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ABSTRACT
Upper bounding the execution time of tasks running on multi-
core processors is a hard challenge. This is especially so with
commercial-off-the-shelf (COTS) hardware that conceals its in-
ternal operation. The main difficulty stems from the contention
effects on access to hardware shared resources (e.g., buses)
which cause task’s timing behavior to depend on the load that
co-runner tasks place on them. This dependence reduces time
composability and constrains incremental verification. In this
paper we introduce the concepts of resource-usage signatures
and templates, to abstract the potential contention caused and
incurred by tasks running on a multicore. We propose an ap-
proach that employs resource-usage signatures and templates
to enable the analysis of individual tasks largely in isolation,
with low integration costs, producing execution time estimates
per task that are easily composable throughout the whole sys-
tem integration process. We evaluate the proposal on a 4-core
NGMP-like multicore architecture.

1. INTRODUCTION
The research on timing analysis for multicore processors is

still in its infancy. Especially so for COTS multicores, whose
timing analysis is a complex challenge that needs to be solved
before their adoption in safety-critical real-time systems indus-
try may become viable. Deriving an Execution Time Bound
(ETB)1 for tasks running on multicores is challenged by the
contention, also known as inter-task interference, occurring on
access to hardware shared resources. Unless otherwise restrained,
contention causes the execution time of any one task, hence its
ETB, to depend on its co-runners. This has disastrous impact
on system design and validation, as it conflicts with the incre-
mental development and verification model that industry pur-
sues to contain qualification costs and development risks. This
industrial goal is sought by allowing individual subsystems to
be developed in parallel against an agreed master specification,
then qualified in isolation and incrementally integrated, with
virtually no risk of functional regression at system level. In the
time domain, incremental integration and qualification postu-
late composability in the timing behavior of individual parts,
whereby the ETB derived for a task determined in isolation,
should not change on composition with other tasks.

1Due to the lack of definitive Worst-Case Execution Time
(WCET) estimation methods for COTS multicores, we use the
term “execution time bound” (ETB) instead of WCET.
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Several approaches have been proposed to deal with con-
tention for multicore on-chip resources. On the one end of the
conceptual spectrum in the state of the art, some authors pro-
pose computing ETBs so that they upper bound the effect of
any possible inter-task interference a task may suffer on access
to hardware shared resources. ETBs computed this way are
fully time composable [9][10]. They therefore enable incremen-
tal integration and qualification, but at the cost of pessimism
that may cause untenable over-provisioning, as the timing be-
havior actually occurring in operation may fall much below the
level determined considering the worst-case interference possi-
ble in theory [22, 17, 11]. On the opposite end, other authors [5]
propose – currently only for research platforms – to determine
ETBs simultaneously for multiple tasks in specific configura-
tions. Those ETBs are non-time composable, as they only hold
valid for the tasks being analyzed and for their specific con-
figuration. If any such parameter changes, all ETBs become
invalid and the entire analysis has to be repeated.

In this paper, we tackle resource contention in multicores by
proposing the new concepts of resource usage signature (RUs
or S) and template (RUl or L). RUs and RUl aim at mak-
ing the ETB derived for an interfered task τ , time composable
with respect to a particular usage u of the hardware shared
resources made by the interfering co-runner tasks. The tasks’
ETBs are determined for a particular set of utilizations U such
that the ETB derived for any u ∈ U upper bounds τ ’s execu-
tion time under any workload so long as the co-runners of τ
can be proven to make a resource usage smaller than u. We
explain later what “smaller” means and how this can be de-
termined. This abstraction allows deriving time-composable
ETBs for individual tasks in isolation for each u ∈ U , so that
the system integrator can safely pull those (interfering) tasks
together as long as the resource usage made by their individ-
ual set of co-runners is upper-bounded by some u. All that
the system integrator has to care in that regard is to char-
acterize the the tasks’ access to hardware shared resources (a
low-cost abstraction of the task execution time), ignoring any
finer-grained detail of that access behavior. In this paper we
present an approach to produce ETBs in that manner, using
measurement-based timing analysis techniques.

RUs and RUl are, on purpose, made to be agnostic to the
particular timing distribution of the resource access requests to
be considered. Hence, two tasks generating the same number
of accesses to a resource, though with different patterns, have
the same signature. The challenge in the proposed method is in
determining an effect on the interfered task that upper bounds
the interference caused by contending accesses, regardless of the
time distribution of those accesses as made by the interfered
and the interfering tasks. In this paper we make the following
main contributions:
1) We develop the novel concepts of RUs and RUl for the timing
analysis of COTS multicores and sketch an algebra of operators
over RUs/RUl to enable their practical use.
2) We provide exemplary RUs and RUl for the cases when
requests accessing shared resources incur either fixed or variable
response latency.



3) We present an implementation of RUs and RUl for a 4-
core NGMP-like [1] architecture, focusing on the bus and the
memory controller as exemplars of on-chip shared resources. In
our experiments we assume that the L2 cache is partitioned, as
it is the case of the NGMP.

Our results show that when RUs and RUl are tailored to
upper bound the access load caused by a task’s co-runners,
the ETB of that task is 1.36 times bigger than its execution
time in isolation. If templates upper bound the highest number
of accesses that any workload could produce, the (fully time
composable) ETB would instead be 2.57 times bigger. RUs
and RUl thus provide an effective way of abstracting resource
usage in the quest for tight and trustworthy ETBs.

2. FORMALIZATION OF RUS AND RUL

RUs and RUl allow analyzing, for the most part in isolation,
the timing behavior of tasks, by abstracting the perturbation
that they may incur from the contention for hardware shared
resources occurring on a multicore caused by co-runner tasks.

2.1 Resource Usage signature (RUs)
A RUs abstracts the use of resources of a given interfered

task, τA. Once computed, it will be used for τA’s multicore
timing analysis instead of τA itself.

We describe the use of a hardware shared resource through a
set of features, which correspond to quantitative values. A RUs
for task τA, is a vector SA = (a1, a2, ..., an) that contains the
aggregate of relevant features that characterize all the hardware
shared resources, for the evaluation of contention effects. Since
RUs are quantitative, the RUs of distinct tasks are comparable
and can also be combined together to form a joint RUs.

Consider the reference multicore architecture shown in Fig-
ure 1(a), where the bus and the memory are shared. Further
consider two types of accesses to those shared resources, for
read and write operations respectively. In this case, RUs have
at most 4 features: bus reads (nbus

rd ) and writes (nbus
wr ); mem-

ory reads (nmem
rd ) and writes (nmem

wr ). RUs are thus defined as

SA = (nbus
rd , n

bus
wr , n

mem
rd , nmem

wr ) = (a1, a2, a3, a4).
If the bus were the only shared resource, the RUs of a task τA

would be abstracted as a RUs with two features: nbus
rd and nbus

wr .
If both types of requests hold the bus for the same duration,
the RUs would consist of a single feature corresponding to the
sum of nbus

rd and nbus
wr , i.e., SA = (nbus

rd +nbus
wr ) = (a1 +a2). The

addition of SB to SA is given by SA +SB = (a1 +a2 + b1 + b2).
For comparison, instead, we say that SA dominates SB , SA %
SB , if the interference by the former is greater than that by the
latter: a1 + a2 ≥ b1 + b2.

This reasoning easily extends to the more realistic scenario in
which the bus holding times are asymmetric; for example, with
reads holding the bus longer than writes. In that case, the RUs
for τA could be either single-feature, considering all accesses
as “long” accesses (counting writes as reads in the example),
or multi-feature (two, in the example), i.e., SA = (a1, a2) =

(nbus
rd , n

bus
wr ). In the latter formulation, addition and comparison

change as follows: addition is defined as vector addition, i.e.,
SA +SB = (a1 +b1, a2 +b2); for comparison, SA dominates SB ,
SA % SB if (a1 ≥ b1) ∧ (a2 ≥ b2).

2.2 Resource Usage template (RUl)
RUl have the same form as RUs, namely, a vector of features
LK = (k1, k2, ...kn), but with a different use. RUs abstract
tasks according to their use of the shared resources while RUl
abstracts the use of the shared resources so that LK can be
used as an upper bound to the interference effects caused by
any task τi whose RUs Si is such that LK % Si (i.e. Si is
dominated by LK).

Tasks are made time composable against some RUl LK so
that the ETB derived for a given task τA and for that RUl,

(a) (b)

Figure 1: Reference multicore architecture (a), and
main steps in the RUs and RUl methodology (b).

denoted ETBK
A , upper bounds τA’s execution time inclusive of

the interference that the contenders of τA, whose RUs do not
exceed LK , may cause.

Returning to the example in which the bus is the sole shared
resource with all accesses to it incurring the same contention
effect: for a LK that captures a given number of accesses to the
shared bus, we want to determine the highest impact by LK on
ETBA, so that ETBK

A can be regarded as a time-composable
bound for τA in any workload in which LK %

∑
i Si for all

co-runner tasks τi of interest.
A maximally time-composable template LTC exists, which

is an upper bound for any workload. LTC corresponds to the
case in which all accesses from the signature suffer the highest
contention from the Nc − 1 contending cores. In that case,
every access from SA contends with Nc − 1 other accesses, i.e.,
LTC = (Nc − 1)× SA. Any LK % LTC would produce exactly
the same result as LTC , since τA cannot be interfered more
than the accesses in its signature SA.

2.3 RUs and RUl through an example
In this section we return to the case in which the bus is

the sole shared resource and all accesses to it incur the same
contention effect. For now we limit our attention to two cores.
The task under analysis, τA, runs in one of the two cores. The
contending requests from the two cores are arbitrated with the
round-robin policy.

Figure 1(b) depicts the process we follow when the proposed
approach is applied to this case. First, we obtain the RUs of
τA, denoted SA. In the example architecture, the RUs of tasks
using the shared resource is the number of accesses they make,
a for τA, hence SA = (a). Our approach treats contention
such that the ETB of τA can be derived by upper bounding
τA’s execution time considering the interfering effect that it
incurs when its co-runner task, whatever it is, makes up to k
contending accesses to the shared resource. To this end we
define a RUl LK , which is the system integration parameter
that defines the inter-task interference to be considered in the
determination of τA’s ETB. The abstraction captured by LK

with LK = (k) is a RUl.

Once the SA and LK are defined, we determine ∆K
A , the in-

crement to be applied to the execution time that τA may incur,
to capture the contention effect from LK . This corresponds to
step 3 in Figure 1(b). More precisely, ∆K

A upper bounds the
increment that the execution time of a task τA with at most
a accesses to a shared resource may suffer from k contending
requests. ETBK

A (i.e τA’s ETB determined under the RUl LK)

is computed as the summation of ET isol
A , the execution time of

τA when running in isolation, without contention, and ∆K
A , the

increment that upper bounds the contention effects from any k
interfering accesses. This corresponds to step 4 in Figure 1(b).

Overall, ETBK
A is time composable against any co-runner task

τB with signature SB = (b), as long as the RUs of the co-runner
is lower than LK , which means that τB makes b ≤ k contend-
ing accesses. We denote this as tc(ETBK

A , τB), which holds if
b ≤ k.

RUs abstract the distribution of requests over time. Taking
into account the exact distribution of requests over time, for



instance in the form of requests arrival curves [20], would po-
tentially enable deriving tighter ETB. However, deriving such
distributions is complex, as programs normally have multiple
paths of execution, each with its own access pattern (distri-
bution). And, paradoxically, considering these particular dis-
tributions would decrease timing composability. Instead, our
approach only requires the tasks’ access count for every indi-
vidual shared resource, as well as ET isol

i (execution time in
isolation) for each individual task τi. Notably, both are al-
ready had with high accuracy by state-of-the-art technology,
e.g., [23]. With our approach, the ability to abstract away
from the need to know the exact points in time at which re-
quests would be made to shared resources releases the system
integrator from the obligation of adopting rigid and inflexible
scheduling decisions (which fares poorly with the development
unknowns of novel systems) or from the labour-intensive cost
of exact analysis.

Our approach requires the user to set the RUl to capture the
potential co-runner tasks precisely. The spectrum of this cap-
ture has two ends. On one extreme we find the time-composable
templates, LTC , which represent an upper bound for RUl. How-
ever, if RUl is close to that template, the ETB of tasks might
be unnecessarily increased. On the opposite extreme, if RUl is
too small, it constrains the choice of tasks that may be allowed
to run in parallel. A simple solution consists in deriving for
each task an ETB under different RUl, such that at integration
time, the smallest RUl that upper bounds the signature of the
actual co-runner tasks is used. With this, the residual part of
the timing verification at system integration is small and sim-
ple. Selecting the proper number of RUl represents a trade-off
between effort and accuracy: the higher the number of RUl the
lower the over-estimation of ETB and the greater the analysis
time, and vice-versa. Finding appropriate RUl is a standard
optimization problem that is part of our future work.

In the example considered in this section we have made sev-
eral simplifications to facilitate understanding: two cores, one
single type of access, synchronous accesses (i.e. the core stalls
when the access occurs until served) and a single shared re-
source. In real processors we have different types of accesses to
the shared resource (synchronous and asynchronous), each with
a distinct access latency. Hence, simply bounding the effect of
contention by adding access counts is not enough.

3. RUS & RUL FOR MEASUREMENT-
BASED TIMING ANALYSIS

Next we present one concrete realization of RUs and RUl for
use with measurement-based timing analysis (MBTA), specifi-
cally for a NGMP-like processor architecture [1].

3.1 Methodology
Our approach uses micro-kernels [22, 17, 11], a set of single-

phase user-level programs with a single execution behavior de-
signed so that all their operations access a given shared re-
source, e.g. the bus. Micro-kernels consist of a main loop
whose body includes a substantial number (e.g. 256) of in-
structions designed to generate a steady stress load on target
resources. The fact that the loop body executes repeatedly
the same instruction causes the target resource to be continu-
ously accessed. Moreover, placing a high number of identical
instructions in the loop body drastically reduces the impact of
control instructions (down to 2-4%) [11]. For the architecture
in Figure 1(a), a loop body including load instructions that
hit in the L2 cache stresses the bus. We consider two types of
micro-kernels:
Resource stressing kernels, RStK, place a configurable load

on a given shared resource, so that running a task against a
RStK may represent contention scenarios of interest.

In theory, one could design a worst-contender kernel that

generates the maximum contention that a task τi can suffer.
However, such kernel would be specific for the task to be inter-
fered and for the target processor [22]. Consider for example, a
single shared resource arbitrated by a least-recently-used pol-
icy, where the task that accessed the resource last gets the least
priority. In that case, the worst-contender kernel should gener-
ate a request in exactly the same cycle as the task of interest,
so that every request from that task gets delayed by the con-
tender, and for the next round of arbitration the task has the
lowest priority again. The level of control required on the ap-
plication behavior and the granularity of intervention are too
fine-grained and laborious to be used in practice [22].

Resource sensitive kernels, RSeK, are designed to upper bound
the execution time increase suffered by any other task, with a
smaller or equal signature, owing to the interference from a
given template LK . Consider a scenario in which bus accesses
hold the bus for a constant duration. Further assume that we
want to determine ∆K

A for τA, i.e its ETB increment due to
a template LK with k accesses. Intuitively, one could get an
estimate of it by running τA several times against a RStK that
makes k accesses. However, in order to gain confidence in the
ETB obtained, the experiment should be repeated with differ-
ent alignments of the RStK, so that the interleaving of accesses
varies enough and the worst case can be observed in a measure-
ment. In practice, this may require excessive experimentation
effort. The need for repeating the experiments with different
alignments stems from the uncertainty on the time distribution
of accesses, which is hard, if at all possible, to measure and con-
trol by timing analysis technology. We can therefore conclude
that studying the task under analysis against micro-kernels is
not viable. Instead, we use micro-kernels to model both the in-
terfered and the (set of) interfering tasks: RStK and RSeK are
designed to account for bad alignments of requests: RSeK is
made of instructions that cause accesses to the shared resource
and that continuously contend with RStK requests.

We define ∆RStK
RSeK = ETRStK

RSeK − ET isol
RSeK , where ETRStK

RSeK is
the execution time when a given RSeK with the same signa-
ture as task τA runs against a RStK implementing a template
LK with k accesses; and ET isol

RSeK the execution time when the

RSeK runs in isolation. For task τA, let ∆K
A = ETK

A − ET isol
A

be the execution time increase τA suffers when it runs against
LK . RSeK and RStK are designed so that ∆RStK

RSeK ≥ ∆K
A holds

for any request alignment of τA under LK contention. To that
end, we run the RSeK in isolation and then against Nc − 1
copies of RStK so that all RSeK ’s accesses to the shared re-
source suffer high contention, causing a measurable ∆RStK

RSeK to
emerge. In the next section we show how to derive the number
of accesses of the RSeK and the RStK, based on the number
of accesses of the template and signature under consideration.

∆RStK
RSeK is used to compute the ETB estimate for τA as fol-

lows: ETBK
A = ET isol

A + ∆RStK
RSeK . ETBK

A is composable with
any set of interfering tasks against which τA runs in parallel, if
their total number of accesses is lower or equal to k. That is,
the addition of the signatures of the interfering tasks is dom-
inated by LK : (Si + Sj + ... + Sl) - LK . Interestingly, given
a task τB whose signature is dominated by τA, i.e. SB - SA,

the obtained ∆RStK
RSeK for τA can be used to upper bound τB ’s

execution time: ETBK
B = ET isol

B + ∆RStK
RSeK .

Overall, RUs and RUl provide powerful abstractions for the
interfered and the interfering tasks, which simplify the integra-
tion of multiple tasks by combining their signatures.

3.2 The case of a NGMP-like architecture
Our reference multicore architecture [1] comprises Nc = 4

symmetric cores, see Figure 1(a), each equipped with private
instruction cache (IC) and data cache (DC). The cores have
an in-order time-anomaly-free design [16]. Load operations are
blocking, whereby the pipeline is stalled until the load is re-



Figure 2: Impact from/to the different access types to
the bus.

solved. Each core has one 2-entry write-buffer that holds store
requests until they are resolved, without stalling the processor.
The processor is stalled solely to preserve memory consistency,
when a store finds the write-buffer full or a load operation finds
the write-buffer non-empty.
Bus. Our example processor implements round-robin bus

arbitration so that if, in a given round, core ci, i ∈ {1, .., Nc}
is granted access to the bus, the priority ordering in the next
round is: ci+1, ci+2, ..., cNc , c1, c2, ..., ci. A lower priority core
can use the bus when all higher priority cores do not use it.
The bus access jitter that a task incurs on access to the bus,
depends not only on the number of co-runners but also on the
way their requests interleave. The worst contention situation
happens when a task τB assigned to core ci requests the bus in
a given round of arbitration, simultaneously with tasks in all
other cores and the previous round was assigned to ci.
L2 cache. The L2 cache processes up to one miss per core at

a time and allows hit-under-miss and miss-under-miss so that
when a miss from a core is processed, hit/miss requests from
other cores can be served. The 4-way L2 is partitioned so that
every core is allowed to use 1 way2.
Memory controller. The L2 sends a request to the memory

controller on every L2 miss. Requests are stored in a FIFO
request queue, with one entry per core. The memory controller
assumes a single DRAM device with close-page policy.

3.3 Bus
The bus handles three distinct request types, which differ in

the contention they induce and suffer. Stores (st) either hit or
miss on the L2, which are served immediately by the L2 and
hold the bus for 2 cycles. L2 load hits (l2h) hold the bus for
7 cycles because they are not split by the bus and insert wait
states on the bus for the hit latency of the L2 (5 cycles). L2
load misses (l2m) that are split by the L2 and perform a new
arbitration whenever the L2 responds to the miss, holding the
bus 2 cycles in each arbitration. Figure 2 shows the contention
suffered by a source (interfered) request by another (interfer-
ing) request for all request types. l2h generate the highest
contention and l2m are the most affected since they suffer two
rounds of arbitration: l2m can therefore be interfered twice by
two concurrent contending requests, one round of arbitration
per each such request.

Our approach based on RUs and RUl does not require know-
ing the exact time of request issue, but whether they have asym-
metric timing behavior in the impact they suffer and they cause
to other request types so that RStK and RSeK can be designed
with the appropriate request types. The RStK and RSeK for
the bus are called BStK and BSeK :

BSeK (abstracting interfered task bus usage). The
signature of a task τA running in this architecture may take
different forms, with different levels of tightness and experi-
mentation effort. The canonical signature for the bus contains
the number of accesses of each type made by the task. That
is: Sbus

A = (ast, al2h, al2m). This can be simplified by realizing
that l2h and st access the bus once whereas l2m do it twice
with exactly the same timing as l2h and st. Moreover, the de-
lay suffered by an access does not vary whether the access was
generated by a l2h, st or l2m. Hence, signatures have the form:
Sbus
A = (ast + al2h + 2× al2m).
BSeK can be implemented with either l2h or st. l2m are

not appropriate as it is not possible to place high pressure on

2The ARM A9 and the NGMP do implement this feature.

the bus with l2m since they miss in cache and take long to be
served from memory, leaving the bus idle in the meantime. l2h
and st instead can place very high pressure on the bus. Our
approach considers BSeK to only have st operations.

BStK (abstracting interfering task(s) bus usage). Tem-
plates can be mono- (L1D) or bi-dimensional (L2D).
L2D. st and l2h generate different impact on the bus (recall

that l2m are equated to 2 st). In particular, l2h produces
the highest impact and st the lowest. This allows generating
bi-dimensional templates: L2D = (kl2h, k2×l2m+st), whereby
BStK s comprises load L2 hit accesses and store accesses to
generate each respective type of interference.
L1D templates comprise only l2h, which generate the highest

interference. A given L1D = (kl2h) with k l2h accesses upper
bounds the impact that one or several tasks, whose bus ac-
cess count is lesser or equal to k, can generate on any other
interfered task. L1D are easier to generate and simplify exper-
imentation, but they increase the pessimism of ETBs, since st
are considered to generate the same impact as l2h.

Putting it all together. Deriving the access count for
BSeK and BStK varies for L1D or L2D as we show next.
SA−L1D. Let a and k be the number of accesses in the signa-

ture SA and the template LK respectively. Running BSeK and
BStK concurrently, we derive an upper bound to the increase
in execution time (the delta) that k accesses of the template
can have on the a accesses of the signature. If k ≥ (Nc− 1)×a
then each request of SA suffers the impact of Nc−1 contenting
requests. If this is not the case, only dk/(Nc−1)e requests from
SA suffer impact.

The number of request accesses generated by the BSeK is
given by N = min(a, dk/(Nc − 1)e). By running this BSeK
against Nc − 1 BStK copies, each having a number of ac-
cesses largely above N , we derive an upper bound to the im-
pact that LK has on SA. The impact that a task can suf-
fer due to a template LK with k l2h is upper bounded as:
∆BStK

BSeK = ETBStK
BSeK − ET isol

BSeK . The ETB derived for a given

task τA and template LK is: ETBK
A = ET isol

A + ∆BStK
BSeK .

SA −L2D. In this case we account for the fact that requests
sent by the interfered task, τA, suffer different interference by
the l2h and l2m/st sent by the interfering tasks, abstracted
in L2D. In this approach we pair up every request in τA with
Nc−1 requests in L2D causing the highest interference (l2h) on
the former. If the number of those requests in L2D is exhausted,
we pair up τA requests with those in L2D causing the second
worst interference (st).

We generate two BSeK and BStK pairs to capture the impact
that accesses in SA suffer from l2h and l2m/st in L2D so that:

∆BStK
BSeK =

(
∆

BStKl
BSeK1

+ ∆BStKs
BSeK2

)
(1)

BSeK1/BStKl and BSeK2/BStKs capture the interference
on τA’s accesses caused by the l2h and l2m/st in L2D respec-
tively. BSeK1 and BSeK2 have different number of st oper-
ations, N1 and N2. BStKl comprises l2h operations whereas
BStKs comprises st operations.

Let assume for example a = 30, kl2h = 60, and kst = 80.
In this case, BSeK1 has N1 = min(30, d60/3e) = 20 st, which
we pair up with 20 accesses in SA; and BSeK2 has the rest of
accesses in SA, N2 = 30 − 20 = 10 st, which we pair up with
3 × 10 requests out of the 80 accesses in kst. The remaining
50 st in kst are not paired since they will not cause further
impact on SA. Overall, an upper bound to the impact that an
application can suffer due to L2D is given by:

ETBK
A = ET isol

A +
(

∆
BStKl
BSeK1

+ ∆BStKs
BSeK2

)
(2)

For the memory controller we follow the same principles as
for the bus, with the particularity that the impact from/to the
read/write request types is homogeneous. Hence we only need



Figure 3: ETBs for different templates for 10 4-task
workloads. Results are normalized to the execution
time in isolation.

L1D templates. The RStK and RSeK for the memory are called
MStK and MSeK.

3.4 Multi-resource signatures
In the presence of multiple shared resources, the signatures

and templates must cover the hardware features so as to soundly
upper bound contention in each of them. For the reference ar-
chitecture considered in this work, signatures and templates

are as follows: Sbus+mc
A = (ast + al2h + 2al2m, amem) and

Lbus+mc
K = (kst + 2kl2m, kl2h, kmem).
It is possible that a task suffers contention in several shared

resources simultaneously, so that the impact of the contention
does not accumulate but rather overlaps. However, determin-
ing trustworthy bounds to the degree of overlap in the con-
tention suffered on requests to different resources is complex.
Signatures and templates are intentionally made agnostic to the
distribution of requests over time. As we focus on the number
of requests to each resource rather than on their timing, it is
difficult to determine how contending requests overlap. Our
current approach assumes no overlap in contention, which in
our time-anomaly free processor design is a safe assumption on
the maximum impact of contention. Overall, in the presence
of a template for the bus Lbus and the memory Lmc (a.k.a.

Lbus+mc), a task is assumed to suffer the sum of the contention
generated by both templates:

ETB
Lbus

K +Lmc
K

A = ET isol
A + ∆BStK

BSeK + ∆MStK
MSeK

4. EVALUATION
For our evaluation, we model a 4-core NGMP-like symmetric

multicore [1] at 150 MHz comprising a bus connecting cores to
the L2 cache and an on-chip memory controller. This processor
model is relevant as it constitutes a potential baseline for the
space domain. To model the DRAM memory system we use
DRAMsim [6], a well-known memory simulator with which we
model a close-page DDR2-667 [15] memory. As part of a study
carried out for the European Space Agency we evaluated the
performance estimates provided by our simulator against a real
NGMP implementation, the N2X [3] evaluation board, using a
low-overhead kernel that allowed cycle-level validation. The
results obtained for the EEMBC Automotive [21] benchmarks,
the reference benchmarks used in this paper, showed an execu-
tion time deviation of less than 3% on average. For the NIR
HAWAII benchmark [13], the inaccuracy was less than 1%.

Our RSeK/RStK approach works on the premise that the
contention suffered by each request of the RSeK upper bounds
the contention suffered in any other scenario. The authors
of [25] show that round-robin arbitration can have anomalous
cases when a higher number of contenders introduces less con-
tention on the bus. In fact, we show in [8] that the RStK cannot
necessarily generate the worst (maximum) contention on RSeK,
due to the alignment of requests. To solve this, we applied a so-

lution based on adding nop operations between RSeK requests
to modify their alignment. For instance, in the case of the bus,
since we use store requests for the RSeK (see Section 3.3), we
prove in [8] that each RSeK ’s request suffers the maximum con-
tention. In our reference architecture, if load operations were
used in the RSeK, each request would suffer exactly one cycle
less than the maximum contention on each request as shown
in [8], which can be compensated with a correction factor.

4.1 Experimental results
Our evaluation was carried out along 2 axes. First, we com-

pared the tightness of 1D and 2D templates against fully-time
composable ETB, that can be obtained by software [11][22] or
hardware [19] methods. Secondly, we compared 2D templates,
for which tighter results are obtained, to the case in which the
task under analysis runs agains RStK.

1D vs 2D signatures. Figure 3 compares the scenario with
a fully-time composable template, LTC , valid for any workload
(any workload template in the figure), with 1D (L1D) and 2D
(L2D) templates fitting the potential interference in the corre-
sponding workload. We analyze 10 randomly generated work-
loads and show results for the benchmark running on core 0.
Similar results are obtained for the other cores.

For instance, for workload W8 <pntrch(PN), basefp(BA),
a2time(A2), tblook(TB)>, we consider PN as the task under
analysis and a template that corresponds to the aggregate of
signatures of the three other benchmarks. This causes L1D to
have 564, 227 bus accesses (as many as the addition of bus ac-
cesses of BA, A2 and TB). This is abstracted by RUs/RUl so
that only 564, 227/3 = 188, 076 bus accesses from PN suffer
high contention and the rest suffers no contention. To mea-
sure this effect, we run a BSeK with 188,076 accesses against
3 BStK with a large number of accesses. The same process is
followed for the memory. L2D is generated analogously, but
considering separately l2h and st bus accesses.

Figure 3 shows the ETB for the first benchmark in the work-
load (under anyworkload, L1D and L2D), normalized to its ex-
ecution time in isolation. We observe that fitting templates
to actual contention (L1D and L2D) in the workload tightens
ETBs significantly. This effect is particularly noticeable for
WL1 and WL4. Also, in all cases L2D provides tighter ETBs
than L1D. This is so because with L1D all accesses to the bus
are assumed to be l2h, which generate the highest contention,
while L2D better captures the fact that there are two type of
requests generating different contention (l2h and l2m-st). For
instance, WL4 has a normalized ETB of 4.37 (more than 4x
the execution time in isolation) when using a template valid
for any workload. If we use L2D for this workload, the ETB is
only 1.53. Overall, our approach allows reducing the ETB from
2.57 to 1.8 with L1D and 1.36 with L2D templates on average
for the 10 workloads.

Owing to strict page limits we are unable to report the con-
tention impact generated by the memory. Notably however, in
our processor set-up the bus has higher impact than the mem-
ory, as the L2 cache filters out most memory accesses. Of the
contention impact in L2D, 78% stems from the bus and only
22% from the memory.

RUs/RUl vs. EEMBC/RUl. In order to assess the pes-
simism incurred in ETB obtained with L2D we compared them
with the execution time for the task (i.e EEMBC), denoted
ET , taken when the task run as part of a workload compris-
ing RStK [11][22]. This workload represent a pessimistic yet
possible contention scenario that the task can suffer. Figure 4
shows ETB obtained with L2D relative to ET . Notably, the in-
curred pessimism was always below 45%, 20% on average. We
contend that the benefits provided by RUs/RUl in the simplifi-
cation of timing analysis upon system integration, pays off for
the increase in WCET estimates.



Figure 4: Overestimation incurred by RUs/RUl

5. RELATED WORK
Contention on access to hardware shared resources has been

thoroughly studied in the state of the art. A taxonomic sum-
mary of the relevant works can be found in [7]. Authors in
[4] propose a methodology to obtain the signature of tasks and
replace them with kernels that mimic their shared resource us-
age pattern as a way to reduce the variability in measurement-
based analysis. Instead, we use signature and templates to
abstract the contention tasks cause and suffer, bounding con-
tention effect [8]. Works addressing off-chip contention assume
no contention for on-chip resources, which are assumed repli-
cated. Off-chip contention for the bus is handled with TDMA
buses [2] whose analysis case is the worst possible alignment of
the task requests to their TDMA slots. Works assuming dy-
namic arbiters [24] consider the particular pattern of accesses
of each contender to the bus. For on-chip resources, two main
approaches have been followed, both requiring some hardware
support: isolation or bounded interference. The former uses
TDMA arbitration and partitioned caches to prevent interac-
tion among tasks [14]. The latter bounds the maximum impact
that one task may generate on co-runners [19]. However, as far
as we can tell, such specialized hardware support is not fully or
readily available to industry: while cache partitioning has been
implemented in hardware, e.g. in the Cobham Gaisler NGMP
and the ARM A9, for the bus and the memory controller in-
stead such support is not provided. When the shared cache is
not partitioned, alternative solutions – around the concept of
partial time composablity – have been proposed to approximate
the time composability properties provided by templates and
signatures [10].

In the absence of hardware support in COTS processors, con-
tention effects can be analyzed, bounding the memory latency
(for instance for Intel Core-i7 [12]), or even deriving WCET
estimates (for Freescale P4080 [18]). In the latter research, au-
thors use a static timing analysis approach with run-time mon-
itoring of the resource usage that benefits from the knowledge
of the workload to be able to derive tight WCET estimates.
As a consequence of the limitations in the state of the art for
COTS, the execution time of a task becomes dependent on its
co-runners, which is a major impediment to incremental devel-
opment and qualification. This is the challenge we have tackled
with our approach based on resource signatures and templates.

6. CONCLUSIONS
We presented a novel approach to studying the contention on

the bus and memory controller, building on the concept of RUs
and RUl that abstract the resource usage made by the task un-
der analysis and by its contenders. These notions help abstract
the interference impact suffered by the task under analysis and
the interference effects generated by its contenders. The no-
tions embodied in our proposal provide a simple yet powerful
mechanism to aid time-composable integration of multiple tasks
in a multicore. A wise selection of RUl allows obtaining tight
upper bounds to execution time, for modest cost and effort,
thereby facilitating incremental development and qualification
for systems targeting COTS multicore processors.
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