
entropy

Article

Emergence of Network Motifs in Deep
Neural Networks

Matteo Zambra 1,*, Amos Maritan 2 and Alberto Testolin 3,4,*
1 Department of Civil, Environmental and Architectural Engineering, University of Padova, Via Marzolo 9,

35131 Padova, Italy
2 Department of Physics and Astronomy, University of Padova; Istituto Nazionale di Fisica

Nucleare—Sezione di Padova, Via Marzolo 8, 35131 Padova, Italy; amos.maritan@pd.infn.it
3 Department of General Psychology, University of Padova, Via Venezia 8, 35131 Padova, Italy
4 Department of Information Engineering, University of Padova, Via Gradenigo 6/b, 35131 Padova, Italy
* Correspondence: matteo.zambra1@gmail.com (M.Z.); alberto.testolin@unipd.it (A.T.)

Received: 27 December 2019; Accepted: 7 February 2020; Published: 11 February 2020
����������
�������

Abstract: Network science can offer fundamental insights into the structural and functional properties
of complex systems. For example, it is widely known that neuronal circuits tend to organize into
basic functional topological modules, called network motifs. In this article, we show that network
science tools can be successfully applied also to the study of artificial neural networks operating
according to self-organizing (learning) principles. In particular, we study the emergence of network
motifs in multi-layer perceptrons, whose initial connectivity is defined as a stack of fully-connected,
bipartite graphs. Simulations show that the final network topology is shaped by learning dynamics,
but can be strongly biased by choosing appropriate weight initialization schemes. Overall, our results
suggest that non-trivial initialization strategies can make learning more effective by promoting the
development of useful network motifs, which are often surprisingly consistent with those observed
in general transduction networks.

Keywords: deep learning; artificial neural networks; network motifs; complex systems

MSC: 90B10; 94C15; 68Q32; 68T05

1. Introduction

The topological structure of complex networks can be characterized by a series of well-known
features, such as the small-world and scale-free properties, the presence of cliques and cycles,
modularity, and so on, which are instead missing in random networks [1–5]. It has been shown
that another distinguishing feature is the presence of so-called network motifs [6], which are recurring
patterns of interconnections that might serve as building blocks for the evolution of more complex
functional units [7,8]. One might thus hope to “understand the dynamics of the entire network based
on the dynamics of the individual building blocks” (see Chapter 3 in Reference [9]). In this respect, we
can regard network motifs as basic structural modules which bear (in a topological sense) meaningful
insights about the holistic behavior of the system as a whole.

Here we apply this perspective to the study of multi-layer (deep) neural networks, which are one
of the most popular frameworks used in modern artificial intelligence applications [10,11]. Despite
the impressive performance achieved by deep networks in challenging cognitive tasks, such as
image classification [12], automatic machine translation [13] and discovery of sophisticated game
strategies [14], such systems are still poorly understood [15]. To quote Reference [16], “the theoretical
principles governing how even simple artificial neural networks extract semantic knowledge from

Entropy 2020, 22, 204; doi:10.3390/e22020204 www.mdpi.com/journal/entropy

http://www.mdpi.com/journal/entropy
http://www.mdpi.com
https://orcid.org/0000-0001-7062-4861
http://dx.doi.org/10.3390/e22020204
http://www.mdpi.com/journal/entropy
https://www.mdpi.com/1099-4300/22/2/204?type=check_update&version=2

Entropy 2020, 22, 204 2 of 27

their ongoing stream of experience, embed this knowledge in their synaptic weights, and use these
weights to perform inductive generalization, remains obscure”. The inscrutability of deep learning
models mostly stems from the fact that their behavior is the result of the non-linear interaction between
many elements, which motivates the use of network science techniques to reveal emergent topological
properties [17].

The primary question we address in the present work is whether is it possible to observe the
emergence of well-defined network motifs even if the initial (between layer) topology corresponds to a
fully-connected graph, where each node (neuron) is connected to all nodes in the neighboring layers.
The underlying assumption is that some traces of the learning dynamics will be nevertheless recorded
in the final model topology in the form of basic functional modules, thus opening the possibility to
relate local network properties with the functioning of the system as a whole. Furthermore, given that
the objective of deep learning is to extract high-order statistical features from the data distribution [18],
we ask to what extent the final topology depends on intrinsic properties of the training data. To this
aim, we systematically compare the motifs emerging in a deep network trained on two different
synthetic environments, created according to different generative models.

2. Methods

2.1. Neural Network Architectures

A simple multi-layer feed-forward network was built and trained using the Keras deep learning
framework (See https://keras.io/ for documentation). The external deep learning libraries and motifs
mining software were used as provided, while the rest of the system was coded from scratch in Python
3.7.4 (See https://docs.python.org/release/3.7.4/ for documentation). The Supplementary Materials
(source codes) are available at https://github.com/MatteoZambra/SM_ML__MScThesis. In order
to better assess the robustness of our simulations, three different neural network architectures with
varying number of neurons have been considered (see Table 1). In all the cases, the architecture consists
of a fully-connected multi-layer perceptron model. A broader overview on the robustness results
is given in Appendix A, where we also discuss simulations related to a larger-scale, more realistic
machine vision problem (e.g., classification of handwritten digits).

Table 1. Network architectures tested. Note that the name of the network is the seed value used for
reproducibility purposes. ReLU stands for Rectified Linear Unit, see Reference [10].

Network Layer Units Activation

240120 Input 31 –
Hidden 1 20 ReLU
Hidden 2 10 ReLU
Output 4 Sotfmax

250120 Input 31 –
Hidden 1 20 ReLU
Hidden 2 20 ReLU
Output 4 Sotfmax

180112 Input 31 –
Hidden 1 30 ReLU
Hidden 2 30 ReLU
Output 4 Sotfmax

2.2. Learning Environments

Inspired by the recent study of Saxe and colleagues [16], two synthetic sets of data were
purposefully generated to embed different statistical structures, to investigate whether different
environmental conditions would lead to the emergence of specific topological signatures. The first
environment, encoded as a binary tree data set, contained a hierarchical structure. The second

https://keras.io/
https://docs.python.org/release/3.7.4/
https://github.com/MatteoZambra/SM_ML__MScThesis

Entropy 2020, 22, 204 3 of 27

environment, encoded as an independent clusters data set, resolved in a more sparse and glassy
statistical footprint, as shown in Figure 1. The structure of each data set will be briefly reviewed in the
following; for a more detailed description, the reader is referred to the Appendix B. As customary in the
machine learning literature, a data instance is thought of as a vector of random variables representing
some measurable features. We can conceive each data instance as being generated by sampling from a
(probabilistic) graphical model, whose nodes represent the random variables of interest, and whose
edges represent their mutual relationships. For both the data sets considered, samples can be divided
into four classes, as explained more in detail below.

2.2.1. Binary Tree Data Set

The binary tree data set is thought as a slight modification of the generative model illustrated
in Reference [16]. This data generator is designed to create data instances displaying a hierarchical
structure, as shown in Figure 1a. Each generator run produces a data instance, whose features attain
values among {−1,+1}. The initial feature (root node) is sampled uniformly and its value diffuses
through the tree branches. The rationale underlaid is as follows: If the root node attains the value +1,
then the left child inherits the +1 value and the right child (together with all its progeny) is assigned
the value −1. Contrarily, if the root node happens to be −1, then the right child inherits the +1 value.
From the root node children on, the criterion is probabilistic. One of the children of a +1 node inherits
the same value with probability ε, that is a threshold set a priori to 0.3 (see Figure 2a). Clearly, the
smaller this threshold, less likely is the value to flip. To perform such a stochastic flip, for each node
one samples a value p uniformly distributed in [0, 1]. For example: a node i has the value +1. Given ε,
sample p ∼ U(0, 1). If p > ε, then the left child of i (which has the node index equal to 2× i + 1, where
the root node number is (Note that the node number is not the value stored in such node. This latter
may be −1 or +1 while the former ranges from 0 to the total number of nodes N = 2D − 1. D = 1, . . .
refers instead to the depth of the tree, that is, how many node levels it has. Note that a linear array
storage is used for the binary tree data structure). i = 0) inherits the value +1 and the right child
instead inherits −1. If p ≤ ε, the left child inherits −1 and the right child inherits +1. The features
of each data sample are the collection of all the nodes in the tree structure for a given generator run,
with the first feature being the root node, the right and the left children contain the second and third
features respectively and so forth.

The number of classes is set selecting a level in the tree: The root node (level 1) identifies two axes
of distinction, that is whether its value is +1 or −1. The data set fed to the network for our analyses
is generated accounting for a level of distinction set to 2, which thus generates four different classes
(see Appendix B). The choice of the level of detail set to 2 means that one accounts for the classes
identified by the equality of the data samples up to the random variables of the second tree level plus
the respective outcomes; all the other variables may differ, thus guaranteeing some variability in the
patterns belonging to the same class.

2.2.2. Independent Clusters Data Set

The independent clusters data set is designed to endow the data instances ensemble with a
block-diagonal statistical signature, as displayed in Figure 1b. For such purpose, a simple graph is
created as in Figure 3a. For consistency with the number of features and classes of the binary tree data
set, the same number of random variables involved is chosen, and the number of independent groups
is set according to the number of classes of the binary tree data set. In the full graph, as the embedding
shown in Figure 3a, some connections are gradually eliminated to reproduce the situation in Figure 3b.
The rationale beneath is as follows: In a fashion similar to the simulated annealing algorithm [19],
a temperature schedule is set, where the initial temperature is chosen to be the reciprocal of the longest
edge and similarly the final value is the reciprocal of the shortest edge

Entropy 2020, 22, 204 4 of 27

 T0 = (maxe{e ∈ E})−1

Tf = (mine{e ∈ E})−1 .
(1)

The schedule steps are equally spaced and the number of such steps is a parameter that has been
fine-tuned to have the desired final scenario of disjoint, arbitrarily intra-connected groups. Note that
by thus doing it could be that from a step to the next, shorter links may be erased while retaining longer
ones, which were short enough to survive in the last step, hence melting schedule must be set sensibly.
Unlike simulated annealing, the temperature rises in this case. For each step, edges greater or equal
than the inverse of the temperature value are deleted. Each of these four graphs is directed, to allow
for more efficient sampling. Each random variable (i.e., node value) is initialized to the value of −1.
Subsequently, one selects randomly a group among the four available and the topological order of such
nodes is set: The node with no incoming connection has topological order 1. The nearest neighbors of
the latter have topological order 2, and so forth (see Figure 2b). For the sake of simplicity, this data set
is created in such a way that a random variable of the selected group bears as value its topological
order. This translates in a straight-forward classification task since all the data samples belonging to
a class are equal: All the features of a data sample are set to −1, except those corresponding to the
nodes of the selected group, which are set equal to their topological ordering (see Appendix B for a
thorough explanation). The construction of the structure depicted in Figure 3b is motivated by the
necessity to dispose of a data set in which some random variables share a probabilistic relationship
and some others are independent. Referring to Figure 1b, the regions in the covariance matrix related
to dependent variables are visible as the diagonal blocks, while the background appears more glassy.
This latter is not fully homogeneous but has rather a chessboard-like textured since the numerical
values attained by the non-chosen groups will somehow be related to the values of the chosen group.

(a) Binary tree. (b) Independent clusters.

Figure 1. Covariance matrices of the two data sets considered. In (a) the variables involved in the
covariance computation are all the nodes of the tree structure, from the root node to the leaves. In (b)
the variables involved are all those constituting the graph in Figure 3. Note that in covariance matrices
it is not granted that the elements range in [−1,+1]. In fact, the features of the tree-generated data
attain values among {−1,+1}, while in the clusters data set, the random variables involved in the
covariance computation attain their topological ordering values. The labels of the features range
between 0 and 30, meaning that there are 31 features overall, in both the data sets.

Entropy 2020, 22, 204 5 of 27

+1

+1

+1 -1

-1

if x[i] = -1, then all
the children of i
inherit the -1 value

x[i] = value(Parent(i))
with probability ε

sample x[0] ~ U({-1,+1})

(a) Binary tree.

i = 1
i = 2

i = 3

i = 4
i = 5

1
2

3

3

4

x[i] = topological_order(i)

(b) Independent clusters.

Figure 2. Rationale behind the data sets creation. Note that in the clusters case the red labels represent
the topological orderings of the respective nodes. The i indices represent the nodes numbers.

(a) Fully connected graph. (b) Molten graph.

Figure 3. Representation of the process for generating data instances from the independent clusters,
showing two subsequent stages of the data set generation: The connections between different groups
are gradually eliminated in order to obtain independent graphs. Note that the geometric coordinates
do not impact the values attained by the nodes; they are temporarily assigned during the creation stage
for the purpose of visualization.

2.3. Initial Conditions

Besides varying the statistical structure of the learning environment, we also investigated
whether the emergence of different topological signatures could also be related to the use of
different initialization schemes for the connection weights. To this aim, we considered three different
initialization schemes. In the first case, we used the classic “Normal” initialization method, where
each connection weight is randomly sampled from a Gaussian distribution with zero mean and small
variance, that is w ∼ N (0.0, 0.1). In the second case, we exploited the “Orthogonal” initialization
method proposed in Reference [20], where weight matrices of adjacent layers are constrained to
be orthogonal. This scheme has been proved to grant depth-independent training speed, which is
desirable as the network becomes deeper. Finally, in the third case we exploited the popular “Xavier”
(equivalently called “Glorot”) initialization method [21], where the mean is zero and the variance of
the Gaussian distribution is defined according to the number of connections of each layer, that is:

σ2 =
k

nin + nout
, (2)

Entropy 2020, 22, 204 6 of 27

where k depends on the activation non-linearity and nin, out are the number of incoming/outgoing
connections of each layer. This initialization scheme enjoys widespread popularity, since it has been
empirically shown to mitigate optimization issues affecting deep networks.

2.4. Task and Learning Dynamics

The task accomplished by the network is multi-class classification. The data sets are homogeneous
in terms of design matrix dimensions and items in the labels set, thus the network architecture
is the same in both the cases: Once the parameters are initialized, the data structure containing
these parameters and connectivity information is trained both on the binary tree and independent
clusters environments.

Stochastic (mini-batch) gradient descent was used to adjust the network’s weights. Learning rate
was initially set to 0.01, and then decayed using a factor of 10−6. Nesterov acceleration was added
with momentum set to 0.6. Given the straightforward structure embedded in our data sets, simple
models should be capable of reaching a perfect level of classification accuracy.

2.5. Mining Network Motifs

Network motifs can be defined as “patterns of interconnection occurring in complex networks at
numbers that are significantly higher than those in randomized networks” [6]. In the present work,
arrangements of four and five nodes are inspected. The statistical significance of such a pattern of
connections can be identified by computing the Z-score (equivalently referred to as significance score),
which is the number of times a given motif appears in the considered network with respect to the
average number of occurrences of the same motif in an ensemble of random replicas of the original
network. It is measured as a distance in units of standard deviations:

Z =
Nreal− < Nrandom >

σrandom
. (3)

Once the neural networks were trained, model parameters were extracted and transposed in a
proper graph data structure, so that network motifs mining can be carried on using an external tool.
The FANMOD (See http://theinf1.informatik.uni-jena.de/motifs/ for executable, sources, license and
relevant papers.) motifs mining software was used to analyse the graph extracted from the model [22].
A comprehensive account on the algorithmic complexity and technical details about network motifs
mining tools is beyond the scope of this work. However, a detailed overview of the underlying
algorithmic machinery for the FANMOD software is provided in Reference [23], and state-of-the-art
advances and performance benchmarks are discussed in Reference [24].

Since retaining all the connection weights of the initial and trained models would imply the
presence of redundant network motifs, all weights relatively close to zero were neglected in the
subsequent analyses. The identification of negligible weights was carried out by fitting a Normal
distribution to the weights histogram, and selecting as exclusion zone the set of the weights w : p(w) ≥
c maxw p(w), where p is the fitted Normal density function. The value of the cut-off threshold c plays
an important role: the greater this value, the smaller the exclusion region (see Appendix C for details).
The majority of the connection weights fell in this zone, hence the subsequent analyses accounted for
the strongest connections, either positive or negative valued, thus letting to emerge only the most
significant topological features.

2.6. Biological Analogy: Neurons and Protein Kinases

The internal working of transduction networks is based on the cooperation between processing
units, and the subsequent arrangement of those [25] (To deepen the contents of this section,
the interested reader is also referred to Reference [9], to which the topic and notation adopted in
the following are inspired.). Sensing environmental stimuli, processing this information and eventually
transcribing it to gene expression is done by passing this signal through a network whose units are

http://theinf1.informatik.uni-jena.de/motifs/

Entropy 2020, 22, 204 7 of 27

protein kinases. Such units play the role of nodes in the network, and interactions among those—for
example, phosphorylation—are the edges. The activity of these units are modelled through first-order
kinetics. The essential items are:

• the kinases of a first layer, the concentration of which is denoted as Xj, with j = 1, . . . , n;

• the target kinase of a second layer, the concentration of which is denoted Y;
• the rate of phosphorylation r(Y) = Y0 ∑j vjXj, being vj the rate of kinase Xj.

Call Y0 and Yp the concentration of un-phosphorylated and phosphorylated kinase Y respectively.
The concentration of kinase Y remains constant, that is Y0 + Yp = Y. Then the rate of change of
activated kinase Y is given by the difference between the rate of phosphorylation r and the rate of
de-phosphorylation of the same kinase Y, at a rate α. In formulae:

r(Y) = Y0 ∑j vjXj

Y = Y0 + Yp

dYp

dt
= r(Y)− αYp.

(4)

Referring to the case of steady-state dynamics, straight-forward calculations yield that the
concentration of active Y is non-linearly proportional to the weighted sum of the inputs Xj, as depicted
in Figure 4:

Yp =
∑j wjXj

1 + ∑j wjXj
, (5)

where wj = vjα
−1. A sensible threshold value for this weighted sum is thought to be 1 approximatively.

After the value of the input exceeds 1, the target kinase activity starts to be sensible. Now assume that
this simple model involves m target kinases. Then:

Figure 4. Behavior of the threshold function which quantifies the activity of target kinase, that is Yp, as
a function of the weighted sum of the input signals. A sensible value of the input weighted sum for
the target unit to show activity is assumed to be approximatively 1 [9]. Would one not to make such
an assumption, then the expression of the hyper-locus referred to in the main text is more generally
∑j wjXj = k.

n

∑
j=1

wijXj = 1 i = 1, . . . , m (6)

identifies the hyper-plane in the space of the inputs that excludes regions of high and low activity,
depending on the connection strengths. It happens that by stacking more of such three-nodes modules
(n input signals from the kinases X1, . . . , Xn and the target unit Y), one can obtain complex geometries
of the activity region in the input space. It is shown that the motifs encountered most often in
transduction networks are the so-called diamonds and bi-parallel. As we will discuss later, these
motifs match those found in our analyses, as depicted below.

Entropy 2020, 22, 204 8 of 27

The analogy with binary classification is hinged on the creation of the hyper-plane. Assume that
the weighted input is u = ∑j wijXj, the numerical value of which is known. To determine whether the
unit Y is active, one needs to compare the input u with the hyper-locus that identifies the regions of
activity. Assume that the target unit activates once the threshold 1 is exceeded, then:

• If u ≥ 1 then target unit Y activates and propagated the signal forward in the system to a third
layer. But

• If u < 1 then Y is not sufficiently triggered to propagate the signal, that is, to phosphorylate the
next unit.

The hyper-space WX ≥ 1, 1 = {1}n, identifies the set of weights and activities such that the
target units is activated. The subtlety in this analogy is that the weights W cover a relevant role
too: In transduction networks change of such weights is subjected to regulatory mechanisms or
evolutionary pressure [9], and in the process of gene expression transcription these weights values
are given. They do not play the role of adjustable parameters in such a way to minimize a given error
metric. In neural networks, on the other hand, weights adjustment is pivotal in the learning process,
and such variations are performed on a faster timescale.

In neural networks one encounters a similar scenario: A neuron is fed with an array of incoming
signals, coming from the activities of the previous layers neurons. The weighted sum of these signals
is added to an activation threshold value, called bias. The resulting value undergoes a non-linear
transformation. In this way it is possible to identify an hyper-plane in the input space that separates the
input patterns of signals, as in Figure 5. The “state equations” of a simple one-hidden-layer network
are the following: h = f

(
xW(1) + b(1)

)
y = f

(
hW(2) + b(2)

) , (7)

with

x ∈ RNinput , h ∈ RNhidden , y ∈ RNoutput

b(1) ∈ RNhidden , b(2) ∈ RNoutput

W(1) ∈ RNinput×Nhidden , W(2) ∈ RNhidden×Noutput .

Suppose that this network has one hidden layer with Nhidden units, Ninput input units, Noutput output
units and f (·) is a generic non-linearity. In the framework of neural networks these functions are
generally monotonically increasing, as for example the “logistic sigmoid” σ(x) = (1 + exp(−x))−1.
The vectors b(k) represent the activation thresholds of both the hidden units and output units—also
called biases and the matrices W(k) are the connection weights, k = 1, 2. Here the hyper-plane is
identified by the weighted sum in the arguments of f (·), which purpose is to capture higher-order
correlations in the input features and the composition of many non-linear blocks allows the synthesis of
high-level abstraction of the domain [10]. Figure 5 gives a visual idea of the hyper-planes composition
and the result in terms of decision boundary geometry. Signal flow in the system, from the input
layer units to the output nodes, is strictly feed-forward and once the guessed label is observed in
this latter layer, it is compared with the ground truth. Based on the mismatch, model parameters
(connection weights and node biases) are adjusted, in such a way to minimize the prediction error,
back-propagating such error in a reverse way along the layers constituting the network [26].

Entropy 2020, 22, 204 9 of 27

(a) Exclusion locus of a single neuron. (b) Exclusion locus of the first triad.

(c) Exclusion locus of the second triad. (d) Combination of the two hyper-loci.

Figure 5. In (a) the x1 and x2 coordinates represent the features of a fictitious data vector, featuring two
random variables, in a case of linear separability. Here two input neurons map the input features to
a binary label. In (d), stacking exclusion hyèer-loci as those in (b,c), due to a single neuron, one can
obtain more intricate decision boundaries. In this graph, it is shown how the joint contribution of two
such loci can allow one to go beyond the case of binary classification and linear separable classes, once
the problem becomes more complex.

Given these analogies between biological transduction networks and artificial neural networks,
it is legitimate to hypothesize that information processing in both classes of systems might be carried
out using similar computational structures. Reference [9] argues that “Multi-layer perceptrons
allow even relatively simple units to perform detailed computations in response to multiple inputs.
The deeper one goes into the layers of perceptrons, the more intricate the computations can become”.
If one thinks of “intricate computations” as the computation of appropriate decision boundaries, then
this task is precisely what is accomplished by multi-layer perceptrons. Individual neurons (absorbing
an arbitrary length input) could only discriminate two classes, as in Figure 5a (in this case one has only
two input features), but stacking together multiple layers of neurons allows to create more intricate and
complex decision loci in the input space, as in Figure 5d. Panels Figure 5b–d refer to the combination
of two triads as in Figure 5a, assembled so to form a simple neural network with two input neurons
and two output units, with no hidden layers. Figure 5b is the exclusion locus of the triad formed by the
input units and the first output unit, Figure 5c analogously refers to the triad in which the output unit
involved is the second one. This trivial example shows how hyper-planes designed by simple groups
of units arrange to identify less obvious exclusion hyper-subspaces and note that stacking more layers
one can go beyond straight lines.

Entropy 2020, 22, 204 10 of 27

3. Results

As we will point out below, our analyses on network motifs displayed an intriguing consistency
with transduction networks. Results for the four-nodes motifs will be presented first, since they
allow enjoying a broader perspective on the internal functioning of the artificial networks compared
to the biological counterparts. Five-nodes motifs allow for a closer inspection of how the learning
environment and the emergence of topological structures relate to each other, but at the same time the
emerging patterns are less easily interpretable.

3.1. Learning Efficacy

For all models the training accuracy peaks to the top value of 1.0 in few epochs. However, as
shown in Figure 6, the Normal initialization scheme resulted in the slowest learning convergence.
The orthogonal initialization scheme allowed convergence in fewer epochs, while the Xavier scheme
resulted in the fastest convergence. These findings suggest that initialization plays a crucial role in
shaping learning dynamics: one possible explanation could be that the orthogonal and Xavier schemes
impress a sharper fingerprint to the initial significance landscape of network motifs, as we will discuss
below. In other words, faster convergence toward the optimal set of connection weights might be
promoted by biasing the initial set of network motifs. A sharper initial significance landscape is indeed
common in the initialization schemes displaying faster convergence.

(a) Binary tree data set. (b) Independent clusters data set.

Figure 6. Efficacy of initialisation schemes for (a) binary tree and (b) independent clusters data sets.
Note that the orthogonal matrices initialisation grants the best performance in terms of training speed
and note also that the independent clusters environment is easier to be learned, likely owing to its
statistical sparsity.

3.2. Emerging Network Motifs

Figure 7 shows how the weights distribution changes during the course of learning. As noted
in previous studies [17] the effect of learning is mostly evident in the tails of the distributions and, in
our simulations, especially for the Normal initialization scheme. This suggests that the Orthogonal
and Xavier initializations might help building more effective motifs since the beginning, by imposing
a stronger bias to the initial structure of the network. A statistical analysis revealed that, indeed,
although after learning the weights became larger in absolute value for all the initializations and data
sets considered (see Table 2), such difference was significant only for the network initialized using
the Normal scheme and trained on the tree data set (p < 0.01). Figure 6 depicts how the normal
initialization scheme renders a slower convergence. This points out that the correlation between the
initial distribution and the evolved distribution in the case of normal initialization decreases, implying
also a decreased correlation in the motifs significance profiles, see Figure 8d.

Entropy 2020, 22, 204 11 of 27

(a) Tree data set (Normal) (b) Clusters data set (Normal)

(c) Tree data set (Orthogonal) (d) Clusters data set (Orthogonal)

(e) Tree data set (Xavier) (f) Clusters data set (Xavier)

Figure 7. These plots depict the variation that the weights population experiences when trained on
different data sets, using different initialization strategies. Results refer to the network 240120.

Table 2. Mean and standard deviation of the weights absolute values, before (i.e., “initial”) and after
learning on the two different data sets. This analysis was carried out on the set of non-negligible
weights, as explained in Section 2.5.

Initialization Initial Tree Clusters

Normal 0.206± 0.206 0.283± 0.319 0.254± 0.265
Orthogonal 0.346± 0.358 0.370± 0.400 0.366± 0.380

Glorot 0.376± 0.387 0.410± 0.432 0.390± 0.404

Figure 8 shows the overall trend of change for the most common 4-nodes motifs: The x-axis
gathers the motifs prototypes, the respective y value is the significance score, obtaining a significance
profile (Note that significance scores are sometimes normalized, allowing to superimpose (and thus
compare) significance profiles referred to different instances of a complex network [27]. However,
in the present work normalization is avoided, since the network inspected (hence the size of the system)
is the same for all the analyses. Non-normalized scores also allow to better understand the magnitudes
of the detected effects.). As evident by comparing Figure 8a–c, the significance profiles resulting
from different initialization schemes display a remarkable self-similarity, suggesting that this set of
basic structures might support information processing in all the data sets considered. Interestingly,
several of such motifs are also consistent with those commonly found in biological transduction
networks (the fifth and the ninth motifs from the left), suggesting a potential overlap of computational
mechanisms. The fundamental feature of the analogy is the identification of an hyper-plane which
classifies the nature of a given input—which comes as a weighted sum, in both transduction and
neural networks. As mentioned above, the amount of change in the weights seems to be correlated
to the change in the significance profiles—in the case of Normal initialization, the variation is most

Entropy 2020, 22, 204 12 of 27

severe, while in the other two cases the significance profile seem to be already biased before learning
takes place.

(a) Normal initialization scheme. (b) Orthogonal initialization scheme.

(c) Xavier initialization scheme. (d) Initial profile for schemes.

Figure 8. Four-nodes motifs. Significance profiles accounting for different initialization schemes and
the case of the initial landscape for different initialization schemes. Note that in panel a, owing to the
small variance, the initial significance profile is flatter. In panel d the profiles depict the fingerprint
each initialization scheme impresses to the initial significance landscape, that is, curves therein are the
collection of the black curves in the first three panels, that refer to the initial significance profile. The
Normal initialization scheme is clearly milder than the other two, due to the values sampled by each
initial conditions generation. Note that the seventh motif (from the left) is a chain involving one node
of all the four layers: it is displayed folded for graphical convenience. Results refer to network 240120.

Figure 9 shows the overall pattern emerging from the analysis of the most common 5-nodes
motifs. On the one hand, it is possible to appreciate the exclusiveness of the motifs characterizing each
arrangement of learning environments, suggesting that the learning domain influences the emergence
of particular topologies. On the other hand, results are less obvious compared to the case of 4-nodes
motifs. Referring again to Figure 8a–d, it is not clear the extent in which the emergence of the most
significant motifs is spontaneous or biased by the initial profile (black lines). Orthogonal matrices
and Xavier schemes, by their design, sample larger parameters values, hence the model configuration
is conditioned by the initial, albeit random, weights landscape. Results in Figure 9 do not provide
a definitive answer to this question: While it may seem that different network motifs emerge in
response to different initial and learning environments, it is not clear why and when a certain topology
is observed. The multi-layer perceptron motif (the last but one motif in panel Figure 9a) and its
variations appear through the different scenarios. In Reference [9] it is argued that such a structure
can be viewed as a combination of diamond four-nodes motifs (the last but one motif in the panels
of Figure 8). Albeit one may be tempted to think that motifs emerge as self-organized modules that
encode domain-specific information, it is not clear whether the emergence of different motifs stems
from the diversity in learning environments and initial conditions, or whether it might partially due to
the noisy by-product of the learning dynamics itself.

Entropy 2020, 22, 204 13 of 27

Interestingly, a very similar patter of findings emerged from an additional set of simulations
carried out using a more realistic input (see Appendix A), that is, images of handwritten digits.
Although the deep network architecture was fairly different in this case (featuring three hidden
layers and a greater number of neurons), the resulting network motifs match those found in the
networks trained on the tree and clusters data sets, and also the change in significance profiles follows
a comparable trend.

(a) Normal scheme. (b) Orthogonal scheme. (c) Xavier scheme.

Figure 9. Five-nodes motifs. Total Z-score variations accounting for the difference in significance before
and after training. Figure refers to most significant motifs, having analysed the weighted graph from
the model. Results refer to network 240120.

4. Discussion

In complex networks, individual units by themselves do not accomplish any particularly relevant
function, because it is the coordinated arrangement of groups of units (i.e., their interactions) that
allows for the emergence of system-level, macroscopic properties [28]. In the present work, we thus
explored how information processing in deep networks might emerge as a combination of simple
network motifs. Starting from these key observations:

• larger motifs may be seen as arrangements of smaller motifs, for example “Diamonds combine to
form multi-layer perceptron motifs” [25];

• these smaller motifs arrangement gives rise to more complex computation: “Adding additional
layers can produce even more detailed functions in which the output activation region is formed by
the intersection of many different regions defined by the different weights of the perceptron” [9];

• domain representation is carried out by the composition of subsequent non-linear modules, which
“transform the representation of one level (starting with the raw input) into a representation at a
higher, slightly more abstract level” [10];

we hypothesized that in deep neural networks the learning dynamics may rely on the same processing
mechanisms used by transduction networks.

Our simulations suggest that this might indeed be the case—network motifs might form
spontaneously for the purpose of efficient information processing, so that each module deals with a
small number of input features, and subsequent (deeper) processing can rely on fewer signals from
previous neurons. High-level features might thus be abstracted in a layer-wise and motifs-wise fashion.

Notably, our analyses also suggest that some weights initialization strategies give a stronger
imprinting to the initial significance landscape of possible motifs. The Normal initialization scheme
results in a flatter initial landscape, which might underly the slower convergence speed of this type
of initialization. The environment may thus be considered to be learned once relevant information
processing structures come to develop—if a scheme provides the initial configuration with a preventive
signature of such structures, learning will be much faster.

Entropy 2020, 22, 204 14 of 27

5. Final Remarks and Further Improvements

5.1. Evaluation with Other Classes of Deep Learning Models

Our simulations have been focused on feed-forward neural networks, which are the workhorse
of deep learning, but there exist many other classes of models to which our methodology could
be applied. Notable examples would be deep networks with bidirectional [29,30] and recurrent [31]
connectivity, which might even allow for the emergence of a richer variety of motifs, or models
featuring convolutional and LSTM architectures [32–34]. In this respect, it should be stressed that the
proposed approach should hold for the analysis of any network-reliant deep learning model.

5.2. Presence of Combinatorial Biases

It would also be useful to better investigate whether particular motifs might emerge simply as a
consequence of some combinatorial bias induced by the design topology of the multi-layer perceptron
itself. If so, some of the significant four-nodes motifs we detected might appear because of unavoidable
initial imprinting due to the topology of the model, and not necessarily because of their critical role in
information processing. Further insights into this issue could be gained by also analyzing the case of
five-nodes groups, or by enforcing an initial landscape in which the motifs observable are those that
appear to be most rare. This way one could observe whether such structures are rejected as a result of
learning, favoring instead those discussed above.

5.3. Sensitivity to Free Parameters

Referring to the Appendix C, it should be noted that our simulations involved a certain number
of parameters (e.g., the threshold used to discretize the weights, or to exclude negligible weights from
the analyses) that were often set according to heuristics. However, we should note that the results
presented turned out to be robust to small variations in the choice of such parameters. The choice
of mining a weighted or unweighted network also plays a role. Here we presented results related to
a weighted analysis, which introduces variability in the discovered motifs. More specifically, motifs
were composed of connections that fall in four categories: close to zero (i.e., not present), strongly
positive, strongly negative and mildly positive/negative. Also, one could either account for most
significant or most typical motifs, the former being those instances in the same group of isomorphic
graphs that display the largest significance and the latter are those which have a significance score that
is closer to the average, over the same isomorphic group. For a broader account on the problem of
graph isomorphism, the reader is referred to References [35,36].

5.4. Scalability

One important research direction would be to apply the proposed framework for the study of
larger-scale deep learning systems, which can learn more intricate statistical structure from big data
sets where the patterns might not be easily separable (as in the cases presented here). Scalability
remains one of the main concerns and an important direction for further research. This problem does
not impact training (which can be optimized using high-performing parallel hardware [37,38]) but
rather the motifs mining stage. Motifs searching relies on “edges sampling” [24] and this implies larger
computational resources for larger graphs.

5.5. Alternatives to Motifs Mining Algorithms

Finally, given that classical motifs search algorithms may present some limitations (e.g., related to
the computational complexity, as outlined above), it would be interesting to also investigate approaches
based on spectral graph partitioning. Indeed, finding community structure in complex networks is
by no means a novel problem (see Reference [39]), and in this respect graph partitioning can be
accomplished with spectral techniques. The “spectral” adjective refers to the eigenvalues of the

Entropy 2020, 22, 204 15 of 27

graph Laplacian [40]. However, a difference to pay attention at in this case would be that while
motifs, as referred to above, are intended as patterns on interconnections that may encode functional
properties of a given network, partitioning techniques would find community structures which are
not granted to match the topologies that one could find with a motif-based approach. Moreover, a
definition of sub-graph homogeneity would be necessary. Some previous work has been devoted to
such definitions—in Reference [41], the (information-theoretic) entropy of a connections group is used
as a measure of homogeneity, while in Reference [42] internal coherence metrics are adopted. One
subtlety to account for is that network motifs are not granted to be perfectly homogeneous, hence
topologies in which some edges are negative-valued and others are positive-valued could be useful.
However, this approach could significantly speed up the sub-graphs research process, so it would
constitute an interesting topic for future research.

Supplementary Materials: Code available at https://github.com/MatteoZambra/SM_ML__MScThesis.

Author Contributions: Conceptualization, A.M., A.T.; Data curation, A.T., M.Z.; Formal analysis, A.M., A.T.,
M.Z.; Funding acquisition, see below; Investigation, M.Z.; Methodology, A.M., A.T., M.Z.; Project administration,
A.M., A.T.; Resources, A.M., A.T., M.Z.; Software, M.Z.; Supervision, A.M., A.T.; Validation, M.Z.; Visualization,
M.Z.; Writing—Original draft, M.Z.; Writing—Review & editing, A.M., A.T., M.Z. If two or more authors are
involved in any of the mentioned contributions, the order is alphabetical. All authors have read and agreed to the
published version of the manuscript.

Funding: A.M. acknowledges the support from the University of Padova through “Excellence Project 2018” of the
Cariparo Foundation. A.T. acknowledges the support from the University of Padova through the “Deepmath”
2018 STARS Grant.

Conflicts of Interest: The authors declare no conflict of interest.

Appendix A. Robustness of Simulations

Appendix A.1. Different Network Architectures for the Synthetic Data Sets

In order to validate the generality of our findings, simulations were repeated by considering
different network architectures. Referring to the details displayed in Table 1, three networks with
different hidden layers sizes were tested. For reproducibility, the network identifiers represent the
seeds used for the simulations. Figures A1 and A2 depict the results presented in the main text referring
to all different network architectures. It can be observed that the most significant motif profiles indeed
match those discussed in the main text. Figures A3 and A4 depict the largenst significance variations.

(a) Normal initialization scheme. (b) Orthogonal initialization scheme.

(c) Xavier initialization scheme. (d) Initial profile for schemes.

Figure A1. Four-nodes motifs, significance profiles. Seed 250120.

https://github.com/MatteoZambra/SM_ML__MScThesis

Entropy 2020, 22, 204 16 of 27

(a) Normal initialization scheme. (b) Orthogonal initialization scheme.

(c) Xavier initialization scheme. (d) Initial profile for schemes.

Figure A2. Four-nodes motifs, significance profiles. Seed 180112.

(a) Normal. (b) Orthogonal. (c) Xavier.

Figure A3. Largest significance variations for five nodes motifs, seed 250120.

(a) Normal. (b) Orthogonal matrices. (c) Xavier.

Figure A4. Largest significance variations for five nodes motifs, seed 180112.

Appendix A.2. Training a Larger Network with the MNIST Data Set

A further proof of robustness was achieved by analyzing a deep network trained on a real-world
data set. We thus trained a larger network on the popular MNIST data set [32]. The architecture was
now composed by a visible layer containing 784 units (the MNIST data set contains images of size
28× 28 pixels), three hidden layers of 50, 50 and 20 units respectively and the output layer featuring
10 units (one for each MNIST class). As for the other architectures, the activation function of the
hidden units was rectified linear unit (ReLU), while units in the output layer used softmax activation
(see Reference [11]).

Quite impressively, these simulations produced results well aligned with those obtained on the
artificial data sets, especially in term of the significance profiles for the four-nodes motifs (see Figure A5).

Entropy 2020, 22, 204 17 of 27

Moreover, the prevalence of the five-nodes multilayer-perceptron is clear also in this case, as shown in
Figure A6 (recall that this latter may be seen as combination of diamond 4-nodes motifs).

(a) Normal initialization scheme. (b) Orthogonal initialization scheme.

(c) Xavier initialization scheme. (d) Initial profile for schemes.
Figure A5. Four-nodes motifs, significance profiles. MNIST data set.

(a) Normal. (b) Orthogonal matrices. (c) Xavier.

Figure A6. Largest significance variations for five nodes motifs, MNIST data set.

Appendix B. Data Sets Generation

Data set generation was inspired by previous work [16,43]. A difference is that in these
publications, synthetic data consists of categories, and the learning system should guess each item’s
feature. This leads to a difference in the covariance structure (compare Figure 1 above and Figure 9
in Reference [16]), which is due to the fact that, for example in the binary tree data structure, in the
present case correlation patterns tie together all of the nodes in the tree. Each node is associated with a
feature (recall, a random variable xj that is one entry of the random data vector x), whilst class labels
are assigned according to whether a data item matches some of the previously created data vectors in
the case of the binary tree. In the case of independent clusters, the category is assigned according to
which one of the independent clusters is selected, see below.

In the real world, data often come as rows of a so-called design matrix. Each one datum is then an
array of some features characterizing the observation. Each one of these features is a random variable,
distributed according to some unknown distribution. In this spirit, the data set can be characterised by
a multivariate probability distribution. An interesting way to represent multivariate distributions is
provided by probabilistic graphical models (PGMs). These models represent the relationships between
the random variables contained in a graph—nodes encode random variables, while edges encode the
relationships that tie these variables together [11].

Entropy 2020, 22, 204 18 of 27

Appendix B.1. Binary Tree Data Set

The first example is the binary tree data generating structure. The root node is a random variable,
which attains one among the values {−1,+1} with equal probability p = 0.5. According to the
outcome of such random variable, the children inherit the ±1 value according to some probabilistic
decision rule and in the same fashion the children of the children, and so forth down the dynasty, see
Algorithm A1. The user sets the depth of the tree D to be created. A data sample is the collection
of the N = 2D − 1 random variables that constitute the tree structure. An advantage of the PGM
representation is that it renders graphical visualisation ease: Data are often many-dimensional, that is,
points in a N-dimensional space.

In this case, the collection of M of such vectors could be thought of as an ensemble of living
species. The root node determines whether one item (pattern, data example) can move or not. The
children of the root node determine whether if it moves, does it swim? or if it does not move, does
it have bark?, and so forth. The levels deeper in the tree structure, bear more information about the
data items. In the following, it is shown how the choice of a particular level resolves in the presence of
more or fewer classes. As one considers the leaves level, then all of the nodes of a tree (i.e., all of the
features in a pattern) must equal, for two items to belong to a given class.

On the other hand, if one considers a shallow level in the tree structure, the nodes which must
equal for two data vectors to belong to the same class, are all the nodes up to the last node of the level
considered, plus those of the next level. For convenience, the root node lays at level 1. To explain why
it is to consider such nodes, the reader should refer to Figure A7. Assume that one wants to gather in a
class all the samples that move and swim. Then the sample has to actually move, that is the root node
must have the value +1, that means that its left child has value +1 as well and the right child and its
dynasty inherit the −1 value. Then we should consider also the outcome of the stochastic inheritance
of the +1 value from node 1 to nodes 3 and 4. Based on this trial, we know whether the +1 value is
attained by node 3 or 4. Node 3 encodes the answer to the question since the sample moves, does it
swim? by means of the value +1 which means yes. Hence, to say whether two samples belong to the
same moving and swimming animals super-class, we should check the equality of the nodes almost
up to nodes 3 and 4. In practice, it is easier to check level-wise, thus two samples belong to the same
class if all the nodes up to those of the next level match. Next level means next with respect to the
level of detail one wants to inspect. In this example, the level is 2. All the subsequent nodes could in
principle attain different values but this does not matter. If one wants to differentiate living things
based on the fact that such items can move or not, what matters is the value attained by the root node.
Then whether two items are respectively a whale or a deer, this does not affect the belongingness to the
living thing that can move super-class. In contrast, if one has to differentiate living thing that moves
based on the fact that such an item does swim or not, then a further level of detail is needed. Such a
finer granularity is encoded by the values the nodes of the next levels attain. If the left children of the
root node happen to inherit its +1 value, that means that other than being a moving living thing, that
item does swim. Therefore, the second tree level encodes this subsequent level of detail. The more
detail is embedded (the higher level is chosen), the more the possible classes the data examples may in
principle belong to.

The rationale behind such a data generator is first and foremost related to its transparency and
statistical structure clarity: There is no real-world consistency in such data, but in this fashion, it is
easy to perform classification on them. As explained below, one single pattern generation happens
to be a value diffusion down to the tree branches. In this way, one ends up with a N-dimensional
binary array, in which many of the slots bear the −1 value. The +1 values, on the other hand, lays in
correspondence of the slots associated with those nodes which happen to represent a positive answer
to the distinction question associated with that node. Consistently with the discussed example: If the
living thing encoded in such a N = 15 dimensional vector is a moving thing (roughly speaking, an
animal), then the root node has the +1 value, which in turn means that the 0th slot in the data vector
has such value. If this is a water animal, it swims, then the left child of the root node has inherited the

Entropy 2020, 22, 204 19 of 27

+1 value, then the slot 1 in the data vector has the value +1 and it implies that the right child of root
inherited the value −1, so the slot 2 of the data vector has the value −1. Assume further that other
than swimming, this animal is not a mammal. Then the left child of the 3-labelled node has inherited
the −1 value and this same value is found in slot 7 of the data vector. It means that the +1 value is
inherited by the right child of node 3, then in the final data vector the +1 value appears in slot 8.

0

21

3 4 6

7 8 9 10 11 12 13 14

5

tree = [0 1 2 3 4 5 6 7 8 9 10 11 12 13 14]

Figure A7. Binary tree data generating structure. Note that the tree data structure is efficiently and
easily represented computationally as a linear array. The left and right children of a given node i are
2i + 1 and 2i + 2 respectively, with i = 0, . . . , N − 1.

At the end of the day, the final data vector is made up by−1s, except for these said slots, where the
+1 value ended up in, encoding the positive outcome of those criteria associated with the respective
nodes. The terminal (leaves) level could be imagined as the one-hots stratum, that is: all of the leaves
attain the −1 value, except for one single leaf, where the +1 got to settle, as a consequence of the
(stochastic) outcome of all the aforementioned decisions. This lonely +1 determines the final category
in which the data vector fits in, as one sets the leaves level to be the distinction granularity. In such a
case, for two vectors to belong to the same class, it must be that all of the features equal. Otherwise,
it could in principle be that a whale, echoing the previously discussed example, has a positive value
for the root node, but in another data row, it could be negative. This would mean that a whale is a not
moving living being that swims. So, in the label generation stage, one shall differentiate according to
all the nodes of the level under consideration and all of their ancestries.

Appendix B.1.1. Single Pattern Generation

One pattern is the collection of all the node values of the array-represented tree (that entity
formerly dubbed a data vector). As an example, to the non-leaves nodes are associated decision rules,
intended to discriminate samples (e.g.,: does the object move?, which can be answered with yes or no,
±1, is the primal decision rule, that is, axis along which one can set distinctions). The initial value of
the root node is inherited and eventually flipped according to probabilistic decision rules with respect
to a fixed probabilistic threshold, ε.

In this spirit, referring again to Figure A7, the (non-leaves) nodes ranging from 0 to 6 encode
decision rules, (leaves) nodes indexed with i = 7, . . . 14 represent the final details about a sample
which are not important for the sake of its classification. The following criteria are implemented:

(1) The probabilistic threshold is fixed a priori. The smaller its value, the less variability in the
data set.

(2) Root attains the values ±1 with probability p = 0.5.
(3) Root’s children attain values +1 or−1 in a mutually exclusive fashion. The following convention

is adopted: if the root node attains the value +1, then the left child inherits the same value. Else, the left
child attains the value −1 and the right child has assigned the value +1.

Entropy 2020, 22, 204 20 of 27

(4) From the third level (children of root’s children), the progeny of any node that has value −1 also
has to have −1 value. On the other hand, if one node has value +1, its value is inherited (again
mutually exclusively) by its children according to a probabilistic decision rule.

The aforementioned probabilistic decision rule is a Metropolis-like criterion: Sample a random
variable p ∼ U([0, 1]), then, given the probabilistic threshold ε,

• If p > ε, the left child inherits the +1 value, and the right child, alongside with its progeny, assume
the opposite value;

• Else, is it the right child to assume the value +1.

Appendix B.1.2. Complete Data Set

Repeating the above procedure M times, one ends up with a data matrix X ∈ {−1,+1}M×N , that
is, each row of X, xµ, µ = 1, . . . , M, is one single N-dimensional data vector, in the same terminology
as above, that is a N-featured data vector (one pattern).

To complete the creation of a synthetic set of data, one needs the label associated with each one of
the data items. Here the choice of the probabilistic threshold ε turns out to be crucial. The higher this
quantity, the more the total number of different classes the data example may fall into. On the other
hand, if ε is small enough, there is a low probability of flipping a feature value, then it is more likely to
observe repeatedly the same configuration.

To create the labels, encoded as one-hot activation vectors, one arbitrarily assumes the identity
matrix to be the labels matrix. Then the whole data set is explored in a row-wise fashion. Since the data
set has a hierarchical structure, it is possible to select the granularity of the distinction made in order to
differentiate patterns in different classes. It depends on the choice of a level in the binary tree: If the
level chosen is high (far away from the root node) then one ends up with a fine-grained distinction.
On the other hand, if the chosen level is low, the distinction is made according to super-classes, for
example, whether a given object can move. The finer the granularity, the more detailed the distinction
between patterns. Obviously, in this latter case, the data set exhibits a greater number of distinct
classes. See the discussion above.

By this observation, the label matrix is created according to the level of distinction chosen. The
node values to be considered (i.e., the entries of each x data vector) are all those that encode the values
of the nodes up to the last one of the level selected. Referring again to the tree in Figure A7, if it suffices
to identify the move or not distinction, then one could safely check both the root node only or the root
node with its children, that is nodes {0, 1, 2}, because the inheritance from the root node to its children
is conventionally based on the root value solely. But if one wants to consider whether an object can
move alongside with the further if it moves, does it swim? and if it does not move, does it have bark?
distinctions, then one should consider also the children nodes of node 1, that is the answer to the
decision rule asked by node 1. Hence to determine whether two data items fall in that same category,
we check that all the first 2L+1 − 1 nodes have the same value. Here L = 2, in fact we consider nodes
i ∈ [0, 2L+1 − 1] ≡ [0, 7] = {0, 1, 2, . . . , 6}.

By thus doing the data set is generated. The matrices X and Y are saved to a proper data structure
which can be easily managed by the program that implements the artificial neural network described
in the main text.

Entropy 2020, 22, 204 21 of 27

Algorithm A1 Binary tree. Single feature generation

1: Compute N = Nleaves, n = Nnot leaves. M is a free parameter
2:
3: tree = 0N
4:
5: Define a small ε ∼ O(10−1) as probabilistic threshold
6:
7: Value of root η(0) ∼ U({−1, +1})
8:
9: if Root node has value +1 then

10:
11: The left child inherits the value +1
12:
13: And the right child inherits the value −1
14:
15: else
16:
17: The left child inherits the value −1
18:
19: And the right child inherits the value +1
20:
21: end if
22:
23: for All the other nodes indexed i = 1, . . . , n do
24:
25: if Node i has +1 value then
26:
27: Sample p ∼ U([0, 1])
28:
29: if p > ε then
30:
31: Left child of i = +1; Right child of i = −1
32:
33: else
34:
35: Left child of i = −1; Right child of i = +1
36:
37: end if
38:
39: else
40:
41: Both the children of i inherit its −1 value
42:
43: end if
44:
45: end for
46:
47: xµ ← values generated, µ = 1, . . . , M
48:

Algorithm A2 Binary tree. One-hot activation vectors, that is, labels

1: Choose level of distinction L
2:
3: Y = I
4:
5: for µ = 1, . . . , M do
6:
7: for ν = i, . . . , M do
8:
9: if the first 2L+1 − 2 entries of xµ and xν equal then

10:
11: yν ← yµ

12:
13: end if
14:
15: end for
16:
17: end for
18:
19: for i = 1, . . . , N do
20:
21: if Y [:, i] equals 0N then
22:
23: Eliminate column i of Y
24:
25: end if
26:
27: end for
28:

Appendix B.2. Independent Clusters Data Set

The generation of the second data set is performed as follows: Generating some cloud of points
distributed according to a bivariate Gaussian distribution, with means spread apart and covariances
sufficiently small, in such a way that the points of different groups do not overlap with the others. The
2-dimensionality has, of course, nothing to do with the number of features, which as said before is

Entropy 2020, 22, 204 22 of 27

the total number of points generated, that is the nodes of the probabilistic graph representation. This
2-dimensionality serves solely to draw the PGM and subsequently to partition the graph.

Once points are generated, are turned in a fully connected graph, that is, create edges between
each pair of nodes. In the spirit of the simulated annealing algorithm, here it is imagined that such a
fully connected graph is a sort of mineral structure, and it is to increase the temperature, to simulate a
melting process that destroys some of the over-abundant edges, according to some metric, for example,
the distance between points. For this reason, it comes handy the 2-dimensional representation: Distance
is simply the norm of the vector from a node to another. The distance for which the edge is removed is
temperature-dependent: the higher the temperature, the shorter the maximum edge length allowed.
At the end of this simulated melting process, it is expected the graph to exhibit some independent
components, provided the melting schedule is properly set. Moreover, these independent groups are
not fully connected within themselves. The melting schedule is designed in a way to remove some of
these intra-edges. This simulates the random variables of each group not to be dependent on all of the
others in the same could. Note that, unlike how exposed in Reference [19], in this melting simulation
there is not, strictly speaking, a optimization perspective inasmuch what matters is the removal of
some edges. The physics of the procedure could be improved.

Algorithm A3 Independent clusters. Simulated melting to partition the graph

1: Choose the number of classes NC
2:
3: Set µ(k) ∈ R2, Σ(k) ∈ R2×2, k = 1, . . . , NC
4:
5: Generate X s.t. xi ∼ N (µ(k), Σ(k)), i = 1, . . . , M
6:
7: Include the indexes of the points generate in a list, which is the set of the vertices V of the graph G
8:
9: Fully connect the vertices to form a fully connected graph and group the vertices and the set of the

edges E in the graph data structure, G = {V , E}.
10:
11: Note that since 2-dimensional coordinates will be useful, V is a dictionary of keys (nodes indexes

i = 1, . . . , M) and values (list with the point coordinates, (x(1)i , x(2)i)).
12:
13: for T increasing do
14:
15: for All the edges e = 1, . . . , |E | do
16:
17: if Length of edge e > 1

T (for example) then
18:
19: Remove edge e
20:
21: end if
22:
23: end for
24:
25: end for
26:
27: Plot the remaining edges and check if only independent fully connected components have survived.
28:

Entropy 2020, 22, 204 23 of 27

Algorithm A4 Independent clusters. Single pattern generation

1: Here i indexes a single random variable. This kernel is used as many times as the number of
samples the user wants to generate. x is the whole data item, initialised with each slot set to −1.
Note: in the data set actually generated, the value of the nodes are set to their topological orders,
with no ancestral sampling implemented.

2:
3: Set x = {−1}N
4:
5: Sample L ∼ U ({1, . . . , Nc})
6:
7: for all the vertices i = 1, . . . , nk in cluster L do
8:
9: if Topological Order of i is 1 then

10:
11: xi ∼ p(xi) ∼ N (0, k−2

i)
12:
13: else
14:

15: xi ∼ p(xi) ∏j∈Ancestors(xi)
(4π k2

j)
−1/2 exp

(
−1

2

x2
j

k2
j

)
16:
17: end if
18:
19: end for
20:
21: yi = one-hot(L)
22:

Appendix B.2.1. Single Pattern Generation

Once the independent clusters come to form, it is to assign each of the nodes a topological ordering
in such a way to perform the ancestral sampling [11]. Since the graphs are directed, in the edges data
structure created each edge is in the form of a couple (i, j), that is, edge from node i to node j. Then
if one node appears only on the left slot of such representation, it has topological order 1, in that no
edge ends up at that node. Conversely, each node that appears on the right has almost one ancestor.
For each edge then, each right node is saved to a proper data structure, and it is kept track of the
ancestors of each node. In this way, it is possible to assign both the topological order and to keep a list
of all the ancestors. It will be useful in the stage of sampling to dispose of such a list.

As a zero model however it is done as follows: A data item is initially initialized with all the
features values of −1. Since each vertex in the graph encodes a feature, and the belongingness of each
vertex to a group is a piece of information known from the points generation stage, an integer ranging
from 1 to the number of classes Nc = 4 is sampled uniformly. The nodes corresponding to this label
number are assigned different values, according to their topological order. This is trivial to do since
for each vertex belonging to the selected group one simply puts in the corresponding slots in the data
vector the topological order of such vertices.

A further improvement could be rather this approach: once a label is sampled, one could sample
from the distribution p(xi), for the vertices with topological order 1 in that cluster. The values
associated with nodes having topological order 2 is still sampled from that distribution, but must be
conditioned to the values sampled for their ancestors (nodes of order 1), that is, p(xi |Ancestors(xi)).
This is explained by recalling the very purpose of graphical models: to show (even graphically) the
causality of the random variables involved. The distribution could be chosen to be a Gaussian with
mean zero and variance proportional to the degree of that node. Gaussian is believed to fit since nearby
features are expected to have similar values ([43], but differently from this work, here one does not
generate the features vector, hence sampling from the multivariate Gaussian having zero mean and
variance dependent on the inverse of the Laplacian matrix of the graph. Here it suffices to sample
one value for a single node, and hence the degree of a node could be a good compromise, being such
quantity one of the ingredients of the Laplacian).

To sample from the conditional p(xi |Ancestors(xi)) the following rationale may be implemented:
The distribution is referred to all the nodes up to i, then could be viewed as a multivariate distribution.
Then a value is sampled from that multivariate distribution, but keeping constants the values of the

Entropy 2020, 22, 204 24 of 27

random variables sampled yet. As an example: Assume that node 3 of cluster 1 is to be assigned the
value x3 and that Ancestors(x3) = [1, 2]. Then the distribution to sample from is

p(x3 | x1, x2) ∼ exp
(
−1

2
(x1, x2, x3)

T Σ−1 (x1, x2, x3)

)
(A1)

with Σ = diag(ki), i = 1, . . . , 3, being ki the degree of node i. The above formula may be broken
in products, owing to the fact that the variance matrix is diagonal, that is

p(x3 | x1, x2) ∼ exp

(
−1

2
x2

1
k2

1

)
exp

(
−1

2
x2

2
k2

2

)
X3

X3 ∼ N
(

0, k−2
3

) (A2)

the first two factors being the values that the Gaussian probability density function attains at the
values sampled for the ancestors x1 and x2 and the third factor is the value sampled from the Gaussian
having zero mean and variance k2

3.

Appendix B.2.2. Complete Data Set

This procedure is repeated many times as specified by the user. Here a good number is, as in the
case of the binary tree, M = 2000 items. In the complete data set hence one has features in which the
only values not being −1 lay in correspondence of the indexes of the data array that match with the
nodes of the graph that belongs to the category given by the label of that feature. Labels are again
one-hot vectors. For example, assume that the first cluster is selected. If this first cluster comprises
the vertices ranging from 1 to 5, where node 1 has order 1, 2 and 3 have order 2, 4 has order 3 and
five has order 4, then that data item has values [1, 2, 2, 3, 4,−1, . . . , −1] and the corresponding label is
[1, 0, . . . , 0].

Appendix C. Pre-Processing

Once the model is trained, it is necessary to pre-process the parameters data structures to
subsequently use the motif detection tools. The FANMOD (FAst Network MOtif Detection) software
has been utilised. In the case of unweighted networks, one simply sets all the connection strengths to 1
(those that fall in the non-zero category, see below), contrarily, weights must be discretised, in that
motif mining software deal with colored networks, which means that edges tags must be categorical.
The categories supported by the software are limited (maximum seven).

The choice of the weights to retain to search the network motifs is indeed a crucial aspect. Assume
that all the connection weights of the network are gathered. A Gaussian distribution is fitted on such
population, which we could call E = {wi}n

i=1, where n is the number of edges in the graph. As a zero
hypothesis, it is thought to fit. Due to the initialization schemes adopted, the mean is aligned to zero.
Thus one must identify a region in the neighborhood of zero that comprehends all those weights that
might be redundant. Refer to Figure A8. Such an exclusion region could be identified by choosing
two boundary values in the weights population, symmetrically placed from the mean (zero). Call p
the Gaussian density function fitted to the weights population and c the weights cut-off threshold
value. The values in W0 = {w ∈ E : p(w) ≥ c maxw p(w)} identify this exclusion region. Call
w+

0 = maxw W0 and w−0 = minw W0 the minimum and maximum values of the set W0, respectively.
Of course the parameter c plays an important role. The larger c, the smaller the exclusion region.
If c ' 1, then the neighborhood of zero selected is negligible, then almost all the weights are retained.
Note that this process is thought for distributions which exhibit a major weights density centered
around zero. The case of a learning process that pushes the distribution mean far from zero should
be treated in a different way. The vast majority of the weights around the average values should in
that case be retained, excluding those in the neighborhood of zero. However, being the weights choice
heuristics-reliant, it is arbitrary, and of course susceptible of improvements.

Entropy 2020, 22, 204 25 of 27

(a) Gaussian fit of the entire weights population.

(b) Initial configuration. (c) Tree data set. (d) Clusters data set.

Figure A8. Gaussian fit of the weights population and the respective subdivision histograms. Results
refer to the normal initalization scheme, network 240120.

A further step is required: The tails identified, that is the support of the Gaussian curve disjoint
from the exclusion zone (bounded by the maximum and minimum values of the weights in the
population E), must be further sectioned to identify one more category of weights values. The first
category has been isolated yet, that is the small weights that are excluded. The identification of such
region implies that there are positive and negative weights. Recall that connection strengths are real-value
quantities but motifs mining software support a limited number of categories in which network edges
are classified. Hence it is thought appropriated to define almost a third category: mildly positive and
negative values. Due to the shape of the Gaussian itself, it is clear that “outermost” weight values are
more rare, hence the tails are unevenly divided. Call w+ = maxw E and w− = minw E the minimum
and maximum of the weights population respectively. Then define the distances d+ = |w+ − w+

0 |
and d− = |w− − w−0 |, and choose a value k that defines the boundaries of the mild values sets. The
mildly positive weights are those that fall in the interval

(
w+

0 , k d+
]
. Analogously the mildly negative

values are those that fall in [w−,−k d−). Mildly positive and negative weights are gathered in the same
group. The remainder of the weights is categorized as positive and negative, according to whether
they are on the right or left side of the mild weights sets boundaries. Refer again to Figure A8 for a
graphical explanation.

It is clear that also the choice of k is crucial. A sensible value of this parameter should be small so
that the positive and mildly positive values are more evenly distributed. The value chosen to produce
the results presented in the main text is k = 1/5. The smaller this value, the lesser the mild weights.

Histograms in Figure A8b–d give a graphical explanation of this heuristic: The central bin,
the most populated, is not taken into account in the subsequent analysis. The extremal tails are the
positive and negative edges strengths values. The two intermediate bins, between the central one and
the extremal ones, are those set to be the neutral weights.

Entropy 2020, 22, 204 26 of 27

In this way, the motifs featuring values falling in the central bin can be preventively discarded
in further analyses in that they are not thought to be relevant. One has at this point the graph
representations amenable to the motifs mining program. Whether colors shall be accounted for or not,
it absorbs the input file formatted according to the above-discussed partition and performs the analyses.
If the analysis to be carried out is on an unweighted network, then all the connection strengths are set
equal to 1, except those related to the central bin items, which are not accounted (no connection).

References

1. Newman, M. Networks: An Introduction; Oxford University Press, Inc.: New York, NY, USA, 2010.
2. Strogatz, S.H. Exploring complex networks. Nature 2001, 410, 268–276. [CrossRef]
3. Caldarelli, G. Complex Networks; EOLSS Publications: Abu Dhabi, UAE, 2010.
4. Newman, M.E.; Barabasi, A.L.; Watts, D.J. The Structure and Dynamics of Networks: (Princeton Studies in

Complexity); Princeton University Press: Princeton, NJ, USA, 2006.
5. Latora, V.; Nicosia, V.; Russo, G. Complex Networks: Principles, Methods and Applications; Cambridge University

Press: Cambridge, UK, 2017.
6. Milo, R.; Shen-Orr, S.; Itzkovitz, S.; Kashtan, N.; Chklovskii, D.; Alon, U. Network Motifs: Simple Building

Blocks of Complex Networks. Science 2002, 298, 824–827. [CrossRef] [PubMed]
7. Lenski, R.E.; Ofria, C.; Pennock, R.T.; Adami, C. The evolutionary origin of complex features. Nature 2003,

423, 139. [CrossRef] [PubMed]
8. Vespignani, A. Evolution thinks modular. Nat. Genet. 2003, 35, 118–119. [CrossRef] [PubMed]
9. Alon, U. An Introduction to Systems Biology: Design Principles of Biological Circuits; Chapman & Hall/CRC

Mathematical and Computational Biology, Taylor & Francis: London, UK, 2006; pp. 27–30, 106–115.
10. LeCun, Y.; Bengio, Y.; Hinton, G.E. Deep learning. Nature 2015, 521. [CrossRef] [PubMed]
11. Goodfellow, I.; Bengio, Y.; Courville, A. Deep Learning; MIT Press: Cambridge, MA, USA, 2016. Available

online: http://www.deeplearningbook.org (accessed on 16 December 2019).
12. He, K.; Zhang, X.; Ren, S.; Sun, J. Deep residual learning for image recognition. In Proceedings of the IEEE

Conference on Computer Vision and Pattern Recognition, Las Vegas, NV, USA, 27–30 June 2016; pp. 770–778.
13. Sutskever, I.; Vinyals, O.; Le, Q.V. Sequence to sequence learning with neural networks. Adv. Neural Inf.

Process. Syst. 2014, 27, 3104–3112.
14. Silver, D.; Huang, A.; Maddison, C.J.; Guez, A.; Sifre, L.; Van Den Driessche, G.; Schrittwieser, J.;

Antonoglou, I.; Panneershelvam, V.; Lanctot, M.; et al. Mastering the game of Go with deep neural
networks and tree search. Nature 2016, 529, 484. [CrossRef]

15. Montavon, G.; Samek, W.; Müller, K.R. Methods for interpreting and understanding deep neural networks.
Digit. Signal Process. 2018, 73, 1–15. [CrossRef]

16. Saxe, A.M.; McClelland, J.L.; Ganguli, S. A mathematical theory of semantic development in deep neural
networks. Proc. Natl. Acad. Sci. USA 2019, 116, 11537–11546. [CrossRef]

17. Testolin, A.; Piccolini, M.; Suweis, S. Deep learning systems as complex networks. J. Complex Netw. 2018, 521.
[CrossRef]

18. Testolin, A.; Zorzi, M. Probabilistic models and generative neural networks: Towards an unified framework
for modeling normal and impaired neurocognitive functions. Front. Comput. Neurosci. 2016, 10, 73.
[CrossRef] [PubMed]

19. Kirkpatrick, S.; Gelatt, C.D.; Vecchi, M.P. Optimization by Simulated Annealing. Science 1983, 220, 671–680.
[CrossRef] [PubMed]

20. Saxe, A.; McClelland, J.; Ganguli, S. Exact solutions to the nonlinear dynamics of learning in deep linear
neural networks. In Proceedings of the International Conference on Learning Representations, Banff, AB,
Canada, 14–16 April 2014.

21. Glorot, X.; Bengio, Y. Understanding the difficulty of training deep feedforward neural networks.
In Proceedings of the Thirteenth International Conference on Artificial Intelligence and Statistics, Sardinia,
Italy, 13–15 May 2010; pp. 249–256.

22. Wernicke, S.; Rasche, F. FANMOD: A tool for fast network motif detection. Bioinformatics 2006, 22, 1152–1153.
[CrossRef]

http://dx.doi.org/10.1038/35065725
http://dx.doi.org/10.1126/science.298.5594.824
http://www.ncbi.nlm.nih.gov/pubmed/12399590
http://dx.doi.org/10.1038/nature01568
http://www.ncbi.nlm.nih.gov/pubmed/12736677
http://dx.doi.org/10.1038/ng1003-118
http://www.ncbi.nlm.nih.gov/pubmed/14517536
http://dx.doi.org/10.1038/nature14539
http://www.ncbi.nlm.nih.gov/pubmed/26017442
http://www.deeplearningbook.org
http://dx.doi.org/10.1038/nature16961
http://dx.doi.org/10.1016/j.dsp.2017.10.011
http://dx.doi.org/10.1073/pnas.1820226116
http://dx.doi.org/10.1093/comnet/cnz018
http://dx.doi.org/10.3389/fncom.2016.00073
http://www.ncbi.nlm.nih.gov/pubmed/27468262
http://dx.doi.org/10.1126/science.220.4598.671
http://www.ncbi.nlm.nih.gov/pubmed/17813860
http://dx.doi.org/10.1093/bioinformatics/btl038

Entropy 2020, 22, 204 27 of 27

23. Wernicke, S. Efficient Detection of Network Motifs. IEEE/ACM Trans. Comput. Biol. Bioinform. 2006,
3, 347–359. [CrossRef] [PubMed]

24. Masoudi-Nejad, A.; Schreiber, F.; Kashani, Z.R. Building blocks of biological networks: A review on major
network motif discovery algorithms. IET Syst. Biol. 2012, 6, 164–174. [CrossRef]

25. Alon, U. Network motifs: Theory and experimental approaches. Nat. Rev. Genet. 2007, 8. [CrossRef]
26. Rumelhart, D.E.; Hinton, G.E.; Williams, R.J. Learning representations by back-propagating errors.

Nature 1986, 323, 533–536. [CrossRef]
27. Milo, R.; Itzkovitz, S.; Kashtan, N.; Levitt, R.; Shen-Orr, S.; Ayzenshtat, I.; Sheffer, M.; Alon, U. Superfamilies

of Evolved and Designed Networks. Science 2004, 303, 1538–1542. [CrossRef]
28. Wuchty, S.; Oltvai, Z.N.; Barabási, A.L. Evolutionary conservation of motif constituents in the yeast protein

interaction network. Nat. Genet. 2003, 35, 176–179. [CrossRef]
29. Salakhutdinov, R.; Hinton, G. Deep boltzmann machines. In Artificial Intelligence and Statistics; van Dyk, D.,

Welling, M., Eds.; PMLR: Clearwater, FL, USA, 2009; pp. 448–455.
30. Zorzi, M.; Testolin, A.; Stoianov, I.P. Modeling language and cognition with deep unsupervised learning:

A tutorial overview. Front. Psychol. 2013, 4, 515. [CrossRef]
31. Testolin, A.; Stoianov, I.; Sperduti, A.; Zorzi, M. Learning orthographic structure with sequential generative

neural networks. Cogn. Sci. 2016, 40, 579–606. [CrossRef] [PubMed]
32. LeCun, Y.; Bottou, L.; Bengio, Y.; Haffner, P. Gradient-based learning applied to document recognition.

Proc. IEEE 1998, 86, 2278–2324. [CrossRef]
33. Voulodimos, A.; Doulamis, N.; Doulamis, A.; Protopapadakis, E. Deep Learning for Computer Vision:

A Brief Review. Comput. Intell. Neurosci. 2018, 2018, 7068349. [CrossRef] [PubMed]
34. Hochreiter, S.; Schmidhuber, J. Long Short-term Memory. Neural Comput. 1997, 9, 1735–1780. [CrossRef]

[PubMed]
35. Piperno, A. Isomorphism Test for Digraphs with Weighted Edges. In Proceedings of the 17th International

Symposium on Experimental Algorithms (SEA 2018); Leibniz International Proceedings in Informatics (LIPIcs);
Schloss Dagstuhl–Leibniz-Zentrum fuer Informatik: Dagstuhl, Germany, 2018; Volume 103, pp. 30:1–30:13.
[CrossRef]

36. McKay, B.D.; Piperno, A. Practical graph isomorphism, II. J. Symb. Comput. 2014, 60, 94–112. [CrossRef]
37. Raina, R.; Madhavan, A.; Ng, A.Y. Large-scale deep unsupervised learning using graphics processors.

In Proceedings of the 26th Annual International Conference on Machine Learning, Montreal, QC, Canada,
14–18 June 2009; pp. 873–880.

38. Testolin, A.; Stoianov, I.; De Filippo De Grazia, M.; Zorzi, M. Deep unsupervised learning on a desktop PC:
A primer for cognitive scientists. Front. Psychol. 2013, 4, 251. [CrossRef]

39. Newman, M.E.J. Modularity and community structure in networks. Proc. Natl. Acad. Sci. USA 2006,
103, 8577–8582. [CrossRef]

40. Newman, M.E. The structure and function of complex networks. SIAM Rev. 2003, 45, 167–256. [CrossRef]
41. Choobdar, S.; Ribeiro, P.; Silva, F. Motif Mining in Weighted Networks. In Proceedings of the 12nd IEEE

ICDM Workshop on Data Mining in Networks, Brussels, Belgium, 10 December 2012; pp. 210–217. [CrossRef]
42. Onnela, J.P.; Saramäki, J.; Kertész, J.; Kaski, K. Intensity and coherence of motifs in weighted complex

networks. Phys. Rev. E 2005, 71. [CrossRef]
43. Kemp, C.; Tenenbaum, J.B. The discovery of structural form. Proc. Natl. Acad. Sci. USA 2008,

105, 10687–10692. [CrossRef]

c© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access
article distributed under the terms and conditions of the Creative Commons Attribution
(CC BY) license (http://creativecommons.org/licenses/by/4.0/).

http://dx.doi.org/10.1109/TCBB.2006.51
http://www.ncbi.nlm.nih.gov/pubmed/17085844
http://dx.doi.org/10.1049/iet-syb.2011.0011
http://dx.doi.org/10.1038/nrg2102
http://dx.doi.org/10.1038/323533a0
http://dx.doi.org/10.1126/science.1089167
http://dx.doi.org/10.1038/ng1242
http://dx.doi.org/10.3389/fpsyg.2013.00515
http://dx.doi.org/10.1111/cogs.12258
http://www.ncbi.nlm.nih.gov/pubmed/26073971
http://dx.doi.org/10.1109/5.726791
http://dx.doi.org/10.1155/2018/7068349
http://www.ncbi.nlm.nih.gov/pubmed/29487619
http://dx.doi.org/10.1162/neco.1997.9.8.1735
http://www.ncbi.nlm.nih.gov/pubmed/9377276
http://dx.doi.org/10.4230/LIPIcs.SEA.2018.30
http://dx.doi.org/10.1016/j.jsc.2013.09.003
http://dx.doi.org/10.3389/fpsyg.2013.00251
http://dx.doi.org/10.1073/pnas.0601602103
http://dx.doi.org/10.1137/S003614450342480
http://dx.doi.org/10.1109/ICDMW.2012.111
http://dx.doi.org/10.1103/PhysRevE.71.065103
http://dx.doi.org/10.1073/pnas.0802631105
http://creativecommons.org/
http://creativecommons.org/licenses/by/4.0/.

	Introduction
	Methods
	Neural Network Architectures
	Learning Environments
	Binary Tree Data Set
	Independent Clusters Data Set

	Initial Conditions
	Task and Learning Dynamics
	Mining Network Motifs
	Biological Analogy: Neurons and Protein Kinases

	Results
	Learning Efficacy
	Emerging Network Motifs

	Discussion
	Final Remarks and Further Improvements
	Evaluation with Other Classes of Deep Learning Models
	Presence of Combinatorial Biases
	Sensitivity to Free Parameters
	Scalability
	Alternatives to Motifs Mining Algorithms

	Robustness of Simulations
	Different Network Architectures for the Synthetic Data Sets
	Training a Larger Network with the MNIST Data Set

	Data Sets Generation
	Binary Tree Data Set
	Single Pattern Generation
	Complete Data Set

	Independent Clusters Data Set
	Single Pattern Generation
	Complete Data Set

	Pre-Processing
	References

