the cardinality of the meshes, this approach is attractive only for low
dimensional problems, e.g. d = 2, 3.

Proposition 1. (cf. [32]). Let {An} be a polynomial mesh of a compact set
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K ⊂ Rd. Then, the following polynomial minimization error estimate holds

min
x∈An

p(x)−min
x∈K

p(x) ≤ (C − 1)

(
max
x∈K

p(x)−min
x∈K

p(x)

)
. (2)

Proof. Consider the polynomial q(x) = p(x) − maxx∈K p(x) ∈ Pdn, which is
nonpositive in K. We have that ‖q‖K = |minx∈K p(x)−maxx∈K p(x)| =
maxx∈K p(x) − minx∈K p(x), and ‖q‖An

= |minx∈An
p(x)−maxx∈K p(x)| =

maxx∈K p(x)−minx∈K p(x). Then by (1)

min
x∈An

p(x)−min
x∈K

p(x) = ‖q‖K − ‖q‖An
≤ (C − 1) ‖q‖An

≤ (C − 1) ‖q‖K = (C − 1)

(
max
x∈K

p(x)−min
x∈K

p(x)

)

Notice that the error estimate in (2) is relative to the range of p, a usual
requirement in polynomial optimization; cf., e.g., [10]. Clearly, by the arbitrarity
of the polynomial, taking −p instead of p we can obtain the same estimate for
the discrete approximation to the maximum of p.

The discrete optimization suggested by Proposition 1 has been already used
in special instances, for example on Chebyshev-like grids with (mn+ 1)d points
in d-dimensional boxes. Such grids (that are nonuniform) turn out to be poly-
nomial meshes for total degree polynomials, with C = 1

cos(π/(2m)) , as it has

been shown in [28] resorting to the notion of Dubiner distance [6], so that
C − 1 = O(1/m2). A similar approach, though essentially in a tensor-product
framework, was adopted also in [36]. In [33, 34], the method is applied to
polynomial optimization on 2-dimensional sphere and torus.

On the other hand, polynomial optimization on uniform rational grids is a
well-known procedure on standard compact sets (hypercube, simplex), cf. e.g.
[10, 11] with the references therein.

In Sections 2 and 3 we present a general approach to polynomial optimiza-
tion on norming meshes of Markov compact sets and then of general convex
bodies, constructed starting from sufficiently dense uniform grids. To this pur-
pose, we adapt and refine an approximation theoretic construction of Calvi and
Levenberg [9], based on the fulfillement of a classical Markov polynomial in-
equality, and we resort to some deep results of convex geometry, Bieberbach
volume inequality and Leichtweiss inequality on affine breadth eccentricity. We
get a (1 − ε)-approximation to the minimum of a polynomial of degree not
exceeding n, by O

(
(n2/ε)d

)
samples.

In Section 3, we modify and improve the construction on convex bodies
with C2-boundary via the approximation theoretic notion of Dubiner distance,
providing an original estimate for such a distance by another cornerstone of
convex geometry, the Rolling Ball Theorem, together with a recent deep result
by Totik on the Szegö-version of Bernstein-like inequalities. In such a way we
obtain a (1− ε)-approximation by O

(
(n/
√
ε)d
)

nonuniform samples.

2 Markov compact sets

Following [9], we’ll now show a general discretization procedure, that allows to
construct a polynomial mesh on any compact set admitting a Markov polynomial
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inequality (often called Markov compact sets). Given positive scalars r,M > 0,
a compact set K is said to admit a Markov Inequality of exponent r and constant
M if, for every n ∈ N , we have

‖∇p‖K ≤Mnr‖p‖K , ∀p ∈ Pdn , (3)

where ‖∇p‖K = maxx∈K ‖∇p(x)‖2, ‖ · ‖2 denoting the euclidean norm of d-
dimensional vectors. For example, with d = 1 and K = [−1, 1] we have r = 2
and M = 1. The Markov exponent can be r = 1 only on real algebraic manifolds
without boundary [7], for example on the sphere Sd−1. The exponent is r = 2
on compact domains with Lipschitz boundary, or more generally satisfying a
uniform interior cone condition; cf. [12, §6.4]. In the special case of a convex
body, we have

r = 2 , M = 4/w(K) , (4)

where w(K) is the width of the convex body (the minimal distance between
parallel supporting hyperplanes); on centrally symmetric bodies the numerator
4 can be replaced by 2, cf. [35]. We refer the reader, e.g., to [2, 9] with the
references therein for a general view on Markov polynomial inequalities.

For the reader’s convenience, we state and prove the following result which
is, in the real case, essentially Theorem 5 of [9].

Proposition 2. Let K ⊂ Rd a compact set satisfying (3), and L be the maximal
length of the convex hulls of its projections on the Cartesian axes.

Then, for any fixed ε ∈ (0, 1), K possesses a polynomial mesh {An(ε)}n∈N
such that, for any n ∈ N,

‖p‖K ≤ (1 + ε) ‖p‖An(ε) , ∀p ∈ Pdn , (5)

with

card(An(ε)) ≤

(⌈√
dLMnr

g(ε)

⌉)d
, (6)

where g(ε) = σ(ε) = ε
1+ε for K convex, and g(ε) = σ(ε) exp(−

√
d σ(ε)) for K

non convex.

Before proving Proposition 2, we observe that by Proposition 1 we get im-
mediately

min
x∈An(ε)

p(x)−min
x∈K

p(x) ≤ ε
(

max
x∈K

p(x)−min
x∈K

p(x)

)
. (7)

The usual way to express an inequality like (7), is to say that minx∈An(ε) p(x)
is a (1− ε)-approximation to minx∈K p(x); see, e.g., [10].

Proof of Proposition 2. We first assume K to be convex. Let us pick, for any

n ∈ N and ε ∈ (0, 1), a uniform coordinate grid on Rd of step σ(ε)√
dMnr

. Let us

denote by Bi, i ∈ I := {1, 2, . . . , S(n, ε)} the (clearly finite) collection of the
boxes of the grid intersecting K and let us pick yi ∈ K ∩ Bi, ∀i ∈ I. We set
An(ε) = {yi}i∈I . The estimate (6) immediately follows by K ⊆ v + [0, L]d for a
suitable vector v ∈ Rd.
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Note that for any x ∈ K we can find i ∈ I such that x ∈ K ∩Bi and hence

‖x − yi‖∞ ≤ σ(ε)√
dMnr

. For any p ∈ Pdn the Mean Value Inequality implies that,

for a suitable ξ ∈ [x, yi] ⊂ K,

|p(x)− p(yi)| ≤ ‖∇p(ξ)‖2‖x− yi‖2 ≤ ‖∇p‖K
√
d‖x− yi‖∞ ≤ ‖∇p‖K

σ(ε)

Mnr
.

Using the Markov Inequality (3), we get |p(x)− p(yi)| ≤ ‖p‖Kσ(ε), and

‖p‖K ≤
1

1− σ(ε)
‖p‖An(ε) = (1 + ε)‖p‖An(ε),∀p ∈ Pdn

follows easily by the arbitrariness of x ∈ K and p ∈ Pdn.
For the general case we need to use a finer coordinate grid, namely for any

n ∈ N and any ε ∈ (0, 1) we pick it with step size σ(ε) exp(−
√
dσ(ε))√

dMnr
. Then we

choose the points yi as above to construct the set An(ε), hence the estimate (6)
is obtained similarly.

We recall that, for any compact set K satisfying (3), for any n ∈ N, for any
q ∈ Pdn and any δ > 0 we have (cf.[9, Lemma 6]).

|q(ξ)| ≤ exp(dMnrδ) ‖q‖K ,∀ξ ∈ Rd , dist∞(ξ,K) ≤ δ. (8)

Applying (8) component-wise we get

‖∇p(ξ)‖2 ≤ edMnrδ ‖∇p‖K ,∀p ∈ Pdn,∀ξ ∈ Rd , dist∞(ξ,K) ≤ δ. (9)

Now, using the same notation as in the convex case, and noticing that

dist∞(ξ,K) ≤ ‖x− y‖2 ≤
σ(ε) exp(−

√
dσ(ε))

Mnr

since ξ ∈ [x, y], for any p ∈ Pdn we have

|p(x)− p(yi)| ≤ ‖∇p(ξ)‖2
√
d‖x− yi‖∞

≤ exp

(
dMnr

σ(ε) exp(−
√
dσ(ε))

Mnr

)
‖∇p‖K

σ(ε) exp(−
√
dσ(ε))

Mnr

= exp(−
√
dσ(ε)(1− e−

√
dσ(ε)))

σ(ε)

Mnr
‖∇p‖K ≤

σ(ε)

Mnr
‖∇p‖K ≤ σ(ε)‖p‖K .

Here we used (3) again to obtain the last inequality. Equation (5) follows easily
as in the convex case.

Remark 1. From the point of view of the implementation, the construction of
the mesh An(ε) may be not completely elementary. Let us consider for simplicity
a strictly convex body K ⊂ [0, L1]× [0, L2] defined by K := {f ≤ 0}, for a given
strictly convex function f : R2 → R, and assume that the sides of the rectangle
[0, L1]× [0, L2] lie on supporting hyperplanes for K.

• For any given n ∈ N and ε > 0, define the grid {(xi, yj)}0≤i≤N1,0≤j≤N2
,

xi := iL1/N1, yj := jL2/N2, where N1, N2 are chosen according to the
proof of Proposition 2.
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• For every i = 0, . . . , N1 we solve the non linear equation f(xi, η) = 0 (with
respect to η ∈ R), which (by convexity) has precisely 2 solutions η = y(i,±),
where y(i,+) > y(i,−) for i ∈ {1, 2, . . . , N1 − 1}, and precisely one solution
η = y(i) for i ∈ {0, N1}. This can be done in various ways, Newton method
appearing the most attractive for smooth f.

• Set A0
n(ε) = {(x0, y(0)), (xN1

, y(N1))}.

• For any i ∈ {1, . . . , N1 − 1} let J(i) := {j ∈ {0, 1, . . . , N2} : y(i,−) < yj <
y(i,+)}.

• Set An(ε) = A0
n(ε)

⋃(
∪N1
i=1{(xi, yj) : j ∈ J(i)}

)
.

It is not hard to show that for each rectangle R in the grid which has nonempty
intersection with K there exists a point (xi, yj) of An(ε) lying in R ∩K. Note
that this algorithm can be generalized to higher dimension d > 2, however this
requires to solve O((n2/ε)d−1) non linear equations as n2/ε → ∞. Also, the
strict convexity of K may be relaxed, possibly including minor modifications in
the algorithm.

3 General convex bodies

The bound (6) is clearly an overestimate, that is attained only in special cases,
for example with K = [0, L]d. In general the number of active points is a
fraction of the overall number of grid boxes, namely card(An(ε)) = θ(K)Nd

with θ(K) < 1, where θ(K) depends on the geometry of K and N :=
⌈√

dLMnr

g(ε)

⌉
.

For example, if K ⊂ [0, L]d is the closure of a bounded open set, let KN

be the union of grid boxes which intersect K (cf. Figure 1), and let B2 denote
the unit euclidean d-dimensional ball. Then it is easy to see that K ⊆ KN ⊆
K +

√
d hB2, h = L/N , and thus

vol(K) ≤ vol(KN ) ≤ vol
(
K +

√
d hB2

)
↓ vol(K) , as N →∞ , (10)

(i.e., as n2/ε → ∞), due to the monotonicity and continuity of the Lebesgue
measure.

By (10) we get the asymptotic bound

θ(K) =
card(An(ε))

Nd
=

card(An(ε))hd

Ld
≤ vol(KN )

Ld
∼ vol(K)

Ld
, (11)

and hence

card(An(ε)) . vol(K)

(√
dMnr

g(ε)

)d
. (12)

We stress that here and below, all the asymptotic relations hold for n2/ε→∞,
and that u . v means that there exists ϕ such that u ≤ ϕ ∼ v.

In particular, on convex bodies

card(An(ε)) .
vol(K)

(w(K))d

(
α
√
dn2

σ(ε)

)d
, (13)
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Figure 1: Two examples of KN in the inequality (10), for different values of N .

Printed by Wolfram Mathematica Student Edition Printed by Wolfram Mathematica Student Edition

where w(K) is the body width and α = 4 in general, whereas α = 2 on centrally
symmetric convex bodies, see [35].

Observe that the factor vol(K)/(w(K))d is essentially related to the shape
of K. By the famous Bieberbach inequality

vol(K) ≤ 2−dvol(B2)(diam(K))d , (14)

valid for any convex body (cf. e.g. [21] and the references therein), and the
formula for the euclidean ball volume, we get immediately

vol(K)

(w(K))d
≤ 2−dvol(B2)

(
diam(K)

w(K)

)d
=

1

Γ(d/2 + 1)

(√
π diam(K)

2w(K)

)d
, (15)

where diam(K)/w(K) is the so-called “aspect ratio”, or “breadth eccentricity”,
of the convex body. From (13) and (15) we finally obtain the approximate
cardinality bound

card(An(ε)) .
1

Γ(d/2 + 1)

(
α
√
dπ n2 diam(K)

2σ(ε)w(K)

)d
. (16)

Estimate (16) depends on the aspect ratio of the convex body, which is in
principle an unbounded quantity (as a function of K). It is worth recalling,
however, that polynomial meshes are affinely invariant , i.e., if K = φ(K ′) with
φ(x) = Ax + b affine transformation, A ∈ Rd×d and b ∈ Rd, and A′n is a
polynomial mesh for K ′, then An = φ(A′n) is a polynomial mesh for K with the
same constant c, and card(An) ≤ card(A′n), where equality holds if e.g. φ is
an isomorphism. We can then search, in the equivalence class of convex bodies
generated from K by invertible affine transformations, a representative K ′ with
bounded aspect ratio diam(K ′)/w(K ′).

Indeed, a deep result of convex geometry (Leichtweiss inequality [20]) asserts
that, given the Loewner minimal volume ellipsoid enclosing a given convex body
K, and considering the regular affine transformation, say ψ, that maps the
ellipsoid into the unit Euclidean ball, then

diam(K ′)/w(K ′) ≤
√
d , where K ′ = ψ(K) , (17)

cf. also [15]. From (13) applied to K ′, we get a polynomial mesh A′n(ε) for K ′

with constant c = 1 + ε and cardinality satisfying

card(A′n(ε)) .
1

Γ(d/2 + 1)

(
αd
√
π n2

2σ(ε)

)d
. (18)
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We can then take
An(ε) = ψ−1(A′n(ε)) , (19)

which is a polynomial mesh for K that has the same constant c = 1 + ε and the
same cardinality. For an overview on the computation of Loewner ellipsoids we
quote e.g. [30], with the references therein.

We may now view the considerations above as a proof of the following Propo-
sition, that summarizes the whole construction for convex bodies. We stress that
the cardinality estimate does not depend on the shape of the convex body.

Proposition 3. Let K ⊂ Rd be a convex body and ε > 0. Then K possesses a
polynomial mesh {An(ε)} such that

‖p‖K ≤ (1 + ε) ‖p‖An(ε) , (20)

and

min
x∈An(ε)

p(x)−min
x∈K

p(x) ≤ ε
(

max
x∈K

p(x)−min
x∈K

p(x)

)
, ∀p ∈ Pdn , (21)

with

card(An(ε)) . Cd

(
n2

σ(ε)

)d
, n2/ε→∞ , Cd =

(αd
√
π/2)d

Γ(d/2 + 1)
, (22)

where σ(ε) = ε/(1 + ε), and α = 4 in general, whereas α = 2 on centrally
symmetric convex bodies.

Even though the asymptotic bound (22) is valid for d fixed and n2/ε→∞,
it is worth giving an estimate for Cd when the dimension d increases. Indeed,
by Stirling formula for the gamma function (cf. [22, §5.11(ii)]), we get

Cd ≈
1√
π

(
α
√
πe/2

)d
d

d−1
2 , (23)

which gives a good approximation of the size of Cd already in low dimension.

4 Smooth convex bodies

The norming meshes constructed in the previous sections by standard Markov
inequalities are ultimately related to (affinely mapped) uniform grids. In this
section we modify and improve the construction on smooth convex bodies, by
tangential Markov inequalities and estimates of the Dubiner distance, obtaining
nonuniform norming meshes of much lower cardinality. Indeed, we shall go from
the O((n2/ε)d) cardinality in (22) to a O((n/

√
ε)d) cardinality.

The role of grids and thus of the Euclidean distance in the constructions
above is essentially technical, being motivated by the use of differential calculus
(mean value theorem or Taylor formula) in the estimates. Other notions of
distance on a compact set can be more suited dealing with polynomials, such
as the Dubiner distance (introduced in the seminal paper [14])

dubK(x, y) = sup
deg(p)≥1, ‖p‖K≤1

{
|arccos(p(x))− arccos(p(y))|

deg(p)

}
, x, y ∈ K . (24)
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Figure 2: Balls of radius 0.1, 0.2, . . . , 0.5 in the Dubiner distance of the disk
(above) and the square (below) centered at (1/2, 1/3) (left) and (0, 0) (right).
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Among its basic properties, we recall that it is invariant under invertible affine
transformations: if T (x) = Ax+ b, det(A) 6= 0 is such a transformation, then it
is easily checked that

dubK(x, y) = dubT (K)(T (x), T (y)) . (25)

Moreover, it is clearly monotone nonincreasing with respect to set inclusion,
namely, if K ⊆ H then dubH(x, y) ≤ dubK(x, y). In Figure 2 we display the
behavior of the Dubiner distance for two examples.

The Dubiner distance plays a deep role in polynomial approximation. For
example, it can be proved that good interpolation points for degree n on some
standard real compact sets are spaced proportionally to 1/n in such a distance,
like the Morrow-Patterson and the Padua interpolation points on the square
[8], or the Fekete points on the cube or ball (in any dimension), cf. [6, 5] and
reference therein.

The main connection of the notion of Dubiner distance with the theory of
polynomial meshes is given by the following elementary proposition (for a proof
see, e.g., [28]). Let us recall that for any compact subset X of the compact
metric space (K, d) the covering radius of X with respect to d is defined by

rd(X,K) := max
z∈K

min
x∈X

d(x, z). (26)

Proposition 4. Let X be a compact subset of a compact set K ⊂ Rd such that

rdubK
(X,K) ≤ θ

n
, (27)

9



for some θ ∈ (0, π/2) and n ≥ 1. Then, the following inequality holds

‖p‖K ≤
1

cos θ
‖p‖X , ∀p ∈ Pdn . (28)

Notice that X is not necessarily finite neither discrete. In view of Proposition
1, if we are able to construct on K a polynomial mesh with the required density
in the Dubiner distance, then we get a O(θ2)-approximation to the minimum
on K of any polynomial in Pdn, see also equation (39) below.

Unfortunately, the Dubiner distance is known analytically ([5] and references
therein) only on the d-dimensional cube, ball (see Figure 2) and on the sphere
Sd−1 (where it turns out to be the geodesic distance). More recently it has been
computed in the case of univariate trigonometric polynomials (even on subinter-
vals of the period); cf. [6, 34]. Here we give an estimate of the Dubiner distance
on smooth convex bodies, as a base for our construction. Below, we shall de-
note by geod∂K(x, y) the geodesic distance of x, y ∈ ∂K (the minimal length of
a curve in ∂K connecting two boundary points on the boundary surface).

Let K ⊂ Rd be a convex body with C2 boundary. The Rolling Ball Theorem,
cf. [18]) asserts that we can suitably choose an Euclidean ball of fixed radius
that can roll on ∂K lying in K. More precisely, we have

ρ(K) := min
x∈∂K

max{r > 0 : ∃y ∈ K,B(y, r) ⊆ K,x ∈ ∂B(y, r)} > 0.

The (maximal) rolling ball radius of a convex set can be used to estimate the
Dubiner distance on ∂K.

Lemma 1. Let K ⊂ Rd be a convex body with C2 boundary. Then

dubK(x, y) ≤ 1

ρ(K)
geod∂K(x, y), ∀x, y ∈ ∂K. (29)

Proof. Let us pick x, y ∈ ∂K and a length minimizing curve γ : [0, `] → ∂K
parametrized by arc length, i.e., γ(0) = x, γ(`) = y, γ is a Lipschitz function
with |γ′| = 1 a.e. with respect to the Lebesgue measure, and, for any t ∈ [0, 1]
dubK(x, γ(t)) = t. For any n ∈ N and any p ∈ Pdn we have

|arccos(p(x))− arccos(p(y))| =

∣∣∣∣∣
∫ `

0

d

ds
arccos(p(γ(s))) ds

∣∣∣∣∣
=

∣∣∣∣∣
∫ `

0

∂γ′p(γ(s))√
1− p2(γ(s))

γ′(s) ds

∣∣∣∣∣ ≤
∫ `

0

|∂γ′p(γ(s))|√
1− p2(γ(s))

ds. (30)

Due to the Rolling Ball Theorem, for any s ∈ [0, `] there exists a closed ball
Bs ⊆ K of radius ρ(K) such that γ′(s) is tangent to ∂Bs at γ(s). We recall that
(see [4]) the Tangential Markov Inequality of exponent 1 and constant 1/r holds
on spheres of radius r. In our context such an inequality reads

|∂γ′p(γ(s))| ≤ n

ρ(K)
‖p‖∂Bs

.

Due to a deep result by Totik [31, §2, Thm. 2.1 and Rem. 3], this inequality
holds also in its Szegö version, i.e.,

|∂γ′p(γ(s))|√
1− p2(γ(s))

≤ n

ρ(K)
‖p‖∂Bs

≤ n

ρ(K)
‖p‖K . (31)
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Figure 3: The construction of the proof of Proposition 5. The continuous curve
is the boundary of K, the dashed one is the level set {φK ≡ φK(y)}.

0

x

z

x'
y'

y

By equations (31) and (30) we get

1

n
|arccos(p(x))− arccos(p(y))| ≤ ‖p‖K

ρ(K)
` = ‖p‖K

geod∂K(x, y)

ρ(K)
.

Taking the maximum among all polynomials of uniform norm not greater than
1 and all n ∈ N leads to the conclusion.

We recall for the reader’s convenience that the Minkowski functional of a
convex set K with 0 ∈ intK is defined by

φK(x) := inf{λ > 0 : x ∈ λK}

so in particular φK(x) ≤ 1 for all x ∈ K. Note that, using the Minkowski
functional, one can define the radial projection onto ∂K by setting

x′ :=
x

φK(x)
∈ ∂K, ∀x ∈ Rd. (32)

Proposition 5. Let K ⊂ Rd be a convex body with C2-boundary and let c ∈
intK. Then, the following estimate of the Dubiner distance on K holds

dubK(x, y) ≤ dub[0,1](φK−c(x− c), φK−c(y − c)) +
geod∂K(x′, y′)

ρ(K)
, (33)

where dub[0,1](s, t) = |arccos(2s− 1)− arccos(2t− 1)| and x′, y′ are defined in
(32).

Proof. Since both the Dubiner and the geodesic distances are invariant under
translations, we can assume without loss of generality c = 0. We display the
geometric idea of the proof in Figure 3.

11



Let us pick x, y ∈ K and define z := φK(y)x′ = φK(y)
φK(x)x. By the triangle

inequality we have

dubK(x, y) ≤ dubK(x, z) + dubK(z, y). (34)

The monotonicity and the invariance under bijective affine transformations of
the Dubiner distance (see (25) and lines below) lead to

dubK(z, y) = dubK/φK(y)(z/φK(y), y/φK(y)) ≤ dubK(x′, y′).

Then we can apply Lemma 1 to get

dubK(z, y) ≤ 1

ρ(K)
geod∂K (x′, y′). (35)

On the other hand, z ∈ [0, x′] and thus, using again the monotonicity property,

dubK(x, z) ≤dub[0,x′](x, z) = dub[0,x′]

(
x,
φK(y)

φK(x)
x

)
= dub[0,x′/|x′|]

(
x

|x|
φK(x),

x

|x|
φK(y)

)
= dub[0,1](φK(x), φK(y)). (36)

Here the last equality follows by the definition of the Dubiner distance. Equa-
tions (34), (35) and (36) imply equation (33). Note that dub[0,1](s, t) = |arccos(2s− 1)− arccos(2t− 1)|
since the Dubiner distance on [−1, 1] is known to be the arccos distance in view
of the Van der Corput-Schaake inequality, cf. e.g. [6]

We can now construct Dubiner-like polynomial meshes suited for polynomial
optimization, as it is summarized by the following:

Proposition 6. Let K ⊂ Rd be a convex body with C2-boundary. Then K
possesses a polynomial mesh {An(ε)}n∈N,ε>0 such that

‖p‖K ≤ (1 + ε) ‖p‖An(ε) , ∀p ∈ Pdn , (37)

card(An(ε)) = O
(
(n/
√
ε)d
)

as
n√
ε
→∞. (38)

Proof. We can assume without loss of generality that 0 ∈ intK. In view of the
inequality

1

cos(θ)
− 1 =

1− cos(θ)

cos(θ)
≤ θ2

2

1

1− θ2/2
=

θ2

2− θ2
, ∀θ <

√
2 (39)

we define ∀ε ∈ (0, 1)

θ(ε) :=

√
2ε

1 + ε
= O(

√
ε), as ε→ 0+. (40)

For any ε ∈ (0, 1) and n ∈ N, let Zn(ε) ⊂ ∂K be a finite subset such that its
covering radius (see (26)) in the geodesic distance satisfies

rgeod∂K
(Zn(ε), ∂K) ≤ ρ(K) θ(ε)

2n
= O(

√
ε/n), as

√
ε/n→ 0+.
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In [23, Prop. 2.1] it is shown that it is possible to construct a such Zn(ε) for
any n ∈ N and ε > 0 preserving the condition card(Zn(ε)) = O((n/

√
ε)d−1).

Let m = d π
θ(ε)e, i.e., the smallest integer such that π

2mn ≤
θ(ε)
2n . Consider

mn+ 1 Chebyshev-Lobatto points of [0, 1], namely

tj =
1

2
cos(πj/(mn)) +

1

2
, j = 0, . . . ,mn.

These points are equally spaced with respect to dub[0,1] with spacing π/(mn)
and covering radius π/(2mn). Note also that, by the homogeneity of φK (that
follows by the definition), we have

φK(tjz) = tj , ∀z ∈ ∂K, ∀j = 0, . . . ,mn. (41)

Let An(ε) := ∪mnj=0tjZn(ε). Note that

card(An(ε)) ≤ (mn+ 1) card(Zn(ε)) = O

((
n√
ε

)d)
, as

n√
ε
→∞.

For any x ∈ K we define (see Figure 4)

j(x) := argmink∈{0,1,...,mn} dub[0,1](φK(x), tk),

z(x) := argminz∈Zn(ε) geod∂K(x′, z),

y(x) := tj(x)z(x) ∈ An(ε).

Due to z(x) ∈ ∂K, Proposition 5, and the spacing of tjs and Zn(ε), we have

dubK(x, y(x)) ≤ dub[0,1](φK(x), φK(y(x))) +
1

ρ(K)
geod∂K(x′, y(x)′)

≤ dub[0,1](φK(x), tj(x)) +
1

ρ(K)
geod∂K(x′, y(x)′)

≤ dub[0,1](φK(x), tj(x)) +
1

ρ(K)
geod∂K(x′, z(x))

≤ π

2mn
+

1

ρ(K)

ρ(K) θ(ε)

2n
≤ θ(ε)

n
.

Here the first inequality in the last line is due to (41) and the definition of j(x).
We conclude by Proposition 4 and (39)-(40).

Remark 2. The proof of Proposition 6 is constructive, hence it is possible to
derive from it an algorithm for effectively compute the sets An(ε). A closer
look to the argument used in the proof reveals that the main difficulty arises in
the computation of Zn(ε). For the special case d = 2 it is possible to use the
convomesh.m software, free downloadable at [13]. For the more general case of
d > 2 the details of an algorithmic construction of such a set can be found in
[23, Proof of Prop. 2.1].

Remark 3. It is worth recalling that there are other approaches and results on
the construction of optimal polynomial meshes on convex bodies, and more gen-
erally on star-like bodies, whose boundary has some degree of smoothness. Such

13



Figure 4: The construction of the proof of Proposition 6. The continuous curve
represent the boundary of K, while the dashed one represent the level set φK ≡
tj(x). The small dots are the points of An(ε). In order to find y(x) one first
finds a geodesically closest point z(x) in Zn(ε) to the radial projection x′ of x
onto ∂K. The the index j(x) is determined as one for which tj(x) is a closest
point of {tj}j=0,...,mn to φK(x) in the arcosine metric. Finally y(x) is the point
in [0, z(x)] such that φK(y(x)) = tj(x).

x

x'
z(x)

y(x)

techniques make a clever use of fine tangential Bernstein-like inequalities, that
on C2-boundaries reduce to tangential Markov inequalities, cf. e.g. [16, 17].
Here we have preferred the approach based on the Dubiner distance and its esti-
mate in Proposition 5, due to the direct connection with polynomial optimization
via Propositions 1 and 4.

Remark 4. Propositions 5 and 6 can be generalized to starlike bodies with Lip-
schitz boundary (in particular, C2-boundary), which satisfy a Uniform Interior
Ball Condition (UIBC: any point of ∂K is on the boundary of a ball of fixed
radius contained in K, cf. [1]). In R2, such a condition itself suffices, since
the boundary curve turns out to be rectifiable and we can construct directly a
boundary geodesic mesh with the required density. Observe that UIBC does not
imply everywhere smoothness of the boundary, inward angles and even inward
cusps being allowed.

5 A numerical example

In order to discuss mesh-based polynomial optimization on convex bodies, we
give now a bivariate example. In bivariate instances, we already adopted a
similar construction to that of Proposition 6 in [26, Thm. 2.2], but without
a direct connection to the Dubiner distance, obtaining a mesh constant C not
even approaching 1 as θ → 0. The advantage of using the Dubiner distance is
that the mesh constant becomes 1/ cos(θ(ε)), which ensures an error ε (relative
to the polynomial range) in mesh-based polynomial optimization by O(n2/ε)
samples (notice also that for d = 2 using the general approach of Proposition 3
we would use O(n4/ε2) samples).

The situation is clearly illustrated by Figure 5, where we plot the polynomial

14



Table 1: Average range-relative errors (1000 trials) and cardinalities (rounded
to the hundred) for Dubiner-like mesh minimization of a random combination
of the Chebyshev bivariate basis for degree n = 4 on the Cassini oval of Fig. 1.

ε 1.0e-1 5.0e-2 1.0e-2 5.0e-3 1.0e-3
err 1.0e-3 5.4e-4 1.0e-4 5.4e-5 1.2e-6

card 2465 4400 22800 44900 238800

meshes for degree n = 4 and ε = 0.2 on a Cassini oval, that is

K = {x = (x1, x2) ∈ R2 : ((x1 − a)2 + x22)((x1 + a)2 + x22) ≤ b4} ,

with a = 1, b = 2 (the Cassini ovals are convex for b/a ≥
√

2, cf. [19]).
The grid-based mesh An(ε) of Proposition 3 for n = 4 and ε = 0.2 has been

constructed directly by (6), since the bound (17) is already satisfied by K. It has
about 19000 points, whereas the Dubiner-like (i.e., constructed by Proposition
6) mesh An(ε), n = 4 and ε = 0.2, consists of about 1100 points. The latter
has been obtained by a Matlab code for polynomial mesh generation on smooth
2-dimensional convex bodies, that computes numerically the boundary curve
length and curvature (the rolling ball radius ρ is the reciprocal of the maximal
curvature), and then uses an approximate arclength parametrization to compute
a geodesic grid with the required density; the code is available at [13]. If we
move to the case ε = 0.01 keeping n fixed, the grid-based mesh of Proposition
3 has more than 5 millions points, whereas the Dubiner-like one about 23000.

We also show a numerical test in Table 1, where we display the average range-
relative errors (1000 trials) of Dubiner-like mesh minimization of a random com-
bination of the Chebyshev bivariate basis for degree n = 4 (15 basis polynomi-
als, scaled to the minimal rectangle containing the oval,i.e. Ti(x/

√
5)Tj(y/

√
3),

0 ≤ i + j ≤ 4, where Tk denotes the k-th Chebyshev polynomial), for some
values of the tolerance ε in the range [10−3, 10−1] (the reference values of the
minimum and maximum have been computed on a uniform grid of 108 points
on the domain). We see that the error behavior is consistent with Proposition
6 and quite satisfactory. As expected, it scales linearly with ε, and moreover
is below the estimate ε by at least two orders of magnitude (the latter phe-
nomenon has been already observed in other numerical examples on polynomial
optimization by norming meshes, cf. [28, 33]).

As already noticed elsewhere, we may stress that norming mesh sampling
provides a kind of “brute force” method, that works even when only the degree
of a “black-box polynomial” is known. On the other hand, it could be useful
not only by its direct application, but also to generate starting guesses for more
sophisticated optimization procedures.
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