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As a full-blown research topic, numerical cognition is investigated by a variety of
disciplines including cognitive science, developmental and educational psychology,
linguistics, anthropology and, more recently, biology and neuroscience. However, despite
the great progress achieved by such a broad and diversified scientific inquiry, we are
still lacking a comprehensive theory that could explain how numerical concepts are
learned by the human brain. In this perspective, I argue that computer simulation should
have a primary role in filling this gap because it allows identifying the finer-grained
computational mechanisms underlying complex behavior and cognition. Modeling efforts
will be most effective if carried out at cross-disciplinary intersections, as attested by
the recent success in simulating human cognition using techniques developed in the
fields of artificial intelligence and machine learning. In this respect, deep learning models
have provided valuable insights into our most basic quantification abilities, showing how
numerosity perception could emerge in multi-layered neural networks that learn the
statistical structure of their visual environment. Nevertheless, this modeling approach
has not yet scaled to more sophisticated cognitive skills that are foundational to higher-
level mathematical thinking, such as those involving the use of symbolic numbers and
arithmetic principles. I will discuss promising directions to push deep learning into this
uncharted territory. If successful, such endeavor would allow simulating the acquisition
of numerical concepts in its full complexity, guiding empirical investigation on the richest
soil and possibly offering far-reaching implications for educational practice.

Keywords: computational modeling, artificial neural networks, deep learning, number sense, symbol grounding,
mathematical learning, embodied cognition, material culture

INTRODUCTION

Despite the importance of mathematics in modern societies, the cognitive foundations of
mathematical learning are still mysterious and hotly debated. At the one end of the bridge, the
idealistic view conceives mathematical concepts as purely abstract entities that humans discover
using logical reasoning; at the other end, empiricists argue that mathematics is the product of
our sensory experiences, and therefore it is essentially an activity of construction (Brown, 2012).
A somehow intermediate position is taken by modern neurocognitive theories, which identify a set
of ‘‘core’’ brain systems specifically evolved to support basic intuitions about quantity (Butterworth,
1999; Feigenson et al., 2004; Piazza, 2010; Dehaene, 2011) but also acknowledge that higher-level
numerical knowledge has materialized only recently, via cultural practices supported by language
and symbolic reference (Núñez, 2017).
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In recent years, the finding that measures of basic
quantification skills correlate to later mathematical achievement
(e.g., Halberda et al., 2008; Libertus et al., 2011; Starr et al.,
2013) has led to the hypothesis that our ‘‘number sense’’ might
indeed constitute the starting point to learn more complex
mathematical concepts. However, the relationship between
numerosity perception and symbolic math remains controversial
(Negen and Sarnecka, 2015; Schneider et al., 2017; Wilkey and
Ansari, 2019), calling for a deeper theoretical investigation that
should be carried out with the support of formal models.

Here I will argue that the quest for artificial intelligence
provides an extremely rich soil for the development of a
computational theory of mathematical learning. Indeed,
although computers largely outperform humans on numerical
tasks requiring the mere application of syntactic manipulations
(e.g., performing algebraic operations on large numbers,
or iteratively computing the value of a function), they are
completely blind about the meaning of such operations because
they lack a conceptual semantics of number. Grounding
abstract symbols into some form of intrinsic meaning is
a longstanding issue in artificial intelligence (Searle, 1980;
Harnad, 1990), and mathematics likely constitutes the most
challenging domain for investigating how high-level knowledge
could be linked to bottom-up, sensorimotor primitives
(Leibovich and Ansari, 2016).

By framing a theory in computational terms, scientists are
forced to adopt a precise, formal language, because all the details
of the theory should be explicitly stated to simulate it on a
computer. Modeling also requires to carefully think about the
tasks that are being simulated and the possible ways in which
a computational device can (or cannot) solve them. In this
perspective article, I will focus in particular on connectionist
models, where cognition is conceived as an emergent property
of networks of units that self-organize according to physical
principles (Rumelhart and McClelland, 1986; Elman et al., 1996;
McClelland et al., 2010). According to this view, knowledge is
implicitly stored in the connections among neurons, and learning
processes adaptively change the strength of these connections
according to experience. Notably, the recent breakthroughs in
deep learning (LeCun et al., 2015) have revealed the true potential
of this approach, by showing how machines endowed with
domain-general learning mechanisms can simulate a variety of
high-level cognitive skills, ranging from visual object recognition
(He et al., 2016) to natural language understanding (Devlin et al.,
2018) and strategic planning (Silver et al., 2017).

Computational Models of Basic
Quantification Skills
According to the ‘‘number sense’’ view, numerical cognition
is grounded in basic quantification skills, such as the ability
to rapidly estimate the number of items in a visual display
(Dehaene, 2011). Numerosity is thus conceived as a primary
perceptual attribute (Anobile et al., 2016) processed by a
specialized (and possibly innate) system yielding an approximate
representation of numerical quantity (Feigenson et al., 2004).
The seminal neural network model by Dehaene and Changeux
(1993) incorporated these principles: numerosity perception

was hardwired in the model, reflecting the assumption that
this ability is present at birth. Successive models revisited this
nativist stance, by showing that numerosity representations
can emerge as a result of learning and sensory experience
(Verguts and Fias, 2004). In particular, recent work based on
unsupervised deep learning has demonstrated that human-like
numerosity perception can emerge in multi-layer neural
networks that learn a hierarchical generative model of the
sensory data (Stoianov and Zorzi, 2012; Zorzi and Testolin, 2018;
see Figure 1A).

Deep learning models account for a wide range of empirical
phenomena in the number sense literature. They can accurately
simulate Weber-like responses in numerosity comparison tasks
(Stoianov and Zorzi, 2012), also accounting for congruency
effects (Zorzi and Testolin, 2018) and for the fine-grained
contribution of non-numerical magnitudes in biasing behavioral
responses (Testolin et al., 2019). Notably, the number acuity
of randomly initialized deep networks rivals that of newborns,
and its gradual development follows trajectories similar to those
observed in human longitudinal studies (Testolin et al., 2020).
Deep networks have also been successfully tested in subitizing
(Wever and Runia, 2019) and numerosity estimation tasks
(Chen et al., 2018). Last, but not least, artificial neurons often
reproduce neurophysiological properties observed in single-cell
recording studies, for example by exhibiting number-sensitive
tuning functions (Zorzi and Testolin, 2018; Nasr et al., 2019).

Several questions remain under investigation: Is it possible
to fully disentangle numerosity from continuous magnitudes
by only relying on unsupervised learning (Zanetti et al., 2019)?
Can generative models generalize to unseen numerosities (Zhao
et al., 2018)? Are there computational limitations in tracking
multiple objects in dynamic scenes (Cenzato et al., 2019)?
What is the contribution of explicit feedback and multi-
sensory integration in shaping numerosity representations? How
do deep learning models map into the cortical processing
hierarchy? Nevertheless, despite these open questions, we can
safely argue that deep learning has paved the way toward a
computational theory about the origin of our number sense,
confirming the appeal of deep networks as models of human
sensory processing (Testolin and Zorzi, 2016; Yamins and
DiCarlo, 2016; Testolin et al., 2017). Unfortunately, simulating
the transition from approximate to symbolic numbers turns
out to be much more challenging, as we discuss in the
next section.

Modeling the Acquisition of Higher-Level
Mathematical Concepts
One of the most ambitious questions to be addressed is whether
deep learning models could develop even more sophisticated
numerical abilities, such as those involving arithmetic and
symbolic math. Symbolic reasoning is notoriously difficult
for connectionist models (Marcus, 2003), and despite recent
progress, deep neural networks still struggle with tasks
requiring procedural and compositional knowledge (Garnelo
and Shanahan, 2019).

Only a fewmodeling studies have investigated how arithmetic
could be learned by artificial neural networks. Since early
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FIGURE 1 | Deep learning models. (A) Schematic representation of an unsupervised deep learning model that simulates human numerosity perception. Adapted
from Zorzi and Testolin (2018). (B) Sketch of the proposed modeling framework, which extends the basic numerosity perception model (entirely confined within the
agent’s brain) by introducing the ability to interact with the external environment to create and manipulate material representations.

attempts, associative memories have been used to simulate
mental calculation as a process of storage and retrieval of
arithmetic facts (McCloskey and Lindemann, 1992): during
the learning phase, the two arguments and the result of a
simple operation (e.g., single-digit multiplication) are given
as input to an associative memory, whose learning goal is
to accurately store them as a global, stable state. During the
testing phase, only the operands are given, and the network
must recover the missing information (i.e., the result) by
gradually settling into the correct configuration. Building on this
approach, successive simulations have shown that numerosity-
based (‘‘semantic’’) representations can facilitate the learning of
arithmetic facts (Zorzi et al., 2005) and equivalence problems
(Mickey and McClelland, 2014). Others have shown that
multi-digit addition and subtraction (but not multiplication)
can be acquired through end-to-end supervised learning from
pixel-level images (Hoshen and Peleg, 2015). One critical
limitation of these approaches, however, is that they conceive
arithmetic learning as a mere process of storing and recall,
which gradually develops through the massive reiteration of all
possible arithmetic facts that need to be learned. Besides being
psychologically implausible and computationally unfeasible, this
approach does not guarantee that the system will be able to
generalize the acquired knowledge to unseen numbers and, even
less, to exploit the acquired knowledge to more effectively learn
new mathematical concepts.

The challenge of developing learning models that can exhibit
algebraic generalization with the robustness and flexibility
exhibited by humans is so fundamental thatmajor players in deep
learning research are intensively investigating these issues. For

example, Google’s DeepMind company has recently evaluated
several deep learning models on a set of benchmark problems
taken from UK national school mathematics curriculums,
covering arithmetic, algebra, elementary calculus, et cetera
(Saxton et al., 2019). DeepMind’s best model correctly solved
only 14 out of 40 problems, which would be equivalent to an
‘‘E’’ grade. Although such difficulties have led some researchers
to argue that neural networks are incapable of exhibiting
compositional abilities (Marcus, 2018), others argue for the
opposite (Baroni, 2020; Martin and Baggio, 2020).

Even the acquisition of the concept of exact number is
still out of reach for deep networks, which often cannot
generalize outside of the range of numerical values encountered
during training (Trask et al., 2018). Integer numbers are one
of the pillars of arithmetic, so they constitute the perfect
testbed for developing and testing computational models of
mathematical learning. Developmental studies show that integers
are gradually acquired by children during formal education
through the acquisition of number words and counting skills:
Indeed, although sequential (item-by-item) enumeration skills
are present in animal species (Platt and Johnson, 1971; Beran
and Beran, 2004; Dacke and Srinivasan, 2008), even in humans
counting is not culturally universal (Gordon, 2004) and there is
evidence that young children and people from cultures lacking
number words have an incomplete understanding of what it
means for two sets of items to have exactly the same number of
items (Izard et al., 2008, 2014).

Some authors have sought to characterize the acquisition
of exact numbers as the semantic induction of a ‘‘cardinality
principle’’ (Sarnecka and Carey, 2008). This hypothesis has
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been exemplified in a computational model based on Bayesian
inference, which simulated the stage-like development of
counting abilities by relying on a pre-determined set of ‘‘core’’
cognitive operations (Piantadosi et al., 2012). The repertoire
of innate abilities included the capacity to exactly identify
cardinalities up to 3, perform basic operations on sets (e.g.,
difference, union, intersection), retrieve the next or previous
word from an ordered counting list, and to operate these
functions recursively. Although such modeling approach offers
a rational interpretation of the process that might underly the
acquisition of an abstract cardinality principle, it assumes a
certain amount of a priori symbolic knowledge and procedural
skills, which is in contrast to empirical data suggesting, for
example, that a complete understanding of the successor
principle arises only after considerable interaction with the
teaching environment (Davidson et al., 2012).

TOWARD A COMPREHENSIVE
NEUROCOMPUTATIONAL FRAMEWORK

The Downplayed Role of External
Representations
A central tenet of connectionist models is that semantics
intrinsically emerges in a system interacting with its surrounding
environment. However, this idea is usually superficially
implemented in deep learning models, because the interaction is
often limited to passive observation of statistical properties of the
world (Zorzi et al., 2013). Taking inspiration from constructivist
theories in developmental psychology, here I argue that a step
forward will require to build computational models that learn
by actively manipulating the environment, that is, by causally
interacting with objects in their perceptual space. Crucially, the
notion of ‘‘environment’’ should include embodiment (Lakoff
and Núñez, 2000) and—most importantly—the social, cultural
and educational environment (Vygotsky, 1980; Clark, 2011).
Indeed, according to the Vygotskyan perspective, students
actively construct abstract knowledge through interactions with
teachers and peers, gradually moving their dependency on
explicit forms of mediation to more implicit (internalized) forms
(Walshaw, 2017).

The possibility to manipulate the environment greatly
increases the complexity of the learning agent but also
enables the functional use of external entities to create
powerful representational systems, which can be manipulated
in simple ways to get answers to difficult problems. The
underlying assumption is that cultural evolution and history
are foundational forces for the emergence of superior cognitive
functions and that great intellectual achievements (such as
the invention of mathematics) have been triggered by our
ability to create artifacts serving as physical representations of
abstract concepts. Some investigators have recently emphasized
the role of material culture in numerical cognition (Menary,
2015; Overmann, 2016, 2018), for example by highlighting
that our mental organization of numbers into an ordered
‘‘number line’’ might be related to the linearity of the material
forms used to represent and manipulate them (Núñez, 2011).

Primitive devices used for representing numbers date back
to notched bones in the Paleolithic period (d’Errico et al.,
2018) and clay tokens in the Neolithic period (Schmandt-
Besserat, 1992), which predated the subsequent diffusion of
abaci, positional systems and increasingly more sophisticated
numerical notations (Menninger, 1992). However, despite
the concept of external representations was foreseen in
early connectionist theories1, it has been seldomly explored
in practice.

Learning to Create and Manipulate
Symbolic Representations
We can now sketch a concrete proposal for building
more realistic simulations of mathematical learning. The
computational framework should incorporate the following key
components, summarized in Figure 1B.

• Perceptual system. This is where computational modeling has
been mostly focused (and successful) up to now (see Section
‘‘Computational Models of Basic Quantification Skills’’). The
challenge will be to scale-up the existing models to more
realistic sensory input (e.g., naturalistic visual scenes) and to
incorporate a larger repertoire of pattern recognition abilities,
which should not only allow to approximately represent visual
quantities but also to recognize structured configurations
of object arrays (e.g., sequences of tally marks, geometric
displacements of items, patterns encoded in an abacus, etc.)
and symbolic notations (e.g., written digits and operands).

• Embodiment. Of particular interest to the development
of exact numbers is finger counting (Butterworth, 1999;
Andres et al., 2007; Domahs et al., 2012), which not
only helps children to keep track and coordinate the
production of number words (Alibali and DiRusso, 1999)
but may also allow to organize numbers spatially (Fischer,
2008). Hand-based representations are ubiquitous across
cultures (Bender and Beller, 2012) and play a key role in
the subsequent acquisition of number words (Gunderson
et al., 2015; Gibson et al., 2019), possibly influencing
symbolic number processing even in adulthood (Domahs
et al., 2010). It has been recently shown that neural
networks can learn to count the number of items in
visual displays and that the ability to sequentially point to
individual objects helps in speeding up counting acquisition
(Fang et al., 2018). A further step is taken by cognitive
developmental robotics, which explores the instantiation
of these principles in physically embodied agents (Di
Nuovo and Jay, 2019). Interestingly, pointing gestures
significantly improved counting accuracy in a humanoid
robot, and learning was more effective when both fingers
and words were provided as input (Rucinski et al., 2012;
De La Cruz et al., 2014).

• Material representations. The ability to manipulate
external objects might be the key missing piece for
simulating the acquisition of exact numbers. Indeed,
although hand gestures might serve as placeholders to

1See for example, the section ‘‘External Representations and Formal Reasoning’’ in
Rumelhart et al. (1986).
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learn more efficient arithmetic strategies (Siegler and
Jenkins, 1989; for a computational account see Hansen
et al., 2014), material representations allow for a much
more precise encoding of numerical information. For
example, the agent can learn to establish the cardinality
of a set by organizing items in regular configurations
that promote ‘‘groupitizing’’ (Starkey and McCandliss,
2014), or to exactly compare the cardinality of two sets by
disposing of items in one-to-one correspondence. More
sophisticated devices such as abaci and Cuisenaire rods
further extend our ability to represent exact numbers, for
example by exploiting inter-exponential relations to precisely
(but compactly) encode large numbers, or to explicitly
represent compositionality to promote generalization
(Overmann, 2018).

• Diversified learning signals. In addition to unsupervised
learning, the agent should exploit reinforcement learning
(Sutton and Barto, 1998) to predict the outcome of its
actions. This learning modality would also play a key role in
simulating curiosity-driven behavior and active engagement
with material representations. Notably, deep reinforcement
learning has recently achieved impressive performance in
difficult cognitive tasks, for example by discovering complex
strategies in board games (Silver et al., 2017). However,
learning through reinforcement can be challenging in the
presence of very large action spaces (i.e., the correct action
has to be chosen from a wide range of possible actions)
and sparse rewards (i.e., feedback is given only once the
whole task has been carried out). Taking inspiration from
the notions of transfer learning and curriculum learning used
in machine learning (Bengio et al., 2009) and from shaping
procedures used in animal conditioning (Skinner, 1953),
these issues can be mitigated by decomposing the task into
simpler sub-tasks. For example, rather than rewarding only
the trials where the agent has correctly counted all items
in a display, rewards can be initially given every time the
agent touches an object, to first promote the acquisition of
sequential pointing skills. Similarly, the agent could first be
rewarded simply for being able to accurately reproduce the
abacus configuration corresponding to a specific number,
rather than for being able to correctly manipulate the
abacus to solve an addition problem. This idea of ‘‘gradually
walking the agent through the word’’ also implies the
exploitation of supervised learning, because explicit teaching
signals must be used to stimulate learning by imitation and
adult guidance.

• Linguistic input. Despite language might not be crucial for
the acquisition of elementary numerical concepts (Gelman
and Butterworth, 2005; Butterworth et al., 2008), it provides
useful cues during the development of basic algebraic
notions: for example, morphological cues allow single/plural
distinction, number words can act as stable placeholders
during counting acquisition, and learning natural language
quantifiers seems a key step for mastering the ordering
principle (Le Corre, 2014). A recent deep learning model
has shown that learning quantifiers allows to more easily
carry out approximate numerosity judgments (Pezzelle et al.,

2018); however, the role of linguistic input for simulating
the acquisition of exact numbers has yet to be explored.
Furthermore, later in development language becomes the
primary medium to acquire higher-level mathematical
knowledge, hence it will need to be taken into account
to design computational models approaching that level
of complexity.

DISCUSSION

Symbolic numbers are a hallmark of human intelligence,
but we are still lacking a comprehensive theory explaining
how the brain learns to master them. Here I argued that
computational modeling should have a primary role in this
enterprise. Taking the acquisition of natural numbers as a
case study, I emphasized the role of material representations
in supporting the transition from approximate to symbolic
numerical concepts. According to this view, exact numbers do
not emerge from the mere association between number words
and perceptual magnitudes: such mapping is strongly mediated
by the acquisition of procedural skills (e.g., finger counting)
and the ability to effectively manipulate representational
devices (Leibovich and Ansari, 2016; Overmann, 2018;
Carey and Barner, 2019).

In line with the idea that improved problem representation
is a key mechanism for the joint development of conceptual
and procedural knowledge (Rittle-Johnson et al., 2001), cognitive
development in artificial agents must thus be supported by an
adequate learning environment, which should provide feedback,
teaching signals, and representational media commensurate with
the current level of development. Notably, once a procedural
skill has been mastered it might become internalized: the agent
can simply ‘‘imagine’’ carrying out operations on the material
device, without the need to physically operate over it. Some
representations might thus serve just as intermediate steps
for the acquisition of more abstract and efficient notations:
as finger counting allows us to gradually grasp the meaning
of number words, manipulating an abacus allows to ground
numerical symbols into concrete visuospatial representations.
A historical case that illustrates this perspective is the
famous dispute between ‘‘abacists’’ and ‘‘algorists’’, which
was undoubtedly won by the latter, who demonstrated the
superiority of symbolic notation for carrying out arithmetic
operations (see Figure 2). However, one might wonder whether
Boethius could have mastered arithmetic algorithms without
first grounding his numerical concepts into a set of more
concrete representations.

In addition to providing a useful framework to interpret
empirical findings, the proposed approach can raise important
questions that would stimulate further theoretical and
experimental work. For example, a critical aspect of our
school system is to teach how to effectively discover useful
strategies and representational schemes for solving difficult
problems. In computational simulations, the necessity for
appropriate teacher guidance stems from the fact that it is
very difficult to invent new representations for problems
we might wish to solve: it may even be that the process of
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FIGURE 2 | Allegory of Arithmetic. Engraving from the encyclopedic book Margarita Philosophica by Gregor Reisch (1503) depicting the “abacists vs. algorists”
debate. Arithmetica (female figure) is supervising a calculation contest between Pythagoras (right), represented as using a counting board, and Boethius (left), who
embraces algorithmic calculation with Arabic numbers. The struggle of Pythagoras suggests who is going to be the winner. Reproduced from Wikipedia.

inventing such representations is one of our highest intellectual
abilities (Rumelhart et al., 1986). Computational frameworks
that allow simulating a more complex interaction between
artificial agents and their learning environment might thus
eventually provide insights also about the teaching practices
that could be most effective to guide numerical development in
our children.
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