
ANALYSIS & PDE

msp

Volume 12 No. 3 2019

ANNALISA CESARONI AND MARCO CIRANT

CONCENTRATION OF GROUND STATES IN
STATIONARY MEAN-FIELD GAMES SYSTEMS



ANALYSIS AND PDE
Vol. 12, No. 3, 2019

dx.doi.org/10.2140/apde.2019.12.737 msp

CONCENTRATION OF GROUND STATES IN
STATIONARY MEAN-FIELD GAMES SYSTEMS

ANNALISA CESARONI AND MARCO CIRANT

We provide the existence of classical solutions to stationary mean-field game systems in the whole
space RN, with coercive potential and aggregating local coupling, under general conditions on the
Hamiltonian. The only structural assumption we make is on the growth at infinity of the coupling term in
terms of the growth of the Hamiltonian. This result is obtained using a variational approach based on the
analysis of the nonconvex energy associated to the system. Finally, we show that in the vanishing viscosity
limit, mass concentrates around the flattest minima of the potential. We also describe the asymptotic shape
of the rescaled solutions in the vanishing viscosity limit, in particular proving the existence of ground
states, i.e., classical solutions to mean-field game systems in the whole space without potential, and with
aggregating coupling.
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1. Introduction

We consider a class of ergodic mean-field games systems set on the whole space RN with unbounded
decreasing coupling: our problem is, given " > 0 and M > 0, to find a constant � 2 R for which there
exists a pair .u;m/ 2 C 2.RN /�W 1;p.RN /, for any p > 1, solving8<:

�"�uCH.ru/C�D f .m/CV.x/;

�"�m� div.mrH.ru//D 0 on RN,R
RN

mDM:

(1-1)

The aim of this work is two-fold. Firstly, for any fixed " > 0, we prove the existence of classical ground
states of (1-1). Secondly, we study their behavior in the vanishing viscosity limit "! 0.
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The Hamiltonian H W RN ! R is strictly convex, H 2 C 2.RN n f0g/ and it has superlinear growth:
we assume that there exist CH > 0, K > 0 and  > 1 such that, for all p 2 RN,

CH jpj

�K �H.p/� CH jpj

 ;

rH.p/ �p�H.p/�K�1jpj �K and jrH.p/j �Kjpj�1:
(1-2)

The coupling term f W Œ0;C1/! R is a locally Lipschitz continuous function such that there exist
Cf > 0 and K > 0 for which

�Cfm
˛
�K � f .m/� �Cfm

˛
CK; (1-3)

with

0 < ˛ <


N. � 1/
D
 0

N
; (1-4)

where  0 D 
�1

is the conjugate exponent of  .
Finally, we assume that the potential V is a locally Hölder continuous function, and that there exist

b > 0 and a constant CV > 0 such that

C�1V .maxfjxj �CV ; 0g/b � V.x/� CV .1Cjxj/b: (1-5)

Note that the requirement of V to be nonnegative is not crucial; we just need it to be bounded from below.
Mean-field games (MFG) is a recent theory that models the behavior of a very large number of

indistinguishable rational agents, aiming at minimizing a common cost. The theory was introduced in the
seminal works by Lasry and Lions [2006a; 2006b; 2007] and by Huang, Malhamé and Caines [Huang
et al. 2006], and has been rapidly growing during the last decade due to its mathematical challenges
and several potential applications (from economics and finance, to engineering and models of social
systems). In the ergodic MFG setting, the dynamics of a typical agent is given by the controlled stochastic
differential equation

dXs D�vs dsC
p
2" dBs; s > 0;

where vs is the control and Bs is a Brownian motion, with initial state given by a random variable X0.
The cost (of long-time average form) is given by

lim
T!1

1

T
E

Z T

0

ŒL.vs/CV.Xs/Cf .m.Xs//� ds;

where the Lagrangian L is the Legendre transform of H, see (2-1), and m.x/ denotes the density of
population of small agents at a position x 2 RN. A typical agent minimizes his own cost, and the
density of its corresponding distribution law L.Xs/ converges, as s !1, to a stationary density �,
which is independent of the initial distribution L.X0/. In an equilibrium regime, � coincides with the
population density m. This equilibrium is encoded from the PDE viewpoint in (1-1): a solution u of the
Hamilton–Jacobi–Bellman (HJB) equation gives an optimal control for the typical agent in feedback form
rH.ru. � //, and the Kolmogorov equation provides the densitym of the agents playing in an optimal way.

The two key points of our setting are the following: Firstly, the cost is monotonically decreasing with
respect to the population distribution m; namely, agents are attracted toward congested areas. A large part
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of the MFG literature focuses on the study of systems with competition, namely when the coupling in the
cost is monotonically increasing. This assumption is essential if one seeks for uniqueness of equilibria,
and it is in general crucial in many existence and regularity arguments; see, e.g., [Gomes et al. 2016]. On
the other hand, models with aggregation like (1-1) have been considered in few cases, see [Cesaroni and
Cirant 2017; Cirant 2016; 2017; Cirant and Tonon 2018; Gomes et al. 2018].

Secondly, the state of a typical agent here is the whole euclidean space RN. Usually, the analysis of
(1-1) is carried out in the periodic setting, in order to avoid boundary issues and the noncompactness of RN.
Few investigations are available in the truly nonperiodic setting: see [Porretta 2017] for time-dependent
problems, [Arapostathis et al. 2017] for the case of bounded controls, [Gomes and Pimentel 2016] for
some regularity results and [Bardi and Priuli 2014] for the linear-quadratic framework. We observe that the
noncompact setting is even more delicate for stationary (ergodic) problems like (1-1): a stable long-time
regime of a typical player is ensured if the Brownian motion is compensated by the optimal velocity vs .
In other words, if a force that drives players to bounded states is missing, dissipation eventually leads
their distribution to vanish on the whole RN. This phenomenon is impossible if the state space is compact.
The main issue here is that the behavior of the optimal velocity vs. � /DrH.ru. � // is a priori unknown,
and depends in an implicit way on V and the distribution m itself. Note that V. � / represents the spatial
preference of a single agent; if it grows as jxj ! 1, it discourages agents from being far away from
the origin. At the PDE level, this will compensate the lack of compactness of RN. Let us mention that
even without the coupling term f .m˛/, the ergodic control problem in unbounded domains has received
considerable attention; see, e.g., [Barles and Meireles 2016; Ichihara 2011; 2015].

In our analysis, we exploit the variational nature of the system (1-1), which has been pointed out
already in the first papers on MFG, see [Lasry and Lions 2007], and the more recent work [Mészáros and
Silva 2018]. Indeed, solutions to (1-1) can be put in correspondence with critical points of the energy

E.m;w/ WD
�R

RN
mL

�
�
w
m

�
CV.x/mCF.m/ dx if .m;w/ 2 K";M ;

C1 otherwise;
(1-6)

where F.m/D
Rm
0 f .n/ dn for m� 0 and F.m/D 0 for m� 0 and

L
�
�
w
m

�
WD

8<:
supp2RN

�
�
p�w
m
�H.p/

�
if m> 0;

0 if mD 0; w D 0;
C1 otherwise.

(1-7)

Note that mL
�
�
�
m

�
reads as the Legendre transform of mH. � /. The constraint set is defined as

K";M WD
˚
.m;w/2L1.RN /\Lq.RN /�L1.RN / W

"
R

RN
m.��'/dxD

R
RN
w�r' dx for all ' 2C10 .R

N /;
R

RN
mdxDM; m� 0 a.e.

	
; (1-8)

with

q D

� N
N� 0C1

;  0 �N;

 0;  0 >N:

Under assumption (1-3) on the coupling term, the energy E is not convex. Condition (1-4) is
necessary for the problem e".M/ WD min.m;w/2K";M E.m;w/ to be well-posed. Indeed, consider any
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.m0; w0/ 2 K";M such that m0 has compact support. An easy computation shows that if ˛ >  0

N
, then

E.��Nm0.��1 � /; ��.NC1/w0.��1 � //!�1

as �!0, so E is not bounded from below on K";M . We show that (1-4) is indeed sufficient for e".M/ to be
finite, and allows us to look for ground states of (1-1). This will be accomplished by a study of the Sobolev
regularity of the Kolmogorov equation; see in particular Section 2B. Note that the critical case ˛ D  0

N
is

more delicate, and requires additional analysis. We also mention that another critical exponent is intrinsic
in (1-1): if ˛ >  0

N� 0
, one has to expect nonexistence of solutions; see [Cirant 2016]. We refer to our case

as the subcritical case, in analogy with the L2-subcritical regime in nonlinear Schrödinger equations with
prescribed mass; see [Cirant 2016, Remark 2.9] for additional comments. The analogy can be made precise
in the purely quadratic framework, that is when H.p/D 1

2
jpj2. Indeed, as observed in [Lasry and Lions

2006a; 2006b], the so-called Hopf–Cole transformation permits us to reduce the number of unknowns
in the system. Setting v2.x/ WDm.x/D ce�

u.x/
" , with c a normalizing constant, v is a solution to

�2"2�vC .V .x/��/v D�f .v2/v;

with
R

RN
v2.x/ dx DM. Then the energy reads E.v/D

R
RN

"2jrvj2C 1
2
V.x/v2C 1

2
F.v2/ dx.

In our approach, to construct solutions to (1-1), we look for minimizers .m;w/ 2 K";M of the energy
(1-6). These minimizers can be obtained by classical direct methods, by using in particular estimates
and compactness in some Lp space for elements .m;w/ in K";M with bounded action, i.e., which satisfyR

RN
mL

�
�
w
m

�
dx � C, obtained in Section 2B. Then, the existence of a solution .u"; �"/ of the HJB

equation in (1-1) is obtained by considering another functional with linearized coupling (around the
minimizer) and the associated dual functional in the sense of Fenchel and Rockafellar, as in [Briani and
Cardaliaguet 2018]. One has to take care of the interplay between u and m as jxj ! 1. To handle
the lack of a priori regularity on the function m, we first regularize the problem, by applying standard
regularizing convolution kernels on the coupling (see Section 3). We construct minimizers .mk; wk/ of
the regularized energy and associated solutions .uk; mk/ of the regularized version of (1-1). Then, in
order to come back to the initial problem, we provide some new a priori uniform L1 bounds on mk ,
which in turn imply a priori uniform bounds on jrukj and (local) Hölder regularity of mk that is uniform
in k. This key a priori bound is provided by Theorem 4.1.

Note that we will consider classical solutions to this system (with a slight abuse of terminology), that is,
.u;m/ 2 C 2.RN /�W 1;p.RN / for all p > 1. The existence result, proved in Section 4, is the following.

Theorem 1.1. Under the assumptions (1-2), (1-3), (1-4) and (1-5), for every " > 0 there exists a classical
solution .u"; m"; �"/2C 2.RN /�W 1;p.RN /�R, for all p>1, to (1-1). Moreover, .m";�m"rH.ru"//
is a minimizer in the set K";M of the energy (1-6).

We observe (see Remarks 3.5 and 4.2) that Theorem 1.1 holds under more general conditions on H
and f , that is, if there exist CH , Cf > 0 and K > 0 such that

C�1H jpj

�K �H.p/� CH .jpj


C 1/; �Cfm

˛
�K � f .m/� C�1f m˛CK; (1-9)

where ˛ satisfies (1-4).
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In the second part of the work, in Section 5, we analyze the behavior of the triple .u"; �"; m"/ coming
from a minimizer of E as "! 0, under the assumptions (1-2), (1-3). From the viewpoint of the model,
this amounts to removing the Brownian noise from the agents’ dynamics. Heuristically, if the diffusion
becomes negligible, one should observe aggregation of players (induced by the decreasing monotonicity
of coupling in the cost) towards minima of the potential V , which are the preferred sites. Moreover,
in the case V has a finite number of minima and polynomial behavior (that is, when (1-13) holds) we
specialize the result showing that the limit procedure selects the more stable minima of V , implying, e.g.,
full convergence in the case that there exists a unique flattest minimum.

In order to bring as much information as possible to the limit, we consider an appropriate rescaling of
m;u, namely

Nm". � /D "
N0

0�˛Nm."
0

0�˛N � Cx"/; Nu". � /D "
N˛.0�1/�0

0�˛N .u."
0

0�˛N � Cx"/�u.x"// (1-10)

for all " > 0. The rescaling is designed so that . Nu"; Nm"/ solves an MFG system where the nonlinearities
have the same behavior of the original ones; i.e., H" � jpj as p!1, but the coefficient in front of the
Laplacian is equal to 1 for all "; see (5-19). Moreover, the pair Nu"; Nm" is associated to a minimizer of a
rescaled energy E"; see (5-23). It turns out that in this rescaling process, the potential V becomes

V". � /D "
N˛0

0�˛N V."
0

0�˛N � /;

and vanishes (locally) as "! 0. Therefore, as one passes to the limit, the potential cannot compensate
anymore for the lack of compactness of RN, and the convergence of Nm" in L1.RN / has to be proven by
other methods. Heuristically, the aggregating force should be strong enough to overcome the dissipation
effect, but the clustering point can be hard to predict by lack of spatial preference. This is why we also
have to translate in (1-10) by x". We will select x" to be the minimum of u": heuristically, since u" is
the value function, this is the point where most of the players should be located. In order to recover
compactness for the sequence Nm", we implement some ideas of the celebrated concentration-compactness
method [Lions 1984]. This principle states intuitively that if loss of compactness occurs, Nm" splits in (at
least) two parts which are going infinitely far away from each other; that is,

Nm" � �BR.0/ Nm"C�RN nB2R.0/
Nm"; (1-11)

with R!1,
R
�BR.0/ Nm" � a and

R
�RN nB2R.0/

Nm" �M � a for some a 2 .0;M/ (a third possibility
might happen, but it is easily ruled out here by local estimates). This induces a splitting in the energy E ;
that is,

infR
mDM

E" & infR
mDa

E"C infR
mDM�a

E": (1-12)

One then exploits a special feature of E", which is called subadditivity:

infR
mDM

E" < infR
mDa

E"C infR
mDM�a

E";

which makes (1-12) impossible. While subadditivity is easy to prove for E" (see Lemma 5.5), the splitting
(1-12) requires technical work, in particular due to the presence of the term mL

�
�
w
m

�
in E", which
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becomes increasingly singular as m approaches zero (a simple cut-off as in (1-11) is not useful). The
property (1-12) is proven in Theorem 5.6. It relies on the Brezis–Lieb lemma and a perturbation argument.
The L1 convergence of Nm" enables us to obtain the full convergence of . Nu"; Nm"/ to a limit MFG system.
By a uniform control of the decay of Nm" as jxj ! 1, which comes from a Lyapunov function built
upon Nu", energy arguments and the crucial L1 estimate of Theorem 4.1, we are also able to keep track
of x". In terms of the nonrescaled density m", x" is the point around which most of the mass is located.

The second main result of this work is stated in the following two theorems. The first one is about the
concentration of m".

Theorem 1.2. Under the assumptions of Theorem 1.1, there exist sequences "! 0 and x" such that for
all � > 0 there exist R and "0 for which, for all " < "0,Z

jx�x"j�R"
0=.0�˛N/

m" dx �M � �:

Moreover, x"! Nx, where V. Nx/D 0, i.e., Nx is a minimum of V .
If , in addition, V has the form

V.x/D h.x/

nY
jD1

jx� xj j
bj ; C�1V � h.x/� CV on RN, (1-13)

for some xj 2RN, and bj >0
�
with

Pn
jD1 bj D b

�
, then x"! xi , with i 2 fj D 1; : : : ; n W bj Dmaxk bkg.

Secondly, we describe the asymptotic profile of . Nu"; Nm"/ as "! 0. Note that as a byproduct we obtain
the existence of solutions to MFG systems without potential.

Theorem 1.3. Up to subsequences, . Nu"; Nm"/ converges in C 1loc.R
N /�Cloc.R

N /\Lp.RN /, for all p� 1,
to a solution . Nu; Nm/ of 8<:

��uCCH jruj
 C�D�Cfm

˛;

��m�CH div.mjruj�2ru/D 0;R
RN

mDM:

(1-14)

The function Nu is globally Lipschitz continuous on RN, and there exist c1; c2 > 0 such that 0 < Nm.x/�
c1e
�c2jxj.

Finally, if Nw D�CH Nmjr Nuj�2r Nu, then

E0. Nm; Nw/DminfE0.m;w/ W .m;w/ 2 K1;M ; m.1Cjyjb/ 2 L1.RN /g; (1-15)

where

E0.m;w/D
Z

RN
CL
jwj

0

m
0�1
�

1

˛C 1
m˛C1 dy: (1-16)

We finally observe that by analogous methods, one can prove existence of solutions to more general
potential-free MFG systems; see Remark 5.9.
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Notation. We will denote a classical solution to the system (1-1) by a triple

.u;m; �/ 2 C 2.RN /�W 1;p.RN /�R for all p > 1:

For any given p > 1, we will denote by p0 D p
p�1

the conjugate exponent of p, and set

p� D
Np

N �p
if p < N and p� DC1 if p �N:

For all R > 0, x 2 RN, we define BR.x/ WD fy 2 RN W jx�yj<Rg. We will set !N WD jB1.0/j.
Finally, C;C1; K;K1; : : : denote (positive) constants we need not specify.

2. Some preliminary regularity results

Let L be the Legendre transform of H, i.e.,

L.q/DH�.q/D sup
p2RN

Œp � q�H.p/�; q 2 RN: (2-1)

The assumptions on H guarantee the following; see, e.g., [Cirant 2014, Proposition 2.1].

Proposition 2.1. There exist CL; C1; C2 > 0 depending on CH and on  such that for all p; q 2 RN,

(i) L 2 C 2.RN n f0g/ and it is strictly convex,

(ii) 0� CLjqj
0

� L.q/� CL.jqj
 0 C 1/,

(iii) rL.q/ � q�L.q/� C1jqj
0

�C�11 ,

(iv) C1qj
0�1�C�11 � jrL.q/j � C

�1
1 .jqj

0�1C 1/,

(v) C2jpj�1�C�12 � jrH.p/j � C
�1
2 .jpj�1C 1/.

We will use the following (standard) result on Hölder functions vanishing at infinity.

Lemma 2.2. Suppose that m � 0, kmkC0;� .RN / � ch for some �; ch > 0, and
R

RN
mdx <1. Then,

m.x/! 0 as jxj !1. Moreover, if Z
jxj�R

mdx < �

for some �;R > 0, then

max
jxj�R

m.x/� C�
�

�CN ; (2-2)

where C > 0 depends only on ch; N.

Proof. By contradiction, suppose that there exists ı > 0 and a sequence jxnj !1 such that m.xn/ > ı
for all n. We may also assume that jxnC1j � jxnjC 1 for all n. By the Hölder regularity assumption,

m.x/�m.xn/� chjx� xnj
�
�
1
2
ı;
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provided that x 2 Br.xn/, and r� � ı
2ch

. Choose r D min
˚
1;
�
ı
2ch

� 1
�
	
, so that Br.xn/\Br.xm/D ∅

for all n¤m. Then, Z
RN

mdx �
X
n2N

Z
Br .xn/

mdx �
X
n2N

1
2
ıjBr.0/j D C1;

which is impossible.
As for the second part, let M WD maxjxj�Rm.x/ D m. Nx/, j Nxj � R (note that such a maximum is

achieved as a consequence of the first part of the lemma). As before,

m.x/�m. Nx/� chjx� Nxj
�
�
1
2
M

for all x 2 Br. Nx/, where r D
�
M
2ch

� 1
� . Therefore,

� >

Z
jxj�R

mdx � 1
4
M jBr. Nx/j D

1
4
M jB1.0/j

�
M

2ch

�N
�

;

and (2-2) follows. �

We recall the following well-known result, proved in [Brézis and Lieb 1983, Theorem 1].

Theorem 2.3. Let fn! f a.e. in RN and assume kfnkLp.RN / � C for all n and for some p 2 Œ1;C1/.
Then

lim
n
Œkfnk

p

Lp.RN /
�kfn�f k

p

Lp.RN /
�D kf k

p

Lp.RN /
:

From classical elliptic regularity, we have the following result.

Proposition 2.4. Let p > 1 and m 2 Lp.RN / be such thatˇ̌̌̌Z
RN

m�' dx

ˇ̌̌̌
�Kkr'kLp0 .RN / for all ' 2 C10 .R

N /;

for some K > 0. Then, m 2W 1;p.RN / and there exists C > 0 depending only on p, such that

krmkLp.RN / � CK:

Proof. Fix any R>1. Let  2C10 .B2.0//, '.Rx/ WD .x/ (so, ' 2C10 .B2R.0//) and v.x/ WDm.Rx/
on RN. Then,ˇ̌̌̌Z

B2.0/

v � dx

ˇ̌̌̌
DR2�N

ˇ̌̌̌Z
B2R.0/

m�' dy

ˇ̌̌̌
�KR2�N

�Z
B2R.0/

jr'jp
0

dy

� 1
p0

DKR1�NC
N
p

0
�Z
B2.0/

jr jp
0

dx

� 1
p0

�KR1�
N
p k kW 1;p0 .B2.0//

:

Hence, by [Agmon 1959, Theorem 6.1], v 2W 1;p.B1.0// and there exists a constant C, depending
on p (but not on R), such that

krvkLp.B1.0// � kvkW 1;p.B1.0//
� C.KR1�

N
p CkvkLp.B2.0///:
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Therefore,�Z
BR.0/

jrmjp dy

�1
p

DR
N
p
�1

�Z
B1.0/

jrvjp dx

�1
p

� C

�
KCR

N
p
�1

�Z
B2.0/

jvjp dx

�1
p
�

D C.KCR�1kmkLp.B2R.0///:

Letting R!1, we get that jrmj 2 Lp.Rn/ and the desired estimate. �

2A. The Hamilton–Jacobi–Bellman equation on the whole space. In this section we provide some
a priori regularity estimates and existence results for Hamilton–Jacobi–Bellman equations in whole spaces
of ergodic type. In particular we will consider families of Hamilton–Jacobi–Bellman equations

��unCHn.run/C�n D Fn.x/�fn.x/ on RN; (2-3)

where Fn � fn is locally Hölder continuous, �n 2 R are equibounded in n, that is, j�nj � �, and
fn 2 L

1.RN /, with kfnk1 � cf for some cf > 0 independent of n. Moreover Hn is for every n a
Hamiltonian which satisfies (1-2), with constants  and CH independent of n; finally, there exists CF � 0
and b � 0 independent of n such that

C�1F .maxfjxj �CF ; 0g/b � Fn.x/� CF .1Cjxj/b for all n and all x 2 RN: (2-4)

Note that, differently from assumption (1-5) for the potential V , the function Fn can also be bounded, if
b D 0.

Theorem 2.5. Let un 2 C 2.RN / be a sequence of classical solutions of the HJB equations (2-3). Then
there exists a constant K > 0 depending on CH ; CF ; cf ; ; N; � such that

jrun.x/j �K.1Cjxj/
b
 ; (2-5)

where b � 0 is the growth of Fn appearing in (2-4) and  is the growth of Hn appearing in (1-2).

Proof. Without loss of generality we may consider Hn.p/D CH jpj for all n and p. Indeed, every vn
solves

��unCCH jrunj

C�n D Fn.x/�fn.x/CCH jrunj


�Hn.run/ on RN;

and since jCH jrunj �Hn.run/j �CH by (1-2), we can redefine fn to include CH jrunj �Hn.run/,
which then satisfies the bound kfnk1 � cf CCH .

We first claim that if v 2 C 2.B2.0// satisfiesˇ̌
��vCCH jrvj


ˇ̌
� k on B2.0/

for some k > 0, then we have for any r 2 Œ1;1�,

krvkLr .B1.0// �
zC ; (2-6)

where zC depends only on k; CH ; ; N; r . If r 2 Œ1;1/, this is proven in [Lasry and Lions 1989,
Theorem A.1]; see also [Cirant 2015, Theorem 19]. The case r D 1 follows by classical elliptic
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regularity, since if r in (2-6) is large enough, then ��v is bounded in Lq.B 3
2
.0// for some q > N, and

the statement follows by Sobolev embeddings.
In view of these considerations, the gradient bound (2-5) easily follows if b D 0. For the case b > 0,

fix x0 2 RN, and let ı D .1Cjx0j/
� b
0 . Let

vn.y/ WD ı
2�
�1un.x0C ıy/ on RN:

Then, vn solves

��vnCCH jrvnj

D ı

0

.Fn.x0C ıy/�fn.x0C ıy/��n/:

Since ı � 1,

ı
0

jFn.x0C ıy/�fn.x0C ıy/��nj �
CF .3Cjx0j/

bC cf C�

.1Cjx0j/b
� C1

for all y 2 B2.0/ by (2-4) and the bound on fn.
Therefore, by the first claim,

krvnkL1.B1.0// �
zC

for all n. In particular, choosing y D 0,

jrun.x0/j D ı
� 1
�1 jrvn.0/j � zC.1Cjx0j/

b
 ;

and the desired estimate follows. �

Moreover, we prove the following a priori estimates on bounded-from-below solutions to (2-3).

Theorem 2.6. Let un 2 C 2.RN / be a family of uniformly bounded-from-below classical solutions to
(2-3), that is, for which there exists C > 0 such that un � �C for every n.

If b D 0 in (2-4), we moreover assume that there exists ı > 0 and R > 0 independent of n such that

Fn.x/�fn.x/��n > ı > 0 for all jxj>R: (2-7)

Then there exists C > 0 such that

un.x/� C jxj
1C b

 �C�1 for all n 2 N; x 2 RN; (2-8)

where b � 0 is the growth power appearing in (2-4) and  is the growth power appearing in (1-2).

Proof. The proof is based on the same argument as in [Barles and Meireles 2016, Proposition 3.4], we
sketch it briefly for completeness. Since un is bounded from below we can assume un � 0, up to addition
of constant C (without changing the equation).

We assume by contradiction that (2-8) does not hold. Then there exist sequences xl and unl such that
jxl j> 2R, jxl j !C1, and

unl .xl/

jxl j
1C b



! 0:
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Let al D 1
2
jxl j and we define the function

vl.x/D
1

a1C
b


l

unl .xl C alx/:

By Theorem 2.5, we get jrunl .x/j �K.1Cjxj/
b
 . Therefore, vl, jrvl j are uniformly bounded.

Moreover, vl is a solution to

�a
b

�1

l
�vl CHnl .a

b


l
rvl/C�nl D Fnl .xl C alx/�fnl .xl C alx/:

In particular, recalling (1-2), we get that vl is a supersolution to

�a
b

�1�b

l
�vl CCH jrv

l
j

� a�bl .��nl CFnl .xl C alx/�fnl .xl C alx//:

Note that, for every l sufficiently large, by (2-4) and by (2-7) (in the case b D 0) the right-hand side
above satisfies

a�bl .��nl CFnl .xl C alx/�fnl .xl C alx// > 0

for x such that jxj � 1.
Moreover, passing eventually to a subsequence, we get vl! v locally uniformly in n and a

b

�1�b

l
! 0.

So v is a supersolution to CH jrvj � ı > 0 in B.0; 1/ with homogeneous boundary conditions (since
v � 0). By comparison, recalling the explicit formula of the solution to the eikonal equation jrf j D C
in B.0; 1/ with homogeneous boundary conditions, we conclude that v.x/� C

1
 .1� jxj/ for all x such

that jxj � 1. Moreover, by uniform convergence, we get that, eventually enlarging C and taking l
sufficiently large, vl.x/ � C

1
 .1� jxj/ for all x with jxj � 1; in particular vl.0/ � C

1
 . Recalling the

definition of vl, we get that vl.0/! 0, which yields a contradiction. �

Define
N�n WD supf� 2 R W (2-3) has a solution un 2 C 2.RN /g:

Theorem 2.7. Assume that for every n the function Fn�fn is bounded from below uniformly in n:

(i) N�n <1 for every n, and there exists, for every n, a solution un 2 C 2.RN / to (2-3) with �n D N�n.
Moreover

N�n WD supf� 2 R W (2-3) has a subsolution un 2 C 2.RN /g:

(ii) If Fn satisfies (2-4), with b > 0, then, for every n, the solution un to (2-3) with �n D N�n is unique up
to addition of constants and satisfies (2-8).

(iii) If Fn � 0, and there exists ı > 0 independent of n such that

lim sup
jxj!C1

fn.x/C N�n < �ı < 0; (2-9)

then for every n there exists a solution to (2-3) with �n D N�n which satisfies (2-8) with b D 0.
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Proof. (i) The proof of this result can be obtained by a straightforward adaptation of the proof of Theo-
rem 2.1 in [Barles and Meireles 2016], using the a priori estimates on the gradient given in Theorem 2.5.
Observe that actually in that paper a stronger assumption on the regularity of Fn � fn is required, in
particular local Lipschitz continuity. This assumption is used to derive a priori estimates on the gradient
of solutions by using the so-called Bernstein method, see Appendix A in [Barles and Meireles 2016],
which depends also on the L1 norm of r.Fn�fn/. In our case we can weaken this assumption to just
Hölder continuity (so still ensuring classical elliptic regularity) since we are using a priori estimates on
the gradient given in Theorem 2.5, which depends only on the L1 norm of Fn� fn, and are obtained in
[Lasry and Lions 1989] by the so-called integral Bernstein method.

(ii) For the proof we refer to [Ichihara 2011]; see also [Barles and Meireles 2016; Cirant 2014]. In
particular in [Ichihara 2011], it is proved that un is bounded from below. By looking at the proof, it
is easy to check that, due to the uniformity in n of the norms of coefficients, the bound can be taken
independent of n, and by Theorem 2.6 we get the estimate on the growth.

(iii) By adapting the argument in [Barles and Meireles 2016, Theorem 2.6], we get that there exists a
bounded-from-below solution to (2-3) with �n D N�n, with bound uniform in n. Then using Theorem 2.6,
we get the estimate on the growth. We give a brief sketch of the proof of the existence of a bounded-
from-below solution. For every R > 0, we consider the ergodic problem�

��uRn CHn.ru
R
n /C�

R
n D�f; jxj<R;

uRn .x/!C1; jxj !R:
(2-10)

Using the result in [Barles et al. 2010], we get that for every R > 0 there exists a unique �Rn and a unique
up to addition of constant solution uRn 2 C

2.BR/.
First of all we claim that limR �Rn D N�n. It is easy to check that ifR0>R, then �R

0

n ��
R
n , and moreover

that �Rn � N�n. So, the sequence �Rn is converging as R!C1 to some �?n � N�n. Additionally, by the
same argument as in Theorem 2.5, we get that for every compact K � RN, there exists a constant C > 0
such that jruRn j � C in K for every R sufficiently large and for all n. Without loss of generality we can
assume that uRn .0/D 0 for every R. So, using the gradient bound, and elliptic regularity, we conclude that
uRn is bounded in C 2.K/ by some constant independent of R. Hence, by the Ascoli–Arzelà theorem, and
via a diagonalization procedure, we get that uRn converges locally in RN, with un 2 C 2.RN /. Moreover,
un is a solution to (2-3), with �D �?n. Recalling the characterization of N�n and the fact that �?n � N�n, we
conclude that �?n D N�n.

Then, we consider xRn 2 BR such that

uRn .x
R
n /D min

jxj�R
uRn :

Recalling that uRn is a solution to (2-10), we get by computing the equation at xRn and by recalling that
Hn.0/� 0, that

�Rn Cf .x
R
n /�Hn.0/C�

R
n Cf .x

R
n /� 0:

Using condition (2-9), and recalling that �Rn ! N�n, we get that there exists a compact set K (independent
of R and of n) and R0 > 0 such that for all R >R0 we have xRn 2K.
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Recalling that uRn .0/ D 0 and jruRn j � C in K with C independent of n;R, we conclude that
uRn .xR/� �C for some constant C independent of n;R. But, this implies, since uRn .x/� u

R
n .x

R
n / for

every R, that passing to the limit un.x/� �C, with C independent of n. �

2B. A priori estimates for the Kolmogorov equation. In this section we provide general a priori estimates
for pairs .m;w/ 2 .L1.RN /\W 1;q.RN //�L1.RN / such that

R
RN

m.x/DM and �"�mCdivwD 0,
where

q D

�
 0;  0 �N;

N
N� 0C1

;  0 <N:
(2-11)

Lemma 2.8. Let ˇ � Nq
N�q

for q < N, and ˇ <C1 for q �N. We define 1� r � ˇ as follows:

1

r
D
1

 0
C

�
1�

1

 0

�
1

ˇ
: (2-12)

Then, there exists a constant C, depending only on N and ˇ, such that

kmkW 1;r .RN / � C

�
1

"
0

Z
RN

m

ˇ̌̌̌
w

m

ˇ̌̌̌ 0
dxCM

� 1
0

kmk
1


Lˇ.RN /

� C

�
CL

"
0

Z
RN

mL

�
�
w

m

�
dxCM

� 1
0

kmk
1


Lˇ.RN /
; (2-13)

where CL D CL.CH ; / is the constant appearing in Proposition 2.1.
We now assume that

1 < ˇ < 1C
 0

N
: (2-14)

Then, there exists ı > 0 such that

kmk
.1Cı/ˇ

Lˇ.RN /
�C

1

"
0M

.1Cı/ˇ�1

�Z
RN

m

ˇ̌̌̌
w

m

ˇ̌̌̌ 0
dx

�
�CCL

1

"
0M

.1Cı/ˇ�1

Z
RN

mL

�
�
w

m

�
dx; (2-15)

where the constant C depends only on  , N, and ˇ.

Proof. Since m 2W 1;q.RN /, by Sobolev embedding and interpolation, we get that m 2 Lˇ .RN /. Using
�"�mC divw D 0, we get for all ' 2 C10 .R

N /,

"

Z
RN
rm � r' dx D

Z
RN

w � r' dx:

Using the Hölder inequality, recalling (2-12), we obtainˇ̌̌̌
1

"

Z
RN

w � r' dx

ˇ̌̌̌
�

Z
RN

1

"

ˇ̌̌̌
w

m

ˇ̌̌̌
m

1
0m

1� 1
0 jr'j dx

�

�
1

"
0

Z
RN

m

ˇ̌̌̌
w

m

ˇ̌̌̌ 0
dx

� 1
0

kmk
1


Lˇ.RN /
kr'kLr0 .RN /:
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Therefore, we get that for all ' 2 C10 .R
N /,ˇ̌̌̌Z

RN
rm � r' dx

ˇ̌̌̌
�

�
1

"
0

Z
RN

m

ˇ̌̌̌
w

m

ˇ̌̌̌ 0
dx

� 1
0

kmk
1


Lˇ.RN /
kr'kr 0 :

We apply then Proposition 2.4 and we obtain that m 2 W 1;r.RN / and that there exists a constant C,
depending only on r , such that

krmkLr .RN / � C

�
1

"
0

Z
RN

m

ˇ̌̌̌
w

m

ˇ̌̌̌ 0
dx

� 1
0

kmk
1


Lˇ.RN /
: (2-16)

From this inequality, using Proposition 2.1 and recalling that by interpolation, since kmkL1.RN / DM,

kmkLr .RN / � kmk
1


Lˇ.RN /
M

1
0 ;

we conclude the desired inequality (2-13).
Now we fix � such that

1

�
D

�
1

r
�
1

N

�
N

N C 1
C 1�

N

N C 1
D

N

N C 1

1

r
:

Note that, by a simple computation using (2-12), we get

1

�
�
1

ˇ
D

N

N C 1

1

ˇ 0

�̌
� 1�

 0

N

�
I

therefore, by (2-14), we conclude that � > ˇ. By the Gagliardo–Nirenberg inequality, and recalling that
kmk1 DM, we get

kmkL�.RN / � Ckrmk
N
NC1

Lr .RN /
M

1
NC1 : (2-17)

Since � > ˇ, by interpolation we get that there exists � > 1 such that kmk�
Lˇ.RN /

� kmkL�.RN /M
��1.

Actually
1

�
D

�
1�

1

ˇ

�
.N C 1/

1

1CN
�
1� 1

ˇ

��
1� 1

 0

� :
So, we substitute in (2-17) and (2-16) and we get, elevating both terms to  0NC1

N
,

kmk
� 0NC1

N

Lˇ.RN /
� C

1

"
0M

 0.� NC1
N
�1/

�Z
RN

m

ˇ̌̌̌
w

m

ˇ̌̌̌ 0
dx

�
kmk

0



Lˇ.RN /
: (2-18)

Now, since � > 1, by (2-14), we get

� 0
N C 1

N
�
 0


D

ˇ 0

N.ˇ� 1/
D ˇC

ˇ

ˇ� 1

�
 0

N
C 1�ˇ

�
> 0:

Therefore we deduce (2-15) from (2-18) with

ı D
1

ˇ� 1

�
 0

N
C 1�ˇ

�
: (2-19)

This concludes the proof. �
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Corollary 2.9. For every r < q, there exists C > 0 depending on N,  0 and r such that

kmkW 1;r .RN / �
C

"
0

�
CL

Z
RN

mL

�
�
w

m

�
dxC "

0

M

�
: (2-20)

Moreover, if  0 >N (so q > N ), then m 2 C 0;� .RN / and

kmkC0;� .RN / �
C

"
0

�
CL

Z
RN

mL

�
�
w

m

�
dxC "

0

M

�
: (2-21)

Proof. For q �N (equivalently  0 �N ), we fix r < q and we choose ˇ which satisfies (2-12) for such r .
By the Sobolev embedding theorem, W 1;r.RN / is continuously embedded in Lˇ .RN /. So, there exists
C depending on N and r such that kmkLˇ.RN / � CkmkW 1;r .RN /. Using inequality (2-13), we get

kmkLˇ.RN / �
C

"
0

�Z
RN

m

ˇ̌̌̌
w

m

ˇ̌̌̌ 0
dxC "

0

M

�
:

If we substitute again in (2-13) we get

kmkW 1;r .RN / �
C

"
0

�Z
RN

m

ˇ̌̌̌
w

m

ˇ̌̌̌ 0
dxC "

0

M

�
:

In particular for q > N, we can choose r > N and by the Sobolev embedding theorem we get that there
exists � D 1� N

r
and a constant C > 0 depending on N and r such that

kmkC0;� .RN / �
C

"
0

�Z
RN

m

ˇ̌̌̌
w

m

ˇ̌̌̌ 0
dxC "

0

M

�
�
C

"
0

�
CL

Z
RN

mL

�
�
w

m

�
dxC "

0

M

�
:

For q < N, we fix r < q, and choose the corresponding ˇ in (2-12), which satisfies ˇ < N
N� 0

. Hence
we conclude again using inequality (2-13). �

3. Regularization procedure and existence of approximate solutions for " > 0

3A. The regularized problem. We consider the approximation of the system (1-1)8<:
�"�uCH.ru/C�D fkŒm�.x/CV.x/;

�"�m� div.mrH.ru//D 0;R
RN

mdx DM;

(3-1)

where

fkŒm�.x/D f .m?�k/ ? �k.x/D

Z
RN

�k.x�y/f

�Z
RN

m.z/�k.y � z/ dz

�
dy (3-2)

and �k , for k > 0, is a sequence of standard symmetric mollifiers approximating the unit as k!1.
We observe that fkŒm�.x/ is the L2-gradient of a C 1 potential Fk W L1.RN /! R, defined as

FkŒm� WD

Z
RN

F.m?�k.x// dx; (3-3)
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where F.m/D
Rm
0 f .n/ dn for m� 0 and F.m/D 0 for m� 0. Note that using Jensen’s inequality and

(1-3), we get that for all m 2 L1.RN / such that m� 0, and
R

RN
m.x/ dx DM,

�
Cf

˛C 1

Z
RN

m˛C1.x/ dx�KM � FkŒm�� �
Cf

˛C 1

Z
RN
.m?�k.x//

˛C1 dxCKM: (3-4)

In order to construct solutions to the system, we follow a variational approach and we associate to
(3-1) an energy, as already described in the Introduction. We define the energy

Ek.m;w/ WD
�R

RN
mL

�
�
w
m

�
CV.x/mdxCFkŒm� if .m;w/ 2 K";M ;

C1 otherwise;
(3-5)

where K";M is defined in (1-8) and L is defined in (1-7). We recall that the exponent q appearing in the
definition of K";M is

q D

� N
N� 0C1

;  0 �N;

 0;  0 >N:

Therefore, q �  0. Observe that, if q < N,

q� D
qN

N � q
D

N

N �  0
;

and that q� > 1C  0

N
> 1C˛ by (1-4). If q D  0 �N, then we let q� DC1.

3B. A priori estimates and energy bounds. In this section, we provide bounds from below for the
energy Ek , ensuring in particular that the minimum problem is well-defined.

Lemma 3.1. Let .m;w/ 2 K";M . Then

Ek.m;w/� �K �C"
�
0˛N

0�˛N ; (3-6)

where C;K > 0 are constants depending only on N;M;CL; ; ˛;M.
In particular there exists finite

ek;".M/D inf
.m;w/2K";M

Ek.m;w/:

Proof. Recalling that V � 0, using estimate (3-4) and applying (2-15) with ˛ D ˇ� 1, we get

Ek.m;w/�
Z

RN
mL

�
�
w

m

�
dx�

Cf

˛C 1

Z
RN

m˛C1 dx�KM

� C"
0

M 1�.1Cı/.1C˛/
kmk

.1C˛/.1Cı/

L˛C1
�

1

˛C 1
kmk

.1C˛/

L˛C1
�KM

� �Cı"�
0

ı

�
1

.ıC 1/.˛C 1/

�1C 1
ı

�KM;

where C is a constant depending only on N;M;CL; ; ˛ and

ı D
1

˛

�
 0

N
�˛

�
: (3-7)
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Therefore, substituting in the energy, we get

Ek.m;w/� �C
. 0�˛N/

˛N
"
�
0˛N

0�˛N

�
˛N

 0.˛C 1/

� 0

0�˛N

�KM;

which gives the desired inequality. �

We get also a priori bounds on minimizers and minimizing sequences.

Proposition 3.2. Let .m;w/ 2 K";M be such that ek;".M/� Ek.m;w/� � for some positive �. ThenZ
RN

m

ˇ̌̌̌
w

m

ˇ̌̌̌ 0
dx � C"

�
0N˛

0�N˛ CK; (3-8)

kmk˛C1
L˛C1.RN /

� C"
�
0N˛

0�N˛ CK (3-9)

for some C;K positive constants which depend only on ˛;N; V; CL; �.

Proof. First of all we observe that there exists C � 0 depending on M;CL; CV such that

ek;".M/� C: (3-10)

Let mD ce�jxj, where c is chosen to have
R

Rn
mdx DM, and w D "rm, so that .m;w/ 2 K";M . By

assumption (1-5), we get
R

Rn
mV.x/ dx � C for some constant C > 0, by (3-4) we get FkŒm� �KM

and by the properties of L in Proposition 2.1 we haveZ
Rn
mL

�
�
w

m

�
dx �

�
"
0

c
0 CCL

�
M:

So, in conclusion ek;".M/� Ek.m;w/� C as required.
Note that if .m;w/ 2 K";M , and e".M/� E.m;w/� � for some positive �, then, by (3-4), by the fact

that V � 0, and by the properties of L in Proposition 2.1, we get

C C �� e".M/C �� Ek.m;w/�
Z

RN
m

ˇ̌̌̌
w

m

ˇ̌̌̌ 0
�

Cf

˛C 1
m˛C1 dx �KM: (3-11)

We apply (2-15) with ˛ D ˇ� 1, and we obtain

C C �CKM �

Z
RN

m

ˇ̌̌̌
w

m

ˇ̌̌̌ 0
�

Cf

˛C 1
m˛C1 dx

� C"
0

M 1�.1Cı/.1C˛/
kmk

.1C˛/.1Cı/

L˛C1
�

Cf

˛C 1
kmk

.1C˛/

L˛C1
:

Recall that ıC 1D  0

˛N
, which can be computed using (2-19), so

 0

ı
D

 0N˛

 0�N˛
:

Note that if we choose A sufficiently large (depending on ı;M;Cf ; CL/, we get

C"
0

M 1�.1Cı/.1C˛/."�
0

ı A/1Cı �
Cf

˛C 1
."�

0

ı A/� C C �CKM;
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from which we conclude that kmk.1C˛/
L˛C1

� "�
0

ı A, and so estimate (3-9) holds. Estimate (3-8) comes
from (3-9) and (3-11). �

3C. Existence of a solution. We are now in the position to show existence of minimizers of the energy Ek
in the class K";M for every ";M > 0.

Proposition 3.3. For every " > 0 and M > 0, there exists a minimizer .mk; wk/ 2 K";M of Ek , that is,

Ek.mk; wk/D inf
.m;w/2K";M

Ek.m;w/:

Moreover, for every minimizer .mk; wk/ 2 K";M of Ek , there holds

mk.1Cjxj/
b
2 L1.RN /; wk.1Cjxj/

b
 2 L1.RN /; (3-12)

and there exist constants C > 0 and K, independent of " and k, such thatZ
RN

mk

ˇ̌̌̌
wk

mk

ˇ̌̌̌ 0
dxC

Z
RN

mkV.x/ dxCkmkk
˛C1
L˛C1.RN /

� C"
�
0˛N

0�N˛ CK: (3-13)

Proof. Let .mn; wn/ 2 K";M be a minimizing sequence, that is, Ek.mn; wn/! ek;".M/. This implies
that, choosing n sufficiently large, Ek.mn; wn/� e".M/C 1. From this and (3-4) we getZ

RN
mnL

�
�
wn

mn

�
dxC

Z
RN

V.x/mn dx � Ek.mn; wn/C
Cf

˛C 1

Z
RN

m˛C1n dxCKM

� ek;".M/C 1C
Cf

˛C 1

Z
RN

m˛C1n CKM: (3-14)

By Proposition 3.2, we get

kmnkL˛C1 C

Z
RN

m1�
0

n jwnj
 0 dx � C"

�
0˛N

0�˛N CK:

We conclude also that Z
RN

V.x/mn.x/ dx � C"
�
0˛N

0�˛N CK

for some C;K > 0. These estimates will imply (3-13), after passing to the limit, using Fatou’s lemma.
Moreover, by Corollary 2.9, we have that there exists C" > 0 depending on " such that for all r < q,

kmnkW 1;r .RN / � C":

Moreover, due to Sobolev embeddings, we get kmnkLs.RN / � C" for all s < q�. In addition, by applying
the Hölder inequality, we get that there exists C > 0 such thatZ

RN
jwnj

0˛C0

0C˛ dx � C

�Z
RN

m1�
0

n jwnj
 0 dx

� ˛C1

0C˛

kmnk
0�1

.˛C1/.0C˛/

L˛C1.RN /
:

By these estimates and Sobolev compact embeddings, we get that eventually extracting a subsequence
via a diagonalization procedure, mn!mk weakly in W 1;r.RN / for all r < q and strongly in Ls.K/ for
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all 1� s < q� and for every compact K � RN, and wn!wk weakly in L
0˛C0

0C˛ .RN /. By using the fact
that

R
RN

V.x/mn.x/ dx � C" and (1-5), we get that for all R > 1,

C" �

Z
RN

mn.x/V .x/ dx �

Z
jxj>R

mn.x/V .x/ dx � CR
b

Z
jxj>R

mn.x/ dx:

So for every " > 0 fixed and all �> 0, there exists R>0 for which
R
jxj>Rmn.x/ dx � �: up to extracting

a subsequence we get that mn!mk in L1.RN /, and so
R

RN
mk.x/ dx DM. By the boundedness of

mn in Ls.RN / for all 1� s < q�, we then have mn!mk strongly in L˛C1.RN /. Finally, observe that
from (3-13), using (1-5), we conclude that mk.1Cjxjb/ 2 L1.RN /. Moreover, we getZ

RN
jwkj dx �

Z
RN
jwkj.1Cjxj/

b
 dx �

�Z
RN

jwkj
 0

m
 0�1

k

dx

� 1
0
�Z

RN
mk.1Cjxj/

b dx

�1


;

and so wk.1Cjxj/
b
 2 L1.RN /.

Therefore the convergence is sufficiently strong to ensure that .mk; wk/ 2 K";M . We conclude that
.mk; wk/ is a minimum of the energy, by the lower semicontinuity with respect to weak convergence of
the functional

R
RN

mL
�
�
w
m

�
CV.x/mdx and by using the fact that FkŒmn�! FkŒmk�, since mn!mk

strongly in L˛C1.RN /. �

Using the minimizers we constructed in Proposition 3.3, we prove existence of a classical solution
to (3-1).

Proposition 3.4. There exists a classical solution .uk; mk; �k/ to (3-1) that satisfies for some constant
Ck;" > 0 the inequalities

jruk.x/j � Ck;".1Cjxj
b
 /; uk.x/� C

�1
k;" .1Cjxj

1C b
 /�Ck;": (3-15)

Additionally there exist C;K > 0 not depending on "; k such that

�K �C"
�
0˛N

0�˛N � �k � C"
�
0˛N

0�˛N CK: (3-16)

Proof. Let .mk; wk/ be a minimizer of Ek . Define the space of test functions

ADAb; WD
�
 2 C 2.RN / W lim sup

jxj!1

jr .x/j

jxj
b


<1; lim sup
jxj!1

j� .x/j

jxjb
<1

�
: (3-17)

Note that we also have, for all  2A,

lim sup
jxj!1

j .x/j

jxj
b

C1

<1:

We claim that

�"

Z
RN

mk� dx D

Z
RN

wkr dx for all  2A: (3-18)
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Indeed, consider a radial smooth cutoff function �.x/ which is identically equal to 1 in B1.0/ and
identically zero in RN nB2.0/. Set �R.x/ WD �

�
x
R

�
; we have jr�Rj � CR�1 and j��Rj � CR�2 on

RN for some positive constant C.
Since the equality "�mk D divwk holds in the weak sense on RN, we may multiply it by �R with

 2A and integrate by parts to obtain

�"

Z
B2R

mk.�R� C 2r � r�RC ��R/ dx D

Z
B2R

wk � .�Rr C r�R/ dx: (3-19)

Note that for some positive C,Z
RN
jwkr j dx � C

Z
RN
jwkj.1Cjxj/

b
 dx <1;

Z
RN

mkj� j dx � C

Z
RN

mk.1Cjxj/
b dx <1

by the integrability properties (3-12). Moreover,Z
R�jxj�2R

mkj jj��Rj dx � C

Z
R�jxj�2R

mk
.1Cjxj/

b

C1

R2
dx

� C1

Z
R�jxj�2R

mk.1Cjxj/
b

�1 dx! 0 as R!1,

because b

� 1 � b. Reasoning in a similar way, we also have that

R
R�jxj�2Rmkr � r�R andR

R�jxj�2R wk �  r�R converge to zero as R !1. Equality (3-18) then follows by passing to the
limit in (3-19).

Therefore, recalling the integrability properties of mk; wk obtained in Proposition 3.3, the problem of
minimizing Ek on K";M is equivalent to minimizing Ek on K, where

K WD
˚
.w;m/2 .L1\W 1;r/.RN /�L

0.˛C1/

0C˛ .RN / W .w;m/ satisfies (3-12), (3-18), m� 0,
R

RN
mDM

	
for some r < q. As in [Briani and Cardaliaguet 2018, Proposition 3.1], the convexity of L implies that
.mk; wk/ is also a minimizer of the following convex functional on K:

zJ .m;w/D

Z
RN

mL

�
�
w

m

�
C .V .x/CfkŒmk�/mdx:

We now aim to prove that

sup
˚
�M W �"� CH.r /C�� V.x/CfkŒmk� on RN for some  2A

	
D min
.w;m/2K

zJ .m;w/: (3-20)

We proceed as in [Cardaliaguet and Graber 2015, Theorem 3.5]: Setting

L.m;w; �;  / WD zJ .m;w/C
Z

RN
"m� Cwr ��mdxC�M;

we have

min
.m;w/2K

zJ .m;w/D min
.m;w/

sup
.�; /2R�A

L.m;w; �;  /;
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where the minimum in the right-hand side has to be taken over pairs

.m;w/ 2 .L1\W 1;r/.RN /�L
0.˛C1/

0C˛ .RN /

for some r < q, satisfying (3-12). Note that L. � ; � ; �;  / is convex, and L.m;w; � ; � / is linear. Moreover,
since L. � ; � ; �;  / is weak-* lower semicontinuous, we can use the min-max theorem, see [Borwein and
Vanderwerff 2010, Theorem 2.3.7], to get

min
.m;w/

sup
.�; /2R�A

L.m;w; �;  /

D sup
.�; /2R�A

min
.m;w/

L.m;w; �;  /

D sup
.�; /2R�A

min
.m;w/

Z
RN

mL

�
�
w

m

�
C .V .x/CfkŒmk�/mC "m� Cwr ��mdxC�M

D sup
.�; /2R�A

Z
RN

min
.m;w/2R�RN

mL

�
�
w

m

�
C .V .x/CfkŒmk�/mC "m� Cwr ��mdxC�M;

where the interchange of the min and the integration is possible by standard results in convex optimiza-
tion. By computation, min.m;w/2R�RN mL

�
�
w
m

�
C .V .x/C fkŒmk�/mC "m� Cwr ��m is zero

whenever "� �H.r /� �C .V .x/C fkŒmk�/ is positive, and it is �1 otherwise. Therefore, we
have proven (3-20).

By Theorem 2.7(i)–(ii), there exists uk 2 C 2.RN / such that

�"�ukCH.ruk/C�k D V.x/CfkŒmk� on RN ; (3-21)

which satisfies
jruk.x/j � Ck;".1Cjxj/

b
 ; uk.x/� Ck;"jxj

b

C1
�C�1k;"

for some Ck;" > 0.
Moreover,

"j�uk.x/j � jH.ruk.x//jC j�kjCV.x/�fkŒmk�� Ck;".1Cjxj/
b on RN;

so uk 2A. Thus, the supremum in the left-hand side of (3-20) is achieved by �k , and it holds true that

�kM D zJ .mk; wk/D Ek.mk; wk/C
Z

RN
fkŒmk�mk dx�F Œmk�: (3-22)

This gives in particular (3-16), using Lemma 3.1, estimates (3-10) and recalling Proposition 3.2 and
assumptions (1-3), (3-2) and (3-4).

We now use (3-22), (3-21) and (3-18) with  D uk to get

0D

Z
RN

�
L

�
�
wk

mk

�
CV.x/�m˛k ��k

�
mk dx

D

Z
RN

�
L

�
�
wk

mk

�
� "�ukCH.ruk/

�
mk dx

D

Z
RN

�
L

�
�
wk

mk

�
CH.ruk/Cruk �

wk

mk

�
mk dx;
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which implies
wk

mk
D�rH.ruk/ on the set fmk > 0g:

Hence, the Kolmogorov equation "�mkCdiv.mkrH.ruk//D 0 holds in the weak sense, and by elliptic
regularity we conclude that .uk; mk; �k/ is a classical solution to (1-1). �

Remark 3.5. Note that if we assume that the local term f satisfies (1-9) instead of (1-3), then the same
argument as above applies. In particular there exists a classical solution .uk; mk; �k/ to (3-1) such that

jruk.x/j � Ck;".1Cjxj
b
 /; uk.x/� C

�1
k;" .1Cjxj

1C b
 /�Ck;";Z

RN
m˛C1
k

dx;

Z
RN

mk.x/V .x/ dx � C"
�
0˛N

0�˛N CK:

We finally prove that every mk is bounded from above in RN (this is not obvious from Proposition 3.4
unless  0 >N ). Note that the following result does not provide uniform bounds with respect to k. These
will be produced in Theorem 4.1 using a much more involved argument.

Proposition 3.6. Let .uk; mk; �k/ be as in Proposition 3.4. Then, mk is bounded in L1.RN /.

Proof. Let �.x/D uk.x/p, for p > 1 to be chosen later. Using the fact that uk is a classical solution to
the HJB equation, we get

�"��CrH.ruk/ � r�

D pu
p�1

k

�
��uk � .p� 1/

jrukj
2

uk
CrH.ruk/ � ruk

�
D pu

p�1

k

�
��ukCH.ruk/� .p� 1/

jrukj
2

uk
�H.ruk/CrH.ruk/ � ruk

�
D pu

p�1

k

�
�.p� 1/

jrukj
2

uk
�H.ruk/CrH.ruk/ � ruk ��CfkŒmk�CV

�
: (3-23)

Observe that by (1-2), (1-5), (3-15) and the fact that fkŒmk� is bounded on RN, there exist large R and C
such that

G.x/D�.p� 1/
jrukj

2

uk
�H.ruk/CrH.ruk/ � ruk ��CfkŒmk�CV.x/

�K�1jrukj

� .p� 1/

jrukj
2

uk
�K ��CfkŒmk�CV.x/

� .p� 1/jrukj


�
1

K.p� 1/
�
jrukj

2�

uk

�
�C CC�1V jxj

b
� 1 for all jxj>R:

Hence, again by (3-15), for all jxj>R

�"��CrH.ruk/ � r� � cjxj
.1C b


/.p�1/:
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In view of [Metafune et al. 2005, Proposition 2.6], we have jxj.1C
b

/.p�1/mk 2 L

1.RN /. Recall now that
jrH.ruk/j�C.1Cjxj/

b
0 by (3-15). Therefore, by choosing p large enough, jrH.ruk/jsmk 2L1.RN /

for some s > N. We conclude the boundedness of mk in L1 by [Metafune et al. 2005, Theorem 3.5]. �

4. Existence of a solution to the MFG system for " > 0

Our aim is to pass to the limit k!1 for solutions to (3-1).

4A. A priori L1 bounds. We need first a priori L1 bounds on mk that are independent with respect
to k. These will be achieved by a blow-up argument, as proposed in [Cirant 2016] for systems set on
the flat torus TN. Here, the unbounded space RN and the presence of the unbounded term V make the
argument much more involved than the one in that paper. To control the points xk 2 RN where mk.xk/
possibly explodes, some delicate estimates on the decay (in L1) of its renormalization will be produced.

We provide a more general result, that will be used also in the rescaled framework (Section 5). Let
rk; sk; tk be bounded sequences of positive real numbers.

Theorem 4.1. Let .uk; �k; mk/ be a classical solution to the mean-field game system8<:
��uC r



k
H.r�1

k
ru/C�k D gkŒm�C skV.tkx/;

��m� div.m r�1
k
rH.r�1

k
ru//D 0;R

RN
mdx DM;

where gk W L1.RN /! L1.RN / are such that for all m 2 L1.RN /\L1.RN / and for all k,

kgkŒm�kL1.RN / �K.kmk
˛
L1.RN /

C 1/ (4-1)

for some K > 0. Suppose also that for all k, uk is bounded from below and mk is bounded from above
on RN. Then, there exists a constant C independent of k such that

kmkkL1 � C:

Proof. We argue by contradiction, so we assume that

sup
RN

mk D Lk!C1:

We divide the proof into several steps.

Step 1: rescaling of the solutions. Let

�k WD L
�ˇ

k
; ˇ D ˛

 � 1


> 0:

So, observe that �k! 0 as k! 0. Since uk is bounded from below, up to adding a suitable constant we
can assume that minRN uk D 0. We define the rescaling�

vk.x/D �
2�
�1

k
uk.�kx/C 1;

nk.x/D L
�1
k
mk.�kx/:
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Note that 0� nk.x/� 1. Moreover, due to (1-4),Z
RN

nk.x/ dx DML
˛N.�1/


�1

k
! 0; (4-2)

and min vk D 1. We define

Hk.q/D �

�1

k
r


k
H.r�1k �

1
1�

k
q/; so rHk.q/D �kr

�1

k
rH.r�1k �

1
1�

k
q/:

Recalling (1-2) we have that for all q 2 RN,

CH jqj

�K �Hk.q/� CH .jqj


C 1/;

jrHk.q//j � CH jqj
�1;

rHk.q/ � q�Hk.q/�K
�1
jqj �K:

(4-3)

Moreover, we define

Qgk.x/D �

�1

k
gkŒmk�.�kx/:

Recalling that 0�mk � Lk , by (4-1) we get that for all x and for all k,

j Qgk.x/j � �

�1

k
K.L˛k C 1/� 2K; (4-4)

where we used the fact that �k D L
�ˇ

k
with ˇ D ˛ �1


. Finally, we let

Q�k D �

�1

k
�k D

1

L˛
k

�k

and we observe that
j Q�kj � C: (4-5)

Finally, let

Vk.x/D �

�1

k
skV.�ktkx/:

By assumption (1-5), we get

sk�

�1

k
C�1V .maxfjtk�kxj �CV ; 0g/

b
� Vk.x/� CV .1C �kjxj

b/; (4-6)

where

�k WD �

�1
Cb

k
skt

b
k ! 0 as k!1.

In particular we also have the following bound from below for Vk:

Vk.x/�
C�1V

2b
�kjxj

b for all jxj � 2CV .tk�k/
�1. (4-7)

An easy computation shows that by rescaling we have that .vk; nk; Q�k/ is a solution to�
��vkCHk.rvk/C Q�k D Qgk.x/CVk.x/;

��nk � div.nkrHk.rvk//D 0:
(4-8)
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Step 2: a priori bounds on the rescaled solution to the Hamilton–Jacobi equation. We observe that by
Theorem 2.5 and (4-6), there exists C > 0, independent of k, such that

jrvk.x/j � C.1C �
1


k
jxj

b
 / on RN. (4-9)

We recall that we assumed vk. Oxk/Dmin vk D 1. Since vk is a classical solution to (4-8), at a minimum
point Oxk we have, by (4-3), (4-4), (4-5) and (4-7),

�kj Oxkj
b
� C:

Therefore, by using this estimate and (4-9), since jvk.0/j � jvk. Oxk/j C j Oxkj supjyj�j Oxk j jruk.y/j we
obtain

jvk.0/j � 1CC.1C �
1


k
j Oxkj

1C b
 /� C1.1C �

� 1
b

k
/

and then again by (4-9),

jvk.x/j � C.1C �
� 1
b

k
C �

1


k
jxj

b

C1/ on RN : (4-10)

Let � be a smooth function � W Œ0;C1/! Œ0;C1/ such that �� 0 in
�
0; 1
2

�
[
�
3
2
;C1

�
, �.1/ > 0

and j�0j; j�00j � 1. We fix Qx 2 RN such that j Qxj> 4CV .tk�k/�1, and we set

w.x/D ��
1


k
j Qxj1C

b
 �

�
jxj

j Qxj

�
;

where � � 0 has to be chosen. We have that w.x/� vk.x/ for all x such that jxj � 3
2
j Qxj or jxj � 1

2
j Qxj.

Moreover, for x such that 1
2
j Qxj � jxj � 3

2
j Qxj we have jxj> 2CV .�ktk/�1, so using the estimates (4-3),

(4-4), (4-5) and (4-7),

��wCHk.rw/C Q�k � Qgk.x/�Vk.x/� �N�
1


k
j Qxj

b

�1
CCH�

�kj Qxj
b
CC �

C�1V

2b
�kj Qxj

b:

Note that there exist � > 0 small and C2 > 0 large, depending only CV and CH and not on j Qxj, k, such
that the right-hand side of the last expression is negative if

�kj Qxj
b
� C2

(this also implies that tk�kj Qxj> 4CV , as required). The test function w is then a subsolution of the HJB
equation in (4-8); therefore by comparison we get

vk. Qx/� ��.1/�
1


k
j Qxj1C

b
 :

By the arbitrariness of Qx we conclude that, for some C > 0,

vk.x/� C�
1


k
jxj

b

C1 for all �kjxj

b
� C2: (4-11)

Step 3: estimates on the (approximate) maxima of nk . We now fix 0 < ı � 1 and xk such that
nk.xk/D 1�ı. Two possibilities may arise: either limk �kjxkjbDC1 up to some subsequence, or there
exists C > 0 such that �kjxkjb � C. We rule out the second possibility by contradiction. Suppose indeed
that there exists C >0 such that �kjxkjb �C. By (4-9), jrvkj �C on B2.xk/ for some C >0. Therefore,
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using the fact that nk solves the second equation in (4-8), the elliptic estimates in Proposition 2.4, (4-3),
the interpolation inequality knkq � knk

1
q

1
knk

1� 1
q

1
and the fact that 0� nk � 1, we get for all q > 1,

knkkW 1;q.B1.xk//
� C.1CkrHk.rvk/kL1.B2.xk///knkk

1
q

L1.B2.xk//
� Cq (4-12)

for some Cq > 0 depending on q. This implies, choosing q > N, that for all � 2 .0; 1/ there exists C�
depending on � (but not on k) such that knkkC0;� .B1.xk// � C� . Recalling that nk.xk/D 1� ı, we can
fix r < 1 such that nk.x/� 1

2
for all x 2 Br.xk/. It is sufficient to choose r D C�

1
�

�

�
1
2
� ı
� 1
� . Therefore

we have, by (4-2),

0 < 1
2
!N r

N
�

Z
Br .xk/

nk.x/ dx �

Z
RN

nk.x/ dx DML
˛N.�1/


�1

k
! 0:

This gives a contradiction. Then we deduce that, up to a subsequence,

lim
k
�kjxkj

b
DC1: (4-13)

Step 4: construction of a Lyapunov function. Let �.x/D vk.x/p , for p > 1 to be chosen later. Using the
fact that vk is a classical solution to (4-8), arguing as in (3-23), we get

���CrHk.rvk/�r�Dpv
p�1

k

�
��vk�.p�1/

jrvkj
2

vk
CrHk.rvk/�rvk

�
Dpv

p�1

k

�
�.p�1/

jrvkj
2

vk
�Hk.rvk/CrHk.rvk/�rvk�Q�kCQgk.x/CVk.x/

�
:

We set

Gk.x/D�.p� 1/
jrvkj

2

vk
�Hk.rvk/CrHk.rvk/ � rvk � Q�kC Qgk.x/CVk.x/: (4-14)

Using the previous computation and the fact that nk is a solution to (4-8), we get, by integrating by parts,
that

0D

Z
RN

nk.x/
�
���.x/CrHk.rvk.x// � r�.x/

�
dx D p

Z
RN

nk.x/Gk.x/�
p�1
p .x/ dx:

Therefore from this, for every ƒ> 0 we getZ
f�.x/�ƒpg

nk.x/Gk.x/�
p�1
p .x/ dx D�

Z
f�.x/�ƒpg

nk.x/Gk.x/�
p�1
p .x/ dx: (4-15)

Observe that by (4-3), (4-4), (4-5) and (4-7) we get that for all tk�kjxj � 2CV ,

Gk.x/�K
�1
jrvkj


� .p� 1/

jrvkj
2

vk
�K � Q�kC Qgk.x/CVk.x/

� .p� 1/jrvkj


�
1

K.p� 1/
�
jrvkj

2�

vk

�
�C CCV �kjxj

b: (4-16)
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We first claim that by (4-9) and (4-11),

1

K.p� 1/
�
jrvkj

2�

vk
> 0 if �kjxj

b
� C2;

eventually enlarging C2 in (4-11). Indeed,

jrvk.x/j
2�

vk.x/
� C

Œ1C �
1


k
jxj

b
 �2�

Œ�
1


k
jxj

b
 �jxj

�
CH

p� 1
(4-17)

whenever �kjxjb is large enough. This implies that for all �kjxjb � C2, by (4-16) we have Gk.x/� �C.
On the other hand, again by the gradient bounds in (4-9) we have that jrvk.x/j � C.1CC2/ on the set
�kjxj

b � C2, so (4-16) and min vk D 1 again guarantee that Gk.x/� �C3. In conclusion, there exists
C > 0 such that

Gk.x/� �C for all x 2 RN:

Therefore, going back to (4-15), recalling (4-2), we obtain thatZ
f�.x/�ƒpg

nk.x/Gk.x/

�
�.x/

ƒp

�p�1
p

dx � C

Z
f�.x/�ƒpg

nk.x/ dx � C

Z
RN

nk.x/ dx

D CM�
�NC 

˛.�1/

k
! 0 (4-18)

as k!1.
Note that by (4-16) and (4-17), if x is such that Gk.x/ � 0, then necessarily �kjxjb � C for some

C > 0. Hence, by (4-10), we get that vk.x/� C3.1C ��
1
b

k /. Therefore if we choose ƒDƒk DK��
1
b

k

for a sufficiently large K > 0, we get that Gk.x/ > 0 in the set fx W �.x/�ƒpg.

Step 5: integral estimates on nk . Arguing as in the end of Step 4, we may choose K big enough so that
Gk.x/� 1 in the set fx W �.x/�ƒp

k
g, where ƒk DK��

1
b

k . If k is sufficiently large, by (4-11) and (4-13)
it follows that for some C > 0,

vk.x/� C�
1


k
jxkj

1C b
 in B1.xk/; and B1.xk/� fx W �.x/�ƒ

p

k
g:

Therefore, we may conclude thatZ
f�.x/�ƒ

p

k
g

nk.x/Gk.x/

�
�.x/

ƒ
p

k

�p�1
p

dx � C

�
�
1


k
jxkj

1C b


�
� 1
b

k

�p�1Z
B1.xk/

nk.x/ dx

� C.�
1


k
jxkj

b
 /p�1

Z
B1.xk/

nk.x/ dx; (4-19)

which together with (4-18) gives Z
B1.xk/

nk.x/ dx � .�
1


k
jxkj

b
 /1�p (4-20)

for all k large.
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Reasoning as in Step 3, see in particular (4-12), by Proposition 2.4, (4-3), (4-9) and (4-20), we get that
for all q > 1,

knkkW 1;q.B1=2.xk//
� C.1CkrHk.rvk/kL1.B1.xk///knkk

1
q

L1.B1.xk//

� C4Œ1C .�
1


k
jxkj

b
 /�1�.�

1


k
jxkj

b
 /

1�p
q � 1;

whenever p is such that  � 1C 1�p
q
< 0 and k is large (recall that we are supposing �

1


k
jxkj

b
 !C1).

Therefore, we may conclude as in Step 3: choosing q >N, for some � 2 .0; 1/ there exists C� such that
knkkC0;� .B1=2.xk// �C� . Since nk.xk/D 1�ı, we can fix r < 1 such that nk.x/� 1

2
for all x 2Br.xk/.

Finally, by (4-2)

0 < 1
2
!N r

N
�

Z
Br .xk/

nk.x/ dx �

Z
RN

nk.x/ dx DML
˛N.�1/
�1

k
! 0:

That gives a contradiction and rules out the possibility that �kjxkjb!C1. Therefore, Lk!C1 is
impossible. �

4B. Existence of a solution to the MFG system. Using the a priori bounds we obtained, we can pass to
the limit in k in the MFG system (3-1) to get a solution to (1-1) for every " > 0.

Proof of Theorem 1.1. First, by Proposition 3.4, the existence for all k of a classical solution .uk; mk; �k/
to (3-1) follows. By (3-16), up to passing to a subsequence we have that �k! �".

Note that by Propositions 3.4 and 3.6, uk and mk are bounded by below and above respectively, so
due to Theorem 4.1 (with gŒm�D fkŒm� and rk D sk D tk D 1 for all k), we get that there exists C" > 0
independent of k (but eventually dependent on " > 0) such that kmkkL1.RN / � C". Using Theorem 2.5,
this implies jruk.x/j � C".1Cjxj

b
 / for some C" independent of k. We can normalize uk.0/D 0 and

using the Ascoli–Arzelà theorem we can extract by a diagonalization procedure a sequence uk such
that uk! u" locally uniformly in RN. Moreover, by using the estimates and the equation we have that
actually uk! u" locally uniformly in C 1. Note that, denoting by xk a minimum point of uk on RN, we
have by the HJB equation that

H.0/C�k �fkŒmk�.xk/� V.xk/:

Coercivity (1-5) of V and uniform boundedness of �k and fkŒmk� guarantee that xk remains bounded,
in particular that uk � �C on RN by gradient bounds. Theorem 2.6 then applies, and in particular
uk.x/� C jxj

1C b
 �C�1 for all k. This implies, passing to the limit, that

u".x/� C jxj
1C b

 �C�1 on RN : (4-21)

By the elliptic estimates in Proposition 2.4, we get that mk !m" locally uniformly in C 0;˛ for all
˛ 2 .0; 1/ and weakly in W 1;p.BR/ for every p > 1 and R > 0. Therefore we get that u" is a solution in
the viscosity sense of the Hamilton–Jacobi equation, by stability with respect to uniform convergence,
and m" is a weak solution to the Fokker–Planck equation, by strong convergence of ruk!ru". Finally
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this implies, again by using the regularity of the HJB equation, that uk ! u" locally uniformly in C 2.
Therefore, u"; m" solve in classical sense the system (1-1).

Now we show that
R

RN
m".x/ dx DM. We have that mk!m" locally uniformly in C 0;˛ for every

˛ 2 .0; 1/. Moreover, due to (3-13) and to (1-5), we get that for all R > 1,

C" �

Z
RN

mk.x/V .x/ dx �

Z
jxj>R

mk.x/V .x/ dx � CR
b

Z
jxj>R

mk.x/ dx:

This implies
R
jxj�Rmk.x/ dx �M �C"R

�b and then by uniform convergence we get that for every
" > 0, and � > 0, there exists R > 0 such thatZ

jxj�R

m".x/ dx �M � �:

From this we can conclude that mk!m" in L1.RN /, that is,
R

RN
m".x/ dx DM. By the boundedness

of mk in L1, it also follows that mk!m" in L˛C1.RN /.
Finally, we get that if w" D �m"rH.ru"/, then .m"; w"/ 2 K";M , due to the second equation in

(1-1). Moreover, we have that if mk!m strongly in L˛C1.RN /, then, due to the Lebesgue dominated
convergence theorem and (3-4), F.mk?�k/!F.m/ strongly inL1.RN /. This implies that the energy Ek
�-converges to the energy E , from which we conclude that .m"; w"/ is a minimizer of E in the set K";M . �

Remark 4.2. Note that by the very same arguments, recalling Remark 3.5, we have the existence of
solutions also in the more general case that condition (1-9) is satisfied.

We conclude proving some estimates on the solution .u"; m"; �"/ given in Theorem 1.1 that will be
useful in the following.

Corollary 4.3. Let .u"; m"; �"/ be as in Theorem 1.1. There exist constants C;C1; C2; K;K1; K2 > 0
independent of " such thatZ

RN
m"jru"j

 dxC

Z
RN

m˛C1" dxC

Z
RN

m".x/V .x/ dx � C"
�
0˛N

0�˛N CK; (4-22)

�K1�C1"
�
0˛N

0�˛N � �" �K2�C2"
�
0˛N

0�˛N : (4-23)

Proof. We observe that, by the arguments in the proof of Theorem 1.1, mk!m" and jrukj ! jru"j
almost everywhere, and using the fact that V.x/� 0, we have that by Fatou’s lemmaZ

RN
m".x/jru"j

 dx � lim inf
k

Z
RN

mk.x/jrukj
 dx;Z

RN
m".x/V .x/ dx � lim inf

k

Z
RN

mk.x/V .x/ dx;Z
RN

m˛C1" dx � lim inf
k

Z
RN

m˛C1
k

dx:

So inequality (3-13) gives immediately (4-22).
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Now we prove (4-23). Note that the estimate from below is a direct consequence of (3-16). So, it
remains to show that

�" � C2�C2"
�
0˛N

0�˛N :

Recalling that formula (3-22) holds and
R
f .m/m�F.m/� 2KM by (1-3), it is sufficient to show that

inf
.m;w/2K";M

E.m;w/� �C2"
�
0˛N

0�˛N CC2; (4-24)

where C2 is a constant depending only on N;M;CL; ; ˛; V . We construct a pair .m;w/ 2 K";M as
follows. First of all we consider a smooth function � W Œ0;C1/!R which solves the ordinary differential
equation �

�0.r/D��.r/.1C�.r/˛/
1
0 ;

�.0/D 1
2
:

(�)

Then, it is easy to check that 0 < �.r/� 1
2
e�r . We define m.x/DA�.� jxj/, where A; � are constants to

be fixed, and w.x/D "rm.x/.
First of all we impose

M D

Z
RN

m.x/ dx D
A

�N

Z
RN

�.jyj/ dy D
A

�N
C�1;

recalling that � is exponentially decreasing. So ADM�NC , where C�1 D
R

RN
�.jyj/ dy.

Observe also thatZ
RN

m˛C1.x/ dx DM ˛C1�˛NC ˛C1
Z

RN
�˛C1.jyj/ dy DM ˛C1�˛NC ˛C1C˛; (4-25)

where C˛ D
R

RN
�˛C1.jyj/ dy.

We check, recalling the growth condition (1-5), that the following holds:Z
RN

m.x/V.x/ dx DMC

Z
RN

V

�
y

�

�
�.jyj/ dy D C1

1

�b
; (4-26)

where K is a constant depending on N, �, C0.
Moreover, we compute, recalling that � solves the ODE (�),

jwj
0

D

ˇ̌̌̌
"�m

�
1C

1

M ˛C ˛�N˛
m˛
� 1
0
ˇ̌̌̌ 0
D "

0

�
0

m
0

�
1C

1

M ˛C ˛�N˛
m˛
�
: (4-27)

We consider the energy at .m;w/

E.m;w/D
Z

RN
mL

�
�
w

m

�
CF.m/CmV.x/ dx:

Observe that by (1-3),

F.m/� �
Cf

˛C 1
m˛C1CKm:
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Using Proposition 2.1, computation (4-27) and (4-25), we getZ
RN
mL

�
�
w

m

�
CF.m/dx�

Z
RN
mL

�
�
w

m

�
dx�

Cf

˛C1

Z
RN
m˛C1dxCKM

�CL

Z
RN
m
jwj

0

m
0 dxC.CLCK/M�

Cf

˛C1

Z
RN
m˛C1dx

DCL"
 0�

0

�
MC

Z
RN

1

M ˛C ˛�N˛
m˛C1dx

�
C.CLCK/M�

Cf

˛C1

Z
RN
m˛C1

DCL"
 0�

0

MC.CLCK/M�

�
Cf

˛C1
�
"
0

�
0�N˛

M ˛C ˛

�Z
RN
m˛C1dx

D .MCLCMCC˛/"
 0�

0

�
Cf

˛C1
M ˛C1C ˛C1C˛�

˛N
C.CLCK/M:

We choose now � such that � D 1
a
"
�

0

0�N˛ , where a is sufficiently large, in such a way thatZ
RN

mL

�
�
w

m

�
dxCF.m/ dx � �C"

�
0N˛

0�N˛ CC;

where C is a constant depending on ˛; CL;M. Substituting this in the energy and recalling (4-26), we
get the desired inequality. �

5. Concentration phenomena

In the second part of this work, we are interested in the asymptotic analysis of solutions to (1-1) when
"! 0.

5A. The rescaled problem. We consider the rescaling8̂̂<̂
:̂
Qm.y/ WD "

N0

0�˛Nm."
0

0�˛N y/;

Qu.y/ WD "
N˛.0�1/�0

0�˛N u."
0

0�˛N y/;

Q� WD "
N˛0

0�˛N �:

(5-1)

We introduce the rescaled potential

V".y/D "
N˛0

0�˛N V."
0

0�˛N y/: (5-2)

Note that by (1-5), we get

C�1V "
N˛0

0�˛N .maxfj"
0

0�˛N yj �CV ; 0g/
b
� V".y/� CV "

N˛0

0�˛N .1C "
0

0�˛N jyj/b: (5-3)

The rescaled coupling term is given by

f". Qm.y//D "
N˛0

0�˛N f ."
�

N0

0�˛Nm."
0

0�˛N y//: (5-4)

Note that, using (1-3), we obtain

�Cfm
˛
�K"

N˛0

0�˛N � f".m/� �Cfm
˛
CK"

N˛0

0�˛N : (5-5)
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Then we get that
lim
"!0

f".m/D�Cfm
˛ uniformly in Œ0;C1/: (5-6)

Moreover, we define F".m/D
Rm
0 f".n/ dn if m� 0 and F".m/D 0 otherwise, and we get

�
Cf

˛C 1
m˛C1�K"

N˛0

0�˛Nm� F".m/� �
Cf

˛C 1
m˛C1CK"

N˛0

0�˛Nm: (5-7)

We define also the rescaled Hamiltonian

H".p/D "
N˛0

0�˛NH."
�
N˛.0�1/

0�˛N p/: (5-8)

By (1-2),

CH jpj

� "

N˛0

0�˛NK �H".p/� CH jpj
 ;

jrH".p/j �Kjpj
�1:

(5-9)

So, we get
lim
"!0

H".p/DH0.p/ WD CH jpj
 uniformly in RN: (5-10)

Moreover, if we assume that rH" is locally bounded in C 0;�1.RN /, then

rH".p/!rH0.p/D
CH


jpj�2p locally uniformly.

We can define L" as in (1-7), with H" in place of H and we obtain that condition (5-9) gives that there
exists CL > 0 such that

CLjqj
 0
� L".q/� CLjqj

 0
C "

N˛0

0�˛N CL; (5-11)

which in turns gives that

L".q/! L0.q/D CLjqj
 0 uniformly in RN: (5-12)

The rescalings (5-13) lead to the rescaled system8<:
�� Qu"CH".r Qu"/C Q�" D f". Qm"/CV".y/;

�� Qm"� div. Qm"rH".r Qu"//D 0;R
RN
Qm" DM:

(5-13)

Existence of a triple . Qu"; Qm"; Q�"/ solving the previous system is an immediate consequence of Theorem 1.1.
We first start by stating some a priori estimates.

Lemma 5.1. There exist C;C1; C2 > 0 independent of " such that the following hold:

�C1 � Q�" � �C2; (5-14)Z
RN
Qm"jr Qu"j

 dyC

Z
RN
Qm".y/V".y/ dyCk Qm"k

˛C1
L˛C1.RN /

� C; (5-15)

k Qm"kL1.RN / � C: (5-16)
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Proof. Estimates (4-23), (4-22) give (5-14), (5-15) by rescaling.
We apply Theorem 4.1 with gŒm�.x/ D f".m.x//, rk D "

N˛.0�1/

0�˛N , sk D "
N˛0

0�˛N and tk D "
0

0�˛N,
which are all bounded sequences, and we obtain (5-16). �

Using the a priori bounds on the solutions to (5-13), we want to pass to the limit "! 0. The problem
is that these estimates are not sufficient to ensure that there is no loss of mass, namely that the limit of
Qm" still has L1 norm equal to M. Therefore, we need to translate the reference system at a point around

which the mass of Qm" remains positive. This will be done as follows.
Let y" 2 RN be such that

Qu".y"/Dmin
RN
Qu".y/; (5-17)

note that this point exists due to (4-21).
We will define

Nu".y/D Qu".yCy"/� Qu".y"/;

Nm".y/D Qm".yCy"/:
(5-18)

Note that . Nu"; Nm"; Q�"/ is a classical solution to8<:
�� Nu"CH".r Nu"/C Q�" D f". Nm"/CV".yCy"/;

�� Nm"� div. Nm"rH".r Nu"//D 0;R
RN
Nm" DM;

(5-19)

and in addition Nu".0/D 0DminRN Nu".

5B. A preliminary convergence result. In this section, we provide some preliminary convergence results,
where we are not preventing possible loss of mass in the limit. First of all we need some a priori estimates
on the solutions to (5-19).

Proposition 5.2. Let . Nu"; Nm"; Q�"/ be as in (5-18). Then there exists a constant C > 0 independent of "
such that the following hold:

"
.N˛Cb/0

0�N˛ jy"j
b
� C and 0� V".yCy"/� C."

.N˛Cb/0

0�N˛ jyjbC 1/; (5-20)

jr Nu".y/j � C.1Cjyj/
b
 and Nu".y/� C jyj

1C b
 �C�1; (5-21)Z

BR.0/

Nm".y/ dy � C for all R � 1: (5-22)

Finally, if Nw" D� Nm"rH".r Nu"/, then . Nm"; Nw"/ is a minimizer in the set K1;M of the energy

E".m;w/D
Z

RN
mL"

�
�
w

m

�
CV".yCy"/mCF".m/ dy; (5-23)

where L" and F" are defined in Section 5A.

Proof. Since Nu" is a classical solution, we can compute the equation in y D 0, obtaining

H".0/C Q�" � f". Nm".0//CV.y"/:
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Using the a priori estimates (5-14), (5-16), (5-9) and the assumptions (5-5), (5-3), this implies

"
.N˛Cb/0

0�N˛ jy"j
b
� C;

and then, again by assumption (5-3), that (5-20) holds.
Using estimates (5-14), (5-16), and (5-20), we conclude by Theorem 2.5 that estimate (5-21) holds.
Again by the equation computed at yD 0, recalling that H".0/! 0 and V" � 0 and estimate (5-14), we

deduce that �f". Nm".0//��C2 > 0. So, by assumption (5-5), we get that there exists C > 0 independent
of ", such that Qm".0/ > C > 0. Using the estimates (5-21) and (5-16), by Proposition 2.4, we get that
there exists a positive constant depending on p such that k Nm"kW 1;p.B2.0//

� Cp for all p > 1. This, by
Sobolev embeddings, gives that k Nm"kC0;˛.B2.0// �C˛ for every ˛ 2 .0; 1/ and for some positive constant
depending on ˛. We choose now R0 2 .0; 1� such that Nm" � 1

2
C in BR0.0/, using the C ˛ estimate and

the fact that Nm".0/ > C > 0. This implies immediately that
R
BR0 .0/

Nm".y/ dy �
1
2
C jBR0 j > 0. This

gives the estimate (5-22), for all radii bigger than R0.
Finally that . Nm"; Nw"/ is a minimizer of (5-23) in K1;M follows from Theorem 1.1, by rescaling. �

We get the first convergence result.

Proposition 5.3. Let . Nu"; Nm"; Q�"/ be the classical solution to (5-19) constructed above. Up to subse-
quences, we get that Q�"! N�, and

Nu"! Nu; Nm"! Nm; r Nu"!r Nu; rH".r Nu"/!rH0.r Nu/ (5-24)

locally uniformly, where Nu� 0D Nu.0/, and . Nu; Nm; N�/ is a classical solution to�
�� NuCH0.r Nu/C N�D�Cf Nm

˛Cg.x/;

�� Nm� div. NmrH0.r Nu//D 0
(5-25)

for a continuous function g such that 0� g.x/� C on RN for some C > 0.
Moreover, there exist a 2 .0;M�, C;K; � > 0 such that

R
RN
Nmdx D a, and

Nu.x/� C jxj �C; jr Nuj �K on RN ;

Z
RN

e�jxj Nm.x/ dx <C1: (5-26)

Proof. First of all observe that, since V is a locally Hölder continuous function, (5-20) implies that, up to
a subsequence, V".xCy"/! g.x/ locally uniformly as "! 0, where g is a continuous function such
that 0� g.x/� C for some C > 0.

Using the a priori estimate (5-21), and recalling that Nu" is a classical solution to (5-19), by classical
elliptic regularity theory we obtain that Nu" is locally bounded in C 1;˛ in every compact set, uniformly
with respect to ". So, up to extracting a subsequence via a diagonalization procedure, we get that

Nu"! Nu; r Nu"!r Nu; rH".r Nu"/!rH0.r Nu/

locally uniformly, and Q�"! N�. Using the estimates (5-21) and (5-16), by Proposition 2.4, and by Sobolev
embeddings, for every compact set K � RN, we have that k Nm"kC0;˛.K/ � CK;˛ for every ˛ 2 .0; 1/ and
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for some positive constant depending on ˛ andK. So, up to extracting a subsequence via a diagonalization
procedure, we get that Nm"! Nm locally uniformly.

So, we can pass to the limit in (5-19) and obtain that . Nu; Nm; N�/ is a solution to (5-25), which is classical
by elliptic regularity theory.

Using (5-22) and locally uniform convergence, we get that there exists a2.0;M� such that
R

RN
NmdyDa.

Observe that Nu is a solution to

�� NuCH0.r Nu/C N�D�Cf Nm
˛
Cg.x/:

By Theorem 2.5, we get that there exists a constant K depending on supg and �N� such that jr Nuj �K.
Moreover, by construction Nu� 0.

Since Nm is Hölder continuous and such that
R

RN
NmdxD a 2 .0;M�, by Lemma 2.2, we get that Nm! 0

as jxj ! C1. Therefore, we get that lim infjxj!C1.� Nm˛.x/C g.x/� N��H0.0// � �� > 0. So, by
Theorem 2.6, recalling that by construction Nu.0/D 0� Nu.y/, we get that Nu satisfies

Nu.x/� C jxj �C (5-27)

for some C > 0.
To conclude, consider the function ˆ.x/D e� Nu.x/. We claim that we can choose � > 0 such that there

exist R > 0 and ı > 0 with

��ˆCrH0.r Nu/ � rˆ> ıˆ; jxj>R: (5-28)

Indeed, since Nu solves the first equation in (5-25), we get

��ˆCrH0.r Nu/ � rˆ� �.�N�� �jr Nuj
2
� Nm˛/ˆ:

Using (5-27) and Nm! 0 as jxj !C1, we obtain the claim. Reasoning as in [Ichihara 2015, Proposi-
tion 4.3], or [Metafune et al. 2005, Proposition 2.6], we get that

R
RN

e� Nu Nmdx <C1, which concludes
the estimate (5-26). �
Remark 5.4. With estimates (5-26) in force, the pointwise bounds stated in [Metafune et al. 2005,
Theorem 6.1] hold; namely there exist positive constants c1; c2, such that

Nm.x/� c1e
�c2jxj on RN:

5C. Concentration-compactness. In this section we show that actually there is no loss of mass when
passing to the limit as in Proposition 5.3. In order to do so, we apply a kind of concentration-compactness
argument.

First of all we show that the functional E".m;w/ enjoys the following subadditivity property. Let us set

Qe".M/D min
.m;w/2KM

E".m;w/:

Recalling (3-6), (4-24), and the rescaling (5-1), for every M > 0 there exist C1.M/; C2.M/;K1; K2 > 0

depending on M (and on the other constants of the problem) but not on " such that there holds

�C1.M/�K1"
N˛0

0�N˛ � Qe".M/� �C2.M/�K2"
N˛0

0�N˛ : (5-29)
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Lemma 5.5. For all a 2 .0;M/, there exist "0D "0.a/ and a constant C DC.a;M/� 0, depending only
on a;M and the data (not on "), such that C.M;M/D 0D C.0;M/, C.a;M/ > 0 for 0 < a <M and

Qe".M/� Qe".a/C Qe".M � a/�C.a;M/ for all "� "0: (5-30)

Proof. We assume that a � 1
2
M (otherwise it suffices to replace a with M � a).

Let c > 1 and B > 0. For all admissible pairs .m;w/ 2 KB we have, recalling (5-7),

Qe".cB/� E".cm; cw/D
Z

RN
cmL"

�
�
w

m

�
CF".cm/C cV".xCy"/mdx

D cE".m;w/C
Z

RN
F".cm/� cF".m/ dx

� cE".m;w/�
c.c˛ � 1/Cf

˛C 1

Z
RN

m˛C1 dxC 2KcB"
N˛0

0�N˛ : (5-31)

Let now .mn; wn/ be a minimizing sequence of E" in KB such that E".mn; wn/ � Qe".B/C 1
4
C2.B/,

where C2.B/ is the constant appearing in (5-29), which depends on B and on the data of the problem.
Recalling that V" � 0 and L" � 0, and using estimate (5-7), we get

Qe".M/C 1
4
C2.B/� E".mn; wn/�

Z
RN

F".mn/ dx � �
Cf

˛C 1

Z
Rn
m˛C1 dx�KB"

N˛0

0�N˛ :

Using (5-29), we get, for all " sufficiently small,

Cf

˛C 1

Z
RN

m˛C1n dx � 3
4
C2.B/�K"

N˛0

0�˛N > 1
2
C2.B/ > 0:

So, this estimate in particular holds for a minimizer of E". Therefore in (5-31) we get, taking .m;w/ to
be a minimizer of E" (which exists by Proposition 5.2),

Qe".cB/ < c Qe".B/� c.c
˛
� 1/1

2
C2.B/C 2KcB"

N˛0

0�N˛ : (5-32)

Using (5-32) with B D a and c D M
a

we get

Qe".M/ <
M

a
Qe".a/�

M

a

��
M

a

�˛
� 1

�
C2.a/

2
C 2KM"

N˛0

0�N˛ :

If aD 1
2
M , this permits us to conclude, choosing " sufficiently small (depending on a). If a > 1

2
M , we

use (5-32) with B DM � a and c D a
M�a

to get
�
multiplying everything by M�a

a

�
M �a

a
Qe".a/ < Qe".M �a/�

��
a

M �a

�̨
�1

�
C2.M �a/

2
C2K.M �a/"

N˛0

0�N˛

< Qe".M �a/�

��
a

M �a

�̨
�1

�
C2.M �a/

2
C2KM"

N˛0

0�N˛ � Qe".M �a/C2KM"
N˛0

0�N˛ :
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So putting together the last two inequalities we get

Qe".M/ <
M

a
Qe".a/�

M

a

��
M

a

�̨
� 1

�
C2.a/

2
C 2KM"

N˛0

0�N˛

D Qe".a/C
M � a

a
Qe".a/�

M

a

��
M

a

�̨
� 1

�
C2.a/

2
C 2KM"

N˛0

0�N˛

< Qe".a/C Qe".M � a/�
M

a

��
M

a

�̨
� 1

�
C2.a/

2
C 4KM"

N˛0

0�N˛

� Qe".a/C Qe".M � a/�
M

a

��
M

a

�̨
� 1

�
C2.a/

4

for " sufficiently small (depending on a). �

Theorem 5.6. Let . Nm"; Nw"/ be the minimizer of E" as in Proposition 5.2. Let Nu; Nm as in Proposition 5.3,
so that Nm" ! Nm, Nw" ! Nw D � NmrH0.r Nu/ locally uniformly, and Nm satisfies the exponential decay
(5-26). Then, Z

RN
Nmdx DM: (5-33)

Proof. Assume by contradiction that
R

RN
Nmdx D a, with 0 < a <M. We fix "0.a/ as in Lemma 5.5, and

we consider from now on "� "0.a/. Let Nc > 0 be such that Nm� Nce�jxj (such Nc exists by Remark 5.4).
For R sufficiently large (to be chosen later), we define

�R.x/D

�
Nce�R; jxj �R;

Nce�jxj; jxj>R:
(5-34)

So in particular Nm.x/� �R.x/ for jxj>R.
We observe that as R!C1Z

Rn
�R.x/ dx D Nc!N e

�RRN C

Z
RN nBR

Nce�jxj dx � Ce�RRN ! 0: (5-35)

Since Nm"! Nm and rH".r Nu"/!rH0.r Nu/ locally uniformly, there exists "0 D "0.R/ such that for
all "� "0,

j Nm"� NmjC jrH".r Nu"/�rH0.r Nu/j � Nce
�R; jxj �R: (5-36)

We observe that for all "� "0,

Nm"� NmC 2�R � �R.x/ for all x 2 RN: (5-37)

Indeed, if jxj>R, then Nm"� NmC 2�R � Nm"C �R � �R, since Nm� �R. On the other hand, if jxj �R,
then by (5-36) Nm"� NmC 2�R � �Nce�RC 2 Nce�R D Nce�R D �R. From (5-37) we deduce that

j Nm"� Nmj � Nm"� NmC 2�R: (5-38)

Moreover, since Nm"! Nm a.e. by Theorem 2.3, recalling that
R

RN
Nm" dx DM,

R
Rn
NmD a and using

(5-35) and (5-38), we haveZ
RN
. Nm"� NmC 2�R/ dx DM � aC 2

Z
RN

�R dx!M � a as R!C1; (5-39)
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and

lim
"!0

Z
RN
Nm˛C1" dx D

Z
RN
Nm˛C1 dxC lim

"!0

Z
RN
j Nm"� Nmj

˛C1 dx

�

Z
RN
Nm˛C1 dxC lim

"!0

Z
RN
. Nm"� NmC 2�R/

˛C1 dx: (5-40)

We claim that

E". Nm"; Nw"/� E". Nm; Nw/C E". Nm"� NmC 2�R; Nw"� NwC 2r�R/C o".1/C oR.1/; (5-41)

where o".1/ is an error such that lim"!0 o".1/D 0.
We consider the function .m;w/ 7! mL"

�
�
w
m

�
. This is a convex function in .m;w/. We compute

rw

�
mL"

�
�
w
m

��
D�rL"

�
�
w
m

�
, so in particular by (5-11) we get

CL

ˇ̌̌̌
w

m

ˇ̌̌̌ 0�1
�C�1L "

N˛.0�1/

0�˛N �

ˇ̌̌̌
rw

�
mL"

�
�
w

m

��ˇ̌̌̌
� C�1L

ˇ̌̌̌
w

m

ˇ̌̌̌ 0�1
CC�1L "

N˛.0�1/

0�˛N : (5-42)

Moreover, @m
�
mL"

�
�
w
m

��
D L"

�
�
w
m

�
C
w
m
� rL"

�
�
w
m

�
, therefore, again by (5-11) we get

CL

ˇ̌̌̌
w

m

ˇ̌̌̌ 0
�C�1L "

N˛.0�1/

0�˛N �

ˇ̌̌̌
@m

�
mL"

�
�
w

m

��ˇ̌̌̌
� C�1L

ˇ̌̌̌
w

m

ˇ̌̌̌ 0
CC�1L "

N˛.0�1/

0�˛N : (5-43)

Note thatZ
RN

V".yCy"/ Nm" dx

D

Z
RN

V".yCy"/ NmdxC

Z
RN

V".yCy"/. Nm"� NmC 2�R/ dx� 2

Z
RN

V".yCy"/�R dx:

Recalling the estimate (5-20) and the definition of �R, we have

2

Z
RN

V".yCy"/�R dx � CR
bCN e�R:

Hence we obtainZ
RN

V".yCy"/ Nm" dx

�

Z
RN

V".yCy"/ NmdxC

Z
RN

V".yCy"/. Nm"� NmC 2�R/ dx�CR
bCN e�R: (5-44)

By (5-40) and (5-7) we getZ
RN

F". Nm"/ dx � �
Cf

˛C 1

Z
RN
Nm˛C1" dx�KM"

N˛0

0�˛N

� �
Cf

˛C 1

Z
RN
Nm˛C1 dx�

Cf

˛C 1

Z
RN
. Nm"� NmC 2�R/

˛C1 dxC o".1/

�

Z
RN

F". Nm/dxC

Z
RN

F". Nm"� NmC 2�R/ dxC o".1/: (5-45)
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Finally, we estimate the kinetic terms in the energy. SplittingZ
RN
Nm"L"

�
�
Nw"

Nm"

�
dx D

Z
BR

Nm"L"

�
�
Nw"

Nm"

�
dxC

Z
RN nBR

Nm"L

�
�
Nw"

Nm"

�
dx;

we proceed by estimating separately the two terms.

Estimates in RN nBR. First of all, note that by (5-26), (5-9) and (5-11), we get that L"
�
�
Nw
Nm

�
D

L".rH0.r Nu// � C for come constant C > 0, just depending on the data. Moreover, recalling that
Nm� Nce�jxj, we get that, eventually enlarging C,Z

RN nBR

NmL"

�
�
Nw

Nm

�
dx � C

Z
jxj>R

e�jxj dx � CRN e�R: (5-46)

By the convexity of the function .m;w/ 7!mL
�
�
w
m

�
, we getZ

RN nBR

Nm"L

�
�
Nw"

Nm"

�
dx

�

Z
RN nBR

. Nm"� NmC 2�R/L"

�
�
Nw"� NwC 2r�R

Nm"� NmC 2�R

�
dx

C

Z
RN nBR

@m

�
. Nm"� NmC 2�R/L"

�
�
Nw"� NwC 2r�R

Nm"� NmC 2�R

��
. Nm� 2�R/ dx (5-47)

C

Z
RN nBR

rw

�
. Nm"� NmC 2�R/L"

�
�
Nw"� NwC 2r�R

Nm"� NmC 2�R

��
� . Nw� 2r�R/ dx: (5-48)

We recall that j Nwj D NmjrH0.r Nu/j � C Nm by (5-26) and jr�Rj � C�R by definition. Moreover, by
(5-21) and (5-9),

j Nw"j D Nm"jrH".r Nu"/j � C Nm"Œ.1Cjxj/
b
 ��1 � C1 Nm".1Cjxj/

b
0 :

Using the triangle inequality we get the following, where the constant C can change from line to line:ˇ̌̌̌
Nw"� NwC 2r�R

Nm"� NmC 2�R

ˇ̌̌̌
�
Nm"jrH".r Nu"/j

Nm"� NmC 2�R
C
NmjrH0.r Nu/j

Nm"� NmC 2�R
C

C�R

Nm"� NmC 2�R

�
C Nm".1Cjxj/

b
0

Nm"� NmC 2�R
C

C Nm

Nm"� NmC 2�R
C

C�R

Nm"� NmC 2�R
� C.1Cjxj/

b
0 (5-49)

on RN n BR.0/, where we used respectively the fact that Nm" � NmC 2�R � Nm", Nm � �R, and that
Nm"� NmC 2�R � �R.

Now, using (5-43) and (5-49), we can estimate (5-47), and by (5-42) and (5-49) we can estimate (5-48).
Indeed, we getZ

RN nBR

ˇ̌̌̌
@m

�
. Nm"� NmC 2�R/L"

�
�
Nw"� NwC 2r�R

Nm"� NmC 2�R

��ˇ̌̌̌
j Nm� 2�Rj dx � C

Z
RN nBR

.1Cjxj/b�R.x/ dx

andZ
RN nBR

ˇ̌̌̌
rw

�
. Nm"� NmC2�R/L"

�
�
Nw"� NwC2r�R

Nm"� NmC2�R

��ˇ̌̌̌
.j NwjC2jr�Rj/ dx�C

Z
RN nBR

.1Cjxj/
b
 �R.x/ dx;



776 ANNALISA CESARONI AND MARCO CIRANT

because Nw � C Nm on RN. Therefore, we may conclude, possibly enlarging C, thatZ
RN nBR

Nm"L

�
�
Nw"

Nm"

�
dx

�

Z
RN nBR

. Nm"� NmC 2�R/L"

�
�
Nw"� NwC 2r�R

Nm"� NmC 2�R

�
dx�C

Z
RN nBR

.1Cjxj/b�R.x/ dx

�

Z
RN nBR

. Nm"� NmC 2�R/L"

�
�
Nw"� NwC 2r�R

Nm"� NmC 2�R

�
dx�CRNCbe�R: (5-50)

Finally, putting together (5-46) and (5-50), we have, choosing C sufficiently large,Z
RN nBR

Nm"L"

�
�
Nw"

Nm"

�
dx�

Z
RN nBR

NmL"

�
�
Nw

Nm

�
dx

C

Z
RN nBR

. Nm"� NmC2�R/L"

�
�
Nw"� NwC2r�R

Nm"� NmC2�R

�
dx�CRNCbe�R: (5-51)

Estimates in BR. Again by the convexity of the function .m;w/ 7!mL
�
�
w
m

�
, we getZ

BR

Nm"L

�
�
Nw"

Nm"

�
dx �

Z
BR

NmL"

�
�
Nw

Nm

�
dxC

Z
BR

@m

�
NmL"

�
�
Nw

Nm

��
. Nm"� Nm/dx

C

Z
BR

rw

�
NmL"

�
�
Nw

Nm

��
� . Nw"� Nw/ dx: (5-52)

We now estimate (5-52). We recall thatˇ̌̌̌
Nw

Nm

ˇ̌̌̌
� jrH0.r Nu/j �K

and also jrH".r Nu"/j �K for all "� "0.R/. Then, using these facts and (5-42) and (5-43) and recalling
(5-36), we getZ

BR

ˇ̌̌̌
@m

�
NmL"

�
�
Nw

Nm

��ˇ̌̌̌
j Nm"� Nmj dx D

Z
BR

j@m. NmL".rH0.r Nu///jj Nm"� Nmj dx � Ce
�RRN

andZ
BR

jrw Œ NmL".rH0.r Nu//�j
�
jrH".ru"/jj Nm"� NmjC jrH".r Nu"/�rH0.r Nu/j Nm

�
dx � Ce�RRN:

This implies that for all "� "0.R/Z
BR

Nm"L

�
�
Nw"

Nm"

�
dx �

Z
BR

NmL"

�
�
Nw

Nm

�
dx�Ce�RRN: (5-53)

Now we observe that by (5-11),Z
BR

. Nm"� NmC2�R/L"

�
�
Nw"� NwC 2r�R

Nm"� NmC 2�R

�
dx�C

Z
BR

�ˇ̌̌̌
Nw"� NwC 2r�R

Nm"� NmC 2�R

ˇ̌̌̌ 0
C1

�
. Nm"� NmC2�R/ dx:
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By (5-38) we get that Nm" � NmC 2�R � j Nm" � Nmj C 2�R � Ce�R, eventually enlarging C. Moreover,
reasoning as in (5-49), we getˇ̌̌̌

Nw"� NwC 2r�R

Nm"� NmC 2�R

ˇ̌̌̌
� jrH".r Nu"/j

j Nm"� Nmj

Nm"� NmC 2�R
C
jrH".r Nu"/�rH0.r Nu/j

Nm"� NmC 2�R
Nm� C;

where we used that r�R D 0 for jxj<R, that jrH".r Nu"/j �K, that by (5-38)

j Nm"� Nmj

Nm"� NmC 2�R
� 1;

and that by (5-37) and (5-36)
jrH".r Nu"/�rH0.r Nu/j

Nm"� NmC 2�R
� C:

So, we conclude thatZ
BR

. Nm"� NmC 2�R/L"

�
�
Nw"� NwC 2r�R

Nm"� NmC 2�R

�
dx � Ce�RRN: (5-54)

Putting together (5-53) and (5-54) we get, choosing C sufficiently large, for all "� "0.R/,Z
BR

Nm"L"

�
�
Nw"

Nm"

�
dx �

Z
BR

NmL"

�
�
Nw

Nm

�
dx

C

Z
BR

. Nm"� NmC 2�R/L"

�
�
Nw"� NwC 2r�R

Nm"� NmC 2�R

�
dx�CRN e�R: (5-55)

Therefore, summing up (5-55), (5-51), (5-44) and (5-45), we conclude for all "� "0.R/,

E". Nm"; Nw"/� E". Nm; Nw/C E". Nm"� NmC 2�R; Nw"� NwC 2r�R/C o".1/�CRbCN e�R: (5-56)

Let now

cR D
M � a

M � aC 2
R

RN
�R dx

:

We have cR!1 asR!C1 and cR<1. In particular, .cR. Nm"� NmC2�R/; cR. Nw"� NwC2r�R//2KM�a.
By the same computation as in (5-31), we get

cRE". Nm"� NmC2�R; Nw"� NwC2r�R/

D E".cR. Nm"� NmC2�R/; cR. Nw"� NwC2r�R//C
Z

RN
cRF". Nm"� NmC2�R/�F".cR. Nm"� NmC2�R// dx

� E".cR. Nm"� NmC2�R/; cR. Nw"� NwC2r�R//

CcR
c˛R�1

˛C1
Cf

Z
RN
. Nm"� NmC2�R/

˛C1 dx�2K

�
M�aC2

Z
RN

�R dx

�
"
N˛0

0�N˛ : (5-57)

Observe that by (5-15) there exists C independent of " such that

0�

Z
RN
. Nm"� NmC 2�R/

˛C1 dx � .k Nm"k˛C1Ck Nmk˛C1Ck2�Rk˛C1/
˛C1
� C:
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Therefore, (5-57) reads (recalling that cR < 1 and enlarging the constants C;K)

cRE". Nm"� NmC 2�R; Nw"� NwC 2r�R/

� E".cR. Nm"� NmC 2�R/; cR. Nw"� NwC 2r�R//C cR
c˛R � 1

˛C 1
C �KM"

N˛0

0�N˛

� Qe".M � a/C cR
c˛R � 1

˛C 1
C �KM"

N˛0

0�N˛ :

Using this inequality, and using the fact that E". Nm"; Nw"/D Qe".M/ and that E". Nm; Nw/� Qe".a/, we obtain
from (5-56)

Qe".M/� Qe".a/C Qe".M � a/C .1� cR/E". Nm"� NmC 2�R; Nw"� NwC 2r�R/

CCcR
c˛R � 1

˛C 1
�KM"

N˛0

0�N˛ C o".1/�CR
bCN e�R:

Moreover by (5-29) we get that there exists K DK.M � a/ > 0 such that

E". Nm"� NmC 2�R; Nw"� NwC 2r�R/� �KI

therefore the previous inequality gives

Qe".M/� Qe".a/C Qe".M � a/� .1� cR/KCCcR
c˛R � 1

˛C 1
C o".1/�CR

bCN e�R: (5-58)

By Lemma 5.5, we get
Qe".M/� Qe".a/C Qe".M � a/�C.a;M/;

where C.a;M/ > 0 for a <M and C.M;M/D 0. This implies in particular that

0 > �C.a;M/� �.1� cR/KCCcR
c˛R � 1

˛C 1
C o".1/�CR

bCN e�R:

Recalling that cR ! 1 as R ! C1, this gives a contradiction, choosing R sufficiently large and
" < "0.R/. �

An immediate corollary of the previous theorem is the following convergence result.

Corollary 5.7. Let . Nu"; Nm"; Q�"/ and . Nu; Nm; N�/ be as in Proposition 5.3. Then,

Nm"! Nm in L1.RN / and L˛C1.RN /: (5-59)

Finally for all � > 0, there exist R > 0 and "0 such that for all "� "0,Z
B.0;R/

Nm" dx �M � �: (5-60)

Proof. By Proposition 5.3 we get that Nm"! Nm almost everywhere, and by Theorem 5.6,
R

RN
Nm" DM DR

RN
Nm. This implies the convergence in L1.RN /. Indeed, by Fatou’s lemma

2M � lim inf
"

Z
RN
Nm"C Nm� j Nm"� Nmj dx � 2M � lim sup

"

Z
RN
j Nm"� Nmj dx:
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Moreover, recalling (5-16), we get

k Nm"� Nmk
˛C1
L˛C1.RN /

� k Nm"� NmkL1.RN /.k NmkL1.RN /Ck Nm"kL1.RN //! 0:

Finally observe that for all R, by Remark 5.4,Z
BR.0/

Nm" dy �

Z
BR.0/

Nmdy �

Z
BR.0/

j Nm"� Nmj dy �M �CR
N�1e�R �

Z
RN
j Nm"� Nmj dy:

So, using the L1 convergence we conclude the desired estimate. �

5D. Existence of ground states. In this subsection we aim at proving that as " goes to zero, . Nu"; Nm"; Q�"/
converges to a solution of the limiting MFG system (1-14), without potential terms. In particular, we will
prove Theorem 1.3.

We first need a �-convergence-type result, proved in the following lemma.

Lemma 5.8. Let .m"; w"/; .m;w/2K1;M be such thatm"!m in L1\L˛C1.RN / and w"*w weakly
in Lq.RN / for some q > 1. Then

lim inf
"
E".m"; w"/� E0.m;w/; (5-61)

where E0 is defined in (1-16).
Let .m;w/ 2 K1;M be such that m.1Cjyjb/ 2 L1.RN /. Then

lim
"

E".m. � �y"/; w. � �y"//� E0.m;w/: (5-62)

Proof. We recall that L".q/! CLjqj
 0 uniformly in RN by (5-11) and F".m/!� 1

˛C1
m˛C1 uniformly

in Œ0;C1/ by (5-7). Moreover we observe that the energy E0 is lower semicontinuous with respect to
weak Lq convergence of w and strong L˛C1\L1 convergence of m. Since V � 0, we get

lim inf
"
E".m"; w"/� lim inf

"

Z
RN

m"L"

�
�
w"

m"

�
CF".m"/ dx

� lim inf
"

Z
RN

CLm
1� 0

" jw"j
 0
�

Cf

˛C 1
m˛C1" dx

�

Z
RN

CLm
1� 0
jwj

0

�
Cf

˛C 1
m˛C1 dx D E0.m;w/:

Now we observe that for all m such that m.1Cjyjb/ 2 L1.RN /, using (5-3), we get

lim
"!0

Z
RN

m.yCy"/V".yCy"/ dy � lim
"
CV "

N˛0

0�˛N

Z
RN
.1Cjyj/bm.y/ dy D 0: (5-63)

Therefore, recalling again the uniform convergence of L".q/! CLjqj
 0 and F".m/!� 1

˛C1
m˛C1, we

conclude (noting that if we translate m;w of y" the energy E0 remains the same)

lim
"

E".m. � �y"/; w. � �y"//D E0.m;w/C lim
"!0

Z
RN

m.yCy"/V".yCy"/ dy � E0.m;w/: �
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Proof of Theorem 1.3. We first show that . Nu; Nm/ obtained in Proposition 5.3 are associated to minimizers
of an appropriate energy, without potential term, so that (1-15) holds.

Note that . Nm; Nw/ 2 K1;M , where Nw D � NmrH0.r Nu/, due to Proposition 5.3 and Theorem 5.6 and
Nm.1Cjyjb/2L1.RN / by the exponential decay (5-26). Moreover Nm"! Nm inL1\L˛C1 by Corollary 5.7

and
Nw" D� Nm"rH".r Nu"/! Nw D� NmrH0.r Nu/

locally uniformly (by Proposition 5.3) and weakly in L
0.˛C1/

0C˛ by the same argument as in the proof of
Proposition 3.3.

Let now .m;w/2K1;M be such that m.1Cjyjb/2L1.RN /. Using the minimality of . Nm"; Nw"/, (5-61)
and (5-62), we conclude that

E0.m;w/� lim
"

E".m. � �y"/; w. � �y"//� lim
"

E". Nm"; Nw"/� E0. Nm; Nw/:

This implies (1-15).

To obtain the first part of the theorem, that is, the existence of a solution to (1-14), we need to prove
that the function g appearing in Proposition 5.3 is actually zero on RN. To do that, we derive a better
estimate on the term V".yCy"/; in particular we show that V".yCy"/! 0 locally uniformly in RN.

By the minimality of . Nm"; Nw"/ and . Nm; Nw/, (5-11), (5-7) and (5-63) we get

E". Nm"; Nw"/� E". Nm. � Cy"/; Nw. � Cy"//

� E0. Nm; Nw/C
Z

RN
Nm.yCy"/V".yCy"/ dyCC"

N˛0

0�N˛ � E0. Nm"; Nw"/CC1"
N˛0

0�N˛ :

Again using (5-7) and (5-11) we get

E0. Nm"; Nw"/CC1"
N˛0

0�N˛ �

Z
RN
Nm"L"

�
�
Nw"

Nm"

�
CF". Nm"/ dyCC"

N˛0

0�˛NM CC"
N˛0

0�N˛ :

So, putting together the last two inequalities, we conclude thatZ
RN
Nm"V".yCy"/ dy � C"

N˛0

0�N˛ : (5-64)

Recalling (5-2), this implies that for all R > 0, we get

C�1V .maxf"
0

0�˛N jy"j � "
0

0�˛N R�CV ; 0g/
b

Z
B.0;R/

Nm" dy � C:

Using (5-60), we conclude that there exists C > 0 such that

"
0

0�˛N jy"j � C: (5-65)

In turn this gives, recalling again (5-2), that

0� V".yCy"/� CV "
N˛0

0�˛N .1C "
0

0�˛N jyjC "
0

0�˛N jy"j/
b
� C"

N˛0

0�˛N .1Cjyj/b;

which implies that V".yCy"/! 0 locally uniformly. �
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Remark 5.9. If H and f satisfy the growth conditions (1-2) and (1-3), arguing as before one has that
there exists a classical solution to the potential-free version of (1-1),8<:

��uCH.ru/C�D f .m/;

��m� div.rH.ru/m/D 0;R
RN

mDM:

(5-66)

In addition, .m;�rH.ru/m/ is a minimizer of

.m;w/ 7!

Z
RN

mL

�
�
w

m

�
CF.m/ dx

among .m;w/ 2 K1;M , m.1C jyjb/ 2 L1.RN /. This can be done as follows: Start with a sequence
.uı ; mı ; �ı/ solving 8<:

��uı CH.ruı/C�ı D f .mı/C ıjxj
b;

��mı � div.rH.ruı/mı/D 0;R
RN

mı DM;

(5-67)

with ı D ın! 0. Such a sequence exists by Theorem 1.1. The problem of passing to the limit in (5-67)
to obtain (5-66) is the same as passing to the limit in (5-13), and it is even simpler: in (5-13), one has
to be careful as the Hamiltonian H" and the coupling f" vary as "! 0 (still, they converge uniformly),
while in (5-67) they are fixed, and only the potential is vanishing. We observe that b > 0 could be chosen
arbitrarily; the perturbation ıjxjb always disappears in the limit. Still, the limit m;u somehow retains
a memory of b in terms of energy properties: m minimizes an energy among competitors satisfying
m.1Cjyjb/ 2 L1.RN /.

Remark 5.10. We stress that uniqueness of solutions for (1-14) does not hold in general; for example, a
triple .u;m; �/ solving the system may be translated in space to obtain a full family of solutions. On the
other hand, a more subtle issue is the uniqueness of m in the second equation (with ru fixed); that is, if
.u;m1; �/ and .u;m2; �/ are solutions, then m1 �m2. This property is intimately related to the ergodic
behavior of the optimal trajectory dXs D �rH0.ru.Xs// ds C

p
2" dBs; see, for example, [Cirant

2014]. It is well known that uniqueness for the Kolmogorov equation is guaranteed by the existence of a
so-called Lyapunov function; in our cases, it can be checked that u itself (or increasing functions of u, as
in (5-28)) acts as a Lyapunov function, so uniqueness of m and ergodicity hold for (1-14) and (1-1).

5E. Concentration of mass. The last problem we address is the localization of the point y", to conclude
the proof of Theorem 1.2. Rewriting (5-60) in view of (5-1) and (5-18), we get that for all � > 0 there
exist R; "0 such that for all "� "0,Z

B."
0

0�˛N y";"
0

0�˛N R/

m.x/ dx �M � �; (5-68)

where m is the classical solution to (1-1) given in Theorem 1.1, and

Nm".y/D "
N0

0�˛Nm."
0

0�˛N yC "
0

0�˛N y"/:
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By (5-65), we know that, up to subsequences, "
0

0�˛N y"! Nx. Our aim is to locate this point, which
is the point where mass concentrates. We need a preliminary lemma stating the existence of suitable
competitors that will be used in the sequel.

Lemma 5.11. For all "� "0, there exists . Om"; Ow"/ 2 K1;M that minimizes

.m;w/ 7!

Z
RN

mL"

�
�
w

m

�
CF".m/ dy (5-69)

among .m;w/2K1;M , m.1Cjyjb/2L1.RN /. Moreover, for some positive constants c1; c2 independent
of ",

Om".y/� c1e
�c2jyj on RN: (5-70)

Proof. The existence of . Om"; Ow"/ is stated in Remark 5.9, together with a solution . Ou"; Om"; O�"/ to the
associated MFG system, as the optimality conditions; see (5-71) below. To obtain the uniform exponential
decay, we can argue by Lyapunov functions as in Proposition 5.3; here, we have to be careful, since the
argument in Proposition 5.3 mainly requires

f". Om"/� O�"�H".0/� �
1
2
O�" > 0

outside some fixed ball Br.0/. This claim can be proved as follows: First, �O�" is bounded away from
zero for " small. Indeed,

O�"M D

Z
RN
Om"L"

�
�
Ow"

Om"

�
Cf". Om"/ Om" dy � E". Nm"; Nw"/C o".1/� �C:

The inequality follows by the minimality of . Om"; Ow"/ and . Nm"; Nw"/, and (rescaled) (4-24).
We now prove that Om" decays as jxj !1 uniformly in ". Note that Ow" D �rH".r Ou"/ Om", where

. Ou"; Om"; O�"/ solves 8<:
�� Ou"CH".r Ou"/C�D f". Om"/;

�� Om"� div.rH".r Ou"/ Om"/D 0;R
RN
Om" DM:

(5-71)

We derive local estimates for Ou" and Om". We shift the x-variable so that Ou".0/D 0DminRN Ou" for all ".
Choose p > N such that

˛ <
 0

p
<
 0

N
:

If one considers the HJB equation solved by Ou", recalling (5-5) and (5-9), Theorem 2.5 gives the existence
of C > 0 such that

kr Ou"kL1.B2R.x0// �K.k Om"k
˛
L1.B4R.x0//

C 1/
1
 :

Note that C > 0 does not depend on " and x0. Turning to the Kolmogorov equation, again by (5-9) and
Proposition 2.4,

k Om"kW 1;p.BR.x0//
� C.kr Ou"k

�1

L1.B2R.x0//
C 1/km"kLp.B2R.x0//:
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By the previous L1 estimate on ru" and interpolation of the Lp norm of m between L1 and L1 we get

k Om"kW 1;p.BR.x0//
� C.k Om"k

˛
0

L1.B4R.x0//
C 1/k Om"k

1
p

L1.B4R.x0//
k Om"k

1� 1
p

L1.B4R.x0//
:

Recall that k Om"kL1.B4R.x0// �M ; then, since p > N, by Sobolev embeddings we obtain that for some
ˇ > 0,

k Om"kC0;ˇ.BR.x0// � C.k Om"k
˛
0

L1.RN /
C 1/k Om"k

1� 1
p

L1.RN /
: (5-72)

First, since C does not depend on x0, this yields k Om"kL1.RN / � C, by the choice of p <  0

˛
. Secondly,

plugging this estimate back into (5-72), we conclude

k Om"kC0;ˇ.RN / � C:

Then, using these estimates, we get that up to subsequences, O�"! O�, Ou"! Ou locally uniformly in C 1,
and Om"! Om locally uniformly, where . Ou; Om; O�/ is a solution to (5-25) with g � 0. Arguing exactly as
in Proposition 5.3, we get that Qu, Qm satisfy the estimates (5-26) (eventually modifying the constants).
Moreover, Z

RN
Omdx D a 2 .0;M�:

Observe now that Lemma 5.5 and Theorem 5.6 hold also for the energy (5-69), since it coincides with the
energy E" without the potential term

R
RN

V"mdx. Therefore we can apply Theorem 5.6 to Om to conclude
that actually

R
RN
Omdx DM. So, by Corollary 5.7, we obtain that for all � > 0, there exist R > 0 and "0

such that for all "� "0, Z
B.0;R/

Om" dx �M � �: (5-73)

By (5-72) and (5-73), using Lemma 2.2, we get

f". Om"/�
1
4
O�"

outside a ball Br.0/. Since H".0/! 0, the claim

f". Om"/� O�"�H".0/� �
1
2
O�" > 0 (5-74)

outside a ball Br.0/ follows. As previously mentioned, we may now proceed and conclude as in
Proposition 5.3; basically, (5-74) implies that x 7! ek Ou".x/ acts as a Lyapunov function for Om" for some
small k > 0, giving

c

Z
RN

ekjxj�k1 Om" �

Z
RN

ek Ou" Om" � C

for all " small, which easily implies the pointwise exponential decay (5-70) of Om" by the Hölder regularity
of Om" itself. �

For general potentials, the point where mass concentrates is a minimum for V .

Proposition 5.12. Up to subsequences, "
0

0�˛N y"! Nx, where V. Nx/D 0, i.e., Nx is a minimum of V .
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Proof. Fix a generic z 2RN and observe that . Om". � Cz/; Ow". � Cz// is still a minimizer of
R
mL"

�
�
w
m

�
C

F".m/. By the minimality of . Nm"; Nw"/ and of . Om". � C z/; Ow". � C z//, we getZ
RN
Nm"L"

�
�
Nw"

Nm"

�
CF". Nm"/ dyC

Z
RN
Nm".y/V".yCy"/ dy

D E". Nm"; Nw"/� E". Om". � C z/; Ow". � C z//

�

Z
RN
Nm"L"

�
�
Nw"

Nm"

�
CF". Nm"/C

Z
RN
Om".yC z/V".yCy"/ dy:

In particular this givesZ
RN
Nm".y/V".yCy"/ dy �

Z
RN
Om".yC z/V".yCy"/ dy

D

Z
RN
Om".y/V".yCy"� z/ dy for all z 2 RN: (5-75)

Recalling the rescaling of V" and of Nm" in (5-1), this is equivalent toZ
RN

m.x/V.x/ dx �

Z
RN
Om".y/V ."

0

0�˛N yC "
0

0�˛N y"� "
0

0�˛N z/ dy for all z 2 RN ; (5-76)

where m is the classical solution to (1-1) given in Theorem 1.1 such that

Nm".y/D "
N0

0�˛Nm."
0

0�˛N yC "
0

0�˛N y"/:

By (5-65), we get that up to passing to a subsequence, "
0

0�˛N y" ! Nx for some Nx 2 RN. Then by
(5-68), we get

lim inf
"!0

Z
RN

m.x/V.x/ dx � lim inf
"!0

Z
B."

0

0�˛N y";"
0

0�˛N R/

m.x/V.x/ dx � .M � �/V . Nx/: (5-77)

We fix Nz such that V. Nz/D 0 and we choose in (5-76) z D y"� "
�

0

0�˛N Nz. We have, by the Lebesgue
convergence theorem and (5-70),

lim sup
"!0

Z
RN
Om".y/V ."

0

0�˛N yC Nz/ dy � lim sup
"!0

c1

Z
RN

e�c2jyjV."
0

0�˛N yC Nz/ dy D 0: (5-78)

By (5-77), (5-78) and (5-76), we conclude V. Nx/D 0. �

If we assume that the potential V has a finite number of minima and polynomial behavior, that is, it
satisfies assumption (1-13), then we get that at the limit "

0

0�˛N y" selects at the limit the more stable
minima of V , as we will show in the next proposition.

Proposition 5.13. Assume that V satisfies assumption (1-13). Then, up to subsequences, there holds

"
0

0�˛N y"! xi as "! 0;

where i 2 fj D 1; : : : ; n W bj Dmaxk bkg.
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Proof. By Proposition 5.12, we know that up to subsequences, "
0

0�˛N y"! x� for some �D 1; : : : n. It
remains to prove that b� Dmaxi bi . Assume by contradiction that it is not true, and then b� <maxi bi .

We compute for j 2 1; : : : n, recalling the uniform exponential decay of Om" given in (5-70),Z
Rn
Om".yCy"� "

�
0

0�˛N xj /V".yCy"/ dy

D

Z
Rn
Om".y/V".yC "

�
0

0�˛N xj / dy

� CV "
0N˛

0�N˛

Z
Rn
Om".y/"

bj 
0

0�N˛ jyjbj
Y
i¤j

j"
0

0�N˛ y � xi C xj j
bi dy

� C"
0.N˛Cbj /

0�N˛

Z
Rn
Om".y/jyj

bj
Y
i¤j

jy � xi C xj j
bi dy � C"

0.N˛Cbj /

0�N˛ : (5-79)

Note in particular that we can choose in the previous inequality bj Dmaxi bi .
We get from (5-75) applied to z D y" � "

�
0

0�˛N xj , where j is such that bj D maxi bi , and from
(5-79) the following improvement of (5-64):Z

B.0;R/

Nm"V".yCy"/ dy �

Z
RN
Om".yCy"� "

�
0

0�˛N xj /V".yCy"/ dy � C"
.N˛Cmaxbi /

0

0�N˛ (5-80)

for all R � 0. We choose R > 0 sufficiently large such that
R
B.0;R/ Nm" dy �

1
2
M . Recalling the rescaling

of V , (5-80) implies

C"
maxbj 

0

0�N˛ �
1
2
MC�1V min

y2B.0;R/

nY
jD1

j"
0

0�N˛ yC "
0

0�N˛ y"� xj j
bj : (5-81)

Note that for " sufficiently small j"
0

0�N˛ yC "
0

0�N˛ y"� xj j � ı > 0 for all i 6D � and all y 2 B.0;R/.
So, by (5-81) we get that there exists C > 0 for which

min
y2B.0;R/

j"
0

0�N˛ yC "
0

0�N˛ y"� x�j
b� � C"

maxbj 
0

0�N˛

and then

j Oy"� "
�

0

0�N˛ x�j
b� D min

y2B.0;R/
jyCy"� "

�
0

0�N˛ x�j
b� � C"

.maxbj�b�/
0

0�N˛ ! 0 (5-82)

for some Oy" 2 B.y"; R/. Let z" D Oy"�y" 2 B.0;R/. Up to subsequences we can assume that z"! Nz 2
B.0;R/.

We use now (5-80), recalling assumption (1-13), and we get

C"
maxbj 

0

0�N˛ � C�1V

Z
B.0;R/

Nm".y/

nY
jD1

j"
0

0�N˛ yC "
0

0�N˛ y"� xj j
bj dy

� c1"
b�
0

0�N˛

Z
B.0;R/

Nm".y/jy � z"C Oy"� "
�

0

0�N˛ x�j
b� dy:
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In particular this implies

lim
"!0

Z
B.0;R/

Nm".y/jy � z"C Oy"� "
�

0

0�N˛ x�j
b� dy D 0: (5-83)

Recalling that Nm"! Nm locally uniformly, see (5-24), that Oy" � "
�

0

0�N˛ x�! 0 by (5-82), and that
z"! Nz, we get

lim
"!0

Z
B.0;R/

Nm".y/jy � z"C Oy"� "
�

0

0�N˛ x�j
b� dy D

Z
B.0;R/

Nm.y/jy � Nzjb� dy > 0:

This gives a contradiction with (5-83). �

As a consequence of the previous results, we can conclude with the following.

Proof of Theorem 1.2. Setting x" D "
0

0�˛N y", it suffices to recall (5-68) and Propositions 5.12, 5.13. �
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