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tional f:A(t,x(t), ..,z (#))dt, in which the Lagrangian A is a Borel measurable, non au-
tonomous, and possibly extended valued function. Imposing some additional assumptions on
the Lagrangian, such as an integrable boundedness of the partial proximal subgradients (up to
the (IV—2)-order variable), a growth condition (more general than superlinearity w.r.t. the last
variable) and, when the Lagrangian is extended valued, the lower semicontinuity, we prove that
the N-th derivative of a reference minimizer is essentially bounded. We also provide necessary
optimality conditions in the Euler-Lagrange form and, for the first time for higher order prob-
lems, in the Erdmann-Du Bois-Reymond form. The latter can be also expressed in terms of
a (generalized) convex subdifferential, and is valid even without requiring neither a particular
growth condition nor convexity in any variable.

Keywords: Calculus of variations, minimizer regularity, higher order problems, necessary condi-
tions, Weierstrass inequality, Erdmann-Du Bois-Reymond condition.

2010 Mathematics Subject Classification: 49N60, 49K15.

1. Introduction

In this paper, we consider the following calculus of variations problem:

b
Minimize I(zx) := / A(s,z(s), 2V (s), 2P (s),..., 2N (s))ds
(CV) +0 (2,20, .. 2N D) (a), (2,20, 2V V)(B),

over arcs © € WN™([a,b], R),
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where N > 1 is an integer, m > 1 is a real number, A: [a,b] x R¥ ! — RU{+o0}

is a given Borel measurable function and ¥: RY x RN — R U {+oco} is a given

extended valued function non identically equal to 4+oc. Here, (*)(-) is the k-th

derivative of the function € W™!([a,b],R) (interpreting (¥ (-) = z(-)), and we
d

sometimes write @(-) or <z (-) for the first derivative z™M)(-) to simplify notation.

We know that problem (CV) has a solution if (zg, 21, ..., xn5) — A(t, 2o, 1, ..., TN)
is lower semicontinuous, zx — A(t, g, x1,...,ZN_1,2y) is convex and uniformly
coercive (cf. [8]). A classical issue in this context concerns the possibility to
establish the conditions needed, in addition to the existence hypotheses above, to
obtain the essential bounded N-th order derivative of a reference minimizer. The
significance of a positive answer to this question is explained by the fact that the
N-th order derivative essential boundedness allows to derive first order necessary
conditions and to use numerical methods to detect minimizers, which in general
would not be valid if the mere existence hypotheses are in force.

The case when N = 1 corresponds to establish Lipschitz regularity of minimizers
and has been extensively studied in the literature for a broad class of problems
involving vector valued arcs z(-), covering even situations in which A is not nec-
essarily convex or coercive in z, cf. [1, 3, 4, 5, 6, 7, 12, 13] and the references
therein (for an advanced result in the theory of necessary optimality conditions,
we also refer to the recent paper by Ioffe [11]). For higher (N > 1) order prob-
lems the N-th derivative essential boundedness of a reference minimizer z,(-) was
demonstrated in [8] analysing the ‘Tonelli set’ associated with z.(-) (i.e. the set

of points ¢ € [a, b] such that xiN)(~) is unbounded near t), when, in addition to

the existence hypotheses, the Lagrangian is real valued and satisfies the following

assumptions:

(A1) A islocally bounded, (xg,z1,...,xN) — A(t, zo, x1,...,2y) is locally Lips-
chitz continuous (uniformly in t),

(A2) The partial limiting subdifferential 8(660
evaluated along the minimizer.

xN_l)A is integrably bounded when
This result remains true when N = 2 for autonomous Lagrangians when we replace
(A2) by a less restrictive condition, see [10]:

(A2)" The partial limiting subdifferential 92 A is integrably bounded when eval-
uated along the minimizer.

(Observe that 0 = N — 2 in this case, and it is not necessary to evaluate the
limiting subdifferential of A also w.r.t. the x_; variable as in (A2).)

The question whether a condition on partial subdifferentials involving only up to
the z_o variable could take the place of (A2) also for general N (including the
case N > 2) was investigated in [9], substituting (A2) with

(A2)"” The partial subdifferential 85@0’.“’”_2)1\ is integrably bounded when eval-
uated along the minimizer.

The higher order regularity result of [9] was obtained for problems involving real
valued arcs z(-), combining two main approaches used for regularity analysis: the
Tonelli set theory (mentioned above) and a time reparameterization.
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The major contribution of our paper is to show that higher order regularity results
can be derived employing the time reparameterization alone, and for a wide class
of Lagrangians, including possibly extended valued A’s. The two main sets of
hypotheses that we consider can be summarized as follows:

(a) The finite case: A is a Borel measurable real valued function and satis-

fies a (generalized) growth condition, the partial proximal subdifferential

(};,Io,...,mN_g)A is integrably bounded in a neighborhood of the reference min-
imizer, uniformly on xy;

(b) The extended valued case: A is a lower semicontinuous (w.r.t. all variables

except possibly xy_1) and satisfy a (generalized) growth condition, the partial

proximal subdifferential 8(P )A is integrably bounded (uniformly on

l’N).

t,20,.., XN -2

Another important feature is that we provide not only first order necessary condi-
tions in the Euler-Lagrange form together with a Weierstrass type condition, but
also, without requiring any kind of growth condition nor convexity, an Erdmann-
Du Bois-Reymond condition which can be expressed in terms of a (partial) convex

subdifferential. It turns out, in particular, that A(t, T (t),. .. ,xiNﬁl)(t), . ) is con-

vex in the direction z{"’ (t). These are an extension to N > 2 (for scalar problems)

of the results obtained in [1, 2] established there for N = 1 (for vectorial prob-
lems).

The generalized growth condition considered in our paper is more general than
the superlinearity of xy +— A(t,zo,...,xy) and represents a sort of violation of
the Erdmann-Du Bois-Reymond condition when |zx| — +o0.

Notation. Throughout this paper we denote Ry := {r € R : r > 0}. If X is
a subset of R, co X is the conver hull of X. If f: X — R U {+oc} is a given
extended valued function and = € dom(f) := {z € X : f(z) < 400}, then the
prozimal subdifferential OF f(x) of f at x is the set of elements ¢ € R such that
there exist M > 0 and n > 0 satisfying:

f(@") — f(z)+ M|z' — x> > (- (2 — ), for all 2’ € B(x,n),

where B(x,n) is the closed ball with center x and of radius n. The limiting
subdifferential of f at x € dom(f) is defined by

O f(z) = {CER" : 3wy = 2,6 € 0" f(w) st. flwy) — f(x) and ¢ — (}.

We recall that, if f is real valued and locally Lipschitz at x, the Clarke generalized
gradient O° f(x) at & coincides with the convex hull co % f(x) of 8L f(z). Given an
extended valued function ¢(-, -) of two vector variables (z,y) and a point (z,y) €
dom(¢), we denote the proximal (resp. limiting, Clarke) partial subdifferential of
6(-9) at & by 9, ¢(%,9) (vesp. 07 6(%,7), 0; (%, 7).

For a given minimizer x,(-) of (CV), we introduce the auziliary Lagrangian
L: [a,b] x R x |0, 4+00[ — R, defined for all (¢,&,r) € [a,b] x R x ]0, +o0o[ by:

L(t,&,7) := Atz (t), 2, (), ..., a7V (2), 7€), (1)
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We shall make use of the partial convexr subdifferential of L with respect to r at

(t,&, 7o), which is defined by:
O L(t, & o) :=={p € R: L(t,&,r) — L(t,&,m0) = p(r — 7o), ¥r €]0,4+00[}. (2)

We denote by L the o-algebra of the Lebesgue subsets of [a, b], by By, the o-algebra
of the Borel subsets of R* by L™([a,b],RF) (m > 1) the space of L™ functions
for the Lebesgue measure, that are defined on [a,b] and take values in R, and
by || - ||[zm its usual norm. The set of essentially bounded functions defined on
[a,b] and taking values in R¥ is written L>°([a,b], R¥) and || - ||« its usual norm.
The space of absolutely continuous functions defined on [a, b], taking values in R¥,
with derivative in L™ ([a, b], R¥) is written W™ ([a,b], R¥) and endowed with the

norm: .
[fllwrm == [ flloc + || fll£m-

We denote by WY™([a,b],R*) the space of functions defined on [a,b], taking
values in R¥ which are N—1 times continuously differentiable and whose (N —1)-
th derivative belongs to W™ ([a,b], R¥). We endow this space with the norm

N-2
1w o= 1L Dlloo + 1SN [lam.
1=0

To simplify notation we shall often write

* *

A(t, Tuyoo,aNY :L“(N)> instead of A(t, z.(t), ..., a VD), xiN)(t))

2. Hypotheses

We shall consider two different sets of hypotheses on A for a given local W™
local minimizer z.(-) for (CV): (S,,) and (S2°).

Hypothesis (S,,) The function
A (tzg, 1, .., xN—2, ZN_1,ZN) — A(t, 20,21, ., ZN_2, TN_1,ZN)

takes values in R and is By o-measurable. There exists ¢, > 0 and an £ x Bi-
measurable function k: [a, b]x |0, +00[— R, such that:

t e k(t,1) € L'([a,b], Ry),

and, for a.e. t € [a,b], for all o €]0, 4+00[, the map:

{[a, b x RN — R, 3)

(5,20, .-, Tn_2) = A8, To, ..., an—2, 2 (1), 02! (1)),

is Lipschitz continuous on B((¢, z,(£), . .., 2" 2 (¢)),e,) N (Ja, b] x R¥N~1) with Lip-
schitz constant k(t,o).

Remark 2.1. Making use of hypothesis (S,,), we deduce that for a.e. ¢t € [a, b],
if ¢ is a vector in 8810 ..... en_y M 2 (D), L2 (1)), then IC| < K(t,1). Notice
also that (S,,) is satisfied whenever A depends only on zy_; and xy.
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Hypothesis (S3°) The function
A: (t7$0; Tiy.0. 3 TN-2, TN—-1, xN) = A(t, Loy L1y uxN—anN—h«TN)

takes values in R U {+o0} and is Byio-measurable. There exist a measurable
set E C [a,b] of full measure, strictly positive constants ¢, ¢ and A, functions
d, B8 € L'([a,b],R,) such that the following conditions are satisfied:

(i) the function (s, xo,...,2n_2,2N) — A(S, 20, ..., TN_2, x&Nfl)(t), xy) is lower

semicontinuous for all ¢ € [a, b],
(ii) for all t € F, we can find 0 < 0y(t) < 1 < 09(t) < 400 for which:

Atz (1), .., a1, o ()N (1)) < o0
{A(t, 2. (1), .., 2NV @), oo ()2 (1)) < +oo;
(iii) for every t e E,
every (5, %o, ...,Zn—2) € B((t,z.(t), ..., 2" (1)), ) N (Ja, b] x RY-1),
and zy € R, we have

61 < (0 2 a0

AT,y 2N D), o) + M) +d(t) - (5)

for all ¢ € OF N72)A(§, Toy ... TN—2, x&Nﬁl)(t),xN);

(871'0 7777 x

(iv) for all t € E, there exists ¢; > 0 such that the function

(5,20, -, Tn_2) = A(S, 20, ..., xn_2, 2N D(t), zn),

*

is Lipschitz continuous on the ball B((¢, z.(t), Z.(t), .. ., 2N (t)),e:) with
Lipschitz constant 3(t), uniformly with respect to

zy € B@™M(#),e,) N dom(A(t, 2. (1), ..., 2NV (@), ).

The growth assumption (G,,). For every selection Q(t, &) of 0,L(t,&, 1),
(Gz.) lim (A (), 2 VV(),6) — QUt, €)| = oo,

[€]=+oo
Or L(t,§,1)#0

uniformly for a.e. t € [a,b], which means that for any M > 0, we can find a set
€ C [a, b] of full measure, and a real R > 0 satisfying for all (£,£) € £ x R and all

Q(t,&) € 0.L(t, &, 1):
€] = R = [A(t (), .., 2 ND(0),6) = Q(t,€)] > M.

Observe that condition (G, ) is satisfied independently of a minimizer z,(-) when

for every selection Q(t, zo, ..., zn_1,&) of (O,A(t, o, ..., xN-1,7E)),_, and for ev-
ery compact set K C RY, we have:
‘5‘1111100 |A(t’ Zo,..., TN-1, S) - Q(taan s 7xN—17£>| = +OO7

(BT-A(t,:cO ,,,,, :cNil,r.f))rzl;é(Z)

uniformly for a.e. t € [a,b] and for all (xg,...,xn_1) € K.
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Remark 2.2. (Interpretation of (G,,)) Assume that A(t, z.(t), ..., xﬁNﬁl)(t), €) <
+oo and let Q(t,€) € 0,L(t,€,1). Then

L(t,&,r)) > o(r) := L(t,&,r) + Q(t,&)(r — 1), forall r >0

and P(t,€) := ¢(0) = L(t,&, 1) — Q(t, ) is the intersection with the z axis of the
‘tangent’ line z = ¢(r) to 0 < r — L(t,&,7) at r = 1.

Condition (G,,) thus means that the ordinate P(t,¢) of the above intersection
point goes to oo as [£] goes to oo, for those points & where 0 < r +— L(¢,&,7) has
a nonempty convex subdifferential at r = 1.

L(t,&,7)

----- > 7€
P(t,&) 17 G &

~

P& 4

Figure 2.1: Condition (G,,)
Remark 2.3. (1) If A is smooth in the last variable, (G,,) becomes

lim |A(L (1), ., 2V (0),€) = € Vay Al 2a(t), ..., 2V (2),€)] = +oo,

€] =00

uniformly for a.e. t € [a, b].

(2) If Ais convex in the last variable, (G,, ) is satisfied whenever for every selection
©(t, &) of the convex subdifferential O¢A (¢, z.(t), . .. ,xﬁN_l)(t), §), we have

i A(t (), ..., 2ND(1),8) — & 9(t, )] = +oo,

uniformly for a.e. t € [a, b].

Condition (G,, ), which was considered in the case N = 1 in [2], extends analogous
conditions considered in [3, 12] in the autonomous case. This growth condition
(Gg,) is satisfied in the superlinear case. More precisely, assume that A satisfies
both conditions below:

(a) A(s,zo,...,xN) is bounded on an annulus along x.(-): there exist p > 0, and
M > 0 such that, for almost every t € [a, b] we have:

(Ba.) lon| = p = At z(t), ..., 2™V (@), 2y) < M.
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(b) A is uniformly coercive along x.(-) w.r.t. the last variable: there exists a

6
function : R, — R satisfying ligl b(r) = 400, such that for a.e. ¢ € [a,b] and
r—r+00 T
every ry € R:
(Cx*) A(tax*(t)v"'7$£N_1)(t)>$N) > e(lxND

(This also covers hypothesis (H3) used in [9], where 0(-) is taken positive valued and
A satisfies the following estimation A(t, z.(t), . .. ,x&Nﬁl)(t), xn) > 0(|lxn|)—Blznl,

where $ > 0.) Then it may be shown as in [2, Proposition 2] that (G,,) is valid.

Notice however that there are Lagrangians that have just a linear growth with
respect to zy but nonetheless satisfy (G, ), for example A(t,xq...,2y) = |zN| —

Vel

Remark 2.4. Assume that A is bounded on bounded sets in the following sense:
For every bounded set K C RY, the following property is satisfied: there exist
p > 0and Mg > 0 such that, for almost every t € [a, b], every (zg,...,zn_1) € K
and any zy € R:

lzn| =p= At ,zo,..., 281, 2n) < Mk.

Assume additionally that A is uniformly coercive in the following sense: there
exist an increasing function #: R, — R such that lim, ,,(6(r)/r) = +o0o, a
function h: RY — R that is bounded on bounded sets, and a constant a > 0, for
which the following property holds: for all (¢, g, ..., zy) € [a, b] x R¥ ! satisfying
len| > ol (zo, ..., xn_1)]:

A(t,l’o, Ce ,l‘N_l,JJN) Z 0(|IN| — O./|(l‘0, Ce ,ZEN_1)|) — h(Io, P ,ZL‘N_l).

Then A satisfies the two conditions (B,,) and (C,,) above for any function x,(-) €
WHN1([a,b],R), and it yields that the growth condition (G,,) is also valid for any
function z,(-) € W™!([a,b],R).

3. Main results

We establish here a new necessary condition and a subsequent regularity result
for minimizers of (CV).

3.1. Necessary conditions

Weierstrass type conditions

Theorem 3.1. Let x.(-) be a WN™ local minimizer for (CV). Assume that A
satisfies (S;,). Then there are two — mutually non exclusive — cases:

(i)  The function x, is a polynomial function whose degree is at most N —1 > 1.

(ii)  There exists an arc (po, ...,pn-1) € Wh([a,b],RY) for which the following
Weierstrass type condition is satisfied:
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for all u € 10, +oo[ and for a.e. t € [a,b]:

=M (1)

u

(W) A<t,x*(t), e )u — At z(t), ..., 2™ () >

(u=1)(polt) + pr(®)(1) + ...+ py 1 (N2¥ (1)),
Moreover (Po; P1s P2 + Py -« s PN—2 + PN—3,PN-1 + PN-2)
€ 3&0 77777 en o NE Ty Ty ,xka)) for a.e. t € [a,b]. (6)
Theorem 3.2. Let z.(-) € WN™([a,b],RY) be a minimizer for (CV). Assume
that A satisfies (S°). Then there are two — mutually non exclusive — cases:

(i) The function x, is a polynomial function whose degree is at most N —1 > 1.

(i)  There exists an arc p == (po,...,pn-1) € WH([a,b],RY) for which the
following Weierstrass type condition is satisfied: for all u € |0, +oo[ and for
a.e. t € [a,b]:

a0

u

(W) A<t,x*(t), e )u — At z(t), ..., 2™ (t)) >

(w=1)(polt) + pr(®)() + ...+ pya (N2¥ (D)),

Moreover, for a.e. t € [a,b], p(t) belongs to the set
co{w RN ¢ (w+5(0),po(t) + pr (V) + .+ pxa (2D (@D)(7)

€ (8@710 7777 xN_M)A(s, Zo, ... :CN,g,xka’l)(t),xiN) (t)/u)u) (i) o () },

with y(t) == (0,0, p1(1), ..., prn—a(t)) and z(t) == (t, 2. (1), ..., 2" 2 (1)).

Remark 3.3. (1) We observe that the inequality (W) of Theorems 3.1 and 3.2
is a Weierstrass type condition which is an extension (to the case N > 2) of the
results [1, Theorem 4.1] and [1, Theorem 4.3].

(2) Assume that A is of class C? with respect to t, zg,...,rn_2. Then we have
ngo 77777 xN_zA(t, D ,xka)) = {Vmo 77777 IN_2A<t, Ty Ty o ,xiN)) } ,
hence the arc p := (py, ..., py—1) satisfies the following equations: for all s € [a, b]

pols) =) + [ TA(rai o) dr,

a

pi(s) = pi(a) +/ Vaoh (7 2es s 2 dr,

and for a.e. s € [a,b], foralli=2,...,N —1

Y

pi(s) = —pi_1(s) + VmFlA(s,x*, Ty . ,x,(kN)).
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Erdmann-Du Bois-Reymond type conditions

The change of variable r = 1/u in (W) yields the following equivalent version of
Theorems 3.1 and 3.2.

Corollary 3.4. Let x.(-) be a WN™ local minimizer for (CV). Assume that A
satisfies (Sg,) (resp. (S3°)). Then there are two — mutually non exclusive — cases:

(i)  The function x, is a polynomial function whose degree is at most N —1 > 1.
(i)  There exists an arc p == (po,...,pn-1) € WH([a,b],RY) for which the
following equation is satisfied: for all v € 0, +o0[ and for a.e. t € [a,b]:

(r=1) (A, 2 (1), o, V(1) = (po () +p1 (D) () - ..+ py—a ()2 V(1))

where p satisfies (6) (resp. (7)).

(W) At ze(@), ..., a2V V@), ra™ (1) — At 2.(t), ..., 2™ (1) >

Remark 3.5. Condition (W,) is a sort of variational form of an Erdmann-Du
Bois-Reymond equation. Indeed, if A is smooth and satisfies (S,, ), Corollary 3.4
implies that:

M) Vo A (e, aN) =
At e, @MY = (po(t) + pr(®)i(t) + ...+ pva (DN (1)),

where p satisfies the conditions expressed in Remark 3.3 2). Whereas, under the
(nonsmooth) more general hypotheses of Corollary 3.4, we obtain that

At 2 (t), - 2N (1)) = (Do(t) + pr (8 (8) + oo + py 1 (BN (@) €0, L2, N (1), 1),

for a.e. t € [a,b], where L and 0,L are defined in (1) and (2).

Condition (W,.) is also a relaxation type result, namely the convexity of the func-
tion A(t, z.(t),. .. ,xiNﬁl)(t), -) along the direction v (t).

3.2. Regularity results

Here, the additional growth conditions (G,,) and (C,,) play a central role.

Theorem 3.6. Let z.(-) be a WN™ local minimizer for (CV).
(i)  Assume that A satisfies (S;.) and (Gg,), then 2N e L*>([a,b],R).
(i)  Assume that A satisfies (S3°) and (Gg.), then 2V e L*>(la,b],R).

An immediate consequence of Theorem 3.6 and the discussion about the above-
mentioned conditions (B,,) and (C,,) is the following corollary.

Corollary 3.7. Let x,.(-) be a WN™ local minimizer for (CV).

(i)  Assume that A satisfies (S,,), (Cu.) and (By.), then z") € L>([a,b], R).
(i)  Assume that A satisfies (S3°), (Cz,) and (Bg.), then 2N e L*>([a,b],R).
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Next proposition shows that, if the Lagrangian A is convex w.r.t. xy, then we
can relax the condition (S,,) and invoke a weaker (merely local in o) version of
it. This result provides an extension of [9, Theorem 2.1].

Proposition 3.8. Let x.(-) be a WN™ local minimizer for (CV), in which we
assume that A : [a,b] x RN — R is Borel measurable and

(H)Y  anx+— A(t,x0,21,...,N_2,ZN_1,TN) is convex for every
(t, 20, T1,- -, TN_2,TN_1);

(Sz.) There ezist e, > 0, o0, €]0,1[ and a L x By-measurable function
k:la,b] x [1 =04, 140, — Ry such that t — k(t,1) € L'([a,b],R.), and,
for a.e. t € la,bl], for all o0 € [1 — 04,1+ 0,], the map:

[a,b] x RN=! - R,
(8,20, .-, Tn_2) = A8, To, ..., xn—2, 2N (1), 02i™ (1)),

(8)

is Lipschitz continuous on B((t,z.(t), ...,z 2 (t)),e,) N ([a,b] x RN-1)
with Lipschitz constant k(t, o).

Then, the same conclusions of Theorem 3.1 are valid. If moreover, A satisfies
(G,,), then :a(kN)(-) belongs to L>([a, b],R).

4. Proofs of Theorem 3.1 and Proposition 3.8

We shall make use of the following technical lemma, which has been used and
proved in [1, Lemma 7.1].

Lemma 4.1. Let (2;)ken be a sequence of invertible functions in W([a,b], R)
that satisfies the following properties:

(a)  forallk €N, z(a) = a and z,(b) = b,

(b)  there exists a > 0 such that 2;(t) > «, for all k € N and for a.e. t € [a,b],
(c)  the sequence (zy)ren converges to Id in Whi([a, ], R), where Id: t + t.

Then for all x € WY™([a,b],R), there exists a subsequence of (x o z;")en that
converges to x in W™ ([a,b],R) as k goes to +o0.

4.1. An auxiliary control problem (CP)

We consider the following extension A of A to the whole space RN*2: for all
(t,[Eo, L. ,QTN) € RN+2,

Aa, xg, ..., xy), ift <a,
A(t,zo,...,zNn) == A(t,zo, ..., xN), il t € [a,], 9)
A(b,zg, ..., xy), if t > 0.

We introduce also the auxiliary Lagrangian ¢: [a,b] x RY x R — R, which is
defined by:
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for all (t,z,u) € [a,b] x RY x R, where z = (29, 21,...,2n_1),

u

A (z, 2NV @), w) u, if 2V (t) is defined and u > 0,
0t z,u) ==

0, otherwise.

Fix any integer 7 > 2. We shall consider the following control problem:
b
Minimize J(z,u) ::/ ((s, z(s),u(s))ds, over the arcs z€ Wh1([a,b],RY)

a

and £ — measurable controls u: [a,b] — R such that:

2(s) = f(s,2(s),u(s)), for a.e. s€la,b], u(s)€e B,j], for a.e. s€(a,b],

2(a) = (a, 24 (a), #4(a), .. 272 (a)), 2(0)= (b, 2u(b), 24 (b), ... a2 (1)),

where f: [a,b] x RN x R — R¥ is defined by:
f(s,2,u) := uAnz + uby(s), for (s,z,u) € [a,b] x RY x R,

with by(s) :=1if N =1, by(s) := (1,0,...,O,x£N_1)(s)) it N>1,and Ay :=0
if N=1,2 and

0010 -
00010 - -
Ave=1. - . . . . | ifN>2
. 010

.01
L 0]

We say that a trajectory/control pair (z,u) is admissible for the problem (CP)

whenever 2(s) = f(s, z(s),u(s)) and u(s) € [%,j_ for a.e. s € [a, ],

2(a) = (a,z.(a), #.(a), ..., 2" (@), and 2(b) = (b, .(b), & (D), ...,z 2 (b)).

Observe that the differential equation 2(s) = f(s, z(s), u(s)), can be rewritten in
an extended form (in the case N > 2): for a.e. s € [a, b

Z0(s) = u(s), Z1(s) =u(s)za(s), 2Z2(s) = u(s)z3(s),

(10)
inea(s) = u(s)zn_1(s), Zn-1(s) = u(s)z" "V (s).

Moreover any solution (z,u) to the control system in (CP) satisfies Zg = u > %

a.e., hence z; ' exists and is Lipschitz continuous with Lipschitz constant bounded
above by j.

Using the fact that x, is a minimizer for the problem (CV), we can deduce that
a natural minimizer to the control problem (CP) is the trajectory/control pair

(2, uy) defined by:

us(s) :=1 and z.(s) := (s,x*(s),:i:*(s), . ,xka’Z)(s)>, for all s € [a, b].
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Lemma 4.2. For all € > 0, there exists p > 0 such that, for any admissible pair
(z,u) € WhL([a,b], RY) x L for (CP) we have:

2= 2ullwas < p = lz10 55" = aullwmn < e, (11)
in which z1 = x4 if N = 1.

Proof. The case N = 1 is an immediate consequence of Lemma 4.1, so we
continue considering N > 2. Assuming that (11) is not satisfied, then we can
find g9 > 0 and a sequence of admissible pairs for the control system in (CP), say

(2% uP)ken, 2F = (28, ..., 2% _|) such that:
k 1 ko (k-1
|25 — zu|lwrr < 1 and |27 o (z5) 7" — @ullwym > eo. (12)
We define y* := 2% o (25)7! and we write y* = (y&, v, ..., 0% ).

For each k € N, we have (yf)® = 2F o (2})7 for all i = 0,...,N — 2, and

()= = 2V 6 (25)=1 As a consequence if i < N — 3, we obtain:

1)@ = 2o < 12y 0 (20) ™ = 2alloo + 21 = 28lec,

1 M +1
k k
< sup |25 (8) — 27 ()] + 1 < Pl (13)
-t/ <
where M := max{||x>(f)||OO +1,i=1,...,N —2}.
On the other hand, for « = N — 2, we have:
()™ = 2 |oe = ey 0 (26) " = 2P|,

t
< sup /\xiNl)((zg)1(3))—9591)(3)\(13 < [b—al sup [2{¥7 V() =20 (E)].

t€fa,b] |t—t/|< 2

Therefore by uniform continuity of xSkN_l)C) we deduce that:

()2 = 2P og —— 0. (14)
k—4-o00
We now claim that  ||(y¥)™ Y — 20| ypim — 0, (15)
—+00

(possibly for a subsequence we do not relabel). Since (y¥)V=1) = 2N o (2571,

this is equivalent to prove that:

fokN_l) o (z(’)‘j)_1 — ZE(N_I)HWl,m — 0.

*

The sequence (2§)ren satisfies all the hypotheses of Lemma 4.1. Applying it to

N-1 .
the reference arc x = :u(k ) confirms the claim.
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From (13), (14) and (15), we deduce that for all £ € N:

21 © (26) ™" = @ullwnon = [lyi = 2ullwwn ——0,
—+00

which contradicts (12). O

Proposition 4.3. The trajectory/control pair (z.,u.) is a local W' -minimizer
for (CP), i.e. there exists p > 0, such that, for any admissible pair (z,u) for
(CP), we have: ||z — zi||wix < p= J(z,u) > J(2, us).

Proof. Let € > 0 such that z,(-) is an e-minimizer for the W™ topology. We
invoke Lemma 4.2 to obtain a real p > 0 such that (11) is satisfied.

Take any admissible pair (z,u) for (CP) such that ||z — z.||w11 < p, and define
y € Wh([a,b], RY) by y = z 0 25"

We claim that y; € WY™([a,b],R) is a solution of the reference problem (CV).

Indeed, we have yngl) =" Yo 25! and ygi) = Y1 = Zip1 0 2y for all i =

1,..., N — 2. Recalling the conditions satisfied by z at a and b, in particular

2 (a) = a, z, ' (b) = b, we obtain:

<y1, o ,y§N71)> (a) = <a:*, o ,xiN_1)> (a), and

(yl, o ,y§N—”) (b) = (x o ,ng—1>) (b). (16)

Using the change of variable ¢ = zy(s), we obtain:

b b _ M (g
/ 0(s,z(s),u(s))ds :/ A (z(s),:pka_l)(s), ( )) u(s)ds

b~
:=/zuaww94kgww»%%wx9%a%w»w

— /abA (t, yi(t), 71 (t), . .. ’yEN—l)(t),ygN)(t)) it

We recall that, from (11), we have ||y; — x|~ < €. Since z,(-) in a e-minimizer
for the problem (CV). It follows from (16) that:

b b
/MMM%@WWW@dZ/MmMm@WWWW@
We deduce that:

J(z,u):/ E(s,z(s),u(s))dsZ/ 05, 2.(5), ua(5))ds = J (20, 10),

which concludes the proof. O
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4.2. Application of the maximum principle to (CP)

We employ the maximum principle [6, Theorem 22.26] to the optimal control prob-
lem (CP) and the reference minimizer (z,,u,). In our case it is easy to see that
all the assumptions of [6, Theorem 22.26] are satisfied and the only detail which
requires particular attention is to prove the appropriate Lipschitz regularity of /.

Lemma 4.4. Ife, > 0 and k: [a,b]x |0, +oco[— R, are given by hypothesis (S, ),
then for a.e. t € [a,b] and for all o €)0,+00], the application

R x RV - R
{ X - R, a7

(87 Lo, - - - 7:L'N—2) = K(Sa Loy -+, TN-2; x5<N_1)(t)7 O-ZL‘S*N)(t))a

is Lipschitz continuous on B((t,z.(t), ...,xiN_Q)(t)),s*) with Lipschitz constant
k(t, o).

Proof. Take o €]0,+o00] and any ¢ € [a,b] such that (S,,) is satisfied and two

vectors z, w in the ball B((t, z.(t), ... ,x&NﬁQ) ()),e4). We can always assume that

2o < wp.
Using (S, ), if both zy and wy are in [a, b], the inequality is easily verified.
If 2z < wy < a. We have:

]K(z, 2V (1), gz (t)) ~A (w, V(1) g™ (t)) ‘
= ‘A(a, 215 2n—1, TN D (1), axiN)(t)> —A(a, wy, ..., wy—_1, 2N Y (1), 0$S<N)(t)) ‘
< k(t,o)|(a,z1,...,2n-1) — (a,wr, ..., wn_1)| < k(t,0)]z — w|.
If zg < a <wy < b, we have:
‘7\ (z D1, ™) (t)) “A (w, 2D (1), o) (t)) (
= ‘A(a, 215 21, eV (1), axka)(t)) —A(wo, wy, ..., wy_1, NI (8), axka)(tD ’
< k(t,o)|(a,z1,...,2nv-1) — (wo, w1, ..., wn_1)|] < k(t, o)z —w|.
If zp < a < b<wy, we have:
’K(z, NV, o) (t)) - K(w, e N, oY) (t)) ‘
. ‘ A(a, Ay 21, 2D (1), o) (t)) —A(b, w1y oo w1, 2NV (), o) (t)) ‘
< k(t,o)|(a,z1,...,2n-1) — (bywy, ..., wn_1)| < k(t,0)|z —w|.

The cases a < zp < b < wp and a < b < zg < wy can be proved in a similar
way. 0

We are now ready to show the required Lipschitz regularity of /.
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Lemma 4.5. There exists a L x Bi-measurable function k la, b] x B,j} such
that t — k(t,1) € L'([a,b],R..), and for almost every t € [a,b], we have:

21,7 € B(z(t),64),u € R = |0(t, 20, u) — £(t, 21, u)| < k(t, u)|z0 — 21].

~ 1
Proof. Define k(t,u) := k(t, —) u.
u

The function k is £ x By-measurable and ¢ — k(t,1) = k (¢, 1) is in L*([a, 8], Ry)
by hypothesis (S,,).

Take any 21, 2o in B(z.(t),e,) = B((t,x*(t), . ,ng_Q)(t)),5*> and u € [%,]}
Pick any t € [a,b] at which the Lipschitz continuity of (S,,) holds. From Lemma

4.4, we have:
~ (N) - (N)
A <Z27 x(N_1)<t>7 & (t)) _A (Zh x(N_l) (t)7 - (t)) ‘

u u

[0(t, 2o, u)—L(t, z1,u)] < u

1 ~
§k<t,—)u |21 — 22| < k(t,u)|zo — 21]. O
u
For nn > 0, we define the Hamiltonian of the problem (CP):
H'(t, z,p,u) =p- f(t,z,u) — nl(t,z,u)
= u<p0+plzg+p223+ e +pN_QZN_1+pN_1:L"£N_1)(t)) —nf(t, Z, u)

Applying [6, Theorem 22.26] for each integer j > 2, there exist an arc p’/ =
(pd,...,p%_1) € Wh([a,b], RY), a scalar n7 € {0,1} and a set of full measure
E; C [a,b] such that the following properties are satisfied:
(i) The nontriviality condition: (n?,p?(t)) # 0, for all ¢ € [a, b],
(ii) The adjoint inclusion:

—p?(t) € OTH(t, -, p? (t), us(t)) 2=z (r), for all t € Ej, (18)

(iii) The maximality condition:

H (£, 2,(), p? (£),u,(t)) = sup H" (t,z.(t),p’ (t),u), for all t € E;. (19)

e[

(Note that for this problem, the transversality condition (p7(a), —p?(b)) € R?V
does not provide useful information.)

From the maximality condition (19), for all u € [%, j} and every t € IJ; we have:

u(Pd () + p (D@ () + ..+ ple_y (VO () =t (t, Zu(t), ———=

<pi (1) + p{ (D2(t) + .+ PRy (D) = 7L (¢, 2.(8), 2V (D)) |
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which implies that for any u € B, j] and every t € Ej:

(N
Tk

)
njA<t,a:*(t), e %)u — I (t, 2. (t), ..., 2™ (1)

> (u—1)(pg (t) +p] (0)a(t) + ...+ ph_y (VU (D)). (20)

Proof of Theorem 3.1

We need a lemma which allows us to handle the abnormality phenomenon (n? = 0)
that can arise when we apply the maximum principle.

Lemma 4.6. Assume that there exists an arc p = (po, ..., py_1) € W ([a, b], RY)
such that:

p(t) #0, forallt € |a,b], (21)
p(t) - f(t,2.(t),1) =0, for a.e. t € [a,b], (22)
—p(t) = AYp(t), for a.e. t € [a,b)], (23)

where A%, is the transpose of the matriz Ay. Then N > 2, and z.(-) is a polynomial
function with degree at most N — 1.

Proof. We introduce the following control system, in which v(-) is a control
function in L!([a, b], R):

(24)

{w(s) = Ayw(s) + v(s)f(s, z.(s),1) for a.e. s € [a,b],
w(a) = 0.

Take any solution (w,,v) to (24). For almost every s € [a, b], we have:
wy(s) - ps) = Anwy(s) - p(s) +v(s)f (s, 2.(s), 1) - p(s),
Using successively (23) and (22) gives us:
w,(s) - p(s) = Anw,(s) - p(s) = —w,(s) - p(s), for a.e. s € [a,b)].

This implies that < (p-w,) = 0 a.e. and since w,(a) =0, p-w, = 0 in [a,b]. Since

p(s) # 0 for all s € [a,b], for any v € L'([a,b],R) the arc w,(-) remains in the
hyperplane {w € RY : w - p(s) = 0}, for all s € [a,b]. Therefore system (24) is
not reachable at any time s € [a, b].

Solving system (24), the reachable set at time b is:
b
R(b) := {/ v(s) et f(s 2, (s),1)ds : v e Ll([a,b],R)}.
From what precedes, p(b) # 0 and for any v € L'([a, b], R),

/ v(s)p(b) - =94V £(s 2,(s),1)ds = 0.
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In particular, choosing v: s+ p(b) - e®=94N (s, 2,(s),1) yields:
p(b) - b=V £(5 2.(s),1) =0, for all s € [a, D). (25)
If N = 1, by definition, we have e®=41f(s z,(s),1) = 1 and (25) gives that
p(b) = 0, which is a contradiction. If N = 2, by definition, e®=42 f (s z,(s),1) =
(1,2.(s)) for all s € [a,b]. From (25) we have that:

po(b) + p1(b)2.(s) = 0, for all s € [a, b].

Since p(b) # 0, this implies that p,(b) # 0. We obtain i.(s) = 0]
s € [a,b], which implies that x,(-) is a polynomial function with degree 0 or 1.
Assume now that N > 2. A standard development of the exponential function

eb=9)4N shows that for every s € [a, b):

o= £ (s, Z*(S) 1)

N-2 (b N— 3
= (130 ), ) 2N (s)).
k=0 k=0

From equation (25), we first deduce that (p1(b),...,pn—_1(b)) # 0 since p(b) # 0.
Moreover, differentiating both sides in (25), we obtain that for a.e. s € [a, b]:

(mb)% m(b)% ot s (B)(b—s) + pm(b)) £(s) = 0.

Observe that the term that multiplies z{"(s) is a linear combination of linearly

independent polynomials with coefficients which cannot be all simultaneously zero.

This implies that 2" (s) = 0 for almost every s € [a, b], hence z,(-) is a polynomial

function whose degree is less or equal to N — 1. [

Assume first that, for some jyo > 2, 7 = 0. Then by nontriviality, p7°(¢) # 0 for
all t € [a,b]. Using (18), we have that:

—plo(t) = Ayp?(t) for all t € Ej,.

The maximality condition (20) in the abnormal case combined with the continuity

of the functions p(-), &, (-), ..., 2" V() gives:

pP(t) - f(t,2.(t),1) =0, for all t € [a,b].
Then invoking Lemma 4.6, we deduce that z.(-) is a polynomial function whose

degree is at most N — 1.

We now assume that 1/ = 1 for all j > 2 and to complete the proof of Theorem
3.1 we employ a compactness argument. For every integer j > 2, we denote

aj = (|lp?[l« + 1) and define (57, 77) := aj " (p7, 7).
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From Remark 2.1, we deduce that for a.e. t € [a, b]:
7 (O] < [AND (O] + a5 k(t, 1) < Al + k(t, 1), forall j > 2, (26)

where ||Ay|| is the matrix norm induced by the vector norm ||(po,...,py_1)|| =
max;—o,... N—1 |Dil-

Estimate (26) shows that the sequence (p7);»2 is equi-integrable. Then there
exists (p,7]) € € Whi(la,b],RY) x [0,1] such that, for a subsequence we do not
relabel, (p7);>2 converges to p in L>([a, b], RY), (]5 7) ;52 converges to p weakly in
L ([a, b] RN) and (777) ;52 converges to 7. We define (p,n) := (p,0) if 7 = 0 and
(p,n) = (7~ 'p,1) if 7 > 0. We also define £ := = ;52 Ej, which is a set of full
measure as an intersection of such sets.

Fix any t € £ and u €]0,400[. There exists jo > 2 such that, for all j > jo,
u € [1/4,7]. Then for all j > jo:

V) |
n’A <t (), .- -, *u(t)> u—n?A(tz.(t), ..., 2N (1))

> (u—1)(pJ (1) +p] (@)iru(t) + ...+ pl (D20 (D).

Multiplying both sides of the inequality by aj’l and passing to the limit as j goes
to +o00, we deduce that:

L)
A <t z.(t),. .., *u(t)> u—iA (t2.(t),. ..,z (@)
> (u—1)Po(t) + pr(t)da(t) + ...+ pya (BN (@), (27)
If =0, (27) gives p(t) - f(t, z(t),1) = 0. (28)

If 7 # 0, dividing both terms in (27) by 7, we deduce that (p,n) satisfies the
maximality condition (20) for all ¢t € £ and every u €0, +00].

It remains to prove that the adjoint inclusion is also satisfied by (p,n). Define the
function r;(t) := |ozj_1 —n|k(t, 1), and note that (18) gives:

pI(t) € —0CH(t, 2, (t),p (), 1) + B(0,7;(t)), for a.e. t € [a,b],
with |71 —= 0. Invoking [13, Theorem 2.5.3], we deduce immediately that
j—+4oo

p(t) € —0CH(t, z.(t), p(t),1) for a.e. t € [a,b], implying that p satisfies (6). If
n # 0, we divide this differential inclusion by 77 and we obtain that (18) is satisfied
by the pair (p,n), for a.e. t € [a,b]. Dividing by 7 both terms in (27), we conclude
that (W) is satisfied for all u €0, +oc[ and a.e. t € [a, b].

If 7 = 0, then p satisfies p(s) = —ALp(s) for a.e. s € [a,b] and |||« = 1, which
implies that p(s) = p(s) # 0 for all s € [a,b]. Recalling (28), we invoke Lemma
4.6, and deduce that x,(-) is a polynomial function whose degree is less or equal
to N—1. [l
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Proof of Proposition 3.8.

The proof of Proposition 3.8 follows along the same lines of the proof of Theorem
3.1, except that, when we apply the maximum principle to the auxiliary optimal
control problem, the maximality condition is valid only for u € |5 Jrlg*, #] (from

(Sz.)"). The extension of this property to the set {u €10, +00[} is a consequence
of (H)" invoking a well known convexity argument (cf. [9, 13]). O

5. Proof of Theorem 3.2
5.1. An auxiliary control problem (CP2)

Employing a standard ‘truncation argument’ which allows to extend local prop-
erties of a given function to global ones (cf. [13]), we introduce the Lagrangian

A [a,b] x RY x R — R U {+00},

K(Sa Loy .-+, TN-2, xka_l)(t)a .fIfN),
. : (N-2)
A(t, (8,20, oy TN—2), TN) = if |(s, 20y oy N—2) = (t, u(t), ...vxs (1))] <&,

A (7‘(’(8, Ty .y TN_2), 2N (1), J;N) , otherwise,

where

(8,20, N—2)— (2w (8),...zN "D (1))

(8,20, 2N —2)—(t,ax (), zY =2 (1)

7(8, 205 oy Tn_z) = (t, 2 (t), ..., aN () + ¢

is the projection of (s, g, ..., zx_2) over the sphere of center (¢, z.(t), ..., xiN_Q)(t))

with radius e, and A s _the extension of the Lagrangian A to RN+2 defined
as in (9). The function A is clearly Borel measurable, (s,zq,...,Tn_2,2y)

/A\(t, (s,Zo,...,Tn_2),2xy) is lower semicontinuous for all ¢t € [a,b]. Moreover A
satisfies a global (stronger) version of condition (S2°) (iii). More precisely, for
every (t,(5,Zo,..., TN 2),7n) € E x RN x R, we have

] < e(|(1, @1, Bn g, 2D (1))

+ A(t, (5, %o, ..., Tn—2),TN) + Azn]) + d(t) (29)

for all ¢ € 8(P K(t, (S, Zoy ..., TN_2),TN).

8,80y, TN —2)

Fix any integer j > 2 we set (: [a,b] x RN x R — RU{+00} by: for all (¢, z,u) €
[a,b] x RN x R,

~ (V)
Uty 2,u) = {A <t> 2 _zJL (t)> u, if 2V (t) is defined and u € [1/5, j],

400, otherwise.

We also consider the following control problem, which differs from (CP) since
it allows to consider extended valued Lagrangians and incorporates the ‘control
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constraint’ in the integral term:

( b
Minimize J(z,u) ::/ Z(s,z(s),u(s))ds,
over arcs z € Wl’l([a,%],RN)
(CP2) and L-measurable functions u: [a,b] — R such that:
2(s) = f(s,2(s),u(s)), for a.e. s € [a,b],
z(a) = (a,z.(a), z.(a), ... ,xSkN_Q)(a)),
L2(0) = (b, 2,(b), 2.(), ..., "2 (b)),

Observe that ¢ is an extended valued function (the value +o00 might arise for some
t € la,b], even if u € [1/4,7]), so we cannot invoke [6, Theorem 22.26]. However,
the structure of the function f allows us to employ the hybrid maximum principle
[5, Theorem 5.3.1].

The definition of 7 has the following consequence: any admissible trajectory/con-
trol pair (z,u) to (CP2) with a finite cost is also an admissible trajectory/control
pair for (CP). This gives the same minimizing property to the pair (z,,u.) for
the problem (CP2).

Lemma 5.1. The pair (z.,u,) is a local Wt -minimizer for (CP2).

We check that all the relevant hypotheses of [5, Theorem 5.3.1] are satisfied. First
of all, we observe that the function f is Lebesgue measurable in the time variable
t, and continuously differentiable with respect to (z, u).

~

We claim that £(t, -, -) is lower semicontinuous for all ¢ € [a, b].

(

Fix any t € [a,b]. We can assume that x*N)(t) exists otherwise the lower semi-
continuity is an immediate consequence of the definition of 7. Take any point
z=(zp,...,2v_1) € RY and u€R. Assume first that u€]— oo, 1/j[ or u€|j, +ool.
Since | — o0, 1/j] and ]j, +00] are open subsets, the definition of ¢ yields:

too= liminf £(t, 2 ') > U(t, z,u) = +oo.

(2" u')—=(z,u)

Now assume that u € [1/7,j] and zy € ]a, b]. Recalling that A satisfies (S520)(i), we
have:

~

liminf £(¢,2',u') > lim inf oL, 2 ')

(2" u)=(zu) {& )= (zu0) :, well/5,4]}

(N)
~ (N (¢
— lim inf }}A (t, 2, e )> u

{(@ )= (zu): w'ell/5)

N (N) N
2A<t,z,x*—(t)) u=~0(t, z,u).
u
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On the other hand, if u € [1/7,j] and 2y < a or zp > b, then using the definition
of A and (8%°) (i), we once again obtain that:

liminf ((¢, 2", u') > 0(t, 2, u),

(2" u')—=(z,u)

confirming the claim.

We proceed to check that the appropriate growth conditions are satisfied by f
and ¢. From the global version of (S2°) (iii) (see (29)), there exist strictly positive
constants ¢, A and d € L'([a,b], R, ) such that, for all (¢, (5, Z¢,...,Tn_2),TN) €
E xRN x R,

€< (L. T N0

~

YA (5, T, Tya), o) + )\|a:N|> +d(t), (30)

for any ¢ € 05, xNﬁ/A\(t, ($,%0, ..., TN_2),TN)-

Take a bounded subset K of RY. Let (¢, z,u) € [a,b] x K x R such that {(¢, z,u) <
+oo. We have ||V, f(t,z,u)| = u||An]| < 7||AN||-
We claim that there exist cx > 0 and di € L*([a, b], R), such that, for all (v,¢) €

Géyu)z\(zﬁ, z,u), we have:

(A4 Vuf (¢ 2,u)]])
1+ 4]

< cg <|f(t,z,u)] + Z(t, z,u) + dK(t)> .

~

Observe that it is enough to prove that for all v € OFU(t, z, u):
A+ 1972l < e (170 20+ Ttz +di(D) . ()

Fix any v € afZ(t,z,u). We can find ¢ € 9F, . /A\(t,z,xEkN)(t)/u) such that

v = uC. Moreover, from (30) we obtain (recall that z = (2¢,...,2y-1)):

N—-2

] < c(‘ (1,22, o ,ZN,l),ng*U(t))‘

~ A
A4 o) a0 fu) + ZM(@)]) + ). (32)
u
Note that since z € K and xiN_l)(-) is bounded on [a, b], for some constant ¢ > 0,
we also have:
1+ || Vuf(t, z,u)|| = 1+ |Anz +0()] < 14 |(1, 20, ..., 2nv_1, 2N V(@) < €

Hence from (32) we have:

A1+ IV (2 l) < Ee(15(2 2 )]+ 0,2, 0) + Nal (0] + (1)),
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Recalling that t — A2z (#)] is in L!([a,b],R) since z, € W¥m([a,b],R), we
define dy () == 2d(-) + Alz™ ()] and ¢ = @c, confirming (31).

To better handle the abnormal case that can arise from the maximum princi-
ple, we need some information about the first coordinate of ¢, ((t, z(t), 1) and

., (t 2,(t), 1), which are provided by the following lemma.

Lemma 5.2. (1) For a.e. t €]a, b, if (,9) € O, [(t, 2.(t),1) then v = 0.
(2) Fora.e. t €)a,b], if (v,0) € OF  U(t, z(t),1) then |v]| < B(t).

zu)

Proof. (1) Recalling the characterization [13, Theorem 4.6.2] of asymptotic lim-

iting subgradients, there exist a sequence (2%, u;);en such that Z(t, 2' ;) < 400

for all i € N and (2, u;) PR (z4(t), 1), a sequence (h;);en of positive real num-
1—+00

bers such that h; | 0, and a sequence (v, 9;)ien in RY*! for which the following
property is satisfied:

~

Vi € N, hy (v, ) € 3(12 wl(t, 24 u;) and (1) — " (v, 7).
’ i—>+00

~ . (N)
For each ¢ € N, there exists a vector (; € 8(3 I wN_Q)A <t, 2" m*u—z(t)> such that

h'w; = u;¢;. Also, from the definition of A and hypothesis (5%°) (iv) for A, there
exists 7; € N for which:

G| < B(t), for all i > i;.

Hence we obtain: |v| < limsup u;h;|¢;| < limsup u;h;5(t) = 0,
i——400 i——400

which implies v = 0.

(2) There exist a sequence (2°,u;);eny such that (2%, u;) P (z(t),1) and
1—+00

Z(t 2" u;) P ﬁ(t 2.(t),1) and a sequence (v;,1;)ien in RV *1 satisfying:
1—+00

~

(y27¢z) ( 71/}) and (Vivwi) € a(lz,u)€<t7 Zia ui)v for all € N.

As in the proof of (1), for all i € N, there exists (; € 6? (o200t 2)A (t 2t =t (t)>
such that v; = u;(;.

From (S3°)(iv), there exists i, € N for which |¢;| < 3(t), for all ¢ > 4,. Hence we
obtain |v| = lim;_, 1 u;|¢;| < B(t), which concludes the proof of Lemma 5.2. [

For n > 0, we define the Hamiltonian of the problem (CP2):

H'(t, z,p,u) = p- f(t, z,u) — nl(t, z,u)

= U(Po + P122 +P223 + ... PN_22N—1 T prlfUﬁN*l)(t)) —nl(t, z,u).
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Applying [5, Theorem 5.3.1] to (CP2) for each j > 2, there exist an arc p’ =
(pd,...,p_)) € Wh([a,b],RY), a scalar n7 € {0,1} and a set of full measure
E; C [a,b] such that the following conditions hold:

(i) The nontriviality condition: (n?,p?(t)) # 0, for all ¢ € [a, b],

(i) The maximality condition:

for all u € [1/4, ] st. Alt, 2. (t), ..., 2N V@), 21N () Ju) < +o0,

H7 (t, 2,(t), p? (8), u, (8)) < H" (t, 2,(t), p?(t),u), forall t € E;,  (33)
(iii) The adjoint inclusion: for all ¢ € E;, p’(t) €
N . T 3 L,n?
cofweRN : (Wt AL/ (1), £(t, 240, 1) - (1)) €L Tt 2.0), 1)} (34)

Whelje Gé’zgé(t,z*(t),l) 8(”)6(15 z(t),1) if n/ =0, and O K(t 2(1), 1)
if i =1.
In particular from (33), we obtain the following equation: for a.e. ¢t € E; and

every u € [1/7, j] such that A(t,x*(t), . ,xiN_l)(t), xiN)(t)/u> < 00,

o |
A (t O u(t>> w— A (t 2 (t), ..., (D))
> (u—1)(pd (t) + p{ (A (t) + ... + ph_ (2N (1)). (35)

Observe that condition (35) can be expressed using A instead of A since, from the

definition of K, we have

T\(t, (t, 2. (t), ..., 2N =D (1)), x£N>(t)) A (t,x*(t), e, mSM(t)) |

5.2. Compactness argument

Let I be the set I := {j > 2,177 = 0}. Two cases may occur: [ is either infinite
or finite.

Assume first that [ is infinite. Then we can extract a subsequence (we do not
relabel) such that (p’,n7);>2 satisfies n; = 0 for all j > 2. Then by nontriviality,
pi(t) # 0 for all j > 2 and all ¢t € [a,b]. For all j > 2, we define p’(t) := ()

[Pl

Using (34) and property 1) of Lemma 5.2, we have that:
7 (t)] < |ARD?(t)] < || An]| for all j > 2 and for all ¢ € &,

where € := > Ej is a set of full measure. This implies that the sequence (p7);>2
is equi-integrable. Then there exists (p,7) € Wb ([a,b], RY) x {0} such that, for
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a subsequence we do not relabel, (j57);>2 converges to p in L=([a,b],RY), (p7);>2
converges to p weakly in L'([a, b],RY) and (777);52 converges to 0.

Since pi(t) = —ALpI(t) for all j > 2 and a.e. t € [a,b], we invoke [13, Thm 2.5.3]
and obtain that p(t) = —ALp(t) for a.e. ¢ € [a,b]. Recalling that ||p|/o = 1, this
implies that p(t) # 0 for all ¢ € [a, b].

Passing to the limit in (35), we have that for almost every ¢ € [a, b],
(u—1)(p(t) - f(t,2(t),1)) <0, for all u €]0,+00]

(N)
* t
such that A(t,x*(t), o e ( )> < +00.
u

Then, invoking hypothesis (S3°)(ii), we then obtain p(t) - f(t, z.(t),1) = 0 for

a.e. t € [a,b], and by the continuity of p(-), z.(-),... ,ziN_l)(-), we derive that

p(t) - f(t,z.(t),1) =0 for all t € [a,b]. Using Lemma 4.6, we deduce that z,(-) is
a polynomial function whose degree is less or equal to N — 1.

Assume now that [ is finite. Extracting a subsequence if so needed, we can
assume that 7; = 1 for all j > 2. We define a; := ||p?|| + 1 for all j > 2 and
(pi(t),n?) = aj_l(pj(t),nj). We obtain that, for a.e. t € [a, b]

Pty eco {weRY : (whALFI(1), F(t 2 (0),1) - 57(1)) €07 0F ) UL, (1), 1) }
As a consequence of property (2) of Lemma 5.2, we deduce that:
57 (1)] < [ An|| + o ' B(t) < |An| + B(t), for ae. t € [a,b].

This implies that the sequence (133 )j>2 is equi-integrable. Then there exists a
pair (p,7) € Wh([a,b],RY) x [0,1] such that, for a subsequence (we do not
relabel), (§7);>2 converges to p in L ([a, ], RY), (p7);2 converges to p weakly in
L'([a,b], RY) and (77),> converges to 7.

Employing a standard argument (cf. [13, pages 250-251]), we obtain that for a.e.
t € la,bl:

B(t) € co {w € RY ¢ (w+ ARG(), F(t 2(0),1) - 5(1)) ) € 0Lt 2.(1), 1)}

If 7 = 0, we proceed as in the first case, and conclude by Lemma 4.6 that x,(-)
is a polynomial function whose degree is less or equal to N — 1. If 7 > 0, then
:= 1) !p satisfies (7) and (W) of the theorem.

6. Proof of Theorem 3.6

Regularity of the minimizer. From Theorem 3.1 or 3.2, we deduce that z.,(-)

is a polynomial function or that the Weierstrass condition (W) is satisfied. If x,(-)

is a polynomial function, then $S<N)(-) is obviously essentially bounded on |[a, b].

We therefore assume without restriction that condition (W) is valid for an arc
(pos - - -,pn—1) € W ([a,b], RY). From Corollary 3.4, condition (W,) is satisfied
for the same arc (pg,...,pn_1)
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Recalling the definition of L and 0, L, (W,) implies that for a.e. ¢t € [a, b]:

At z(t), .., 2 (8) — (polt) + pr(t)d. () + ... + pya (2N V(@)
€ 0, L(t, 2™ (1), 1). (36)

Let Q: [a,b] x R — R be a map such that for a.e. t € [a, b]

QU™ (1)) = At 22(0) - 28(0) = (po(t) +p1 (1) () + b o (D2 D).
We set M =1+ |lpo + pris + ... + py-12" V||s. From the growth condition
(G, ), we can find a set of full measure € C [a, b], and a constant R > 0 satisfying:

V(t,§) €EXR, Qt,§) €0, L(t,¢,1), €] = R = [A(t,2.(1), ... §) = Q(t,§)| = M,
that is to say:

V(t,§) € E xR, Qt,&) € 0.L(t,6,1), || >R
= |po(t) + p1(t) iy (t) + ... + py_1 ()N V()| > M.

From the definition of M, we immediately deduce that |x£N)(t)| < R for a.e.
t € [a,b], which concludes the proof of the theorem. O
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