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Abstract. Let X be a complex hypersurface in a Pn-bundle over a
curve C. Let C ′ → C be a Galois cover with group G. In this paper we
describe the C[G]-structure of Hp,q(X×C C ′) provided that X×C C ′ is
either smooth or n = 3 and X×CC ′ has at most ADE singularities. As
an application we obtain a geometric proof for an upper bound by Pál
for the Mordell–Weil rank of an elliptic surface obtained by a Galois
base change of another elliptic surface.
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1. Introduction

Let k be a field of characteristic zero, C/k a smooth, geometrically integral
curve, and let f : C ′ → C be a (ramified) Galois cover with Galois group G.
Let E/k(C) be a non-isotrivial elliptic curve, i.e., with j(E) ∈ k(C) \ k and let
π : X → C be the associated relatively minimal elliptic surface with section.
Let R ⊂ C be the set of points over which f is ramified and let s be the number
of points in R. Let e be the Euler characteristic of C \R, i.e., e = 2−2g(C)−s.

Assume that the discriminant of π does not vanish at any point in R. Let
cE and dE be the degree of the conductor of E/k(C) and the degree of the
minimal discriminant of E, respectively. Pál showed in [12] using equivariant
Grothendieck–Ogg–Shafarevich theory that

rankE(k(C ′)) ≤ ε(G, k)

(
cE −

dE
6
− e
)

(1)

where ε(G, k) is the Ellenberg constant of (G, k), for a definition see [3]. This
constant depends only on the group G and the field k, but not on E. In this
paper we will give an alternative proof for this bound.
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As noted in [12] it suffices to prove that E(k(C ′)) ⊗Z C is a quotient of
a free k[G]-module of rank cE − dE/6 − e, and by the Lefschetz principle it
suffices to prove this slightly stronger statement only in the case k = C.

Let X ′ = ˜X ×C C ′ be the elliptic surface associated with E/C(C ′). Our
starting point is that the following ingredients would lead to a proof for the
fact that E(C(C ′)) is a quotient of C[G]⊕cE+dE/6−e.

1. E(C(C ′))⊗C is a quotient of H1,1(X ′,C).

2. Let µ be the total Milnor number of X. Then the kernel of the natural
map H1,1(X ′,C)→ E(C(C ′))⊗C contains C2 ⊕C[G]µ.

3. H0(KC′)
⊕2 is a quotient of C[G]−e.

4. µ = dE − cE .

5. The C[G]-structure of H1,1(X ′,C) is C[G]⊕
5
6dE ⊕H0(KC′)

⊕2.

The first point is part of the standard proofs for the Shioda–Tate formula for
the Mordell–Weil rank of an elliptic surface and the Lefschetz (1, 1)-theorem.
The second point follows similarly, but here we need to use our assumptions
on the ramification of f . The third point is straightforward (Lemma 3.3), the
fourth point is not difficult (Corollary 4.15). Hence the crucial point is to
determine the C[G]-structure of H1,1(X ′,C).

If C ′ is rational and all singular fibers of X ′ are irreducible then the C[G]-
structure of H1,1(X ′) can be determined as follows: Since C ′ is rational we have
that X ′ is birational to a surface W ′ ⊂ P(2k, 3k, 1, 1) of degree 6k, for some k.
The surface W ′ is not unique, but if we take k minimal then is it unique. The
surface W ′ is called the Weierstrass model of X ′. From our assumptions that
all fibers of X ′ are irreducible it follows that all singularities of W ′ along the
singular locus of P(2k, 3k, 1, 1). Moreover, in this case W ′ is quasismooth: its
affine quasi-cone is smooth away from the vertex.

From the fact that W ′ is quasismooth it follows that the co-kernel of the
injective map H1,1(W ′)prim → H1,1(X ′) is two-dimensional, and G acts triv-
ially on this co-kernel. Steenbrink [15] presented a method to find an explicit
basis for H1,1(W ′)prim in terms of the Jacobian ideal of W ′, extending Griffiths’
method for hypersurfaces in Pn. A straightforward calculation then yields the
C[G]-structure of H1,1(W ′).

If C ′ is rational, but X ′ has reducible fibers then there are two possible
ways to generalize this result. The first approach uses a deformation argu-
ment to show that X ′ is the limit for t = 0 of a family X ′t of elliptic surfaces
admitting a G-action, such that all for t 6= 0 the elliptic fibration on X ′t has
only irreducible fibers. The second approach uses a result of Steenbrink [16]
where he extends his method to describe Hp,q(W ′)prim to the case where, very
roughly, the sheaves of Du Bois differentials and of Barlet differentials on W ′
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coincide (this condition holds for Weierstrass models of elliptic surfaces, the
precise condition on W ′ is formulated in [16]).

This paper grew out of an attempt to generalize the latter approach to
the case where g(C ′) > 0. However, in this case some additional technical
complications occur. Let π : X → C be an elliptic surface, and let S ⊂ X be
the image of the zero section. Let NS/X be the normal bundle of S. Then one
can find a Weierstrass model W of X in P(E) where E = O⊕L−2⊕L−3, with
L = (π∗NS/X)∗. Similarly the Weierstrass model of the base changed elliptic
surface is a surface W ′ in P(f∗E) =: P. The Griffiths–Steenbrink approach
yields two injective maps

H0(KP(2W ′))

H0(KP(W ′)⊕ dH0(Ω2(2W ′))
↪→ H1,1(W ′) ↪→ H1,1(X ′).

Using our assumptions on f we can easily describe the C[G]-action on the
left hand side. The cokernel of the second map is isomorphic to C[G]µ. The
dimension of the cokernel of the first map is 2+h1(f∗L). The 2 corresponds to
two copies of the trivial representation, however, it is not that easy to describe
the C[G]-action on the vector space of dimension h1(f∗L). From this it follows
that the Griffiths–Steenbrink approach works as long as h1(f∗L) vanishes. This
happens only if the degree of the ramification divisor C ′ → C is small compared
to deg(f) and deg(L).

To avoid this restriction on h1(L) we work with equivariant Euler char-
acteristic: Let K(C[G]) be the Grothendieck group of all finitely generated
C[G]-modules. For a coherent sheaf F on a scheme with a G-action one defines

χG(F) =
∑
i

(−1)i[Hi(X,F)].

We use the ideas behind the Griffiths–Steenbrink approach to prove that the
class of H1,1(W ′) in K(C[G]) equals

2[C]− χG(Ω2
P(W ′)) + χG(KP(2W ′))− χG(H0(T ))− χG(KP(W ′)).

Here T is a skyscraper sheaf supported on the singular locus of W ′, such that
its stalk is isomorphic to the Tjurina algebra of the singularity, and Ω2,cl

P is the
sheaf of closed 2-forms. The remaining Euler characteristics can be calculated
by fairly standard techniques and thereby yielding a proof of the point (5)
mentioned above.

One can easily describe H1,1(X ′) (as C[G]-module) in terms of the regular
representation C[G] and H1,1(W ′). The C[G]-structure on the other Hp,q(X ′)
can be determined by standard techniques. In the sequel we show:

Proposition 1.1. Let π : X → C be an elliptic surface and set L = (π∗NS/X)∗.
Let f : C ′ → C be a ramified Galois cover with group G and let X ′ → C ′ be
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the smooth minimal elliptic surface birational to X ×C C ′. Suppose that over
each branch point of f the fiber of π is smooth or semistable. Then we have
the following identities in K(C[G]):

[H0,1(X ′,C)] = [H1,0(X ′,C)] = [H0(C ′,KC′)];

[H2,0(X ′,C)] = [H0(C ′,KC′)]− [C] + deg(L)[C[G]];

[H1,1(X ′,C)] = 2[H0(C ′,KC′)] + 10 deg(L)[C[G]].

Since X ′ is smooth we can use Poincaré duality to describe the C[G]-
structure of Hp,q(X ′) for all other p, q. As argued above, this Proposition
is sufficient to prove the bound (1), see Corollary 4.15.

We would like to make one remark concerning this bound of Pál: From the
Shioda–Tate formula it follows that

rankE(k(C ′)) ≤ #G

(
cE −

dE
6
dE

)
+ 2g(C ′)− 2.

If each of the elements of G is defined over k, then the Ellenberg constant
equals the number of elements of G. Hence Pál’s bound reads

E(k(C ′)) ≤ #G

(
cE −

dE
6

)
+ #G (2g(C)− 2 + s)

in this case. From Riemman-Hurwitz it follows that 2g(C ′) − 2 is at most
#G(2g(C) − 2 + s) (and equality holds if and only if s = 0). Hence the
bound (1) is weaker than the bound from the Shioda-Tate formula in this case.
However, if the absolute Galois group of k acts highly non-trivially on G then
the Ellenberg constant is small and therefore this bound is very useful.

Our approach to determine the C[G]-structure of Hp,q works for a larger
class of varieties. To formulate this result we need to introduce a skyscraper
sheaf T , which can be defined for a hypersurface X ′ with isolated singularities
in a smooth ambient space, its support is the singular locus of X ′ and the stalk
at a point x ∈ X ′ is the Tjurina algebra of X ′ at x.

Theorem 1.2. Let C be a smooth projective curve and E a rank r vector bundle
over C, which is a direct sum of line bundles. Let X ⊂ P(E) be a hypersurface.
Let f : C ′ → C be a Galois cover and let X ′ = X ×C C ′. Assume that either
X ′ is smooth or r = 3 and X ′ is a surface with at most ADE singularities.

Moreover, assume Hi(X ′) ∼= Hi(P(f∗E)) for i ≤ r − 2.
Then we have the following identity in K(C[G])

[Hp,q(X ′)] = a[C[G]] + bχG(OC) + c[C] + d[H0(T )]

for some integers a, b, c, d, which can be determined explicitly and depend on p,
q, the degrees of the direct summands of E and the fiber degree of X.
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There are many other results on the behaviour of the Mordell–Weil rank
under base change. Most of these results assume that the fibers over the critical
values are very singular, e.g., the results by Fastenberg [4, 5, 6] and by Heijne
[8]. Bounds in the case where the fibers over the critical values are smooth and
where the base change map is étale, are obtained by Silverman [14]. Ellenberg
proved a slightly weaker bound in a much more general setting, namely he
showed that

rankE(k(C ′)) ≤ ε(G, k)(cE − 2e)

without imposing any condition on G, and assuming only that 6 is invertible
in k.

The C[G]-structure of the cohomology of a ramified cover X → Y has been
studied in general, but we could not find any result that was sufficiently precise
to prove (1). The first result in this direction was by Chevalley–Weil [1] in the
curve case. There are several results by Nakajima in the higher-dimensional
case [10].

In Section 2 we discuss the construction of Weierstrass models associated
with elliptic surfaces. In Section 3 we prove Theorem 1.2. In Section 4 we
determine the constants a, b, c, d for the case of Weierstrass models of elliptic
surfaces and give a proof for (1).

2. Weierstrass models and Projective bundles

In this section let C be a smooth projective curve and L a line bundle on a
curve C, of positive degree. We recall the construction of Weierstrass models
of elliptic surfaces with fundamental line bundle L. Most of the results of this
section are also present in [9, Chapter II and III], but we included them for the
reader’s convenience.

Let E = O ⊕ L−2 ⊕ L−3, let P(E) be the associated projective bundle,
parametrizing one-dimensional quotients of E . Let ϕ : P → C ′ be the projec-
tion map. Then ϕ∗(OP(1)) = E . Let

X = (0, 1, 0) ∈ H0(ϕ∗L2(1)) = H0(L2)⊕H0(OC)⊕H0(L−1),

Y = (0, 0, 1) ∈ H0(ϕ∗L3(1)) = H0(L3)⊕H0(L)⊕H0(OC),

Z = (1, 0, 0) ∈ H0(OP(1)) = H0(O)⊕H0(L−2)⊕H0(L−3)

be the standard coordinates.

Definition 2.1. A (minimal) Weierstrass model W is an element

F := −Y 2Z − a1XY Z − a3Y Z
2 +X3 + a2X

2Z + a4XZ
2 + a6Z

3

in |L6⊗OP(E)(3)|, such that V (F ) ⊂ P(E) has at most isolated ADE singular-
ities.
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Remark 2.2: The restriction of ϕ to a Weierstrass model W is a morphism
with only irreducible fibers, and the generic fiber is a genus one curve. For a
fixed Weierstrass model W denote with X its minimal resolution of singularities
and with π : X → C the induced fibration.

Lemma 2.3. The minimal resolution of singularities of a Weierstrass model is
an elliptic surface π : X → C. The section σ0 : C →W , which maps a point p
to the point [0 : 1 : 0] in the fiber over p, extends to a section C → X.

Proof. The first statement is straightforward. From the shape of the polyno-
mial F it follows thatWsing is contained in V (Y ). Recall that σ0(C) = V (X,Z).
Hence σ0(C) does not intersect Wsing and we can extend σ0 : C → X.

Remark 2.4: Conversely, every elliptic surface over C admits a minimal Weier-
strass model for a proper choice of line bundle L, namely L is the inverse of
the push forward of the normal bundle of the zero section. The line bundle
L is of non-negative degree. If the degree of L is zero then the fibration has
no singular fibers and after a finite étale base change the elliptic surface is a
product. See [9, Section III.3].

Remark 2.5: Since we work in characteristic zero we may, after applying an
automorphism of P(E)/C if necessary, assume that a1, a2 and a3 vanish. In
the sequel we work with a short Weierstrass equation

−Y 2Z +X3 +AXZ2 +BZ3

with A ∈ H0(L4) and B ∈ H0(L6).
This is the equation of a minimal Weierstrass model if and only if for each

point p ∈ C we have either vp(A) ≤ 3 or vp(B) ≤ 5.

Lemma 2.6. The Weierstrass model W is smooth if and only if all singular
fibers of π are of type I1 and II.

Proof. The Weierstrass model W is smooth if and only if X ∼= W . Since all
fibers of W → C are irreducible, this is equivalent to the fact that all singular
fibers of π are irreducible. Hence these fibers are of type I1 or II.

Lemma 2.7. Let W be a Weierstrass model with associated line bundle L. Let
f : C ′ → C be a finite morphism of curves. Suppose that over the branch points
of f the fiber of π is either smooth or semi-stable.

Then W ′ := W ×C C ′ is a Weierstrass model (with associated line bundle
f∗(L)).

Proof. Consider the induced map P(f∗(E))→ P. Then W ′ is the zero set of

−Y 2Z +X3 + f∗(A)XZ2 + f∗(B)Z3.
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If W ′ is not a Weierstrass model then there is a point p ∈ C ′ such that
vp(f

∗(A)) ≥ 4 and vp(f
∗(B)) ≥ 6.

Since W is Weierstrass model we have vq(A) ≤ 3 or vq(B) ≤ 5 for all
q ∈ C. Let ep be the ramification index of p then vp(f

∗A) = epvq(A) and
vp(f

∗B) = epvp(B) for q = f(p). Hence if vp(f
∗A) ≥ 4 and vp(f

∗B) ≥ 6 then
ep > 1, i.e. f is ramified at p. However, in this case the fiber of f(p) is either
smooth or multiplicative. This implies that at least one of A(q) or B(q) is
nonzero. Hence at least one vp(f

∗A) or vp(f
∗B) vanishes and therefore W ′ is

a minimal Weierstrass model.

Since W has only ADE singularities we have that the cohomology of W and
X are closely related:

Proposition 2.8. Let W be a Weierstrass model and π : X → C the elliptic
fibration on the minimal resolution of singularities of W . Let µ be the total
number of fiber-components of π which do not intersect the image of the zero-
section. Then µ equals the total Milnor number of the singularities of X.

Moreover, the natural mixed Hodge structure on Hi(W ) is pure for all i and
we have hp,q(X) = hp,q(W ) for (p, q) 6= (1, 1) and h1,1(X) = h1,1(W ) + µ.

Proof. All fibers of W → C are irreducible by construction. Hence the number
of fiber components not intersecting the image of the zerosection equals the
number of irreducible components of the exceptional divisor X →W .

The resolutions of ADE surfaces singularities are well-known, and the num-
ber of irreducible components of the exceptional divisor equals the Milnor num-
ber, proving the first claim.

The intersection graph of the exceptional divisor of a resolution of an ADE
singularity is also well-known and from this it follows that the exceptional
divisors are simply connected complex curves. Hence if we have s singular
points with total Milnor number µ and E is the total exceptional divisor then
H0(E) = Cs and H2(E) = C(−1)µ and all other cohomology groups vanish.

Let Σ = Wsing. From [13, Corollary-Definition 5.37] it follows that we have
a long exact sequence of MHS

· · · → Hi(W )→ Hi(X)⊕Hi(Σ)→ Hi(E)→ Hi+1(W )→ . . . (2)

Note that hi(Σ) = 0 for i 6= 0. Moreover, the map H0(Σ) → H0(E) is clearly
an isomorphism, combining this with the fact that Hi(E) = 0 for i 6= 0, 2 we
obtain that Hi(X) ∼= Hi(W ) for i 6= 2, 3.

To prove the proposition it suffices to show that the map H2(E)→ H3(W )
is zero. As H2(E) = C(−1)µ has a pure Hodge structure of weight 2 it suffices
to show that all the nontrival Hodge weights of H3(W ) are at least 3. If W is
smooth then this is trivially true, so suppose that W is singular.

Consider the long exact sequence of the pair (W,Wsmooth). SinceW has only
ADE singularities and the dimension of W is even it follows that Hi

Σ(W ) =
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0 for i 6= 4, and H4
Σ(W ) = C(−2)s. The long exact sequence of the pair

(W ′,W ′smooth) now yields isomorphisms Hi(W ) ∼= Hi(Wsmooth) for i 6= 3, 4 and
an exact sequence

0→ H3(W )→ H3(Wsmooth)→ C(−2)#Σ → H4(W ′)→ 0 = H4(Wsmooth).

Since Wsmooth is smooth we have that the Hodge weights of H3(Wsmooth) are
at least 3, and hence the same statement holds true for H3(W ).

Lemma 2.9. Consider the inclusion i : W → P. Then i∗ : Hk(P) → Hk(W )
is an isomorphism for k = 0, 1, 3, is injective for k = 2 and is surjective for
k = 4.

Proof. For k = 0 the statement is trivial. The case k = 1 can be shown as
follows: Consider σ0 : C →W and i◦σ0 : C → P. Combining these morphisms
with π : W → C, respectively ϕ : P→ C, yield the identity on C. This implies
that π∗ ◦σ∗0 and ϕ∗ ◦ (i◦σ0)∗ are isomorphisms and that σ∗0 : Hk(C)→ Hk(W )
is injective.

From [9, Lemma IV.1.1] it follows that h1(C) = h1(X) and by the pre-
vious proposition we have h1(W ) = h1(X). In particular σ∗0 and (iσ0)∗ are
isomorphisms and therefore i∗ is an isomorphism.

For k = 2 note that H2(P) is generated by the first Chern classes of a fiber
of ϕ and OP(1). Their images in H2(X) are clearly independent, hence the
composition H2(P)→ H2(W )→ H2(X) is injective. For k = 4 note that the
selfintersection of c1(OP(1)) ∈ H4(P) is mapped to a nonzero element in the
one-dimensional vector space H4(X). Hence H4(P) → H4(W ) → H4(X) is
surjective. Since H4(W ) ∼= H4(X) this case follows also.

The case k = 3 is slightly more complicated. By successively blowing up
points in P we find a variety P̃ such that the strict transform of W is isomorphic
with X. Now let H be an ample class of P̃ and HX its restriction to X. From
the hard Lefschtez theorem it follows that the cupproduct with the class of
H|X induces an isomorphism H1(X)→ H3(X). Since i∗ : H1(P)→ H1(W ) is
an isomorphism it follows that H1(P̃)→ H1(X) is an isomorphism. Therefore
we find a morphsim H1(P̃) → H3(X). We can factor this morphism also as
first taking the cupproduct with H, and then applying i. Hence i∗ : H3(P̃)→
H3(X) is surjective. Since we blow up only smooth points in P we findH3(P̃) =
H3(P) and we showed before that H3(X) = H3(W ). Hence H3(P)→ H3(X)
is surjective, and is an isomorphism because both vector spaces are of the same
dimension.

3. The C[G]-structure of Hp,q(X ′)

Let E be a rank n + 1 vector bundle on a smooth curve C. Let X ⊂ P(E)
be a hypersurface such that either X is smooth or X is a surface with ADE
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singularities.
Let f : C ′ → C be a Galois cover with group G, such that X ′ := X ×C C ′

is smooth or X ′ is a surface with ADE singularities.
We now want to describe the C[G]-module structure of Hp,q(X ′). For this

we prove first four easy lemmas concerning identities between representations.

Definition 3.1. For a scheme Z with a G-action and a sheaf F , denote with
χG(F) the equivariant Euler characteristic∑

i

(−1)i[Hi(Z,F)]

in K(C[G]), the Grothendieck group of all finitely generated C[G]-modules.

In the sequel we use the following lemma, which can be proven by “the
usual devissage argument” and Serre duality:

Lemma 3.2 ([11, Lemma 5.6]). Let f : C ′ → C be a ramified Galois cover with
group G. If M is a line bundle on C, then

χG(f∗M) = deg(M)C[G] + χG(OC′)

and
χG(f∗M⊗KC′) = deg(M)C[G]− χG(OC′).

Let R be the set over which f is ramified. If R is non-empty then let Z be
the zero-dimensional scheme on C ′ such that

0→ KC′ → f∗KC(R)→ OZ → 0 (3)

is exact. Let s be the number of points in R.

Lemma 3.3. Let f : C ′ → C be a Galois cover of curves, with group G. If f is
unramified then

[H0(KC′)] = [H0(f∗KC)] = [C] + (g(C)− 1)[C[G]].

If f is ramified then

2[H0(KC′)] + [H0(OZ)] = 2[C] + (2g(C)− 2 + s)[C[G]].

Proof. If f is ramified then the degree of f∗KC(R) is strictly larger than
2g(C ′) − 2, hence its first cohomology group vanishes and we obtain from
Lemma 3.2 that

[H0(f∗KC(R))] = [C]− [H0(KC′)] + (2g(C)− 2 + s)[C[G]].



110 REMKE KLOOSTERMAN

From the exact sequence (3) we obtain that

[H0(KC′)]−C = [H0(KC′)]− [H1(KC′)] = [H0(f∗KC(R))]− [H0(OZ)].

Combining this yields

2[H0(KC′)] + [H0(OZ)] = 2[C] + (2g(C)− 2 + s)[C[G]].

If f is unramified then f∗KC = K ′C . Lemma 3.2 implies now

χG(KC′) = deg(KC)[C[G]] + χG(OC′).

From χG(OC′) = −χG(KC′) we obtain

2χG(KC′) = (2g(C)− 2)[C[G]].

The result now follows from χG(KC′) = [H0(KC′)]− [C].

Lemma 3.4. Let f : C ′ → C be a Galois cover of curves, with group G. Then
H0(KC′)

⊕2 is a quotient of C⊕2 ⊕C[G]⊕2g(C)−2+s.

Proof. This follows directly from the previous lemma.

Remark 3.5: The Chevalley–Weil formula gives a precise description of the
C[G]-structure of H0(KC′), see [1].

We will now go back to our hypersurface X ′ ⊂ P(f∗(E)). Denote with
ϕ : P(f∗E)→ C ′ and ϕ0 : P(E)→ C the natural projection maps.

We will now prove a structure theorem for the C[G]-module Hp,q(X ′).

Proposition 3.6. Suppose that E is a direct sum of line bundles. Let X ⊂ P(E)
be a hypersurface, and X ′ = X ×C C ′. Then for i > 0, k ≥ 0 we have that
χG(ΩiP(f∗E)(kX

′)) is a direct sum of copies of C[G] and χG(OC′).

Proof. Let ϕ : P(f∗(E)) → C ′ be the natural projection map. Consider the
short exact sequence

0→ ϕ∗KC′ → Ω1
P(f∗E) → Ω1

ϕ → 0.

On ΩtP(f∗E) there is a filtration such that Grp = ∧pϕ∗(KC′) ⊗ Ωt−pϕ [7, Exer.

II.5.16]. From ∧pϕ∗KC′ = 0 for p > 1 it follows that at most two of the Grps
are nonzero and they fit in the exact sequence

0→ ϕ∗(KC′)⊗ Ωt−1
ϕ → ΩtP(f∗(E)) → Ωtϕ → 0. (4)

Similarly, consider the Euler sequence

0→ Ω1
ϕ → (ϕ∗f∗E)(−1)→ OP(f∗E) → 0.
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By using the filtration constructed in [7, Exer. II.5.16] again we obtain the
following exact sequence

0→ Ωtϕ → ∧t(ϕ∗f∗E)(−1)→ Ωt−1
ϕ → 0. (5)

Let L ∈ Pic(C) and d > 0 be such that OP(f∗(E))(kX
′) = (ϕ∗f∗(L))(d). A

straightforward exercise using the exact sequence (4) tensored withO(kX ′), the
exact sequence (5) tensored with O(kX ′) respectively with O(kX ′)⊗ϕ∗(KC′)
and induction on t yields that χG(ΩiP(f∗E)(ϕ

∗f∗L)(d)) equals

t∑
i=0

(−1)t−iχG((Λi ⊗ ϕ∗f∗L)(d)) +

t−1∑
i=0

(−1)t−iχG((Λi ⊗ ϕ∗(f∗L ⊗KC′))(d))

with

Λt := ∧t(ϕ∗f∗E)(−1).

Using that Riϕ∗(O(k)) = 0 for i > 0, k ≥ −1 (see [17]) and the projection
formula again we obtain that χG(F) = χG(ϕ∗F) where F is one of

(∧t(ϕ∗f∗E)(d− 1))⊗ ϕ∗(f∗(L)), (∧t(ϕ∗f∗E)(d− 1))⊗ ϕ∗(KC′ ⊗ f∗(L)). (6)

Since E is a sum of line bundles, we obtain that

(∧tf∗E)

is a direct sum of line bundles pulled back from C. Similarly we obtain that

Riϕ∗O(k) = Symk(f∗E)

is a direct sum of line bundles pulled back from C and by using the projection
formula we have that ϕ∗F is the direct sum of line bundles pulled back from C,
for F as in (6).

We can therefore calculate the relevant equivariant Euler characteristic by
Lemma 3.2, and we obtain that χG(ϕ∗(F)) is a sum of copies χG(KC′) and
C[G] for F as in (6). The multiplicity of C[G] depends on the sum of degrees of
the direct summands and the multiplicity of χG(KC′) on the rank of F . Hence
the multiplicity of χG(KC′) and C[G] in χG(Ωi(kX ′)) depend only on i, k, the
fiberdegree of X ′ and the degrees of the direct summand of E .

Remark 3.7: Note that the proof of the theorem also yields a method to
determine the number of copies of C[G], respectively, χG(O) which occur.
In the next section we make this precise for the case E = O ⊕ L−2 ⊕ L−3,
X ∈ |(ϕ∗f∗L6)(3)| and (i, k) = (2, 1), (3, 1), (3, 2).
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Proposition 3.8. Let n ≥ 2. Let X ⊂ P be a n-dimensional smooth hyper-
surface. Assume that for i : X ⊂ P we have that i∗ : Hk(P,C) → Hk(X,C)
is an isomorphism for k < n and that for k = n this map is injective. Let
U = P \ X. Then Hi(U) = 0 for i 6= 0, 1, 2, n + 1 Moreover, we have iso-
morphisms H0(U) ∼= C, H1(U) ∼= H1(C), H2(X) ∼= C(−1) and Hn(U)(1) ∼=
cokerHn−1(P)→ Hn−1(X).

Proof. Consider the Gysin exact sequence for cohomology with compact sup-
port

· · · → Hk
c (U)→ Hk

c (P)→ Hk
c (X)→ Hk+1

c (U)→ . . .

Our assumption on i∗ now yields Hk
c (U) = 0 for k ≤ n.

LetM be an ample line bundle on P, andM′ be its restriction to X. Then
by the hard Lefschetz theorem we get that the k-fold cupproduct with c1(M′)
yields an isomorphism Hk(X,C)→ Hn−k(X,C). For 0 < k ≤ n we obtain an
isomorphism

Hk(P, C)→ Hk(X,C)→ Hn−k(X,C).

We can factor this isomorphism as first taking the k-fold cupproduct with
c1(M) and then applying i∗. In particular the map Hn−k(P) → Hn−k(X)
is surjective. The Betti numbers of P are well-known, namely h0(P) and
h2n+2(P) equal 1,

h2k(P) = 2 for k = 1, . . . , n and h2k+1 = h1(C) for k = 0, . . . , n.

These facts yield that Hi(P) ∼= Hi(X) for i = 0, . . . , n − 1 and i = n +
1, . . . , 2n− 1. Hence Hi

c(U) = 0 for i 6= n+ 1, 2n, 2n+ 1, 2n+ 2. Moreover we
have two exact sequences

0→ Hn(P)→ Hn(X)→ Hn+1
c (U)→ 0

and

0→ H2n
c (U)→ H2n(P)→ H2n(X)→ 0

and isomoprhisms Hi
c(U) ∼= Hi

c(P) for i = 2n+ 1, 2n+ 2.

Applying Poincaré duality now gives the result.

Denote with Ωp,cl
P or Ωp,cl the sheaf of closed p-forms on P. Recall that for

a hypersurface X ⊂ P we have Ωp,cl(X) = Ωp,cl(logX).

Proposition 3.9. Let X ⊂ P be a n-dimensional smooth hypersurface. Sup-
pose n ≥ 2. Let G ⊂ Aut(P, X) be a subgroup. Assume that for i : X ⊂ P we
have that i∗ : Hk(P,C)→ Hk(X,C) is an isomorphism for k < n and that for
k = n this map is injective.
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Then for p ≥ 1 we have (−1)n−p([Hp,n−p(X)]− [Hp,n−p(P)]) equals

n−p+1∑
k=1

(−1)kχG(Ωp+k(kX)) +

n−p∑
k=1

(−1)kχG(Ωp+1+k(kX)).

and for p = 0 we find that

[H0(KC′)]− [C] + (−1)n[H0,n(X)]

equals
n+1∑
k=1

(−1)kχG(Ωk(kX)) +

n∑
k=1

(−1)kχG(Ωk+1(kX)).

Proof. Let U be the complement of X in P. From the previous proposition it
follows that

[Hp,n−p(X)]− [Hp,n−p(P)] = [Grp+1
F Hn+1(U)].

Hence we will focus on determining the C[G] structure of Grp+1
F Hn+1(U).

From Deligne’s construction of the Hodge filtration on the cohomology of U
we get

F pHk(U,C) = Im(Hk(Ω≥pP(E)(logX))→ Hk(Ω•P(E)(logX))).

The map is injective by the degeneracy of the Fröhlicher spectral sequence
at E1. Recall that Ωp,cl(X) is the kernel of d : Ωp(X) → Ωp+1(2X). For
p ≥ 1 we have that the filtered de Rham complex is a resolution of Ωp,cl(X).
Combining these fact we obtain for p ≥ 1 that

F pHp+q(U,C) = Hq(X,Ωp,cl(X)).

For p > 1 we have GrpF H
p+q(U,C) = 0 except possibly for q = n + 1 − p.

In particular, Hq(Ωp,cl(X)) = 0 for q 6= n + 1 − p, p ≥ 2. Hence for p ≥ 2 we
obtain that χG(Ωp,cl(X)) equals

(−1)n+1−p[Hn+1−p(X,Ωp,c(X))] = (−1)n+1−pF pHn+1(U,C).

The exact sequence

0→ Ωp,cl(tX)→ Ωp(tX)→ Ωp+1,cl((t+ 1)(X))→ 0

then yields

χG(Ωp,cl(tX)) =

n+1−p∑
k=0

(−1)kχG(Ωp+k((t+ k)X)).
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From this we obtain that for p ≥ 1 we have that

GrpF coker(Hn(P)→ Hn(X)) = Grp+1
F Hn+1(U)

equals (−1)n−p times

n−p+1∑
k=1

(−1)kχG(Ωp+k(kX)) +

n−p∑
k=1

(−1)kχG(Ωp+1+k(kX))).

For p = 0 we find

χG(Ω1,cl(X)) = [F 1H1(U,C)]− [F 1H2(U,C)] + (−1)n[F 1Hn+1(U,C)]

= [H0(Ω1,cl(X))]− [H1(Ω1,cl)] + (−1)n[Hn(Ω1,cl(X))].

From Proposition 3.8 it follows that

[F 1H1(U,C)] = [H0(KC′))] and [F 1H2(U,C)] = [C]

holds. As above we find that

[H0(KC′)]− [C] + (−1)n[Gr0
F coker(Hn(P)→ Hn(X)]

equals
n+1∑
k=1

(−1)kχG(Ωk(kX)) +

n∑
k=1

(−1)kχG(Ωk+1(kX))).

Let P be a smooth compact Kähler manifold. Steenbrink [16] extended
Deligne’s approach to the class of hypersurfaces X ⊂ P , such that the sheaf of
Du Bois differentials of X and the sheaf of Barlet differentials of X coincide.
This happens only for few classes of singularities. The only known singular
varieties for which this property holds are surfaces. Streenbrink [16] gave three
classes of examples, one of which are surfaces with ADE singularities [16, Sec-
tion 3].

To explain Steenbrink’s results, let X ⊂ P be a hypersurface, with at most
isolated singularities. Let T be the skyscraper sheaf supported on the singular
locus, such that at each point p the stalk Tp is the Tjurina algebra of the
singularity (X, p).

The following proposition summarizes Steenbrink’s method in the case of a
three-dimensional ambient space P : Note that if X is a surface with at most
ADE singularities then the mixed Hodge structure on Hi(X) is pure of weight i.
Hence it makes sense to define Hp,q(X) := GrpF H

p+q(X).
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Proposition 3.10. Let P be a smooth compact three-dimensional Kähler man-
ifold, and let X ⊂ P be a surface with at most ADE singularities. For all
G ⊂ Aut(P,X) we have [H0,2(X)] = [H0(KP (X))] and that [H1,1(X)] equals

[H2,0(P )] + [H2,2(P )] + [H1,0(X)] + [H1,2(X)]− [H2,1(P )]− [H2,3(P )]

− χG(Ω2
P (X)) + χG(KP (2X))− χG(KP (X))− χG(T )

in K(C[G]).

Proof. Since ADE singularities are rational we get that

H0,2(X) = H0(KP (X))

(see, e.g., [16, Introduction]).
The second equality follows from [16]:

Let Ω2
X(logX) be the kernel of Ω2(X)

d→ KP (2X)/KP (X). Since X has
ADE singularities we have that the cokernel of d is T [16, Section 2]. Define
ω1
X = Ω2

P (logX)/Ω2
P to be the sheaf of Barlet 1-forms on X.

Consider now the filtered de Rham complex Ω̃•X on X, as introduced by Du
Bois [2].

Since X has ADE singularities it follows from [16, Section 4] that Gr1
F Ω̃•X is

concentrated in degree one, and in this degree it is isomorphic to Ω̃1
X . Moreover,

in the same section Steenbrink shows that for a surface with ADE singularities
we have Ω̃1

X
∼= ω1

X . This implies Hi(ω1
X) = Gr1

F H
1+i(X) and hence

χG(ω1
X) = [H1,0(X)]− [H1,1(X)] + [H1,2(X)].

The definition of ω1
X yields the equality

χG(ω1
X) = χG(Ω2

P (logX))− χG(Ω2
P ).

Since P is a smooth threefold we find that

χG(Ω2
P ) = [H2,0(P )]− [H2,1(P )] + [H2,2(P )]− [H2,3(P )].

Using the definition of Ω2
P (logX) we find

χG(Ω2
P (logX)) = χG(Ω2

P (X))− χG(KP (2X)) + χG(KP (X)) + χG(T ).

Remark 3.11: If Hi(X) ∼= Hi(P ) holds for i = 1 and i = 3 then

[H1,0(X)] + [H1,2(X)] = [H2,1(P )] + [H2,3(P )].

If, moreover, H2,0(P ) = 0 we have further simplifications in the formula from
Proposition 3.10.

In case P = P(O ⊕ f∗L−2 ⊕ f∗L−3) and X a Weierstrass model all these
cancellations happen, and, moreover, [H2,2(P )] = 2[C] in K(C[G]).
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Corollary 3.12. Let E be a direct sum of at least three line bundles on a
smooth projective curve C. Let X ⊂ P(E) be a hypersurface. Let f : C ′ → C be
a Galois cover. Let X ′ = X×C C ′ ⊂ P(f∗E) be the base-changed hypersurface.
Assume that the natural map Hi(P(f∗(E))) → Hi(X ′) is an isomorphism for
0 ≤ i < dimX ′ and for i = dimX ′ this map is injective.

If X ′ is smooth then for each p, q ∈ Z there exist integers a, b, c, depending
on p, q, the degrees of the direct summands of E and the fiber degree of X, such
that [Hp,q(X ′)] = a[C] + bχG(O) + c[C[G]].

If X ′ is surface with at most ADE singularities for each p, q ∈ Z there exist
integers a, b, c, depending on p, q, the degrees of the direct summand of E and
the fiber degree of X, such that [Hp,q(X ′)] = aC+bχG(O)+c[C[G]]+δ[H0(T )],
where δ = 0 for (p, q) 6= (1, 1) and δ = 1 for (p, q) = (1, 1).

Corollary 3.13. Let E be a direct sum of three line bundles. Let W ⊂ P(E)
be a surface. Let C ′ → C be a Galois base change such that W ′ := W ×C C ′
is a surface with at most ADE singularities and such that H1(W ′) ∼= H1(P).
Let X ′ be the desingularization of W ′. Then [H1,1(W ′)] equals

2[C]− χG(Ω2(W ′)) + χG(KP(f∗E)(2W
′))− χG(KP(f∗E)(W

′))− χG(T )

and

[H1,1(X ′)] = 2[C]− χG(Ω2(W ′)) + χG(KP(f∗E)(2W
′))− χG(KP(f∗E)(W

′)).

Proof. The formula for [H1,1(W ′)] follows directly from Proposition 3.10. The
quotient H1.1(X ′)/H1,1(W ′) is generated by the irreducible components of the
resolution X ′ → W ′ and one easily checks that the representation induced by
G-action on these irreducible components equlas T .

Remark 3.14: Note that [H1,1(X ′)] depends only on the linear equivalence
class of W ′, and not on the singularities of W ′. If |W | is base point free then
there is a different approach to obtain this statement. In this case W ′ is the
limit of a family of smooth surfaces, all of which are pulled back from P(E),
and W ′ has at most ADE singularities. In particular there is a simultaneous
resolution of singularities of this family. The central fiber of this resolution is
X ′, and this implies the C[G]-structure of Hp,q(X ′) is the same as the one on
the general member of this family.

4. The C[G]-structure of the cohomology of Weierstrass
models

We want to apply the results of the previous section to the special case of
Weierstrass models. In the first part of the section we only assume that E is
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a direct sum of three line bundles. Let C,C ′, X,X ′,P0,P, ϕ, ϕ0 be as in the
previous section. Assume that dimX = 2.

We want to determine the C[G]-structure of H1,1(X) and of H2,0(X). By
Corollary 3.13 it suffices to determine the C[G]-structure of

χG(Ω2
P(X)), χG(KP(X)) and χG(KP(2X))

and the C[G]-structure on H0(T ).
We will determine the structure on H0(T ) below. A strategy to calculate

the three equivariant Euler characteristics is given in the proof of Proposi-
tion 3.6. The main ingredients are

1. Ω3
P
∼= ϕ∗ det(f∗E ⊗KC′)(−3) (adjunction).

2. Ω2
ϕ
∼= ϕ∗(det(f∗E))(−3).

3. 0→ Ω1
ϕ → ϕ∗f∗E(−1)→ OP → 0 (Euler sequence).

4. 0→ Ω1
ϕ ⊗ ϕ∗KC′ → Ω2

P → Ω2
ϕ → 0.

The points (2)-(4) easily yield

Lemma 4.1. Let X ⊂ P(E) be a hypersurface in |(ϕ∗f∗L)(d)|, fixed under G.
Then χG(Ω2(X)) equals

χG(ϕ∗f∗(L⊗det E)(d−3))+χG(ϕ∗f∗(L⊗E)(d−1))−χG(ϕ∗(f∗L⊗KC′)(d)).

It turns out that if E is a direct sum of line bundles then we can express
all of the above equivariant Euler characteristics in terms of equivariant Euler
characteristics of sheaves of the form (ϕ∗f∗F)(k) and ϕ∗(f∗F⊗KC′)(k), where
F is a direct sum of line bundles on C. The following lemmas are helpful in
calculating χG of such sheaves.

Lemma 4.2. Suppose E = OC′ ⊕ L ⊕ M, with deg(L),deg(M) ≤ 0. Then
ϕ∗OP(E)(t) is the pullback under f∗ of a direct sum of

(
k+2

2

)
line bundles, such

that the sum of the degrees equals

1

6
t(t+ 1)(t+ 2)(deg(L) + deg(M)).

Proof. Since E = OC ⊕ L ⊕ M we can pick canonical sections X,Y, Z in
H0(ϕ∗L−1(1)), H0(ϕ∗M−1(1)) and H0(OP(1)) (cf. Section 2). Note that

ϕ∗O(t) = ⊕0≤i+j≤t(f
∗Li ⊗ f∗Mj)XiY jZt−i−j .

Hence the sum of the degrees equals∑
0≤i+j≤t

(deg(L)i+ deg(M)j) =
1

6
t(t+ 1)(t+ 2)(deg(L) + deg(M)).
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Lemma 4.3. Suppose E = OC′ ⊕ f∗L ⊕ f∗M, with deg(L),deg(M) ≤ 0. Let
N be a line bundle on C. Let t ≥ 0 be an integer. Set

d =

(
t+ 2

3

)
(deg(L) + deg(M)) +

(
t+ 2

2

)
deg(N ).

Then

χG((ϕ∗f∗N )(t)) = dC[G] +
t+ 2

2
χG(OC′)

and

χG(ϕ∗(KC′ ⊗ f∗N )(t)) = dC[G]− t+ 2

2
χG(OC′).

Proof. Since Riϕ∗O(t) = 0 for i > 0 we find that

Hk(X, (ϕ∗f∗N )(t)) = Hk(X,ϕ∗((ϕ
∗f∗N )(t))).

Combining this with the projection formula yields

χG((ϕ∗f∗N )(t)) = χG((f∗N )⊗ ϕ∗O(t)).

Since ϕ∗O(t) is a direct sum of line bundles pulled back from C, the same holds
for f∗N ⊗ ϕ∗O(t). The sum of the degree of the line bundles on C equals d.
It follows now from Lemma 3.2 that

χG((f∗N )⊗ ϕ∗O(t)) = dC[G] +
t+ 2

2
χG(OC′).

The Euler characteristic χG(ϕ∗(KC′ ⊗f∗N )(t)) can be calculated similarly, by
using Serre duality on C ′.

From here on we assume that E = O ⊕ f∗L−2 ⊕ f∗L−3 and that W ∈
|ϕ∗0L6(3)| and hence that X = W ′ ∈ |ϕ∗f∗L6(3)|.

We will now repeatedly apply Lemma 4.3 to determine all the relevant Euler
characteristics:

Lemma 4.4. In K(C[G]) we have

χG(KP(W ′)) = deg(L)[C[G]]− χG(OC′)

and
χG(KP(2W ′)) = 20 deg(L)[C[G]]− 10χG(OC′).

Proof. Note that

KP = ϕ∗(det(E)⊗KC′(−3)) = ϕ∗(f∗L−5 ⊗KC′)(−3).

Hence KP(W ′) = ϕ∗f∗(L ⊗ KC′). From Lemma 4.3 it now follows that
χG(KP(W ′)) = deg(L)[C[G]]− χG(OC′).
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Similarly KP(W ′) = ϕ∗f∗(L7 ⊗KC′)(3). From Lemma 4.3 it follows now
that

χG(KP(2W ′)) = 20 deg(L)[C[G]]− 10χG(OC′).

Lemma 4.5. In K(C[G]) we have

χG(Ω2
ϕ(W ′)) = deg(L)[C[G]] + χG(OC′).

Proof. Note that Ω2
ϕ(W ′) = (ϕ∗f∗L−5)(−3) ⊗ L6(3) = ϕ∗f∗(L). Lemma 4.3

now yields

χG(Ω2
ϕ(W ′)) = deg(L)[C[G]] + χG(OC′).

Lemma 4.6. In K(C[G]) we have

χG(ϕ∗(KC′(W
′))) = 10 deg(L)[C[G]]− 10χG(OC′).

Proof. Using ϕ∗(KC′)(W
′) = ϕ∗(KC′ ⊗ f∗L6)(3) we obtain from Lemma 4.3

χG(ϕ∗(KC′(W
′))) = 10 deg(L)[C[G]]− 10χG(OC′).

Lemma 4.7. In K(C[G]) we have

χG(ϕ∗(E ⊗KC′)(W
′)(−1)) = 18 deg(L)[C[G]]− 18χG(OC′).

Proof. Note that ϕ∗(E ⊗KC′)(W
′)(−1) = ϕ∗(E ⊗KC′ ⊗ f∗L6)(2). Hence

ϕ∗(E ⊗KC′ ⊗ f∗L6)(2) = ϕ∗((f∗L6 ⊕ f∗L4 ⊕ f∗L3)⊗KC′)(2).

From Lemma 4.3 it follows that its Euler characteristic equals

18 deg(L)[C[G]]− 18χG(OC′).

Lemma 4.8. In K(C[G]) we have

χG(Ω2(W ′)) = 9 deg(L)[C[G]]− 7χG(OC′).
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Proof. From

0→ Ω1
ϕ ⊗ ϕ∗KC′(W

′)→ Ω2(W ′)→ Ω2
ϕ(W ′)→ 0

and

0→ Ω1
ϕ ⊗ ϕ∗KC′(W

′)→ E ⊗ ϕ∗KC(W ′)(−1)→ ϕ∗KC(W ′)→ 0.

It follows that χG(Ω2(W ′)) equals

χG(Ω2
ϕ(W ′)) + χG(E ⊗ ϕ∗KC(W ′)(−1))− χG(ϕ∗KC(W ′))

= 9 deg(L)[C[G]]− 7χG(OC′).

Collecting everything we find:

Proposition 4.9. We have the following identities in K(C[G]):

[H2,0(W ′)] = [H2,0(X ′)] = deg(L)C[G] + [H0(KC′)]− [C],

[H1,1(W ′)] = 10 deg(L)[C[G]] + 2[H0(KC′)]− [H0(T )]

and
[H1,1(X ′)] = 10 deg(L)[C[G]] + 2[H0(KC′)]

Remark 4.10: A different proof for the formula for H2,0(X ′) can be found in
[12, Theorem 2.5].

The C[G] action on H0(T ) is hard to describe in general. However, if we
make some assumption on the ramification locus then it simplifies a lot:

Lemma 4.11. Suppose the ramification locus of W ′ → W does not intersect
W ′sing. Then

[H0(T )] = µ[C[G]]

where µ is the total Milnor number of W .

Proof. Let TW and TW ′ be the sheaves on W , resp. on W ′, such that at each
point p the stalk is isomorphic to the Tjurina algebra at p. The length of TW
is the total Tjurina number of W , which equals the total Milnor number of W .

Since TW ′ is supported outside the ramification locus, we find that TW ′ is
the pull back of TW and it consists of #G copies of TW . In particular the G
action on H0(TW ′) consists of µ copies of the regular representation.

To obtain Pál’s upper bound for the Mordell–Weil rank we need the follow-
ing result, which directly implies the Shioda–Tate formula for the Mordell–Weil
rank of an elliptic surface.
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Proposition 4.12. We have a short exact sequence of C[G]-modules

0→ C2 ⊕H0(T )→ NS(X ′)→ E(C(C ′))→ 0.

Proof. Let T ⊂ NS(X ′) be the trivial sub-lattice, the lattice generated by the
class of a fiber, the image of the zero-section and the classes of irreducible
components of reducible fibers. Shioda and Tate both showed that E(C(C ′))
is isomorphic to NS(X ′)/T as abelian groups.

The group G acts on T , NS(X ′) and E(C′), and from the construction of
this map it follows directly that this isomorphism is G-equivariant. Moreover
the fiber components which do not intersect the zero-section are precisely the
exceptional divisors of X ′ → W ′, i.e., they span a subspace isomorphic to
H0(T ). Since G maps a fiber to a fiber, and fixes the zero section, we find

0→ C2 ⊕H0(T )→ NS(X ′)→ E(C(C ′))→ 0

is exact.

Theorem 4.13. Let X → C be an elliptic surface and let f : C ′ → C be a
Galois cover such that the fibers of π over the branch points of f are smooth.
Let E be the general fiber of π. Let µ be the number of fiber-components not
intersecting the zero-section, which equals the total Milnor number of W .

Then E(C(C ′))⊗Z C is a quotient of a C[G]-module M such that

[M ] = (10 deg(L)− µ)[C[G]] + 2[H0(KC′)]− 2[C].

Proof. From Proposition 4.12 it follows E(C(C ′)) equals NS(X ′)/T (X ′). Now
NS(X ′)⊗ZC (as C[G]-module) is a quotient of H1,1(X ′). Hence E(k(C ′))⊗ZC
is a quotient of H1,1(X ′)/T (X ′).

Note that the Weierstrass model of W ′ is the pullback of the Weierstrass
model of W . In particular the minimal discriminant of X ′ → C ′ is the pullback
of the minimal discriminant of X → C. Our assumption on the singular fibers
of X → C imply that the singular fibers are outside the ramification locus of
X ′ → X. If q ∈ W ′sing then q is a point on a singular fiber, hence q is outside
the ramification locus of W ′ → W . Hence we may apply Lemma 4.11 and
obtain that [T (X ′)] = µ[C[G]] + 2[C].

From the previous section it follows that [H1,1(X ′)] = 10 degL[C[G]] +
2[H0(KC′)], which yields the theorem.

Remark 4.14: If we allow the fibers over the branch points of f to be semi-
stable then the C[G]-structure of T is harder to describe. E.g., suppose we
have a I1 fiber over a branch point, with ramification index 2 and G = Z/2Z.
Then X ′ → C ′ has a I2 fiber and this contributes a one dimensional vector
space to T , on which G acts via a non-trivial character.
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Corollary 4.15. Let X → C be an elliptic surface over a field k of charac-
teristic zero. Let C ′ → C be a Galois cover such that the fibers of π over the
branch points of f are smooth. Let E be the general fiber of π. Then

rankE(k(C ′)) ≤ ε(G, k)

(
cE +

dE
6

+ 2g − 2 + s

)
.

Proof. As explained in [12, Section 1] we may assume that k = C. Moreover,
in the same section it is shown that it suffices to prove that E(C(C ′))⊗Z C is

a quotient of C[G]cE+
dE
6 +2g−2+s.

From the Tate algorithm it follows that the number of fiber components in
a singular fiber equals vp(∆)−1 if the reduction is multiplicative and vp(∆)−2
if the reduction is additive. Denote with a the number of additive fibers and
with m the number of multiplicative fibers. Hence µ = dE − m − 2a. Now
cE = m + 2a and dE = 12 deg(L). It follows from the previous theorem that
E(k(C ′))⊗Z C is a quotient of the C[G]-module M , with

[M ] =

(
cE +

dE
6

)
[C[G]] + 2[H0(K ′C)]− 2[C].

If C ′ → C is unramified that H0(K ′C) = C[G]g(C). If C ′ → C is ramified
then H0(OZ) is a quotient of C[G]s, where s is the number of critical values
and we find 2H0(K ′C) is a quotient of C⊕2 ⊕C[G]⊕2g−2+s

In both cases E(C(C ′))⊗Z C is a quotient of C[G]⊕cE+
dE
6 +2g−2+s.
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