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Abstract: In recent years, collecting data is becoming easier and cheaper thanks to many improvements
in information technology (IT). The connection of sensors to the internet is becoming cheaper and
easier (for example, the internet of things, IOT), the cost of data storage and data processing is
decreasing, meanwhile artificial intelligence and machine learning methods are under development
and/or being introduced to create values using data. In this paper, a clustering approach for the
short-term forecasting of energy demand in industrial facilities is presented. A model based on
clustering and k-nearest neighbors (kNN) is proposed to analyze and forecast data, and the novelties
on model parameters definition to improve its accuracy are presented. The model is then applied
to an industrial facility (wood industry) with contemporaneous demand of electricity and heat. An
analysis of the parameters and the results of the model is performed, showing a forecast of electricity
demand with an error of 3%.

Keywords: data analytics; big data; forecasting; energy; polygeneration; clustering; kNN;
pattern recognition

1. Introduction

Data management, machine learning, and artificial intelligence have been emerging themes in
the energy sector during recent years, thanks to the increasing availability of data and the decreasing
cost of sensors, storage, and data manipulation. Data analytics methods have already been used to
analyze collected data to improve energy efficiency, for example in buildings [1,2], or combined with
machine learning methods [3]. Different machine learning methods have been already defined [4],
such as clustering, k-nearest neighbors (kNN), regression models, principal component analysis (PCA),
artificial neural networks (ANNs), and support vector machines (SVMs). These methods are mainly
used in the energy sector. In [5], ANNs are used to predict residential building energy consumption.
In [6], SVMs and ANNs are applied to predict heat and cooling demand in the non-residential sector,
whereas in [7] ANNs and clustering are used to predict photovoltaic power generation. PCA is
considered to analyze and forecast photovoltaic data in [8] and [9], meanwhile, in [10] and [11], SVM
is used. Data are also used to perform analytics on energy: In [12], open geospatial data are used to
plan electrification, whereas in [13] social media data are proposed to better define energy-consuming
activities. In another study, a methodology based on energy performance certification is defined to
estimate building energy demand using machine learning (decision tree, SVM, random forest, and
ANN) [14]. Ganhadeiro et al. evaluates the efficiency of the electric distribution companies using
self-organizing maps [15]. Machine learning methods are implemented in different environments:
MATLAB [16–18] and R [19,20] are the most famous ones for research. Recently, Fowdur et al.
have provided an overview of the available platforms (mainly commercial, such as IBM solution,
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Hewlett-Packard Enterprise Big Data Platform, SAP HANA Platform, Microsoft Azure and Oracle
Big Data, but also open source software, such as H2O) on machine learning, and how it could be
used for big data analytics [3]. Commercial environments have a more robust tool already developed
and test with better documentation than open source software such as R. These environments would
be preferred if the research aim is to develop commercial software. Open source software would be
preferred for the aim of research, thanks to the possibility of full access to code and algorithms, in order
to propose improvements and the free distribution of results.

In this paper, an enhancement of short-term forecasting based on clustering and kNN is proposed.
In this context, “short-term” means few hours. When energy demand is sampled frequently (for example,
every 15 min) and a dataset is available, data can be used to train a model to predict the energy request
of the next few hours, with the scope of improving the operation strategy of the energy generation
system and optimizing energy storage. Clustering is used to define the average curves, meanwhile
kNN (the k-nearest neighbors algorithm) classifies each observation and forecasts the energy demand.

The clustering method has been already used to classify daily load curves [21,22] and to forecast
energy demands [23–27]. Clustering and kNN are proposed in this study as forecasting methods
and compared to other machine learning techniques, such as the previously cited ANN, SVM, or
PCA. Such methods forecast data just by comparing the energy demand observed to the historical
data. As a matter of fact, many industrial facilities collect energy demand data without considering
other process variables that could be necessary to increase the accuracy of forecasts, for example
weather conditions (air temperature, humidity, etc.). The complexity of the problem increases if the
production process is a batch-type instead of continuous, as more variables are necessary (such as
the properties of raw materials). As novelties compared to previous studies that proposed clustering
and kNN for forecasting, an innovation on data normalization and an alternative criterion to define
the most suitable number of clusters are suggested in this study in order to increase the accuracy of
forecasts. Martinez deeply analyzed the use of clustering and kNN to forecast energy data using
pattern similarity on historical data, silhouette criteria, and Dunn and Davies-Bouldin indices to
define the optimum number of clusters (the clustering hyperparameter) [25]. Then, he improved
forecasting accuracy with a weighted multivariate kNN algorithm in [27]. These papers present a
similar algorithm to that proposed in the present article, even if improvements on the hyperparameter
definitions are suggested here. The authors have already studied how to increase the efficiency by
using innovative operation strategies and polygeneration systems, such as in [28–31]. Solid oxide
fuel cells and heat pumps have been proposed to increase the efficiency on energy generation for the
residential sector in different climates. Solid oxide fuel cells and electrolyzers have been suggested
for energy generation in industrial facilities producing hydrogen [32]. In [33,34], some energy audits
in industrial facilities have been performed to analyze the main inefficiencies, and to define which
improvements are required. The main scope of this study is to define a method for improving the
performances of short-term forecasting and, consequently, to use it in order to improve the operation
strategy of the energy generation plant of an industrial facility. As a matter of fact, forecasting can help
to optimize energy storage by giving suggestions on the energy demand of the next hours. The case
study relates to a wood industry that requires low temperature heat to dry wood into steam-powered
kilns by using a cogeneration plant. The industrial firm is organized with a batch process, and no
data are available on the process (quantity of the wood into the kilns, properties and humidity of the
raw wood, weather conditions, etc.). Energy demand data (both electricity and heat) are used to test
the proposed improvements. The results show that the proposed methodology is able to predict the
accuracy of the forecasting.

2. Method

In this section, the description of the method proposed in order to forecast the energy demand
of an industrial facility is firstly reported. Successively, the method of the model training and the
definition of its parameters are described.
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2.1. Forecast Method Introduction

In this study, a forecast method based on clustering and kNN is proposed and applied to an
industrial facility. Industry uses energy (thermal and electric) both for industrial processes and auxiliary
purposes (lighting, compressed air, etc.). Generally speaking, energy uses related to the production
processes are strictly connected to the variety and entity of the production output. If the production
output remains constant in terms of the type and quantity of items, it is expected that the energy use
does not vary significantly. Moreover, if the production output varies significatively (for example,
because the industrial process is organized by batch), the complexity of the problem increases, and
more variables are required. The aim of this study is to define a model based on a machine learning
technique that allows the forecasting of energy demands for a short period (for example, the next
hour) based on the demands observed and using a clustering approach without any other variables
that could describe the process and/or the environmental conditions. In this study it is supposed
that average profiles can be defined by using a dataset of at least one year of observation, in order to
perform the forecast. Other machine learning methods, such as ANN or PCA are not proposed for this
forecast problem due to the lack of variables which could describe the industrial process. Moreover,
even if an ANN could be trained with only historical data to perform the forecast, the advantage of
using clustering combined with kNN is the knowledge of the forecast process. If ANN would be used,
a neural network is trained so a “grey box” model is defined, where the user knows the connection
into the network, but it is unknown how the network works when varying the input variables. Instead,
the methodology proposed here uses clustering to define similar patterns on historical data, where the
user has a high control on the forecast process and may know each pattern proposed.

The first concept to introduce is the energy demand curve. It represents a temporal sequence of
observations and forecasts of energy demand. Each curve can be split in two parts, namely, support
and forecast. The former is the part of the data that will be provided to the model, constituted by the
latest observations. The latter is the predicted data based on the support (Table 1). The length of the
support (s) and of the forecast (f ) is fixed by the user. In this model, it is proposed that 0 < f ≤ s−2. In
the following discussion section, the performances of the model, varying f and s, for a real case study,
will be described.

Table 1. Example of curves, definition of support and forecast (sample dataset).

Support Forecast

i = 1 i = 2 . . . i = s = 8 j = 1 . . . j = f = 4

10 11 10 13 12 14 16 12 11 12 18 13

To perform the forecast, the model features a workflow (Figure 1) based on the following steps:

1. Model training: A dataset of observations is used to train the model. Observations define the
average demand curves and train the classification model;

2. Classification: Observations are used to classify which is the most similar average curve;
3. Forecast: Average curve forecast is used to define forecast of the observations.

The model proposed is based on two machine learning methods, clustering and kNN. Clustering
is a method used only in the training process to define the average curve, while kNN is used to classify
the observations and to relate them with the average curves.
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Figure 1. Workflow of the forecast method proposed.

2.2. Introduction to Clustering

Clustering is a data analytics method used to classify data and to perform data segmentation [4].
The samples are grouped into subsets or “clusters”, where, in each cluster, objects are more likely related
to one another than those assigned to different clusters. Clustering is strictly related to the concept of
“degree of similarity” (or “degree of dissimilarity”) between the objects of the same subset. A cluster
method groups similar objects whereas similarity is defined, for example via a distance function.

K-means is a clustering method used when all the variables are quantitative, and the Euclidean
distance between the objects is defined as a dissimilarity function, where the lower the distance, the
greater the similarity ([4,35]). The Euclidean distance between each object xa and xb is measured by
using the variable i = 1...n, which describes each object (Equation (1)):

d(xa, xb) =
n∑

i=1

(
xa,i − xb,i

)2
(1)

If a dataset with m objects is provided, K-means divides the dataset into N clusters, minimizing
the Euclidean distance between each object of the cluster. The number of clusters, N, must be defined
by the user as a hyperparameter. A hyperparameter is a value of a machine learning model that is
defined before the training process. Silhouette [36], gap criterion [37] and other methods have been
already developed and proposed to define the suitable number of clusters to divide a dataset. These
methods try to define the minimum number of clusters to maximize the distance between the clusters
themselves. For example, in [25], the performance of a forecasting method based on clustering and
kNN with the silhouette, Dunn, and Davies-Bouldin methods, used to define the optimum number of
cluster, is analyzed. In this paper, it the use of a criterion based on the clusters distance is not proposed,
but instead to define the minimum number of clusters that minimizes the error of prediction under a
threshold that is chosen by the user. In Section 2.7, discussing the hyperparameter definition, such a
criterion will be described.

2.3. Introduction to kNN

kNN (k-Nearest Neighbors) is a machine learning method used mainly for classification and
regression [4]. In the proposed forecast method, firstly, clustering training dataset is divided into
N clusters, then an average curve for each cluster is defined. When a new observation occurs, it is
necessary to classify which is its cluster. Here, kNN performs the classification task by analyzing
how the k-neighbors nearest to the observation are classified, and the distances between them. In the
model here proposed, kNN is used to define which is the cluster (and consequently, the average curve)
defined with the training dataset closer to the new observation. kNN requires two hyperparameters,
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the number of neighbors (k), and the distance function. Section 2.7, discussing the hyperparameter
definition, describes how they are defined.

2.4. Model Training

The main task to define the forecast model is the training process. The training process requires at
least one year of observations. The observations are ordered and then used to defined curves with
support and forecast. These curves define a dataset. The workflow of the training can be divided in
the following steps (Figure 2):

1. Define dataset: Firstly, it is necessary to define and to normalize the dataset. Successively, it is
randomly divided into three subgroups, namely, the validation, training, and test datasets. These
subgroups represent 25%, 50% and 25% of the total observations, respectively. The validation
dataset is used to define the hyperparameters of the model, whereas the training dataset is used to
train both the cluster and kNN models. Finally, the test dataset is useful to verify the performance
of the trained model.

2. Define hyperparameters: As previously mentioned, the proposed model defines both the cluster
and kNN models. Both methods require the definition at least the distance function and the
number of clusters (cluster model), or the number of observations for classification (kNN model).
The Euclidean distance function is proposed for the cluster model, meanwhile, the number of
clusters and number of observations for classification are defined using the validation dataset.

3. Train cluster model: When all the hyperparameters are set, the training dataset is used to train
the cluster model and to define the average forecast curves.

4. Train kNN model: When both the cluster model and the consequently average forecast curves
are defined, kNN is defined. kNN is used to forecast the observations.

5. Test model: The test dataset is used to test the trained model and to check its performance by
using the mean absolute percentage error (MAPE) and root mean square error (RMSE) criteria.
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Figure 2. Workflow to train the model.

After the training process, the model can be used to forecast new observations.

2.5. Data Normalization

One of the first step of data analytics is data normalization. As datasets have different values
and scale effect may occur, classification methods such as clustering will not work properly if data are
not normalized. Usually, normalization is performed using standard score or minimum-maximum
scaling [4,38]. The standard score normalizes the dataset (X) by using the average (µ) and the standard
deviation (σ), as described in Equation (2):

X − µ
σ

(2)

In this model, the authors propose to differently normalize dataset. As the goal of the model is to
forecast energy demand curves, the idea is that different curves may have different scales but similar
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variation. The standard score would be normalized but the curves will still have a lower scale effect.
Instead, in this study it is proposed to calculate the average of the observations for each curve, and
then to calculate the variations between observations and average (Equation (3)):

n j,i =
o j,i

a j
− 1 (3)

where oj,i is the observation i of curves j, aj is the average and nj,i the normalized observation. Figure 3
represents an example explaining the reason why this normalization is proposed. Curves 1 and 2
have different scales but similar variation. Firstly, the standard score is applied, then the average
normalization follows. The average (avg) and standard deviation (std) for the standard score are
calculated using all the support values. In the other case, the average of support of each curve is
calculated and used for normalization. Forecast values are excluded because they only become known
during the training process. As can be seen in Figure 3, curve 2 is 1.58 times larger than curve 1, and a
noise is added. It is possible to appreciate that the proposed method (avg), that is based on the average
of the curves, reduces the scale effect, but keeps the variation. As a matter of fact, the normalized
curves 1 and 2 have similar values. Instead, the standard score method proposes normalized curves
with different values because it normalizes not only the scale effect but the variation as well.
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2.6. Error Estimation

When a forecast method is proposed, it is necessary to estimate the error of the forecasting.
As previously mentioned, error estimation is used also to define the hyperparameters. Here, MAPE-
and RMSE-derived errors are suggested. MAPE is the acronym of mean absolute percentage error, and
it is defined by Equation (4):

MAPE =
1
n

n∑
i=1

(
1
l

l∑
j=1

(
p j,i

d j,i
− 1)) (4)

where n is the number of curves, l is the number of the forecasted values of each curve, pj,i is the model
predicted value of the curve, and dj,i is the value observed. RMSE is the acronym of root mean square
error. Here, it is proposed instead of mean square error (MSE) because it is possible to compare error
using the same measurement unit of data. It is defined by Equation (5):
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RMSE =
1
n

n∑
i=1

√√√√
1
l

l∑
j=1

(
p j,i − d j,i

)2
(5)

These errors are calculated on the entire forecast, meanwhile, the first forecasted value of each
curve is the most important. MAPE1 and RMSE1 are calculated considering not all the forecasted
values but only the first (l = 1).

2.7. Hyperparameters Definition

As previously mentioned, it is necessary to define the parameters for clustering and kNN. They
are called hyperparameters. Clustering requires the “distance function” and the “number of clusters”,
while kNN requires the “number of the nearest neighbors” and the “distance function”. Only the
clustering distance function is defined a priori (Euclidean distance), whereas the other ones are defined
using the validation dataset.

Firstly, the number of clusters is defined. As previously mentioned, different criteria have been
already developed, and they usually try to minimize the number of clusters in order to maximize the
distance between data. It is in the authors’ opinion that a more suitable criterion for a forecasting
method is to find the minimum number of clusters that minimize the forecasting error, for example
under a threshold previously defined. The model proposed here clusters data to obtain average curves,
and then it uses them to forecast the energy demand. It is proposed to vary the number of clusters
(from 2 to N) and for each simulation to calculate MAPE between the data and average curves of the
clusters. The parameter is the minimum n that has a MAPE lower than the average next three values:

min(n)|MAPE(n) <
MAPE(n + 1) + MAPE(n + 2) + MAPE(n + 3)

3
(6)

Nevertheless, it is possible to define n as the minimum number of clusters associated with a MAPE
lower than a defined threshold:

min(n)|MAPE(n) < MAPElimit (7)

This method can be seen as an early stopping method, because the number of clusters increases by
as much as the accuracy of the system is increased. Figures 4 and 5 report how this method is applied
to a validation dataset of electricity and heat demand, respectively. Each curve has 8 observations
as support, and 4 observations as forecast (data refers to the case study defined in Section 3.1). It is
possible to appreciate that the curves have a MAPE decreasing rapidly between 2 and 10 clusters,
whereas between 10 and 30 clusters they become more stable. With more than 30 clusters, the curves
have very low gradient, and locally MAPE increases, even if the number of clusters increases. In this
case, if the criterion described by Equation (6) is applied, then 10 clusters for heat and 13 for electricity
are suggested.
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As previously mentioned, in other studies (such as [25]) where clustering and kNN are proposed
for forecasting, the optimum number of clusters is defined by using a criterion such as silhouette or gap
statistics. Here, the silhouette calculates the average distance between each member of a cluster from
another cluster, and the minimum number of clusters that increases the distance is the optimum [36].
If the silhouette criterion was applied to the validation dataset (for both electricity and heat), the
number of clusters suggested would be lower than the method proposed. In this regard, Figures 6
and 7 show that the number of clusters suggested is two in both cases. As a matter of fact, if this value
was used, the MAPE would be the highest (Figures 4 and 5).
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100 for an 8-4 curve.

The kNN hyperparameters are defined, instead, using MATLAB optimization with the ‘Fitchknn’
function. The latter optimizes the kNN model by choosing the distance function and the number of
neighbors to decrease the classification error [39].

3. Results

The proposed method was applied to a case study based on an industrial facility characterized by
a simultaneous demand of electricity and heat. The production process is organized by batch, and no
data such as environment conditions, raw material properties, etc., were available. Data are used to
predict the two types of energy separately by also using energy demand data, and the length of support
and forecast was varied in order to verify the dependency of error. The aim was to verify the forecasting
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performances on energy demand (electricity and heat) of the proposed method. No improvements of
the current energy generation system and/or industrial process are proposed.

3.1. Case Study Description

The energy consumption of an industrial facility selling wood (timber) laminated windows,
plywood, engineered veneer, laminate, flooring, and white wood was analyzed. The industrial process
requires heat to dry wood in kilns (working temperature of 70 ◦C), and to store it in warehouses.
Electricity is used for the production equipment, offices, lighting in the warehouses, and to charge
electric forklifts. Energy is generated by using two cogeneration systems (combined heat and power,
CHP) based on internal combustion engines (ICE) to produce both electricity and heat. A natural gas
fired boiler was present as an integration system for the kilns. Electricity is also exchanged with the
grid when mismatching occurs between generation and demand. Figure 8 represents the energy fluxes
and the interconnections between each component of the system.
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Figure 8. Electricity (yellow dot lines) and heat (red continuous lines) energy fluxes, connection
between production (up boxes), and utilization (bottom boxes).

Energy use (both electricity and heat) was sampled every 15 min from 01/01/2015 to 25/09/2017.
Electricity demand was available as mean power requested (kW). Heat demand, instead, was calculated
by measuring the water flow rate (m3/h) and inlet and outlet temperatures (◦C) to heat the kilns.
The data were stored in a structured SQL database. Here, we intended to use these data to define a
curve with support and forecast, in order to train and to validate the forecast model. A dataset for heat
demand, and another for electricity, has been defined.

As a matter of fact, these datasets can contain some sampling events with missing measurements
or outliers. Missing measurements in a SQL database are managed with null values, so the events with
at least one variable with a null value were not considered for the study, because the system was not
able to sample the process, and the other variables could be affected by errors. Outliers could occur
because the data were stored without any validation.

The data were plotted by a histogram (with a log scale on the x axis) and a probability plot of
quartiles (QQ plot) to intercept outliers. The QQ plot was used to compare the dataset distribution
with the normal distribution. The assumption here is that the data follow the latter, and if it does
not, outliers are likely to be present. Figure 9 displays how the data were distributed. It is possible
to appreciate that the outliers are present for both the electricity and heat demand. The electricity
demand data were mainly between 100 and 1000 kW, while the maximum sampled value was higher
than 106 kW. The same occurs for heat demand, where, in fact, the QQ plots show that the current
dataset does not follow a standard distribution.
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Figure 9. Representation of the dataset without filtering data, histogram, and probability plot of
quartiles (QQ plot) of electricity (top) and thermal (bottom) power.

To filter the outliers, it was proposed to define an upper limit for each of the variables, both for
electricity and heat. The limit was set considering the maximum demand of electricity and heat of the
system. Figure 10 represents the filtered data, where the QQ plots show that the filtered dataset was
closer to a normal distribution and that the range of the dataset decreased.
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3.2. Model Training and Test

Observations were used to define a dataset. The dataset was filtered by data related to null
values or outliers. Here, it was randomly split into training, validation, and test datasets, representing
50%, 25%, and 25% of the entire dataset, respectively. The validation dataset was used to define the



Energies 2019, 12, 4407 12 of 16

hyperparameters of the model, whereas the training dataset was used to train the model, and the test
dataset was used to check the accuracy of the model. Accuracy was defined by calculating the MAPE
and RMSE between the forecasted value of the model and the observed value of the dataset. Curves of
different lengths for the support and forecast were defined in order to discuss the influence of definition
on the hyperparameters, in particular, the number of clusters. Table 2 shows some simulations of the
model, considering energy demand curves of different length (for example, an 8-4 curve represents a
curve with 8 observations as a support and 4 observations as a forecast). MAPE was calculated using
the test dataset (error between forecasted values and observed values), once for the first forecasted
value (here, the test dataset is MAPE 1) and once for the entire forecast (here the test dataset is the
MAPE). The MAPE value calculated with the validation dataset was also added in order to define the
hyperparameter number of clusters (Section 2.5). It is possible to appreciate that the MAPE calculated
with the validation dataset is a good predictor of the MAPE of the test dataset. For example, with
an 8-4 curve with electricity, the MAPE calculated with the validation dataset was 3.60%, whereas
the MAPE calculated with the test dataset was 3.58%. The results also show a difference between the
electricity and heat datasets, where an 8-4 curve has a MAPE of 3.58% and 34.11%, respectively. The
difference can be explained with a higher variation of heat values.

Table 2. Simulation of the model with different curves length.

Curve
Type of
Energy

Validation Dataset Test Dataset

Mean Absolute
Percentage Error

(MAPE)
MAPE1 MAPE RMSE1

Root Mean
Square Error

(RMSE)

8-4 Electricity 3.60% 2.75% 3.58% 5.15 kW 3.82 kW

8-4 Heat power 35.41% 32.95% 34.11% 93.43 kW 55.43 kW

10-4 Electricity 3.71% 2.74% 3.57% 5.15 kW 3.82 kW

10-4 Heat power 35.23% 32.70% 34.95% 93.20 kW 54.82 kW

10-8 Electricity 4.79% 2.90% 4.47% 5.47 kW 3.53 kW

10-8 Heat power 36.66% 35.30% 34.12% 90.03 kW 41.99 kW

12-8 Electricity 4.69% 2.80% 4.47% 5.31 kW 3.53 kW

12-8 Heat power 39.00 % 32.10% 37.21% 95.14 kW 43.05 kW

4. Discussion

In this section, the influence of the curve size and the type of normalization are both analyzed.

4.1. Influence of the Curve Size

Observations were used to define the curves in order to train and test the forecast model. Support
is the part of the curve that is used to classify observation, and, consequently, it defines the forecasted
value (forecast part). The length of the supports (s) and forecasts (f ) may vary the hyperparameter
number of clusters and, consequently, the error on forecasting. By increasing the forecast length
(equally with support length), the forecast error is expected to increase, because the model needs to
predict more observations. It is unknown what the effect of increasing the support length (with the
same forecast length) could be, that is, increasing or decreasing the accuracy of the classification of the
curve. Figures 11 and 12 represent the value of the MAPE criteria for the validation dataset, varying
the support and the forecast for electricity and heat, respectively.
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Figure 11. Heatmap of MAPE of electricity validation dataset with curves with different support and
forecast length.
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Figure 12. Heatmap of MAPE of heat power validation dataset with curves with different support and
forecast length.

Firstly, it is possible to appreciate that the electricity validation dataset has a regular variation of
MAPE in comparison to the heat validation dataset. When the electricity dataset is used, the MAPE
increases when increasing support and/or forecast lengths. Here, it is supposed that the electricity
demand varies differently from the heat demand. As expected, the electricity dataset shows that when
increasing the forecast length of the curve the MAPE increases. Here, the MAPE increases from 3.5%
for a 16-2 curve (4 support length, 2 forecast length) to 6.3% for a 16-4 curve. This shows that the error
increases when the forecast period becomes longer. On the other hand, the increase of the support
length is also related to the increase of MAPE, where it changes from 2.9% for a 4-2 curve to 3.5% for a
16-2 curve. Even if more observations are available to classify each curve, the error does not decrease.

4.2. Influence of the Normalization

As mentioned in Section 2.5, in this model, it is proposed to not use a normalization based on
the standard score but instead on the percentage norm. Here, the aim is to reduce the scale effect
of the curves but to maintain their variation. A representation of the MAPE, varying the number of
clusters in the electricity validation dataset with a curve of 8 observations for support and 4 for forecast
(Figure 13) and 10 for support and 4 for forecast (Figure 14) is reported. In both cases, it is possible to
appreciate that the dataset normalized with the standard score has a higher MAPE with respect to the
normalization with the proposed percentage norm.
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5. Conclusions

In this paper, the enhancements of a short-term forecasting method based on clustering and kNN
machine learning techniques have been proposed and tested. A novel definition of hyperparameters
(number of clusters) and data normalization compared to the state-of-art methods are presented here,
in order to increase the accuracy on the forecast and to minimize errors. A dataset of observations is
required to define the hyperparameters, in order to train the model and to test it. A case study based on
an industrial facility with simultaneous electricity and heat demands was presented in order to apply
the proposed energy forecast method. An analysis reported on how the length of the energy demand
curves (numbers of observations and forecast) impacted the model performance. The industrial firm
works with a batch process and only energy demand data were sampled and stored, as no other data
on the process were available. The results show that the improvements suggested here, in terms of
the definition of hyperparameters, decrease the error of forecasting compared to other criteria in the
literature. An analysis of the effect of the length of the curves (both on support and forecast) on the
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error was performed as well. For the dataset used here, the longer the length (both on support and/or
forecast), the higher the error. The validation dataset was not only used to define the hyperparameters,
as it could be used to predict the error of the forecast as well. It is in the authors’ opinion that further
improvements on the methodology could be achieved by studying the most suitable distance function
for the dataset and/or by weighting observations. Moreover, an investigation on how this forecast
method could improve energy production and efficiency could be of interest, for example reducing the
production of unnecessary heat and/or improving suitable operation strategy to decrease the cost of
energy generation.
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