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00-COMPLEX SYMPLECTIC AND CALABI-YAU MANIFOLDS:
ALBANESE MAP, DEFORMATIONS AND PERIOD MAPS

BEN ANTHES, ANDREA CATTANEO, SONKE ROLLENSKE, AND ADRIANO TOMASSINI

ABSTRACT. Let X be a compact complex manifold with trivial canonical bundle
and satisfying the 90-Lemma. We show that the Kuranishi space of X is a smooth
universal deformation and that small deformations enjoy the same properties as
X. If, in addition, X admits a complex symplectic form, then the local Torelli
theorem holds and we obtain some information about the period map.

We clarify the structure of such manifolds a little by showing that the Albanese
map is a surjective submersion.
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1. INTRODUCTION

Compact Kéhler manifolds with trivial canonical bundle have attracted a large in-
terest over the past decades, lying at the crossroads of differential geometry, algebraic
geometry and mathematical physics.

In this paper, we relax the Kihler condition and only assume that the 99-Lemma
holds, a condition which was introduced in [DGMS75]. It turns out that on a compact
complex manifold X with trivial canonical bundle the 9-Lemma guarantees that X
has a smooth universal deformation. In addition, all sufficiently small deformations
are again of this type (Section 3). Note that the triviality of the canonical bundle in
itself is not strong enough: both properties are known to fail without the 9-Lemma
(see [Uen80, Rolll] for examples).

A key result for compact Ké&hler manifolds with trivial canonical bundle is the
Beauville-Bogomolov decomposition, which says that every such manifold is (up
to a finite cover) a product of manifolds of three types: complex tori, Calabi-Yau
manifolds and irreducible holomorphic symplectic manifolds. In Section 2 we prove a
weaker analogue of this and show by example that the decomposition theorem does
not hold assuming only the 9-Lemma.

Of the above three types, irreducible holomorphic symplectic manifolds have the
richest general theory and we study the following generalisation of this class in more
detail.
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Definition 1.1 — A 99-complex symplectic manifold is a pair (X,c) where X is
a compact complex manifold satisfying the d9-Lemma and o € H%(X, Qgg) is a d-
closed holomorphic symplectic form. We say X is simple if o is unique up to scalars,
that is, h?0(X) = 1.

By [CT17], on a d9-complex symplectic manifold X one can define the Beauville—
Bogomolov-Fujiki quadratic form ¢, on H35(X,C) (see Definition 4.2). Assuming
that X is simple, we show that this quadratic form behaves very much like in the
irreducible holomorphic symplectic case. For example, in this case, the period map
identifies the universal deformation space with an open subset of the quadric defined
by ¢, (Section 4).

In the non-simple case, the local Torelli theorem still turns out to hold, but the
relation between the quadratic form and the deformation space breaks down, as we
show in Section 4.B.

Throughout the paper we mention open questions about the only partially ex-
plored class of 0-complex symplectic manifolds.

Acknowledgments. Ben Anthes and Sonke Rollenske gratefully acknowledge sup-
port from the DFG via the Emmy Noether program. We enjoyed discussions on parts
of this project with Andreas Krug and we thank Nicolas Perrin for some discussions
about Grafmannians. Adriano Tomassini is granted with a research fellowship by
Istituto Nazionale di Alta Matematica INAAM, and is supported by the Project
PRIN “Varieta reali e complesse: geometria, topologia e analisi armonica”;, by the
Project FIRB “Geometria Differenziale e Teoria Geometrica delle Funzioni”, and by
GNSAGA of INdAM. Andrea Cattaneo is supported by Labex MiLyon and by GN-
SAGA of INdAM.

Andrea Cattaneo and Adriano Tomassini are grateful to Ben Anthes and Sonke
Rollenske for their kind hospitality at Marburg University during the preparation of
the paper.

Notation. Throughout this article, we work with complex manifolds. If X is a

compact complex manifold, we consider the double complex (A**(X), 9, d) of smooth

complex valued differential forms on X, where d = 9+ 0 is the usual decomposition.
Recall that X is said to satisfy the 90-Lemma if

ker  Nker &N (im d + im ) = im 90,
see [DGMST5] or [Angl4] for further discussion.

2. STRUCTURE OF THE ALBANESE MAP

In this section we study the structure of the Albanese map of compact complex
manifolds with trivial canonical bundle and satisfying the 9d-Lemma. This line
of inquiry is inspired by work of Matsushima [Mat71], Lichnerowicz [Lic69] and
Kawamata [Kaw81, Thm. 24].

Lemma 2.1 — Let X be a compact complex manifold of dimension n satisfying the
00-Lemma. Assume §2 is a nowhere vanishing holomorphic n-form. Then the linear
maps

Ag: HY'(X) = HX(X), [o] = [2Aq]
Ag: HZY(X) = HE(X), [a] = [QAal

are both isomorphisms.



89-COMPLEX SYMPLECTIC MANIFOLDS 3

Proof. If we denote by AP9(X) the space of smooth forms of type (p,q) and by
A1(X, Q) the space of smooth forms of type (0,¢) with values in Q% the bundle
of holomorphic p-forms, then the natural map

AN(X,Q5) - APH(X), pQa—pAa
is an isomorphism. Thus, without using the d0-Lemma, we recognise Aq as the
composition of isomorphisms

HY'(X) —= HI(X,0x) =2 HI(X, Q%) —— HP(X),

where the middle arrow is induced by the trivialising section -Q2: Ox — €%
We now use the 09-Lemma to the extent that on X there is a decomposition

HE(X,C) = €D HZY(X)
ptq=k
with the additional symmetry Hg’q(X ) = Hg’p (X) under complex conjugation in

the complex vector space H, C’fR(X, C). Using those representatives for Dolbeault
cohomology, we have Ag = Ag and the claim follows. O

Remark 2.2 — If in the situation of the Lemma the manifold X is Jd-complex
symplectic with symplectic form o and 2 = ¢”, then Ag = A?. From this one can
deduce that, for example, the map A, : H%"9(X) — H*49(X) is injective.

Example 2.3 — Maybe somewhat suprisingly, Lemma 2.1 may fail without the
additional symmetry provided by complex conjugation, even if the Frolicher spectral
sequence degenerates at F1. As an example consider a Kodaira surface as described
in Section 5.C. Then Q) = w; Aws is a holomorphic volume form and w; is a generator
for H%’O(X) C H2?,(X,C), that is, a holmorphic 1-form. But

Ale = w1 /\Q = w1 Aw1 Nl = (5&]2) N Wo :5((&)2/\5}2)

is trivial in Dolbeault cohomology.

Proposition 2.4 — Let X be a compact complex manifold of dimension n with
trivial canonical bundle and satisfying the 00-Lemma. Then the evaluation map

b: HO(X, Tx) x H(X,Q%) - H'(X,0x) =C
1s non-degenerate.

Proof. Let € be a trivialising section of (2% such that fX QOAQ=1. By Lemma 2.1
(and the first part of the proof) the vertical arrows in the diagram

HO(X, Tx) x HO(X, QL) —2— HO(X Ox) == C
l(—@Q)fo AQAQ H
HOX, Tx @ Q%) x H™(X, QL) S gn(x on) =X,

are isomorphisms. To make the diagram commute, the pairing in the second row
has to be evaluation on the bundle part and wedge on the form part, followed by
integration over X. This is exactly the definition of the Serre-Duality pairing (see
e.g. [Huy05, Ch. 4.1]), which is non-degenerate. Hence, our claim follows. O
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Remark 2.5 — Recall from [Uen74]| that for a compact complex manifold the Al-
banese torus is defined as

Alb(X) = HY(X,dOx)*/H,

where H%(X,dOx) C Hli(X,C) is the space of closed holomorphic 1-forms and H
is the closure of the image of Hy(X,Z) in H°(X,dOx)*. Fixing a base point in X,
integration over paths gives the Albanese map o: X — Alb(X), which is universal
for pointed maps to complex tori.

If X satisfies the 00-Lemma, then every holomorphic form is automatically closed
and the image of Hy(X,Z) in H%(X,Q%)* is indeed a cocompact lattice, so that
Alb(X) is a complex torus of dimension h' (X, Ox) = $b1(X).

Theorem 2.6 — Let X be a compact complex manifold with trivial canonical bundle
and satisfying the 00-Lemma. Let G = Autp(X)g be the connected component of
the identity of the holomorphic automorphism group of X and a: X — Alb(X) the
Albanese map with respect to a base-point xg. Then the following hold:

(i) The map
0: G— Ab(X), g alg-xo)

is a holomorphic covering map of complex Lie groups. In particular no
holomorphic vector field on X has zeros and the stabiliser of any point in
X s discrete in G.

(ii) The Albanese map is a surjective holomorphic submersion with connected

fibres.
(ii1) FEwvery fibre is a compact complex manifold with trivial canonical bundle.

Remark 2.7 — If in Theorem 2.6 X is in Fujiki’s class C, then the fibre of the
Albanese map is also in class C, and hence satisfies the 0-Lemma.

Does this hold true if the total space X is not in class C but only satisfies the
00-Lemma?

If the answer to this question is positive, then the fibre F' of the Albanese map
would also satify the assumptions of Theorem 2.6 and, therefore, we could inductively
understand the structure of X.

Proof of Theorem 2.6. It is well known that G is a complex Lie group [BM47]. The
first item follows immediately from Proposition 2.4, because the differential of the
group homomorphism ¢,

(28) DidQO: g= (HO(XaTX)a[iﬂi])HHO(X7Q}()*’

is the map induced from the evaluation pairing b.

Since the orbit G-z¢p maps surjectively onto Alb(X), so does X and « is surjective.

As changing the base point changes the Albanese map only by a translation in
Alb(X), (2.8) also implies that « is a submersion in every point and hence every
fibre F' is smooth with trivial canonical bundle Kp = K X|p-

It remains to prove that « has connected fibres. For this consider the Stein fac-
torisation

X conn. Y

fibres
X Biﬁnite

Alb(X).
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Because « is a submersion, the finite map § is a submersion, that is, Y is a complex
torus as well and [ is an isogeny. By the universal property of the Albanese map,
deg 8 =1 and « has connected fibres. O

Remark 2.9 — If in Theorem 2.6 the manifold X is Kahler, then, for example by the
Beauville-Bogomolov decomposition theorem [Bea83|, the orbits of G are compact
and the map G — Alb(X) is an isogeny of complex tori, so that after a finite cover
X splits as a product of a complex torus and a simply connected manifold.

The example of the deformation of the Nakamura manifold shows [CT17] that
this conclusion does in general not hold without the Kéhler assumption (cf. also
Example 2.13 and 2.14).

Theorem 2.6 immediately implies:

Corollary 2.10 — Let X be a compact complex manifold with trivial canonical
bundle and satisfying the 00-Lemma. Then the Albanese map a: X — Alb(X)
mduces an injection

o*: H*(AIb(X),C) 2 \" HY(X,C) — H*(X,C).
We deduce as in [Kaw81, Thm. 21]:

Corollary 2.11 — Let X be a compact complex manifold with trivial canonical
bundle and satisfying the 89-Lemma. Then by(X) = 2h%(X, Q%) < 2dim X and
equality holds if and only if X is a complex torus.

Proof. By Theorem 2.6, the Albanese map is surjective; hence, the inequality fol-
lows. In case of equality, « is a finite holomorphic submersion of degree 1, i.e., an
isomorphism. ]

Corollary 2.12 — If b1(X) > 0, then the topological Euler-characteristic vanishes.

Proof. Differentiably, X — Alb(X) is a locally trivial fibre bundle with typical fibre
F by Theorem 2.6. Since the topological Euler number is multiplicative in fibre
bundles, the result follows as soon as 1b;(X) = dim Alb(X) > 0. O

Example 2.13 (cf. [CT17, Ex. 4.2]) — Let N = (I x I'"")\(C x C?) be the complex
parallelisable Nakamura manifold and 7" a 1-dimensional complex torus. Let X =
N x T and consider the deformation of X defined by

(1,0)-forms: ¢} = dz! — tdz! (0,1)-forms: w} = dz! — tdz!
F = e dz? w? = e dz?
03 = e?' dz3 w = e*' dz3
of = dz* wi = dzt.
It is then easy to see that the deformed manifold X; has the structure equations
dp} =0 dw} =0
45t = — bt A+ et Al d? = — et A -l nw?
A = Dogl A — gt Al def = g A+ o Al
dot =0 dw} = 0.

and that X; is a complex symplectic manifold by means of the form

= el + o
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We point out here that X; satisfies the 9-Lemma for every ¢ # 0, while the central
fibre does not by [AK17]. Moreover, we have

Lok o3, pd) fort =0,
HO(Xt,Qh) :{ (g, ©0, P #0)

{t: 1) for ¢ # 0.
We consider then the holomorphic map
f: Ny xT — (I\C)xT

([Gzf, 22, 200 [28]) — (=] [2]),

and so after the choice of a base point on X; we get a commutative diagram

X, L o) xT

x gt
A

Ib(X¢)

We observe now that for ¢ # 0, both (I'\C) x 7" and Alb(X;) are 2-dimensional
complex tori, so g; is an isogeny and a; '(p) = f~(gi(p)) for every p € Alb(Xy).
The fibres of f are easy to describe: from the structure equations above we can easily
see that they are all 2-dimensional complex tori.

We want also to observe that the central fibre has trivial canonical bundle, does
not satisfy the d9-Lemma and has 2h*?(X() = dim X = 4, but X is not a complex
torus. In fact, we have H°(X,dOx) = (¢}, ¢3) and the Albanese torus is only of

dimension 2. So this example shows that Corollary 2.11 is false without assuming
the 00-Lemma.

Example 2.14 — Here we consider again small deformations N; (¢ # 0) of the
Nakamura threefold to see Theorem 2.6 in action and point out some differences to
the Kéhler case.

Following [Nak75, p. 98, case 1| we can describe NV, as the quotient of a solvable
real Lie group N, which as a complex manifold is N 2 C? = C x C2, by the following
action of a lattice I' = IV x I', where I = Z ® Z - 2mi:

Pe(wr, wa2,w3) : c3 — C3
(24,22, 2%) — (2l 4+ wp +tog, e 22 +wa, e W23 + ws).

For small values of ¢, the map 7 : I' — C defined as v (w1) = wy + taw; is injective,
and its image is then a lattice isomorphic to I
Consider the action on N given by

H=C <= Autp(N), c— T

where 7.([(21,22,2%)]) = [2! + ¢,22,2%]. Note that the action of H descends to a
holomorphic action on Ny, and since dim Autp(N;) = h%(X, Tx) = h0(X) =1 by
Proposition 2.4 we see that H is the universal cover of the identity component of the
holomorphic automorphism group of V.

Let 29 € N; be the image of the identity elemente 0 € N. Then clearly the orbit
H -0 C N is isomorphic to C and it is easy to check that H - 0N T 2 Z. Therefore
the orbit Autp(Ny)o - xo is isomorphic to C* and not closed in Ny, because Ny is
compact.

In particular, the action of Autp(NV¢) induces a holomorphic foliation without
closed leaves on NV; and the map Autp(Ny) - xg — Alb(NV¢) has infinite degree. This
illustrates Theorem 2.6 for the manifolds /V;, and also highlights the differences to
the Kéahler case, compare Remark 2.9.
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Question 2.15 — Can one extend, at least partially, the above results to a larger
class of manifolds, assuming, for example, that ¢;(X) =0 in H}B’é(X ), advocated in
[Tos15], or even only that the Kodaira dimension x(X) = 07?

3. UNOBSTRUCTED DEFORMATIONS AND STABILITY OF PROPERTIES

Eventually, we want to study deformations of d0-complex symplectic manifolds,
but the first results go through under the weaker assumption that the 09-Lemma
holds and the canonical bundle is trivial, so we work in this setting.

3.A. Stability of properties. To have a sensible theory we need to show that the
property of being d0-symplectic is open in the universal family of deformations.
Again, this also works in the more general setting where we just assume that the
canonical bundle is trivial. In the hyperkéhler setting this was done in [Bea83, Prop.

9 (p. 771)].

Proposition 3.1 — Let X be a compact complex manifold and let f: X — B be
a small deformation of X = Xy. If X satisfies the 00-Lemma (or if the Frélicher
spectral sequence for X degenerates on the first page), then every sufficiently close
neighbouring fibre satisfies the 00-Lemma (or its Frolicher spectral sequence degen-
erates on the first page, respectively,) as well. Assuming either of these,

(i) if Kx is trivial, then Kx, is trivial for t sufficiently close to 0;

(ii) if X admits a complex symplectic form, then X; admits a complex symplectic

form for t sufficiently close to 0.

Proof. The deformation openness of the d0-Lemma or the Ej-degeneration of the

Frolicher spectral sequence are known; for the convenience of the reader we include

a proof for the former, following [AT13, Cor. 2.7], the latter being similar but easier.
By loc. cit., on a compact Complex manifold Y,

2,(Y) < > WBLY) + BRUY),

p+q=k

and equality holds for every k if and only if Y satisfies the §9-Lemma (here A5 (Y)
and h’;"q(Y) are the dimensions of Bott—Chern and Aeppli cohomologies, respec-
tively). Hence, the result follows by upper semi-continuity of these numbers: indeed,
if yt is a small deformation of Y = ), then

2p(Y) = Y WBLO0) + RN = D ML) + WD) > 26 (Vh) = 26k (V).
pt+q=k pt+q=k
Then the Hodge numbers h??(Xs) are constant: by upper semi-continuity (|Voi07,
Cor. 9.19]) we have that hP9(X5) < hP9(X)), and since

DX = be(X) = bp(Xo) = Y BPU(Xp),

ptg=k ptq=k
we deduce that hP(X;) = hP9(X,) for every (p, q). Thus, for all k the sheaf f, Q% Y|B

is locally free with fibre HO(X;, Q’j(t) at t. Shrinking B further, if necessary, we may
assume that all these vector bundles are trivial, so that for every holomorphic form
on the central fibre, we can choose an extension to the total space.

To conclude the proof, it thus suffices to observe that the locus where a holomor-
phic n-form does not vanish, respectively, a holomorphic 2-form is non-degenerate,
is open and thus, by properness of the map, contains a neighbourhood of the central
fibre, as claimed. O
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Remark 3.2 — The property of Kx being trivial is not open in a family without as-
suming F1-degeneration of the Frolicher spectral sequence, as the example in [Uen80)
shows.

3.B. Unobstructed deformations. It seems to be well known that the Ké&hler
condition in the celebrated Tian—Todorov Theorem on unobstructedness of deforma-
tions of Calabi—Yau manifolds can be weakened, but it appears that in the literature
this is at best stated implicitly.

For example, after minor changes, the proof in [Huy05, Ch. 6] works for manifolds
satisfying the 9-Lemma. Even stronger, the proof in [KKP0S8, p. 154] shows:

Theorem 3.3 (Generalised Tian-Todorov Theorem) — Let X be a compact com-
plex manifold with trivial canonical bundle. If the Frolicher spectral sequence for X
degenerates on the first page, then X has unobstructed deformations.

For convenience of the reader we present a rough tour through the proof by Kont-
sevich, Katzarkov and Pantev and provide some supplementary details where the
degeneration assumption is used.

Sketch of proof. The following arguments show smoothness of the formal moduli
space, which implies that the Kuranishi space is smooth as well; hence, deforma-
tions are unobstructed.

To show that the formal deformation space is smooth, it has to be shown that the
Kodaira-Spencer dg Lie algebra is homotopy abelian (loc. cit. Definition 4.9). This
is achieved through the fact that it is a direct summand of another dg Lie algebra,
so that it suffices to show that this larger one is homotopy abelian. But by loc.
cit. Theorem 4.14 (1), this holds as soon as the corresponding dg Batalin-Vilkovisky
algebra satisfies the so-called degeneration property (loc. cit. Definition 4.13; cf.
below). This algebra happens to be isomorphic to the Dolbeault double complex
(.A}*,g, 0). To complete the proof, all that is left to show is that the latter satisfies
the degeneration property; that is, we have to show that for each positive integer
N > 1, the cohomology H(AY" ®c Clu]/(u™),d + ud) is a free Clu]/(u)-module.

To this end, we compare the spectral sequences (E;*)" and (E,™)" associated
with the double complexes (A} ®@c Clu]/(u?), ud, d) and (AY" ®@c Clu]/(u"),d,d),
computing the cohomology of their total complexes H(AY" ®c Clu]/(uV),d + ud)
and H(AY ®c Clu]/(u),d), respectively. They have the same cohomology groups
on the first page and d| = ud}. Furthermore, (E1)” = E; ®c Clu]/(u!) is obtained
from the Frolicher spectral sequence of X by scalar extension. Thus, if the Frélicher
spectral sequence degenerates at the first page, so do the other two; a posteriori, they
even become isomorphic. Consequently, H(AY" ®@c Clu]/ (uN), 0 +ud) is isomorphic
to H(X,C) ®c Clu]/(u) through those spectral sequences and so it is free over
Clu]/(u), as claimed. O

Remark 3.4 — Without assumptions like the degeneration of the Frélicher spectral
sequence on the first page, the result is definitely far from true. As shown in [Rolll],
most complex parallelisable nilmanifolds have obstructed deformations, for example
if they contain an abelian factor.

Corollary 3.5 — Let X be a compact complex manifold with trivial canonical bundle
whose Frélicher spectral sequence degenerates at the first page. Then the Kuranishi
family of X is a smooth universal deformation.
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Proof. By Theorem 3.3, the Kuranishi family is indeed smooth. To see that is also
universal we have to check that the number of independent holomorphic vector
fields remains constant in a neighbourhood of the central fibre by Wavrik’s theo-
rem [Wav69|. By Proposition 3.1, nearby fibres X; also have Ej-degeneration of the
Frolicher spectral sequence, hence, the Hodge numbers remain constant. Thus, using
the isomorphism of the tangent bundle and the bundle of holomorphic n — 1 forms
induced by a trivialisation of the canonical bundle we have,

WXy, Tx,) = h2(Xp, Q%) = (X, Q) = (X, Tx),
which concludes the proof. ]

4. LoCcAL TORELLI FOR 00-COMPLEX SYMPLECTIC MANIFOLDS

We now study period maps of 90-complex symplectic manifolds, closely following
Huybrechts’ exposition [Huy03, 22.3]. Similar results were obtained (in a much more
conceptual way) by Kirschner for singular symplectic spaces of Fujiki’s class C [Kir15].

Theorem 4.1 (Local Torelli) — Let (X,0) be a 8d-complex symplectic manifold.
Then the period map for the Hodge structure on H?(X,C),

Px: Def(X) — Grass(h*°(X), H*(X,C)), s— [H*°(X,)],
1S an mmmersion.

Proof. Let Def(X) be the universal deformation space of X, which exists and is
smooth by Corollary 3.5. We only need to show that the differential of the period
map,

dPx: Ty Def(X) = H' (X, Tx) — Hom (H*°(X), H*(X,C)/H*°(X)),

is injective, that is, for any k € H'(X,Tx) the homomorphism Px (k) is non-zero.
Evaluating on the symplectic form o we have dPx(k)(o) = ko, by Giffiths’ descrip-
tion of the derivative, and this is non-zero, because contraction with the symplectic
form o induces the isomorphism H(X, Tx) = HY(X) c H*(X,C). O

4.A. The period map and the Beauville-Bogomolov—Fujiki form. One of the
most useful features of the Beauville-Bogomolov—Fujiki quadratic form in hyperkah-
ler geometry is its relation to the period map. We will now show that this extends
to the case of simple 9-complex symplectic manifolds, but fails in the general case.

Definition 4.2 — Let (X, o) be a 9-complex symplectic manifold of dimension 2n.
The Beauville-Bogomolov-Fujiki quadratic form q,: H*(X,C) — C is defined as

(o) = /X (05)" /X 02(05)" ! 4 (1 —n) /X a0 15" /X 0051

Quite often, it is assumed that the symplectic form is normalised in such a way
that [, (00)" = 1. This is not a restriction since rescaling by a complex scalar
t € C* has the effect that g, = [t|*"2¢,. (We learned the correct version of ¢, for
non-normalised forms from [Leh].) In particular, the quadric in P(H?(X,C)) defined
by ¢, is independent of the normalisation. For a proof that this indeed defines a
quadratic form and for its most important properties we refer to [CT17].

We will show that for simple 00-complex symplectic manifolds, the image of the
period map is contained in the quadric defined by the Beauville-Bogomolov—Fujiki
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quadratic form. For sake of generality, we first formulate a result which still holds
in the general case (cf. Remark 4.14).

Lemma 4.3 — Let (X,0) be a 2n-dimensional 09-complex symplectic manifold.
For each element o € H?(X,C) which decomposes as o = Ao + a(1,1) + po, where
A p € Cand ag gy € HY(X), we have [(06)" [ a"t1a" ™t = (n+ 1)A" gy (a).
In particular, if X # 0 and o™ =0, then g, (a) = 0.

Note that if X is simple, then every element of H?(X, C) has such a decomposition,
so that this becomes an empty condition in this case.

Proof. (Cf. [Huy03, proof of Lemma 22.9]) For « of this particular form, it is easy

to compute
o) =2 ([ o) + 2 [ aqntoor [ oy

1
/ a"tlgn—l = (n+ 1))\”,u/ (co)" + <n—21— ))\"_1/ a(m)(a&)”_l.
X X X

These readily yield the claimed identity [y (06)" [y a"T16" ™t = (n+ 1)A" g, ().
The in particular-part is clear and the proof is complete. ]

and

Corollary 4.4 — Let (X,%) — S be a deformation of a simple 00-complex sym-
plectic manifold (X,0) = (Xo,X|x,) and denote o5 = X|x, € H*°(X;) for each
s € S. Then there exists an open neighbourhood U C S of 0 such that ¢,(os) = 0
and qy(0s + ds) > 0 for each s € U.

Proof. With respect to the complex structure for X, the class o, is of type (2,0);
thus, its powers beyond n := %dim(X ) vanish. Furthermore, in the type decom-
position o5 = Aso + (05)(1,1) + ps0 (with respect to X = &), the coefficient A
is different from zero for s sufficiently close to 0, for continuity reasons. Thus,
Lemma 4.3 gives ¢, (0s) = 0 in an open neighbourhood of 0. Similarly, ¢, (o5 + J5) is
real and varies continuously with s € S; hence, go(0 + &) = ([ (05)™)* > 0 implies
that g,(os + ds) > 0 for each s in a certain open neighbourhood, as claimed. O

If (X, 0) is a simple d9-complex symplectic manifold, then so are the neighbouring
fibres in the universal deformation X — Def(X) (cf. Corollary 3.5) and we can choose
a ¥ extending ¢ € H*°(X), and in fact there is only one such up to invertible
resacling. In particular, the line spanned by Y|y, in H?(X,C) does not depend on
the choice of 3; clearly, this recovers the period map. Therefore, we conclude:

Corollary 4.5 — Let (X, ) be a simple 09-complex symplectic manifold. Then the
period map Px : Def(X) — P(H?(X,C)V) takes values in

Qx = {Ca e P(H*(X,C)Y) | ¢s(a) = 0 and g,(or + @) > 0}.

With this result at hand, we can finally state the strengthened local Torelli theorem
in the simple case.

Theorem 4.6 (Local Torelli Theorem, simple case) — For a simple 90-complex
symplectic manifold X, the period map P: Def(X) — Qx is a local isomorphism.
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Proof. The spaces Def(X) and Qx are smooth (by Theorem 3.3, respectively, [CT17,
Theorem 2|), and have the same dimension h!(X) = h?(X) — 2. Hence, the claim
follows from the general local Torelli Theorem 4.1. O

For later reference we record the following consequence.

Corollary 4.7 — If (X,0) is a simple d9-complex symplectic manifold and if o’ is
the symplectic structure on a nearby fibre in the universal deformation space, then
¢o and q, define the same quadric in H*(X,C).

Proof. In fact, the universal deformation space of X is also the universal deformation
space for all nearby fibres X, and the implicit identification H?(X,, C) = H?(X,C)
granted by Ehresmann’s Theorem is compatible with the respective period maps.
Thus, the two smooth hypersurfaces in P(H?(X,C)) defined by ¢, and q,, have the
image of the peroid map as an open subset in common; consequently, they agree. [

We give a sample application how this is often used in the theory of hyperkihler
manifolds.

Proposition 4.8 — Let (X, 0) be a simple 0-complex symplectic manifold. Then
a very general small deformation of X has algebraic dimension zero and does not
contain any effective divisor.

Proof. Consider the countable union of hyperplanes of the form a* ¢ P(H?(X,C))
for all o € H?(X,Q)\ 0, where the orthogonal complement is computed with respect
to the quadratic form ¢g,. The complement of this union in Qx, say V C Qx, is
inhabited, as A% (X) > 0 (by [CT17, Theorem 1 & 2]). Since the period map is a
local isomorphism onto @y, we can, therefore, choose a small deformation (X', o”)
whose period point [0/] lies in V. By Corollary 4.7, the quadratic forms ¢, and
q, agree up to an invertible scalar factor and so ¢’ is not orthogonal to any o €
H?(X,Q)\0 also with respect to ¢,. But by [CT17, Lemma 2.11], every (1, 1)-class
is orthogonal to ¢’; hence, H%’l(X’) NH?*(X,Q) =0.

Now assume this small deformation (X', ¢’) contains an effective divisor D. Then
the class of D in cohomology is a rational class of type (1,1) and, hence, trivial.
By the 99-Lemma, we have [i00f] = c¢1(D) for some smooth function f, which is
plurisubharmonic since i90f is the current of integration along D, hence positive
by Lelong’s theorem (cf. [BHPVAV04, IV 3 Ex. 3.2] and the references therein, for
example). But plurisubharmonic functions on compact manifolds are constant and
so D is trivial.

In particular, all meromorphic functions on X’ are constant, for any non-constant
meromorphic function would give rise to a divisor. ([l

4.B. Period maps in case h?" > 1. For a non-simple 00-complex symplectic
manifold (X, o), the period map considered in Section 4 maps into the Grafmannian
variety Grass(h??(X), H?(X,C)), whereas the quadratic form ¢, defines a quadric
in P(H?(X,C)). However, if we consider a family of complex symplectic manifolds
f: X — S together with a family of symplectic forms o, € H?%(X), depending
holomorphically on s € S, we can consider the map S — P(H?(X,C)), s — Cos,
resembling the period map in the simple case.
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A natural question arises here, namely, whether the image of this map is contained
in the quadric defined by ¢,,, at least for s € S sufficiently close to 0 € S. The
examples provided below (Example 4.11 and 4.12) show that this is not the case.

Nonetheless, it seems worthwhile to make the above idea precise in a universal
fashion. Let f: X — Def(X) be the universal family. We consider the pullback P*i
of the tautological vector bundle & C H?(X,C) x Grass(h*°(X), H?>(X,C)) on the
Graffmannian variety along the period map P: Def(X) — Grass(h*?(X), H*(X, C)).
For sake of properness, we pass to the projectivisations P(P*i) — P(4l). Over a point
s € Def(X), this gives the linear inclusion P(H*%(X;)) C P(H?(X,C)). The subset
of P(P*4) consisting of the classes of symplectic forms is open. Therefore, the germ
Def(X,0) C P(P*4) of the class of a symplectic form o € H*?(X) is an analytic
germ with a natural map Def(X, o) — Def(X), whose fibre over s € Def(X) con-
sists of the classes [o5] € H?9(X;) of symplectic structures on X near og. It seems
natural to consider the map into the partial flag manifold

(49)  Def(X,0) — Flag(1, h*°(X); H*(X, C)), (Xs,[o]) = ([os], [H* (X)),

refining the period map. Note that the composition of this map with the projection
onto the Grakmannian Grass(h??, H?(X,C)) recovers the period map; since the
latter is injective by the local Torelli theorem 4.1, so is this period-like map.

The composition of the map (4.9) with the projection of the flag variety onto
P(H?(X,C)) gives the map

(4.10) Def(X,0) = P(H*(X,C)), (X, [o4]) — [os],

resembling the period map in the simple case even if X is not simple. We will refer
to it as the naive period map.

The following examples show that for non-simple 9-complex symplectic manifolds
the image of the naive period map (4.10) may not be contained in the quadric defined
by the Beauville-Bogomolov—Fujiki form.

Example 4.11 (Complex tori) — Let X be a 4-dimensional complex torus and
denote as usual by dz!,...,dz* the standard holomorphic coframe of (1,0)-forms.
Consider the complex deformation of X given by

dw' = dz' + t1dz3
dw? = dz? + tydz*
dw?® = dz3 + t1dz!
dw* = dz* + t9dz?,
and the complex symplectic form on X;
= dw'? + dw** + t3dw'® + tydw*,

where t = (t1,t, t3,t4) varies in a small polydisc centered in the origin of C*. Observe
that on the central fibre X = X, the form ao reduces to the standard symplectic
form o = dz'? + dz3*. We will show that ¢,(o;) # 0, namely, that

(Ja(at):/x(aa /Utaa—/ - /UtUU#O

Set Vol = dz'?3* A dz'?%4, then we can compute the four integrals involved:
fX(05)2 =4[y VO];
(ZZ) fX o 0'5' = 4t1t2(1 — t3t4) fX Vol
(iii) [ otaa =4 [ Vol;
(i) [y 01026 = dt1ty J Vol.
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2
QU(Jt) == *16t1t2t3t4 </ VOI) 5
X

which is clearly not identically zero on the polydisc.

Therefore,

Example 4.12 (Products of dd-complex symplectic manifolds) — We now con-
sider the deformation space and period map for products of d0-complex symplectic
manifolds. For simplicity, we stick to the case of two factors.

So assume that (X1,01) and (X3,02) are d9-complex symplectic manifolds and
let X = X1 x X5. Assume further that H'(X5,C) = 0. Then we have

(4.13) H*(X,C)= H*(X1,C) ® H*(X,,C) > H**(X) = H*°(X)) ® H*°(X>)
and
HYX,Tx) = H'(X1,Tx,) ® H' (X2, Tx,),

where the latter is proved either using the isomorphism Tx = Q}( provided by the

symplectic form or simply by the Leray spectral sequence for the projection onto one

factor. Note that this behaviour hinges on b;(X2) = 0, as products of tori show.
Since Def(X) is universal by Corollary 3.5 we conclude that

Def(X) = Def(X;) x Def(X3).

Therefore, the period map Px can be decomposed as in the following diagram:

Def(X) L Grass(h*°(X), H?(X,C))
H T(U17U2)’_)U1@U2

Def(X1) x Def(X2) 222 Grass(h20(X1), H2(X1,C)) x Grass(h20(Xa), H3(X,, C))

We see that even if we start with X7 and X5 simple, the codimension of the image
of the period map increases drastically.

We now specialise this example to show that the image of the naive period map
(4.10) is not contained in the zero-locus of the Beauville-Bogomolov—Fujiki quadratic
form.

Let X; and X5 be two K3 surfaces, and X = X; x Xo. Denote by o; € H>0(X;)
generators such that [ x, 0i0i = 1. For ease of notation we do not distinguish forms
on X; and their pullbacks that is, the product symplectic form on X is o = o1 + 09
and it satisfies [, (05)% = 4 by our normalisation for the o; chosen above.

Observe that on X; the Beauville-Bogomolov—Fujiki form associated to o; reads
as

1
QUi(QDi) = 2/ 8012? Yi € HQ(Xia(C)a
X;

and in particular it is independent of ¢;. The Beauville-Bogomolov—Fujiki quadratic
form associated to o is then

qa(¢)=4/ 90205/ s0052/ po’a,
X X X
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and decomposing ¢ = 1 + @2, where ¢; € H?(X;,C), we can compute that

/goza(?:/ w%+2/ s0101/ 80252‘1'2/ @151/ 90202-1-/ 8053
X X1 X1 Xo X1 X2 X2

/ ¢002:2/ @101—1—2/ ©209;

X X1 X2

/ 90025:2/ 90101+2/ P2072.

X X1 Xa

Hence,

o () = 8(qo (1) + Goy (92)) — 4 </X1 P101 —/X2 90202> (/Xl p101 —/X2 @202).

It is then possible to find a deformation (X4, 01¢) such that the projection of oy,
on the op-axis is close to (but different from) o and the projection on the &-axis is
close to 0. Consider then the induced deformation (X, 0;) = (X1 x Xo,01¢ + 02)
of (X,0): to compute ¢,(0o¢) we observe that
(1) qo,(01t) = goy(02) = 0 since a K3 surface is simple;

(1) le 01,401 — sz 0909 is close to zero, and different to zero for ¢ # 0;

(iii) le 01,01 — fXQ 09209 = le 01,t01 is close to 1.
So this means that ¢,(o¢) # 0 for t # 0.

Here is a more concrete example. We take X; to be the Kummer surface associated
to a 2-dimensional torus, and consider the deformation of X; induced by a deforma-
tion of the torus. In particular, if we let dz',dz? be a basis for the (1,0)-forms on
the torus, then we can consider

dw!' = dz' + tdz?
{ dw? = dz? + tdz',

and o; induced on X1, by the invariant form
(1+ t)dw'® = (1 + t)(dz"? + tdz" — tdz?? — £2dz"2)

on the deformed torus.
Thus, the image of the naive period map is not contained in the zero locus of g,.

Remark 4.14 — There are two more observations concerning the image of the naive
period map (4.10) that should be mentioned. If (X,%¥) — S is a deformation of
a 00-complex symplectic manifold (X,0) = (Xp, X|x,) which does not change the
complex structure, i.e., only varies the symplectic form, then ¢,(0s) =0 forall s € S,
simply because ¢, is trivial on H*°(X). In particular, the image of the naive period
map (4.10) is contained in the quadric defined by ¢, unless X varies non-trivially.

Likewise, the conclusion of Corollary 4.4 holds also in the non-simple case as long
as the deformed symplectic form remains in Span{o,7} ® H%'(Xy) C H?(X,C), by
the same proof. Those deformations will be controlled by the quadric defined by ¢,
in P(Span{o,7} ® H'1(Ay)) C P(H?(X,C)), again by the same line of arguments.
However, those special deformations seem to be of little interest.

4.C. Period map for complex tori. We discuss one further case where the period
map can be described explicitly.

Consider the real torus 72" = R?"/Z?" and let V = R?® @ C. A complex structure
Jy on T?" is given by a decomposition V* = U ® U, where U is identified with the
space of (1,0)-forms. In other words, if 7: R?® < V —» U* is the natural projection,
then Xy = (T, Jy) = U/n(Z*").
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It is well known that
Hk(XUv C) = /\k V= @erq:k /\p U® /\q U

is the Hodge decomposition of Xy and that the local period map for the Hodge
structure on H',

Pl: Defy, — Grass(n,V*),

is an immersion onto an open subset, the Siegel upper half space. Thus, the period
map for the Hodge structure on H? is given as the composition

Def x,, P Grass ((g), A’ V*)
(4.15) \ /
P! Wis A2 W
Grass(n, V*)

Example 4.16 — Consider 2-tori, that is, the case n = 2 in the above diagram.
Then Grass ((3), /\2 V*) =~ P5 and h is the Pliicker embedding of the Grafmannian

Grass(2,4) as a quadric in P°. Considering a 2-torus Xy as a simple 99-complex
symplectic manifold we thus recover Theorem 4.6 in this case. Compare Section 5.B
for a direct computation.

To our suprise we could not track down a reference where embeddings of Grafs-
mannians as in (4.15) have been studied classically, so we give some indication how
one might work out their geometry.

The Picard group of Grass ((g), /\2 V*) is generated by an ample line bundle A,

which induces the Pliicker embedding f: Grass ((g),/\2 V*) - P (/\(Z) A’ V*) =
P, that is, A = f*H, where H is the hyperplane class in P.

Lemma 4.17 — Let B be the ample generator of the Picard group of Grass(n, V™)
and let g= foh. Then h*A=g*H = (n—1)B.

Proof. Write h*A = ¢*Op(1) = mB. We aim to prove that m = n — 1. We refer to
|[GHT78] for the basic theory of Grafmannians and Schubert calculus.

Let C be the Schubert cycle dual to B in the cohomology ring of Grass(n,V*),
then by the projection formula we have that

m=mB-C=A-h,C=H-g.C.

Recall that V* is 2n-dimensional, so if we fix a complete flag V; C ... CV; C ... C
Von, = V* with dim V; = ¢, then C' parametrises the n-dimensional subspaces of V*
which are contained in V,,41 and contain V,,_;. It is then easy to see that C' ~ Pl
once we fix a basis {z1,...,x9,} for V* then C is given by

{Span{z1,... ,xn_1,0m, + 533n+1}}(0< 1 08) € Pl} :

The choice of our basis induces the standard basis of A? V*: {z; A x;} with 1 <i <
j < 2n, and for W € C we have that h(W) = A*W is generated by z; A x; for
1 <i<j<n-—1and z; A (ax, + frpt1) for 1 < k < n —1. Now, considering
the larger Grafmannian in its Pliicker embedding f, either g(C') is all contained in
a hyperplane, or g(C') cuts such hyperplane in m points. As hyperplanes are defined
by linear combination of Pliicker coordinates, we choose the hyperplane defined by
the vanishing of a single Pliicker coordinate, the one corresponding to the choice of
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multi-indices (7,j) with 1 <i < j <n. So (up to permutations of the columns) the
corresponding coordinate is the determinant of the matrix

( oy |0 ) |
0 ‘ a - idn,1

So we see that this determinant vanishes only for & = 0 of order n — 1, this means
that m = n — 1 and so the result follows. O

To understand what happens on the level of global section we note that the maps
f, g, and h are equivariant under the natural G1(V') action. Thus, on global sections
we get the induced map of representations

HO(P, H) = HO(A) = NG A2V —2 HO(BE D) =S,y .10V,

where the right hand side is, by the Borel-Weil Theorem, the Weyl module (see
[FHO1]) of the given partition. Since the representation H°(B®"~1) is irreducible
and the map is non-zero, the map is actually the projection onto a direct summand

of H%(A), considered as a G1(V)-representation.
Thus, we can extend (4.15) to the diagram

Defx,, P Grass ((3)7/\2 V*) ML p (/\(Z) A’ V*) =P

T e ]

Grass(n, V*) P(Stn-1,..n-1,00V)*

[(n—1)B|

Note that the image of Grass(n, V*) in P is not the intersection of the larger Grak-
mannian with the linear subspace, as shown by Example 4.16, and that the codi-
mension of the image of the period map becomes very large as n grows.

5. FURTHER EXAMPLES AND QUESTIONS

5.A. Simple 85—(:0£nplex symplectic manifolds. Unfortunately, there is a lack of
exmples of simple d0-complex symplectic manifolds which are not Kéhler. Basically
the only example we know is the following.

Example 5.1 — Let X be an irreducible holomorphic symplectic (=hyperkéhler)
manifold of dimension 2n and assume we have a Lagrangian P = P" C X. Then we
can perform the Mukai-flop of X at P (see [Huy03, Ex. 21.7|) and get a holomorphic
symplectic manifold X’ which is in class C (hence satisfies the 99-Lemma) but does
not need to be Kéhler'.

So it remains to raise some questions on this class of manifolds.

Question 5.2 — Is there a simple 9d-complex symplectic manifold (with by = 0),
which is not in Fujiki’s class C?

Question 5.3 — Is every simply connected, simple, complex symplectic manifold
in Fujiki’s class C birational to a hyperkéhler manifold (possibly after a small defor-
mation)?

LAn explicit example is in [Yos01]
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Indeed one could use Theorem 4.6 to find a small deformation of X which has a
rational (1, 1)-class a such that ¢,(«) > 0. Can one then construct a Kéhler current
in this class?

Remark 5.4 — The examples constructed by Guan |Gua95a, Gua95b| probably do
not satisfy the 09-Lemma, although there seems no written proof for that.
Related constructions are given by Toma [Tom01].

5.B. Complex tori. We perform some computations on the Beauville-Bogomolov—
Fujiki form on complex tori in general, and then make it explicit in dimension 2
and 4. The Dolbeault algebra (and the Dolbeault cohomology) of a complex torus
T of dimension 2n is freely generated by the 2n forms of type (1,0) induced by the
coordinates on C?": we call them z1, ..., x2, and let Z; be the (0, 1)-form conjugate
to x;.

A basis for the space of (2,0)-forms is x; A z; with 1 <i < j < 2n, a basis for the
space of (0,2)-forms is obtained by conjugation of this one, and finally a basis for
the space of (1,1)-forms is x; A Z; with 1 <i,j < 2n.

Let
o= E )\ijxi ATy
1<i<j<2n

be a (2,0)-form: then it is (d-closed, d-closed and) non-degenerate if and only if we
have p # 0 in the expression ¢” = - x1 A ... A X2y With

p=> e(i,ij,... R R
and the sum is over all the partitions of {1,...,2n} in disjoint couples {il,di}, ...,
{it, i} with ¢f < b forall 1 <t <n.
Remark 5.5 — The expression for p is homogeneous of degree n in the coordinates
)\ij'
In the same way, we can compute that

O'nflz Z Vij'331/\.../\:i’i/\.../\i’j/\.../\xgn,
1<i<j<2n
with
= (hi, hi A D VRS \
I/’L_] — g 15749y« 1 s T h%h% h?71h371

and the sum is over all the partitions of {1,...,2n} ~\ {4,7} in disjoint couples
(R, A3}, AR RS with B < b forall 1 <t <n — 1.
From now on we assume that o is a symplectic form (so p # 0) normalized in such

a way that
/(UJ)" = ,uu/ Vol =1,
T T

where Vol = 1 A...Axo, AZT1A. .. ATy, is the usual volume form. Writing explicitly
the symmetric bilinear form associated to ¢, we find that its expression is

2(,1) o :n/T(ac‘r)"*lwnHl—n) (/T 0”15”1/;/Ta"&"1n+La”15”nAo”5”1¢>.

So we see that it is only a matter of bidegree that (H*%(T), H*°(T)), = 0 and
(H%2(T), H%2(T)), = 0. Moreover, it follows from [CT17] that H*%(T) & H**(T)
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and HY(T) are orthogonal to each other, and so the matrix expressing the bilinear
form has the shape:

‘ H2,0 (T) HI,I(T) H0’2 (T)

H?>9(T) 0 0
HYYT) 0 0
H%(T) 0 0

So we need only to compute (H?%(T), H*2(T)), and (H"Y(T), H"(T)),.
We begin with (zq A Zg, 2y A Zs)e: if @ = or § = § this pairing is 0, otherwise
n 1

2(xa AT, Ty NT5)g = n [p(0G
= ( 1)ean1n{a,'y} max{a, V}me{ﬂ 0}, max{s3,6} fT Vol.

Lo NTgNTy NTs =

Hence

(—1)°n Vmin{a,y},max{a,y}Ymin{3,5} max{5,6}

ATg, Ty A Ts)e = !
(o AT, Ty N Ts)o 2

9

where the exponent e is determined as follows:
e ‘ B < 8 >4

a<yla+B+y+0+1 a+G+v+9
a>y| a+pB+y+0 a+pfH+y++1

We now compute (zq A 28, Ty A Tg)o:
2(a N8, Ty NTs)e = n [ (05)" o Azg ATy AT+
+(1-n f o 1E" T, A xﬁf 0'”6'”_1:1?4Y NTs =
= (- 1)a+ﬂ+7+5nl/agy s f Vol+
+(1=n) ((— 1)0‘+5+1,u,y g Jp Vol - (—1)7HF s [ Vol)
from which we deduce
_ (_1)a+ﬁ+’7+5 Vaﬁljjis )
2pp
In the case of a 2-dimensional and 4-dimensional torus respectively, we have the
following Gram matrix for the Beauville-Bogomolov-Fujiki form on H?2.
For a 2-dimensional torus, the situation is quite clear since we have
H?%(T) = Span{z1 A 2},
HYY(T) = Span{x1 A Z1,21 A To, T2 A T1, T2 A T},
H%2(T) = Span{z1 A T2},

and the expression for the BBF-bilinear-form does not depend on o:

<¢,n>=;/TwM7-

So, choosing any (2,0)-form o = pxy A xy with [ 06 = pfi [ 21 Axa ANTL AT = 1,
we have the Gram matrix

<wa ANxg, Ty N\ .’i‘5>g

0 0 0 0 012%_
I
2pp
002%_000
SRR

2pi
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On the 4-dimensional case, we have

Nxy X1 ANx3 X1 N\2X4
H2(T) = o
(T') = Span ToANx3 ToANxy x3NTy [’

TIANT1T T1NT2 T1NANT3 T1N\NTy

To ANT1 T2 NTo ToANT3 To NIy

HYY(T) =S _ _ _ _

( ) pant r3 NIy XT3 NTo XT3 NANT3 T3 NIy

T4 NT1T T4 NTo TagNANT3 Ty N\Ty

T1 NIy T1NT3 T1N\XTy

HY(T) = B R
(T) Span{ ToNT3 ToNTga T3 NT4

So we see that if we consider a (2, 0)-form
0 = A2Z1 AT+ A3x1 A x3 + Agx1 A g+ AagTa A T3 + Aogo A Ty + Agqx3 A 24,
then it is non-degenerate if and only if
0 = 2(M23s — A13dag + A1adag) w1 Az2 Axz Axg # 0.

0

Now, since we are dealing with 4 indices it follows that v;; is one of the coefficient
A, to be precise it is the one corresponding to the complement of {i, j}.
An explicit computation of the Gram matrix yields to

00X
0 Y|O
Xt101]0

where

A3aAzs —Azadoa Azades Azadia —Asadiz Asadie

—A24A34  A2ad2a —Aoadez —Aasdia Aaadis —Audie

¥ — Lf AesAsa —AosAdas Aosdas AssAia —AzsAhiz AgsAie
2pi | A1aAze —Aadas Aigdes Asdia —Aidis Agdae
—A13A34 AigA2a —AizAes —Aisdie AisAas —Aigdae

A2Az4 —A12d2a A2Aes Azdia —A2diz A2Ane

and Y has to be computed.
5.C. Kodaira surface. We quickly discuss an example that does not satisfy the

00-Lemma, which was also used in Example 2.3.
Consider the standard Kodaira surface, i.e. the quotient space of the group

1 z1 2z
G = 0 1 =z 21,29 € C
0 0 1

by its lattice ' consisting of matrices with entries in Z[v/—1]: so X = I'\G. There
are the following (1,0)-forms: w; = dz; and we = dzy — Z1dz1, which together to
their complex conjugates give all the 1-forms.

There is up to scalars, only one (2, 0)-form, namely w; Aws, which is also d-closed.
Then a complex symplectic structure on X is ¢ = pwi A we for p # 0. We will
assume ¢ normalized, so that

Uaz,uu/ w1 Awg = 1.
Jooo =i [ e

vol
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Observe that since we are on a surface, then

W= [ vnn

We can also see that
H(%R(X, C) = Span{wy, w1, ws + wa}
H(?R(X, (C) = Span{w1 N wo, w1 N\ W, ws N\ Wy, w1 A (I)Q}
while for the Dolbeault cohomology we have
H%’O(X) = Span{w; }
H ’1( ) = Span{w, w2}
H
H

H

X
(X) = Span{w; A wy}
’1(X) = Span{w1 N wa, wo A @1}
2(X) = Span{@; A @}

Q| & P |

This shows that X does not satisfy the 99-Lemma, looking to its 1-forms, but its
second cohomology group splits into the direct sum of types and conjugation is an
isomorphism.

But then the Beauville-Bogomolov—Fujiki form has Gram matrix (with respect to
the basis for H3,(X, C) above)

0/0 0]1
1 0/0 1[0
2up | 0[1 00 |
1[0 00

showing that the Beauville-Bogomolov—Fujiki quadric of a Kodaira surface is smooth
irreducible.
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