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Abstract

We have exploited the high selectivity of the homing endonuclease I-PpoI for the X-linked Anopheles gambiae 28S
ribosomal genes to selectively target X chromosome carrying spermatozoa. Our data demonstrated that in heterozygous
males, the expression of I-PpoI in the testes induced a strong bias toward Y chromosome–carrying spermatozoa. Notably,
these male mosquitoes also induced complete early dominant embryo lethality in crosses with wild-type females.
Morphological and molecular data indicated that all spermatozoa, irrespectively of the inheritance of the transgene, carried
a substantial amount of I-PpoI protein that could attack the maternally inherited chromosome X of the embryo. Besides the
obvious implications for implementing vector control measures, our data demonstrated the feasibility of generating
synthetic sex distorters and revealed the intriguing possibility of manipulating maternally inherited genes using wild-type
sperm cells carrying engineered endonucleases.
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Introduction

Mosquitoes represent a major and global cause of human

suffering due to the infectious agents they transmit. About two

million people die from mosquito-borne diseases every year. These

include parasitic infection, i.e. malaria and filariasis and viral

diseases such as dengue, encephalitis and yellow fever. Malaria

alone, transmitted exclusively by Anopheles mosquitoes carrying

Plasmodium protozoan parasites, causes the death of more than a

million people each year, most of which are occurring in sub-

Saharan Africa [1]. Rather than being under control, the threat

represented by mosquitoes is increasing due to the inadequacy of

existing control measures in the developing world and the

progressive spread of insecticide-resistant insects [2].

Gene manipulation technologies promise to dramatically

enhance the development of novel control measures against

vector-borne diseases [3]. Different approaches are being

investigated including the development of disease-refractory

mosquitoes to implement population replacement strategies [4–

8]. Genetic sterility, genetic drive systems or the release of insects

carrying a dominant lethal gene (RIDL) have been suggested as

possible strategies to reduce population density [9–14]. A number

of reports have shown how genetically manipulated mosquitoes

can provide valuable solutions to overcome ineffective, costly and

time-consuming steps that have previously hampered vector

control measures involving the sterile insect technique [15]

(SIT). These include the use of genetic markers to monitor both

male dispersal and mating competitiveness and the separation of

male and female mosquito larvae at an early developmental stage

to address the requirement to release only male mosquitoes, as

females contribute to disease transmission [16]. An inducible

genetic sterility system, designed to overcome the fitness cost

associated with chemical and irradiation sterilization, has been

developed in Drosophila as a proof of principle [17].

A novel mechanism has recently been proposed to distort the

sex ratio in natural populations based on the use of engineered

mosquitoes expressing a homing endonuclease enzyme targeting X

chromosome carrying spermatozoa, thereby generating an excess

of spermatozoa carrying chromosome Y [13,18]. It has long been

recognized that if the Y chromosome were to show transmission

ratio distortion and spread in a population, then the sex ratio

would become male biased and the population could ultimately go

extinct [19,20]. Natural driving Y chromosomes in Aedes aegypti

and Culex pipiens have been described and can produce extreme sex

ratios of more than 90% males in each generation [21]. Although

the molecular details of how these distorters act are unknown,

cytological evidence suggests that they are associated with breaks

in the X chromosome during male meiosis I [22,23]. A similar

system for sex ratio distortion could be artificially created using the

I-PpoI homing endonuclease: this enzyme has been shown to

selectively cleave the ribosomal rDNA repeats in the A. gambiae Sua

4.0 cell line, leading to nucleolar fragmentation and cell death
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[18]. In several anopheline species, including at least two members

of the A. gambiae complex, the rDNA repeats are exclusively

located in the centromeric region of chromosome X [24–26].

Accordingly, the expression of I-PpoI during spermatogenesis is

anticipated to incapacitate X chromosome carrying spermatozoa

and induce sex ratio distortion. This mechanism would provide a

formidable tool to distort the ratio in favour of males, thereby

leading to the reduction or eradication of field populations.

We have engineered male A. gambiae mosquitoes to express,

during spermatogenesis, the I-PpoI homing endonuclease as a

fusion protein with the eGFP fluorescent marker with the aim of

inducing sex ratio distortion, combined with the expression of an

early developmental marker for sexing. We report here on the

unique phenotype of these transgenic mosquitoes in terms of

fertility and transmission ratio distortion of the sex chromosomes.

Results

Identification of I-PpoI Recognition Sequences in the A.
gambiae Genome

The I-PpoI recognition sequence consists of a 15bp core motif

flanked by a number of additional nucleotides that also contribute

to the overall efficiency of the endonuclease binding and cleavage

activity [27]. We searched the A. gambiae genome for the presence

of the cognate I-PpoI recognition site. This analysis revealed no

match to the wild type 15 base pair core recognition sequence

outside the rDNA genes which were recently mapped to contig

AAAB01008976 of the chromosome X of A. gambiae [28]. We also

screened the genome for sequences matching a number of

previously described recognition sequence variants that were

identified by in vitro selection to be efficiently cut by I-PpoI [29].

None of these variants were found in the A. gambiae genome, even

when taking into account only the 15bp core recognition

sequence. Recently a complete specificity profile of I-PpoI has

been established (N. Nomura, personal communication). Utilizing

this profile we screened the A. gambiae genome for any recognition

site variants predicted to be cut by I-PpoI with high efficiency.

Again this analysis did not reveal matches in the A. gambiae genome

assembly. We therefore concluded that the X-linked multi-copy

rDNA locus, containing the complete I-PpoI core and flanking

recognition sequence, would be the main predicted target locus of

I-PpoI in the A. gambiae genome.

Generation of Transgenic Mosquitoes Expressing I-PpoI
during Spermatogenesis

We injected mosquito embryos with the transformation

construct pBac{3xP3-DsRed}b2-eGFP::I-PpoI that was designed

to direct the expression of I-PpoI in the testis during the process of

spermatozoa formation (Figure 1A). The structural properties of I-

PpoI and eGFP allow the generation of a fusion protein that

maintains both the activity and the selectivity of the endonuclease

[18], while functioning as a visible marker for mosquito sexing

during larval development. We utilized a shortened version of the

b2 tubulin 59 and 39 regulatory regions [30] to direct expression of

eGFP::I-PpoI. Previous studies have demonstrated that the b2

promoter is exclusively activated in male gonads and it can be

utilised to selectively direct the expression of eGFP to the male

gonads of anopheline mosquitoes [16]. The construct also contains

piggyBac inverted repeats and the DsRed gene under the control

of the 3xP3 promoter as a germline transformation marker

(Figure 1A). Two independent transgenic lines (b2Ppo1 and

b2Ppo2) were obtained in independent sets of embryo injections.

Molecular analysis showed that each line resulted from a single

integration event. Inverse PCR, followed by sequencing of the

regions flanking the integration event, revealed that the construct

had integrated at position 49029419 on chromosome 2L and

position 11872203 on chromosome 3R in the lines b2Ppo1 and

b2Ppo2, respectively (Figure S1). Both lines showed a strong green

fluorescent signal localised in the male gonads, visible from late

third instar larvae throughout adult development, thus indicating

that the eGFP::I-PpoI fusion protein was exclusively expressed in

the testes of male larvae, pupae and adults (Figure 1B).

To confirm this conclusion we searched for the presence of in vivo

I-PpoI activity in the testes of b2Ppo mosquitoes. We analysed, by

southern blot hybridization experiments, the integrity of the 28S

rDNA genes in DNA extracted from b2Ppo1 mosquito testes

(Figure 1C). Our results showed that, when using DNA from wild

type mosquitoes, the probe containing the 28S rDNA sequence

hybridized to a band of about 2.9 kb, in agreement with the size of

the ribosomal gene and the position of the ClaI sites. Larger

fragments were also recognized due to heterogeneity in the 28S

ribosomal genes [18]. The same experiment carried out using DNA

extracted from the testes of b2Ppo1 males showed the presence of a

smaller band of 1.4kb, in agreement with the position of the I-PpoI

recognition site in the ribosomal genes (Figure 1C and Figure S1).

The same digestion product was observed when DNA extracted

from wild type (WT) testes was treated with recombinant I-PpoI in

vitro (Figure 1C). In addition, under in vitro conditions recombinant I-

PpoI digested a 2kb PCR product encompassing the 28S rDNA

probe fragment into a 1kb product. These results indicated that in

the testes of transgenic males, the eGFP::I-PpoI fusion protein was

able to cleave the 28S rDNA on chromosome X.

b2Ppo Testes Develop Normally and Generate
Spermatozoa Containing Active eGFP::I-PpoI

We analyzed the development of the testes and spermatogenesis

in heterozygous b2Ppo1 males using fluorescent microscopy and

3D imaging. Our results indicated that the testes were morpho-

logically indistinguishable from those of wild type mosquitoes. The

testes of b2Ppo1 mosquitoes showed a typical eGFP fluorescence

Author Summary

A. gambiae mosquitoes are the main vectors of human
malaria. The inadequacy of existing control measures for
these mosquitoes has prompted research into methods for
genetic control. We have genetically engineered A.
gambiae mosquitoes to express, during spermatozoa
development, an enzyme that selectively cuts a DNA
sequence present only on a family of essential genes
located on the X chromosome. We found that in
heterozygous male mosquitoes, this genetic modification
induced complete early dominant embryo lethality in
crosses with wild-type females. All spermatozoa from
these males, including those not containing the genetic
modification, carried the chromosome X cutting enzyme
that could attack the maternally inherited X chromosome
of the embryo. Furthermore, this genetic modification
introduced a strong, negative bias toward X chromosome–
carrying spermatozoa. These transgenic mosquitoes fulfil a
number of requirements for implementing vector control
measures based on genetic sterility, but our data also
demonstrate the feasibility of generating synthetic sex
distorters and reveal the possibility of manipulating
maternally inherited genes using wild-type sperm cells
carrying enzymes designed to attack selected maternal
DNA sequences.
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pattern that reflected the direction of the differentiation process

and the activational timing of the b2 tubulin promoter from sperm

germ cells to mature spermatozoa. Confocal analysis of b2Ppo1

testes showed both mature sperm cells being produced in

spermatocysts and spermatozoa reaching the male vas efferens

(data not shown). In mating experiments with virgin wild type

females, b2Ppo spermatozoa were found to be successfully

transferred into the spermathecae (Figure 2A). All these sperma-

tozoa showed a variable degree of green fluorescence localized to

their nuclei, thus indicating they were carrying along substantial

amounts of eGFP::I-PpoI fusion protein (Figure 2A). To

investigate this phenotype in more detail we analyzed, by confocal

microscopy and 3D-image reconstruction, the DNA content, the

nuclear volume and the intensity of eGFP fluorescence of b2Ppo

spermatozoa. Spermathecae from wild type females mated to

either heterozygous b2Ppo2 or wild type males were dissected,

fixed and stained with DAPI. Sperm were released and nuclei of

about one hundred spermatozoa were individually analyzed for

each cross. Wild type spermatozoa showed undetectable amounts

of green fluorescence and a homogenous DAPI signal, whereas all

spermatozoa from heterozygous b2Ppo2 males showed eGFP

fluorescence signal which was mainly localized to the nuclei

(Figure 2B). This analysis also indicated a moderate variability in

the DAPI staining of b2Ppo spermatozoa (Figure 2B). The

distribution of the eGFP fluorescence in b2Ppo spermatozoa is in

agreement with both the transcription pattern of the b2 tubulin

promoter in the testes and the structure of the spermatocyst:

transcription from the b2 tubulin promoter starts shortly before

the first meiotic division and continues throughout the subsequent

stages of spermatozoa differentiation. Furthermore, in both insects

and mammals, all spermatozoa derived from a single spermato-

gonial cell are connected through cytoplasmic bridges [31] to form

a spermatocyst for a period of time that largely coincides with the

temporal activity of the b2 tubulin promoter. This allows the

sharing of cytoplasmic constituents between developing sperma-

tozoa and would provide I-PpoI protein a means to migrate from

cell to cell. Therefore, all spermatozoa, irrespective of whether

they will inherit the transgene or not, are anticipated to carry

along the eGFP::I-PpoI fusion protein.

b2Ppo Heterozygous Males Induce Early Embryo
Lethality

To investigate whether the expression of I-PpoI had an effect on

fertility and/or sex ratio distortion of the progeny, we crossed

heterozygote b2Ppo1 males with WT females. As a control,

heterozygote b2Ppo1 females were crossed with WT males.

Figure 1. Transformation construct and expression of I-PpoI in the testes of transgenic mosquitoes. (A) Schematic representation of the
construct pBac{3xP3-DsRed}b2-eGFP::I-PpoI containing the left and right piggyBac inverted repeats (pBacR,L); the Pax promoter (3xP3) driving the
DsRed marker gene; and the eGFP::I-PpoI effector gene (eGFP I-PpoI) under the control of b2 tubulin promoter and terminator (b2). (B) Transmission
and fluorescent images of dissected adult testes, larval head and pupa of b2Ppo1 male mosquitoes. (C) Southern blot analysis of the 28S ribosomal
DNA locus. DNA from testes of WT (lanes 1 and 3) and b2Ppo1 males (lanes 2 and 4) was digested with the endonuclease ClaI in vitro and hybridized
with a probe encompassing the 28S ribosomal gene (Figure S1). As control both the DNA extracted from the WT and b2Ppo1 testes was treated with
recombinant I-PpoI as indicated. Furthermore the PCR product (2kb) used as probe either treated with recombinant I-PpoI or untreated was analysed
under the same hybridization conditions (lanes 4 and 5). Open and filled arrowheads indicate the full length and digested rDNA fragments
respectively.
doi:10.1371/journal.pgen.1000291.g001
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Females were allowed to lay eggs on two consecutive occasions

after they were blood fed. These experiments indicated that female

b2Ppo1 mosquitoes did not show any anomalies in terms of

fertility when crossed to WT males. These mosquitoes, compared

to females of WT crosses, laid a normal number of eggs with

comparable hatching rate, pupal development and adult sex ratio

(Table 1 and data not shown). In contrast, while WT females

crossed to b2Ppo1 males produced normal numbers of eggs, these

eggs failed to hatch. These experiments were performed with

b2Ppo1 mosquitoes of different generations (Table 1), as well as

with line b2Ppo2 which showed identical properties (Table S1).

Both transgenic lines, b2Ppo1 and b2Ppo2, have now been

backcrossed to WT males for 14 and 16 generations respectively,

and the males originating from these crosses were tested for

fertility in each generation. Throughout this period no phenotype

other than total male sterility was observed (data not shown).

To analyze the nature of male sterility in the b2Ppo1 and

b2Ppo2 lines, we investigated whether the spermatozoa from these

mosquitoes had fertilized the eggs in crosses with WT females and

to establish the timing of embryo developmental arrest. For this

purpose the embryos were fixed 24 hrs post oviposition, the

chorion removed and the DNA stained with DAPI to highlight the

localization and distribution of cell nuclei using confocal

microscopy. In most of the embryos examined at 24 hrs after

oviposition we could only identify two DAPI stained bodies. The

first body was localized in the central anterior region of the

embryo, while the second body was found in the anteroventral

region in close proximity to the micropyle, thus suggesting their

identification as the female and male pronuclei respectively

(Figure 3A,B). A few embryos showed features of cellularization

and nuclear division that did not progress to larvae formation. We

also used confocal analysis to compare the size of sperm nuclei and

Figure 2. Confocal analysis of spermatozoa from b2Ppo and WT males recovered from spermathecae of WT females. (A) Spermatheca
of a female mated with b2Ppo1 males analysed by transmission microscopy (left), analyzed for eGFP fluorescence (middle) and DNA stained with
DAPI (right). (B) Analysis of confocal 3D data stacks of sperm extracted from spermathecae of females mated to WT or b2Ppo males. Objects defined
as sperm, on the basis of DAPI fluorescence and size, were analyzed in a way that GFP density (nuclear volume/fluorescence intensity) was plotted
against DAPI density. Density values were plotted for each individual spermatozoa examined from wt (black rectangles) and transgenic (grey
diamonds) males. (C) Assessment of mating capability of b2Ppo2 against WT males. Equal numbers (10) of b2Ppo and WT males were allowed to
mate in the presence of 10 or 20 WT females for 6 days. The mating with WT and transgenic males was assessed by analyzing in PCR experiments the
DNA extracted from the spermathecae using a first a marker revealing chromosome Y specific sequence, to provide an overall estimate of mating rate
and a second marker for the I-PpoI coding sequence. PCRs experiments that failed to amplify any product were scored as non-mated. The figure
shows the percentage of mated mosquitoes and the relative contribution of WT (grey) and transgenic males (black) in the mating. Shown is the
combined average of 3 independent sets of experiments.
doi:10.1371/journal.pgen.1000291.g002
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the male pronuclei originating from b2Ppo males. This analysis

showed that while the diameter of the sperm nuclei ranged from 2

to 4 mm, that of the male pronuclei was bigger (7–8 mm),

suggesting that the latter had undergone decondensation. Male

pronuclei were also stained with an antibody directed against

eGFP (28 of 28 nuclei examined) while female pronuclei were

found to stain with an anti c-H2AX antibody (12 of 28 nuclei

examined) that reacts with phoshorylated histone H2AX,

associated with DNA double strand breaks [32]. This confirmed

the transport of the fusion protein into the embryo and revealed

the presence of DNA double strand breaks in the maternal

genome (Figure 3B). Control experiments on WT embryos did not

reveal nuclear reactivity with either the anti eGFP or the anti c-

H2AX antibody. On the basis of these findings, we concluded that

b2Ppo males produced functional spermatozoa and that the

observed sterility was the consequence of early embryo lethality

mediated by I-PpoI activity on the chromosome X.

To study the genetic makeup of spermatozoa from heterozygous

b2Ppo males we investigated the inheritance pattern of the

transformation construct and the sex chromosomes in the

developmentally arrested embryos. For this purpose we performed

multiplex PCR experiments on single embryos using molecular

markers revealing the presence of the Y chromosome, the

transformation construct and, as a control, the ribosomal gene

S7. When using primers specific for the I-PpoI open reading

frame, we amplified a diagnostic band in 48% of embryos

examined. This result showed that there was no bias in the

inheritance of the transformation construct and indicated that

non-transgenic spermatozoa carrying along the eGFP::I-PpoI

fusion protein accounted for half of the embryo lethality induced

by b2Ppo male mosquitoes. In other experiments we used a

primerset designed to amplify a sequence that in previous reports

was shown to specifically detect the A. gambiae Y chromosome [33].

Notably, in 88% of the embryos examined we amplified the

diagnostic band for the Y chromosome, while control experiments

carried out on embryos originating from b2Ppo females and WT

males showed no such bias (Figure 3C). Although no viable

progeny is produced in these crosses, this finding reveals a marked

transmission ratio distortion towards the production of viable Y

bearing spermatozoa in b2Ppo mosquitoes.

Mating Competitiveness of b2Ppo Males in Laboratory
Cage Experiments

With the aim of assessing the suitability of the b2Ppo1 and

b2Ppo2 transgenic lines for SIT, we analyzed whether b2Ppo2

males could successfully compete with WT mosquitoes for mating

partners in laboratory cage experiments. In these experiments

identical numbers of WT and b2Ppo2 males were allowed to mate

with varying numbers of WT virgin female mosquitoes. Five days

later we collected the females and analyzed the spermathecae for

the presence of either WT or b2Ppo spermatozoa in multiplex

PCR experiments. We utilized a PCR primer pair amplifying the

Y specific sequence to assess the mating rate of the females and a

second primer pair amplifying the sequence of the I-PpoI

transgene, to determine the number of females mated with

b2Ppo2 males. Our data showed that the I-PpoI sequence could

be amplified in a substantial proportion of female spermathecas,

ranging from 48 to 56%, at different female to male ratios, thus

suggesting that the transgenic males were not impaired in their

ability to mate with WT females (Figure 2C).

Discussion

We have generated two independent A. gambiae lines, b2Ppo1

and b2Ppo2, carrying the construct pBac{3xP3-DsRed}b2-eGFP-

I-PpoI in distinct regions of the genome. Males originating from

crosses between heterozygous b2Ppo females and WT males

showed, starting from late 3rd instar larvae, a strong green

fluorescence signal exclusively localized in the testes, indicating

that the eGFP::I-PpoI fusion protein was being produced in

spermatozoa according to the anticipated expression pattern of the

b2 tubulin promoter. Our results also demonstrated that in the

testes of b2Ppo males ribosomal DNA was cleaved at the I-PpoI

site. This finding indicated that the endonuclease component of

the eGFP::I-PpoI fusion protein retained its ability to cut the X

chromosome in vivo. Intriguingly, heterozygous b2Ppo males were

completely sterile. To understand the molecular basis of this

phenotype, we investigated whether the expression of I-PpoI

disrupted the process of spermatogenesis or impaired the ability of

spermatozoa to enter eggs. Microscopy analysis indicated that the

testes of b2Ppo males produced spermatozoa morphologically

Table 1. Outcome of crosses between transgenic b2Ppo and WT mosquitoes.

Eggs laid Larvae hatched Screened Transgenic % Transgenic

G2 crosses 10 = b2Ppo1 x 30 R wt Lay 1 658 0 - - -

Lay 2 721 0 - - -

20 = wt x 17 R b2Ppo1 Lay 1 610 544 152 74 48.6%

Lay 2 425 213 168 83 49.4%

G3 crosses 25 = b2Ppo1 x 25 R wt Lay 1 971 0 - - -

Lay 2 1669 0 - - -

25 = wt x 25 R b2Ppo1 Lay 1 1211 743 743 374 50.3%

Lay 2 1331 1004 173 89 51.4%

25 = b2Ppo1 x 25 R wt Lay 1 713 0 - - -

Lay 2 1694 0 - - -

25 = wt x 25 R b2Ppo1 Lay 1 1024 878 798 414 51.8%

Lay 2 1424 1048 152 67 44.0%

Heterozygote b2Ppo1 males of generations 2 and 3 were crossed to WT females. As control b2Ppo1 heterozygote females of generation 2 and 3 were crossed to WT
males. The total number of eggs laid and larvae hatched are shown for two consecutive egg depositions (Lay1 and Lay2). In addition larvae originating from control
crosses were screened for the 3xP3-DsRed marker to determine the numbers of WT and transgenic offspring as indicated.
doi:10.1371/journal.pgen.1000291.t001
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identical to those of WT mosquitoes. Dissection of female

mosquitoes mated with b2Ppo males indicated that the sperma-

tozoa had been successfully transferred to the spermathecae.

Furthermore, confocal microscopy showed the presence of both

the female and male pronuclei in the embryos. Taken together,

these experiments demonstrate that b2Ppo males produced

competent and viable spermatozoa. Nuclear fluorescence staining

also revealed that the embryos originating from b2Ppo males were

arrested very early in their development, probably at a point

before the fusion of the male and the female pronuclei.

The genetic study of these embryos provided clues to formulate

a molecular explanation for the early dominant lethality induced

Figure 3. Morphological and genotype analysis of developmentally arrested embryos. (A) Embryos originating from crosses between
b2Ppo males with WT females (left) compared to crosses between WT males and b2Ppo females (right) were analyzed by fluorescence microscopy
24 hours after oviposititon. The figure shows transmission (upper panels) and fluorescence of DAPI staining DNA (lower panels) of embryos oriented
with the posterior end to the left and ventral side up. The inset shows a magnified view of the small and large DAPI stained bodies found in the
embryos marked with a black and a white arrow respectively. (B) Immunostaining of freshly hatched embryos using mouse anti GFP (a-GFP) or mouse
anti c-H2AX (a-H2AX) primary in combination with anti-mouse IgG Alexa-532 conjugated secondary antibodies. DAPI stained bodies identified as
male pronucleus and female pronucleus are shown at 5 and 10 mM scale respectively. (C) Molecular genotyping of embryos using multiplex PCR.
Embryos originating from crosses of b2Ppo males with WT females and WT males with b2Ppo females were collected at 24 hrs post deposition and
their DNA was examined using nested PCR analysis to amplify Y chromosome or transgene specific sequences as well as the ribosomal gene S7 as a
control. The values show the frequency of the genotypes in all embryos that tested positive for the presence of S7.
doi:10.1371/journal.pgen.1000291.g003

Targeting the X Chromosome of Anopheles gambiae
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by b2Ppo males. Although spermatozoa carrying the transgene

had fertilized only half of the eggs, as inferred by PCR genotyping

analysis, confocal microscopy and 3D imaging demonstrated that

all spermatozoa showed some level of eGFP fluorescence. This

observation is in agreement with the temporal expression of the

b2tubulin promoter and the structure of the spermatogonial

syncytium. Importantly, it also indicates that all spermatozoa of

b2Ppo males could deliver active nuclear I-PpoI protein into the

embryos, thereby inducing DNA damage to the maternal

inherited chromosome X. This provides an explanation for the

dominance of the lethality phenotype. This notion was also

supported by findings showing that individual male nuclei within

the developmentally arrested embryos stained positive with anti-

eGFP antibodies, while the female pronuclei did not. In contrast

antibodies directed against c-H2AX indicated double strand DNA

damage only on the female pronuclei.

The genetic analysis of the embryos also revealed that more

than 80% had originated from spermatozoa carrying the Y

chromosome, thus indicating that although the expression of

eGFP::I-PpoI did not impair the process of spermatogenesis or the

viability of sperm cells in general, it did selectively target X

chromosome carrying spermatozoa, thereby causing transmission

ratio distortion. It is possible that the remaining embryos had been

fertilised by spermatozoa lacking both chromosomes X and Y.

Although of no immediate practical application due to embryo

lethality, these results demonstrate that synthetic sex distortion

mechanisms can be developed. Both mathematical modelling and

the study of naturally occurring sex distorters in some insect

species predict that, if linked to the Y chromosome, such distorters

would represent extremely powerful tools to knock down a target

population in a relatively short time.

The development of the transgenic lines b2Ppo1 and b2Ppo2 has

some direct implications for the implementation of vector control

measures based on genetically modified mosquitoes. Both lines meet

a number of desirable requirements for SIT, including: i) a visible

marker for monitoring male dispersal and competitiveness, ii) a

validated sexing system that can be effectively automated; and iii)

complete and dominant genetic male sterility. Laboratory cage

experiments performed here indicate that b2Ppo male mosquitoes

are not impaired in their ability to mate with WT females when

mixed with WT males. Since the I-PpoI recognition site is located in

the 28S rDNA gene in a highly conserved rRNA region, which forms

the peptidyl transferase centre of the ribosome, the approach

described here could be applied to other pest species.

The finding that non-genetically modified spermatozoa can

carry along effector molecules selectively targeting the maternal

genome offers the possibility to develop ‘‘Medea’’- like cytoplasmic

incompatibility systems predicted to have strong driving proper-

ties. Finally, our results reveal the intriguing possibility of

manipulating maternally inherited mosquito genes involved in

parasite transmission or sex determination by using wild type

sperm cells carrying engineered endonucleases such as HEGs or

zinc fingers. To this end, heterozygous transgenic males can be

produced that express, during the process of spermatogenesis, a

rare-cutting endonuclease engineered to selectively target such

genes. Our findings demonstrate that endonuclease protein will be

transferred to all spermatozoa irrespectively of the segregation of

the transgene itself and therefore will be transported into the wild

type embryo at the time of fertilization. The endonuclease will

introduce changes into the targeted maternal sequence by cleavage

followed by non-homologous repair. A fraction of the embryos will

inherit these endonuclease-induced changes without carrying the

original transformation construct. The resulting mosquitoes would

address a number of safety and environmental issues associated

with the release of genetically manipulated mosquitoes for vector

control as they will not contain a selectable marker or a

transformation construct.

Materials and Methods

Plasmid Construction
The 1.2kb eGFP::I-PpoI cassette was amplified from pEGFP-

nPpo [18] using primers PpoH34b2f, ACCGGTCAAGCTTAT-

GGTGAGCAAGGGCGAGGAGCTGTTC and PpoH34b2r

GGTACCGTCAAGCTTATACCACAAAGTGACTGCCCC-

TTTGTTG. A 1.7kb beta2 tubulin GFP cassette was amplified

from pPB[DsRed]beta2EGFP [16] using primers b2sAscIfwd

AAGGCGCGCCCTAGCGTTCATAATTGATATAG and

b2sAscIrev AAGGCGCGCCCGATTTAAGGACCGATTCC

and cloned into the shuttle vector pSLfa1180fa [34] using AscI.

From this vector the original GFP was removed with HindIII and

replaced by the eGFP::I-PpoI cassette cut with HindIII. The

resulting 2.3kb cassette contains the nuclear localization signal

between the N-terminal eGFP and the C-terminal I-PpoI coding

regions which are flanked by the b2 regulatory regions and was

moved into the pPB[DsRed] backbone using AscI to create

pBac{3xP3-DsRed}b2-eGFP::I-PpoI.

Development of Transgenic Lines
Transgenic lines were developed as described [16,35]. A. gambiae

(strain G3) embryos were injected using a Femtojet Express

injector and sterile Femtotips (Eppendorf) with a mixture of

0.2 mg/ml of plasmid and 0.8 mg/ml of piggyback helper RNA.

The hatched larval survivors were screened for transient

expression of the 3xP3 DsRed marker and only transients were

grown up and crossed to wild-type mosquitoes. The progeny of

these crosses was analyzed for DsRed fluorescence. To establish

line b2Ppo1 we injected 430 embryos from which 42 (9.7%)

survivors hatched 21 (50%) of which showed transient expression

of the marker. 6 female transients survived to adulthood and when

crossed to WT gave rise to 1 transgenic female individual. To

establish b2Ppo2 we injected 241 embryos and obtained 45

(18.6%) survivors including 30 transients (66.6%). 11 female

transients survived to adulthood and when crossed to WT gave rise

to 8 transgenic individuals (2 males, 6 females) from one founder.

Females were crossed separately to WT males and molecular

analysis of their progeny confirmed that they had originated from

a single integration event. Transgenic mosquitoes at different

developmental stages were analyzed on a Nikon inverted

microscope (Eclipse TE200) to detect eGFP and DsRed

expression. Digital images were captured on a Nikon inverted

microscope (Eclipse TE200) with an attached Nikon DXM1200

digital camera. The b2Ppo lines were reared in a way so that in

each generation transgenic mosquitoes were separated into males

and females and crossed back to WT A. gambiae G3.

Southern Blot
Genomic DNA was digested with ClaI in the presence and

absence of I-PpoI. As a probe we used a 2 kb rDNA PCR

fragment amplified from genomic DNA using the primers

rDfwd GCCGAAGCAATTAGCCCTTAAAATGGATG and

rDrev CACCAGTAGGGTAAAACTAACCTGTCTCACG.

The probe was labelled with P32 using the High Prime DNA

labelling kit (Roche) and purified with ProbeQuantTM G-50

columns (GE Healthcare). Results were visualized using a

FUJIFILMFLA-5000 Phosphoimager (Fuji Photo Film Co. Ltd,

Stamford, CT, USA). For in vitro digestions, we used commer-

cially available I-PpoI (Promega) enzyme.

Targeting the X Chromosome of Anopheles gambiae

PLoS Genetics | www.plosgenetics.org 7 December 2008 | Volume 4 | Issue 12 | e1000291



Analysis of Sperm Nuclei Recovered from Spermatheca
Virgin females mated with WT males or transgenic males were

dissected in PBS. Spermathecae were checked for the presence of

sperm on a widefield microscope. Spermathecae containing sperm

were fixed in methanol–free 4% formaldehyde (Pierce) in PBS for

30min, washed 3 times for 15min in 0.1% Tween-20 PBS and

transferred on a fresh slide containing Vectashield mounting

medium with DAPI (Vectorlabs. Inc.). Cover slips were added to

gently crack the spermathecae and release sperm. Samples in

which the sperm nuclei were sufficiently diluted were then

subjected to further analysis. Multiplane z-series were collected

with a confocal microscope (SP5; Leica) and a 236 lens. Confocal

microscope z-series were analyzed using image-analysis software

(Volocity; Improvision Inc.). Stacked images were used to render

3D reconstructions of the sperm nuclei. Objects were defined on

the basis of DAPI fluorescence intensity and by size, and were then

measured for DAPI and GFP density (intensity/volume).

Embryo Fixation and Nuclear Staining
Sterile embryos were collected from crosses of b2Ppo males

mated with WT virgin females and control embryos from crosses

of WT males with b2Ppo females. Females were allowed to egg-lay

48 hrs post blood-feeding. The exochorion of up to 24 hrs old

embryos was removed and embryos fixed essentially as described

[36]. Fixed embryos were stored at 220uC in methanol. To stain

nuclei, the endochorion was gently peeled off by submerging

embryos on double side tape in methanol and gently stroking them

out using a fine brush. Embryos were rehydrated in PBTA (16
PBS, 1% BSA, 0.05% Triton X-100, 0.02% Sodium Azide) for

15min on a rotator. DNA was stained for 15min in the dark with

DAPI (1 mg/ml) and washed twice for 1 hour and once overnight

with fresh PBTA avoiding unnecessary light exposure. Embryos

were then mounted on slides and subjected to confocal analysis

(SP5; Leica).

Immunohistochemistry
Rehydrated embryos were probed with mouse monoclonal anti

c-H2AX (Ser139 mouse monoclonal; Upstate Biotechnology;

1:200) to detect the phosophorylated form of histone H2AX.

Alternatively embryos were probed with mouse monoclonal anti-

GFP (Living Colours JL-8; 1:200). Embryos were probed overnight

at 4uC and then washed 3 times and once for one hour in PBTA. As

secondary antibody we used goat anti-mouse IgG Alexa-532

conjugate (Molecular Probes; 1:500) and washed as described

above. Embryos were then mounted on slides for confocal analysis

in Vectashield containing DAPI (Vectorlabs. Inc).

Single Embryo Genotyping
Embryos were homogenized in 5 ml extraction buffer (10 mM

Tris, pH 8.2; 1 mM EDTA; 25 mM NaCl) containing 200 mg/ml

proteinase K (Sigma) and incubated for 1h at 37uC followed by

10min at 95uC. The whole extraction was then used in a 25 ml

outer PCR reaction using the Phusion Hotstart DNA polymerase

(Finnzymes). 0.5 ml of this PCR was used in an inner reaction with

the same conditions: (35sec at 98uC; 35 rounds of 15sec at 98uC,

40sec at 61uC, 30sec at 72uC; and 5 min at 72uC). The nested

primes used were: S7IF, GGCGATCATCATCTACGTGC;

S7OF, GAATCGAACTCTGGTGGCTGA and S7OR, CTTTT-

CTGCGTCCACCCCGA; S7IR, GTAGCTGCTGCAAACTT-

CGG for the amplification of the S7 control gene. Primers mag-

mdg1IF, ATGTAGCATGTGGAGCAGTTC; mag-mdg1OF,

CATACTAACAACTGATGCTTCAGATG and mag-mdg1IR,

GCTCTTTGAGGATGGCAAC; mag-mdg1OR, CGCGTTG-

TTTTCGGTTTGCA were used to check for the presence of the

Y chromosome [33]. Primers PPoIF, CGACCTAAGAAGAA-

GAGGAAGGTGA; PPoOF, GAGCTGTACAAGTCCGGACT-

CAGA; and PpoIR, CTTTGTTGAGGACCTGCCACAGT;

PpoOR, CTTATACCACAAAGTGACTGCCCCT amplify the

I-PpoI open reading frame to check for presence of the transgene.

Supporting Information

Figure S1 Location of transgene integration sites and genomic

rDNA repeats. Positions of insertions are shown as well as the 14

basepairs flanking the transformation constructs on each side

(lower right panel). The structure of the rDNA repeat unit

including the 3 ribosomal genes and the internal transcribed

spacers (ITS) as well as a detailed view of the 28S rDNA gene

around the I-PpoI recognition site is shown in the upper right

panel. Primers rDfwd and rDrev were used to generate the 2kb

probe for southern hybridization.

Found at: doi:10.1371/journal.pgen.1000291.s001 (0.42 MB TIF)

Table S1 Outcome of crosses between transgenic b2Ppo and WT

mosquitoes. Heterozygote b2Ppo2 males of generation 3 were

crossed to WT females. As control b2Ppo2 heterozygote females of

generation 3 were crossed to WT males. The total number of eggs

laid and larvae hatched are shown for two consecutive egg

depositions (Lay1 and Lay2). In addition larvae originating from

control crosses were screened for the 3xP3-DsRed marker to

determine the numbers of WT and transgenic offspring as indicated.

Found at: doi:10.1371/journal.pgen.1000291.s002 (0.05 MB JPG)
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