WIENER CRITERION FOR X-ELLIPTIC OPERATORS

GIULIO TRALLI, FRANCESCO UGUZZONI

ABSTRACT. In this note we prove a Wiener criterion of regularity of boundary points for the Dirichlet
problem related to X-elliptic operators in divergence form enjoying the doubling condition and the
Poincaré inequality. As a step towards this result, we exhibit some other characterizations of regularity
in terms of the capacitary potentials. Finally, we also show that a cone-type criterion holds true in
our setting.

1. INTRODUCTION

Let us consider an X-elliptic operator (in the sense of Lanconelli and Kogoj [29]) with measurable
coefficients, in the divergence form

(1.1) Lu =301 0i(bj(x)d5u).
The operator £ is degenerate-elliptic but its degeneracy is controlled by a family X of vector fields

with suitable properties. More explicitly, we assume that the coefficients of the matrix B(z) =
(bij(z)) = (bj,i(z)) satisfy the so called X-ellipticity condition

(1.2) AP (XG(2),6)? < (B(2)€,€) < AYT(X(2),€)?,

for every ¢ € RY and for every x in a bounded open set O C RY. Here X = (X1,..., X,,) is a family
of locally Lipschitz vector fields in R with a well-defined control distance d which is continuous
w.r.t. the Euclidean topology. We suppose that the following local doubling condition holds for the
d-metric balls By(z): for every compact set K of RY, there exist A > 1 and Ry > 0 such that

(1.3) 0 < |By| < A|B,|,

for every d-ball B, centered at a point of K and of radius r < Ry. Hereafter we denote by |E| the
Lebesgue measure of . We also assume the following Poincaré inequality: for every compact set K
of RY there exists a positive constant C such that

(1.4) 7£ lu — up §Cr7£ | X ul,
B'r BQT‘

for every C! function u and for every d-ball B, centered at a point of K and of radius r < Ry. We
have used the notations

m

1 / 2 2
Up = u=-—[ wu, and |Xu|®= Xju)“.
T ]LBT ’Br| B, ’ Z( J

Jj=1

2010 Mathematics Subject Classification. 35J70, 35H20, 31C15, 31EOQ5.
Keywords: degenerate-elliptic equations, boundary regularity, Wiener criterion.
1



2 G. TRALLI, F. UGUZZONI

We remark that, for example, the PDOs of the form

Sijer Xi(aij(x)Xu)  and 30 Xi(ai;(2) X u),

where (a; ;) is an m x m uniformly elliptic symmetric matrix of measurable functions, can be written
(up to lo.t.) as X-elliptic operators in the form (I])-(2]). Moreover any second order linear PDO
with nonnegative characteristic form and sufficiently smooth coefficients is X-elliptic w.r.t. a suitable
family X of vector fields. Indeed, if the matrix (a; ;) is nonnegative definite and a; ; € C?, then, by a
result of Phillips and Sarason [39], there exists a nonnegative definite locally Lipschitz matrix (o ;)
such that nyjzl a; ()& = Z}]y:l(Zé‘V:l an;€j)? for every € € RN, We refer to [29, [19] for more
details and comments.

The notion of X-ellipticity was explicitly introduced by Lanconelli and Kogoj in [29] where a
Harnack inequality was proved for the equation Lu = 0, but the same ideas were already used, for
the first time in a non-euclidean context, by Franchi and Lanconelli in [I3] 14} [I5]. Several authors
have enlightened the fundamental role of conditions (L3]) and (C4) in the study of PDEs modeled on
vector fields, see e.g. the survey in [20] and references therein. See also the recent papers [26, 27, 28]
for some other examples of X-elliptic operators (not in the Héormander class) enjoying (L3])-(T4).
Gutiérrez and Lanconelli [19] established maximum principles and homogeneous Harnack inequalities
for X-elliptic operators with lower order terms and, in the case of dilation invariant vector fields X,
nonhomogeneous Harnack inequalities and Liouville theorems. Other Liouville theorems are also
proved in [25]. Some estimates of the Green function for the X-elliptic operator £ were proved in
[34] in the special case that the measure of the d-balls behaves like a power r% of the radius r and,
only recently, in [41] without this restriction. A nonhomogeneous Harnack inequality is also proved
in [41]. We also refer to [5 [6l 111, 24] [32] 43] for other related papers.

Before proceeding, we would like to give some motivation for our research, and more generally
for the study of X-elliptic operators. In the last decades there has been a growing interest in
second order linear and nonlinear partial differential equations of sub-elliptic type. In particular the
underlying metric and/or algebraic properties have been investigated and successfully exploited in
order to understand the qualitative and quantitative behavior of the solutions. These equations arise
in many different settings: geometric theory of several complex variables, curvature problems for
CR-manifolds, sub-Riemannian geometry, diffusion processes, control theory, mathematical models
in finance and in the description of the visual cortex, see e.g., [1l, [, @, [10] 17, 20} 22, 23] B0, B1,
35, 38, 140l 42]. The common features of such equations are the following ones: their characteristic
forms are non-negative definite, and, even if their ellipticity directions do not span the whole ambient
space, they do enjoy an underlying geometry with connectivity properties. Tipically the directions
of non-ellipticity are recovered by commutations, as in the case of the operators structured on vector
fields satisfying the celebrated Hormander condition.

Our aim is to prove a Wiener criterion of regularity of boundary points for the Dirichlet problem
related to the X-elliptic operator £ in (ILT]). In order to state our results, we need to go into some
more details. Let us fix a compact set Ky of RV with interior containing the closure of O and set
Q@ = logy A, where A is the doubling constant in (L3]) which can be assumed such that @ > 2. We
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recall that our assumptions on the vector fields X; imply the Sobolev inequality
(1.5) |lul| 20 < C(D) || Xull2 for every u € C}(D)
Q-2

on every open set D with diameter small enough and with closure contained in the interior of Ky
(see e.g. [20]). Let now D C O be a bounded domain supporting the above Sobolev inequality. We
shall assume the following condition:

(1.6) the boundaries of the small d-balls contained in D are connected.

This ensures the validity of a crucial Harnack inequality on d-rings, which is exploited in [4I] to
prove two-sided pointwise estimates for the Green function of £. We would like here to point out
some more comments on condition (L@). In the (elliptic) case of N vector fields X;,..., Xy linearly
independent at any point, it is known that the small spheres of the control metric are homeomorphic
to the euclidean ones and so are connected. But, even in this case, the same property may fail to be
true if the sphere is not small. We can convince ourselves of this fact by taking in R? vector fields
in the form X; = ¢(2)0,, Xo = ¢(2)0s,, with 0 < 0 < ¢ < 1, ¢(xg) = 4, and ¢ = 1 outside a
neighborhood of z(, so that the d-balls centered far enough from zy have disconnected boundaries for
some radii. In the sub-Riemannian case, it is proved in [2] that small d-spheres are homeomorphic to
euclidean spheres (and so are connected) if X is a step 2 distribution of vector fields, or if our vector
fields are invariant under some group of dilations (see also [35]).

Under the hypotheses we have just fixed, we shall prove (see Theorem below) that the L-
regularity of a boundary point y of an open set 2 compactly contained in D is related to the behavior
(near p = 0) of the integral

dy _
[ o (B~ 0) g fs o

We refer to the beginning of Section [B] for the definition of the L£-capacity cap. By using the doubling
property, it is easy to recognize that the behavior of this integral is equivalent to the one of the series

X2tcap(By () )
T Bl

for 0 < A <1 (see [37]).

As in the classical elliptic case (see Littman, Stampacchia, and Weinberger [33]), our criterion al-
lows us to deduce that the L-regularity of a boundary point of €2 does not actually depend on the
coefficients b;; of the operator £ but just on the vector fields X;’s (see Corollary [£.3).

We recall that Wiener tests of regularity were proved in [33] (18] for classical elliptic equations
with measurable coefficients, in [21], B6], 37] for Hérmander operators, in [12] [§] for degenerate elliptic
equations with weights, in [3], 4] for Poincaré-Dirichlet forms. The approach we follow in the proof of
our Wiener criterion is inspired by the papers [33] 12]. In particular, in the position of the problem
we adapt the classical formulation given in [33]. In our exposition we try to enlight what are the
tools really needed in order to get the result. Indeed, we do not use quasicontinuity arguments nor
multiple characterizations of capacity as done in [33] [12].
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The estimates of the Green function proved in [41I] are our starting point. We explicitly remark
that in [41] the following further hypothesis on D was assumed: there exist 1, # > 0 such that

(1.7) |Br(z) \ D| > 0| B,(z)| for every r €]0,r1] and = € 9D.

Moreover, it was also assumed that the conditions (L3]), (L4, and (L.6) hold true for any d-ball con-
tained in D. Here these further hypotheses are not necessary because of the local nature of the notion
of regularity (provided by Lemma below) and the fact that any domain can be approximated by
domains satisfying condition (L7)) (see 41, Lemma 3.7]).

This note is organized as follows. In Section [21 we introduce the notions of barrier and of regularity
of boundary points. To this aim we first prove and exploit a Caccioppoli-type estimate. In Section
we study the relationship between regularity and capacitary potentials, and we prove some char-
acterizations of the regularity. In Section [ we conclude the proof of our Wiener test. Moreover we
also provide a cone criterion which ensures the regularity at a boundary point where condition (7))
is satisfied.

2. REGULARITY AND BARRIERS

For any open set & C D, we define Wi (9, X) as the closure of C}(2) w.r.t. the norm || Xul,
whereas W(Q, X) = {u € L?(Q) | Xu € L*(Q)} is equipped with the norm ||ul|s + || Xul|2.

By using some results of good approximation for functions in W1(2, X) (see e.g.[16]), one can
prove that many general properties about W!-functions hold true also in our setting. For instance,
the following facts will be used several times throughout the paper without further comments. Any
function in W1(Q, X) vanishing in a neighborhood of 99 belongs to W3 (Q, X). If f € WH(Q, X)
and 0 < f < g a.e in Q for some g € W} (Q, X), then f € WH(Q, X). If f € WL(Q, X) is continuous
in a neighborhood of Q2 and f = 0 on 9, then f € Wi (Q, X).

Let us recall the definition of solution to the equation Lu = 0. To this aim, let us consider the
bilinear form

(2.1) L(u,v) :/Q<B(aj)Vu, Vv) dx

for u € C1(Q) and v € C3(Q). By using the uniform X-ellipticity of £ and the Sobolev inequality
(L3H), £ can be extended continuously to W(€, X) x Wi (€, X). We shall say that a function
u € WHQ, X) is a (weak) solution to Lu = 0 in Q, if £(u,v) = 0 for every v € Wi (2, X). A function
u € WL.(Q,X) will be called a (weak) solution to the same equation in € if it is a weak solution
in every domain with closure contained in §2. In [I9, Proposition 2.4], the authors showed that, for
any h € W(Q, X), there exists a unique function u € W'(, X) solution of Lu = 0 in  such that
u—h € WEH(Q, X). We note that the application h +— u clearly factors through the quotient, i.e. we
have B : %;Eg:))g — W, X).

For u € W(Q, X) and [ € R, we will also say that u <[ on 9 if

(u—1)T = max{u—1,0} € Wi (Q, X).
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We denote supgou = inf{l € R : v < [ on 9dQ}. In [19, Theorem 3.1], the following maximum
principle is proved: if u € W1(£2, X) is a weak solution of Lu = 0 in , then we have the inequality

(2.2) supu’ <suput.
Q o0

By definition, it is not difficult to show that supgg |h| defines actually a norm in
 {h e WHQ, X) : supyq |h| < +oo}
B Wi (€, X) ’

which we will denote by ||-|| ;. Thus, the maximum principle ensures the boundedness of the map

H

B: H — L>(Q)
h +— u= Bh.
To introduce the notion of regularity, we need to associate a solution of Lu = 0 in €2 to any function

in C'(052). We are going to follow the lines of the procedure of the celebrated paper [33] which can
be adapted to our context. We start by proving the following Caccioppoli-type estimate.

Lemma 2.1. Letu € Wl (Q, X) be a weak solution to Lu = 0 in Q. There exists C > 0 (independent
of u) such that, for any compact K C 2, we have

L
dist(K,00Q) L2

where dist(K, 0) denotes the d-distance between K and 0.

[ Xull o gy <

Proof. First we prove that, if 0 < p < r,
C

(2.3) [ Xullg2(p,) < ull 225,

for any ball B, compactly contained in Q (and thus for any ball in Q). Let us take a continuous
nonnegative cut-off function 7 satisfying

n=1in B,, n=0outside B,, and |Xn| < ¢

a.e.
r—p

for some positive constant ¢ (for the existence of such a function see e.g. [16]). By the fact that
£(u,n*u) = 0 and condition (LZ), we get

A 272
A [ il <o [ el <5 [ o+ 25 [ .
r B B -

Hence we have
4N? 4N? 2
[ [t < S [ epaps B e
B, By B, (r—p) -

which proves (2.3). We now use a covering argument to conclude the proof. Let {B,,(z;)} be a
countable family of d-metric balls such that

3 .
Q= UBTJ' (), rj= %dlst(B% (x),09), and ZXB
J J

< Cixa

()
J

ol
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for some positive constant C; (see [16, Lemma 2.15]), where y g denotes the characteristic function
of the set E. Let us fix a compact set K C Q and let F' = {j € N : B, (z;) N K # (}. Thus, for any
jJ € F', we have

7o 26
dist (K, 082) < 2r; + dist(B;, (z;),00) < S
Hence, since B%T]_ (xj) € Q and by ([2Z3), we get
c? (26C)2
XulFoe) < D I1Xul] < S (2602
o = jeFH RN (G —r))? HUHLQ(B%rj(mj)) = T (dist(K, 09))2 lullze@)

a
Let us put

B = (u € Wibe(2,X) ¢ lulls = ey + sup_ dist(K, 00) | Xull 2 < o)

The space (B, ||-||g) is a Banach space, and the inclusion in Wl (€2, X) is continuous. The previous

lemma tells us that the linear map B : H —» B is well-defined and bounded.
 WHQ,X)NC(@)

€= Co(®)

vanishing on 0. By Tietze extension theorem, it can be thought as a subspace of (C(9€2), maxaq |-|).

Moreover, by Stone-Weierstrass theorem, C is dense in C(9%2).

By the inclusion map W1(Q, X) N C(Q) — {h € WL(Q,X) : supyq |h| < +00}, we have a well-

defined map j : C — H with ||jy||; < maxpq|p|. We define B = B o j. By continuous linear

Let us consider also the space , where Cp(£2) is the space of continuous functions in

extension, we can extend it to a linear and bounded map
B: C(00) — B.

By ([232), it is easy to see that supg B < maxgg ¢ for any ¢ € C(0N). Furthermore, by density, the
WL (Q, X)-function B is a weak solution to L(By) = 0 in 2 for every ¢. The Harnack inequality
in [19, Theorem 4.1] ensures the continuity in © of the functions By. Thus, we are finally in the
position to give the definition of regular points.

Definition 2.2. A point y € 9 is said to be (£-)regular if, for any ¢ € C(92), we have

le%ﬂﬂzww-
2r—Y

Arguing as in [33, Lemma 3.1], we can prove that it is enough to check the regularity condition
just for all the functions ¢ € C.
The notion of regularity is classically related with barrier functions. It seems natural to model our
definition of barrier on the maximum principle (2.2)).

Definition 2.3. A function V,, € W(Q, X) is called a barrier at y € 99 if
(i) Vy is a solution to LV, =0 in Q;
(i) limosz—y Vy(x) = 0;
(iii) for every p > 0 (small enough) there exists ¢ € C°(RY N\ B,(y)),0< ¢ < 1withyy =1ina
neighborhood of 9Q \ B, (y) and there exists m > 0 such that 1(m — V)" € W (Q, X).
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Remark 2.4. We note that condition (ii) in the previous definition makes sense since Vy is contin-
uous by condition (i). Moreover, we stress that a barrier function has to be nonnegative in Q. As
a matter of fact, for any positive €, there exists p such that Vy(x) > —e if x € Q with d(z,y) < 2p.
Fized such a p, let us consider 1 and m as in condition (iii). We have

0 < (—2 = V)" = (=2 — V)" + (L= ¥)(== = V)" < w(m—V,)* € WH(Q, X).
Thus, (—e — V,))* € W§(Q, X) and L(—e —V,)) = 0. By (Z3), we get Vi, > —¢ in Q for any € > 0.
Proposition 2.5. A point y € 98 is reqular if and only if there exists a barrier Vi, at y.

Proof. Suppose first y is regular. Put ®(z) = d(z,y). The function ® belongs to W(Q, X) N C(Q)
(see e.g. [16]). We denote by ¢ its restriction to 02 and we consider V,, = By. By definition,
since p € C, V, € W(Q,X) (and not just in Wl (€2, X)). The function V, is actually a barrier.
Conditions (i) and (ii) follow indeed by construction and regularity assumption. Moreover, if we
fix a positive p and we consider a C§° nonnegative function ¢ which vanishes in m, we have
0<v(p—V)T <9(p—®)" + (@ — V)" =(®—V,)" € Wi(Q, X). Thus, even condition (iii) is
satisfied.

Suppose now the existence of a barrier V;,. For what we said after Definition 2.2} it is enough to
check that By(z) — ¢(y) as * — y for any ¢ € C. Let us consider ® € W(Q, X) N C(Q) whose
restriction is a fixed ¢ € C. Put M = maxq|®|. By continuity, for any positive ¢, there exists p
such that |®(z) — ®(y)| < ¢ if x € Q with d(z,y) < 2p. Fixed such a p, since we have a barrier we
can consider ¢ and m as in condition (iii). We get 0 < h(z) := (®(x) — P(y) — e — %Vi,(a:))‘*‘ <
P(2M — 22y )+ € Wi (Q, X) by using that V,, > 0. Hence we have 0 < (Byp — ®(y) —e — 22V, <
h+ (B — )t € WHQ, X). Since L(By — (y) — e — 22V,) = 0 in Q, the maximum principle
implies that By < &(y) +¢ + %Vy in Q. Considering also h = (®(y) — & — ¢ — %Vy)‘*', we get at
the end

2M

The fact that V() — 0 as  — y and the arbitrariness of ¢ complete the proof. U

3. CAPACITARY POTENTIALS AND REGULARITY
Given a compact set K C D, we define the (£-)capacity of K in D as
cap(K) = inf{€(u,u) |u € Wg(D, X), u>1on K in the W (D, X) sense}.

We say that u > c on K in the W (D, X) sense, if there exists a sequence ¢; € Lipy(D) (Lipschitz
functions compactly supported in D) such that ¢; > c on K and p; — u in W(D, X). We shall also
say that u = ¢ on K in the W01 sense if both ©w > ¢ and —u > —c on K in the Wol sense. Because of
the X-ellipticity condition, it can be showed that there exists a unique ug € Wol(D, X) with u > 1
on K in the W{(D, X) sense such that cap(K) = £(ug,uo). The function ug is called the capacitary
potential of K in D. It is also a weak solution to Lug = 0 in D \ K. Furthermore, there exists
a positive measure po supported on 9K such that £(ug, ) = [ dug for every ¢ € C5°(D). The
measure pg is called the capacitary distribution of K in D and it holds po(K) = £(ug, up) = cap(K)
(see [41l Section 3]).
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Remark 3.1. Let us consider a function h € WY (D, X) N C(D) such that h = 1 in a neighborhood
of K and h =0 in a neighborhood of 0D. With our notations and with Q@ = D \ K, we have

uo = B(hypq)-

As a matter of fact, by [41], Proposition 3.1] there exists a sequence y; € Lipg(D) with ¢; =1 in K
such that ¢; — ug in WD, X). The functions @; — h vanish on K and in a neighborhood of 0D.
We thus have p; —h € Wi (Q, X) and hence ug € Wi (Q, X).

With these notions, we can show that the existence of our barriers (and so the regularity) at some
point y is a local issue.

Lemma 3.2. Let ,Qq be open sets compactly contained in D, with Q0 C Qq. Let y € 02N 0Qy and
suppose there exists 6 > 0 such that QN Bs(y) = Qo N Bs(y). Then y is regular for Q if and only if
it 1s reqular for Q.

Proof.  Suppose first y is regular for Q. If ®(z) = d(x,y), by the proof of Proposition 2.5l the
function V;, = B(®gq) is a barrier. We want that Vo = Bo(®aq,) is a barrier at y for o, where
By denotes the operator we built up in the previous section related to €2g. To prove this, we will
not exploit that {)g is compactly contained in D. We claim there exists C' > 0 such that V5 < CV,
in 2: so we get condition (ii) in Definition [23] which is the one missing. Since Vj in g is bounded
by construction, we can take M > % such that Vo < M. Let us consider ¢ € C§°(RYN \ B% (v)),

0 <% <1, =1 in a neighborhood of Qy \. Bs(y). If C = %, we have

5 +
o= 0V < Co (§-%) +A-0)0h -0 +1-v)@- V)"

By noting that Vy — ® € W3 () and (1 — ) is supported in Bs(y), we get that the right hand side
of the above inequality belongs to W (2, X) and so does (Vo —CV,)*. By [Z2), we deduce the claim
and the fact that y is regular even for €.

Suppose now that y is regular for €2g. Since )y is compactly contained in D, we can find Dy C D
satisfying condition (IL7) with Qg C Dy. Fix p < § such that B,(y) C Dy. By the first part of

the proof, y is regular even for Dy (B% (y) ~ Qo) (for all positive integers k). We denote by uy

the capacitary potentials of B%(y) N Qo in Dy. We want to prove that V), := Z;ﬁ; 27k (1 — uy)

defines a barrier in . Let us first note that B,(y) ~ Q = B,(y) \ g for every positive r < p, and
that £V, = 0 in . Moreover, the assumptions on Dy assure that u are (equal a.e. to) continuous

functions on Dy~ (B e (y) ~ QO> (see [41l, Lemma 2.5]), vanishing on 0Dy and bounded by 1. Hence,
for any positive o, consider an integer ko such that B £ (y) C Bz(y) and a positive number m,
L 0
with m, < 27F0(1 — up (z)) for a.e. = € Do~ B,(y). We stress that the existence of such m,
0

is provided by a strong maximum principle (following from the Harnack inequality proved in [19]).

Thus, for v € CPRYN N B,(y)), 0 < ¢ < 1 with ¢ = 1 outside B, (y), we get ¥(m, — V)t <

Y(mgy —27F0(1 — ukL))+ = 0. Finally, the regularity of y and Remark B.1limply limos, .y ug(x) =
0

O — |

and V,(y) = 0. This proves that V), is a barrier at y for Q.
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The previous lemma allows us to consider, without any loss of generality, a domain D satisfying
condition ([L7)), and such that the conditions (L3)), (IL4), and (L.6]) hold true for any d-ball contained
in D. For such D, we can now introduce and exploit the Green function ¢ related to D. The main
result in [41, Theorem 3.9] is that

distq(x,0D) s distq(x,0D) S
C /
d(z,y)

(3.1) ds < g(z,y) <C

(l’)’ N ’ N d(z,y) ’BS(:U)’
for every x,y € D such that 0 < d(ac, y) < 10~ 2disty(x, D). In particular we deduce that g(z,y) —
400 as d(x,y) — 0 since |Bs(z)| < sV by the boundedness of the coefficients of the vector fields
X;’s in D. This fact and the continuity of g outside the diagonal (see [4I, Theorem 3.4]) imply also

ds,

that the Green kernel g is lower semicontinuous in D x D.

From now on, we fix 2 as a bounded open set compactly contained in D. For y € 00 and
p > 0 such that B,(y) C D, we denote K, = B,(y) \ {2 and by u, and p, the capacitary potential
and distribution of the compact set K,. More precisely, u, will denote the lower semi-continuous
representative of the capacitary potential of K,,, i.e.

up(x) = /g(w,y) diip(y)

(see [41, Lemma 3.5]). This function is continuous outside K, and in its interior, where it is respec-
tively less than and equal to 1. By lower semi-continuity it has to be bounded by 1 everywhere.

We want to prove the counterpart in our setting of some classical characterizations for the regularity
in terms of the behavior of u,. To do this, we mainly follow the arguments in [I2], Section 5]. We
stress that, unlike in [I2], we are not going to use fine properties of quasi-continuity and capacity.
We start with the following lemma, where we denote by W1 the dual space of V[/Ol(D7 X).

Lemma 3.3. Let pu be a positive Borel measure compactly supported in D. Suppose also p € WL,
Then

u(z) = /D o, y) du(y) € WD, X).

Proof. By the X-ellipticity and Lax-Milgram Theorem, there exists (a unique) v € W} (D, X) such
that £(v, ) = (4, @)y-1 4y, for any ¢ € WD, X). Moreover, if ¢ € C}(D), we have £(v,¢) =
[ ¢du. By arguing as in the proof in [41, Lemma 3.5], we actually have

(3.2) L(v, @) = /god,u for every ¢ € C(D) N Wy (D, X)

and [v(z)h(z)dz = [u(z)h(z)dx for any h € LP (for a fixed p > £: we remind that u € L¥ by [41
Theorem 3.4]). Since v € W} (D, X), we get u = v and the assertion. O
The following proposition is crucial to our aim.

Proposition 3.4. Let € W~ be a positive Borel measure compactly supported in D. Let us
consider uw(z) = [, g(x,y) du(y) (which belongs to Wy (D, X) for the last lemma), and suppose u is
bounded. Then

u(y) > liminf a(x) for any function & = u almost everywhere.
T—Y
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Proof. For any fixed a > 0, we put F,(t) = t,if t < a, Fy(t) =t — ﬁ(t —a)?, ifa <t < 3a,
and F,(t) = 2a if t > 3a. We consider h, = F,(g(y,-)) as in [33] Section 8]. We have h, €
W4 (D,X) N C(D). By monotone convergence we also get u(y) = limg_,1o0 [ ha(2)dp(z). In the
distributional sense, —LCh, = f, € L', where f,(t) can be thought as 5 (B(z)Vg(y,z), Vg(y,z)), if
a < g(y,z) < 3a, and it vanishes elsewhere. We note that f, € L' by the X-ellipticity and the fact
that g(y,-) is in W1 outside any neighborhood of {y}. Moreover f, > 0 and it is supported in a

compact K C D. We claim that

/ ha(2)dn(2) = [ u(o)fula) da

We know that £(h = [ () f.(z)dx for any ¢ € C3(D). Let p € L® N W (D, X). If we take
Y € C3°(D) with 0 § Qj) <1land w = 1 in a neighborhood of K, then we have (1—v)¢ € W} (D\K, X)
and £(hqa, (1—1)¢) = 0. On the other hand, the mollifiers (1)¢)1 converge both uniformly and in W3

to Y in K (see [16, Proposition 1.4]). Since £(hq, (Vp)1) = [(¥p)1 fa, we get L(hq, Yp) = [ ©fa.
Thus £(he,p) = [@fa for all ¢ € L N W3 (D, X), and in particula?r for ¢ = u. By ([B.2]) and the
symmetry of £ in W} x Wy, we get [ hq(z) du(z) = £(u, h) = £(h,u) = [u(z)fo(x) dz and the claim
is proved. Therefore

u(y) = lim [ w(x)fy(x)dex

a——+00

Now we can follow closely the arguments in [12]. Let us put J, = {x € D : g(y,z) > a}. The
set J, is compact and we denote by v, and v, respectively its capacitary potential and distribution.
Since vq(z) = [ g(x, z)dv,(2) is continuous at y € int(J,) and dJ, C {z € D : g(y,z) = a}, we have
1= va(y) = acap(J ). We also have v,(z) = 1g(y,z) outside J,, since they solve the same Dirichlet
problem for £ in D ~\ J, (see Remark B.], and note that g(y,-) is continuous up to the boundary
of D\ J,;). So we get % = £(Vq,vq) = a12 fD\J ( )WVa(y,z),Vg(y,x)), which implies [ f, = 1.
Hence, we finally deduce that u(y) = limg— 400 [ @(2)fo(z)dz > liminf, ,, a(z) for any function
u = u almost everywhere. O

We are now in the position to state and prove the following characterizations of the regularity of
a boundary point.

Proposition 3.5. Let y € 092. We have

(3.3) y 1is reqular iff limose—sy up(x) =1 for all p > 0,
(3.4) y is reqular iff  u(y) =1 forall p>0,
(3.5) y is not regular iff lim u,(y) = 0.

p—07t

Proof. We start with ([83]). Suppose y is regular. For the first part of the proof of Lemma B.2] y is
also regular for Qyp = D \ K, for any fixed p > 0. Then, Remark Bl implies limgsz—y u,(z) = 1.
Viceversa, if we suppose u, — 1 for every p, we can use the barrier V, := 75 27%(1 — ui) as in
the second part of Lemma

In order to prove (B.4]), we first note that the measure y, belongs to W1, In fact we have U <pd,up‘ =
|L(up, )| < C ||up||W& Hg0||W01 for any ¢ € C}(D). Moreover u, is bounded by 1. Hence we can apply
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Proposition B.4] with & = u, in D \ K, and equal to 1 in K,. We deduce that, for all positive p,
u,(y) > iminfp. g ,52 -y 4(r) = iminfp. x5y up(x). On the other hand, the lower semicontinuity
provides the opposite inequality. Hence we get

(3.6) up(y) = lim nf up(z).

Thus, (3.4)) follows from (B3] and the fact that u, < 1.

Let us turn to (3.5). If lim, o+ u,(y) = 0, then y is certainly not regular by ([3.4). Viceversa, if we
suppose that y is not regular, for some py we have u,,(y) < 1. We are going to adapt the arguments
in [I12] Lemma 5.7]. First we recognize that

(3.7) lim 9(y, z) dp,(z) = 0.
r—0+ Br(y)
This holds true by dominated convergence and by the fact that cap({y}) = 0 (see [41], Proposition 3.6])

which implies p,({y}) = 0. Thus, if we fix € > 0, there exists o < py such that fmg(y, z) dpy(z) <

)
e. Put up,(z) = fmg(x, z) dpp(z) + fD\T(y) g(z,2) du,(z) = v(z) + u(z). We know that v(y) < e
and v,u € W} (D, X) since we can apply Lemma Moreover, u(y) < uy(y) < 1 and w is
continuous in y. Hence, there exists 7o < & such that u < £(1 + up,(y)) in Bor,(y). We fix 7 < 7
and we put h(z) = $(1 — uy, (y))u-(z) — v(z) € W(D, X). Let us take a Cg°-function ¢ such that
0 < <1, =1 in a neighborhood of D \ By(y), and ¥ = 0 in a neighoborhood of K. Therefore
Yht € Wi (D \ K., X) and

.
(=" < (1= 0) (50— U (0) =t + 50+ 1n () = (=D)L= )" € WD~ K X)

since u,, can be approximated in Wl-norm by a sequence of functions which are identically 1 in
K,y 2 K,. Thus, h™ € W} (D \ K,, X). On the other hand

L(h, o) = —/()cpdup <0 forany p € Ci(D N K;), ¢ >0,
a\y
i.e. his a weak subsolution of Lu = 0. By the maximum principle proved in [19, Theorem 3.1], we
get supp. g, b < supy(p ) b =0 that is v > (1 =y, (y))u, almost everywhere in D\ K. But,
in D\ K,, v and u, are continuous and so v > (1 — up,(y))u, always in D \ K,. Hence, by (3.8),
we have lim infosgy v(z) > Iminfos,yy (1 — wp,(y)ur () = (1 — upy(y))ur(y). On the other
hand, if we set E = {z € K, : v > 3(1 —u,,(y))}, we have |K; \ E| = 0. By considering & = v in
(D~ K;)UFE and equal to 1 elsewhere, we can apply Proposition B.4] and deduce that £ > v(y) >
liminf, ., 9(z) = Iminfp. g, 55—y v(z) since v(z) > & > v(y) for € E (if e < 3(1 — up,(y))). In
conclusion we get £ > (1 — up, (y))u-(y) for any 7 < 7y which proves the desired implication. O
The characterization given by (B.5) will be crucial also to get the regularity for boundary points
with an exterior cone-type property. We will prove this fact at the end of the next section.

4. WIENER’S INTEGRAL AND REGULARITY

In this section we finally prove our Wiener criterion. In the following lemma we try to extrapolate
the essential tools in order to avoid the quasi-continuity issue for the capacitary potentials.
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Lemma 4.1. Let 0 < r < p. Then, in our notations we have
() p(Ky) < cap(K,)  and
(ii) there exists a positive constant C' (independent of r, p) such that

cap(Kz) < pp(K;) + Ceap(Kx )up(y).

Proof. Let gajp» and ¢’ be two sequence of functions in Lipg(D) approaching respectively u, and u,
in the W1(D, X)-norm and such that go? =1in K, ¢; =1 in K,. We have £(up, ur) = £(ur, up).
On one side we get

S(um Up) = JETOO'Q(UM QO;) = ]EI—&I-loo - 90? dpy = /’L'I‘(K’I”) = Cap(Kr)

since K, O K. On the other hand

Llup,ur) = lm L(up, ) = lim . Py dpp 2 lim /K @5 dptp = pp(Kr)

since we can assume ¢} > 0, and (i) is proved.
In order to prove (i), we first show that

(4.1) cap(Ky) <y (K)+ [ g,
Ko~NKr

We take ¢ € Cg°(D) with 0 < ¢ < 1 and ¢ = 1 in a compact neighborhood K of K,. Then
L(up, ur) = £(up, Yuy). Let us consider the mollifiers h; = (Yuz)1. Hence we get
J

L(up, ug) = Jginoog(upa hj) = jginoo Kk, hjdp, + /Kr hjdpup
< pp(Kp)+ lim hjdp, = py(Kr) +/ uzdpp
J=F0 JK K, Kp~Kr

since hj — z/mg in WK, X), h;j <1, and ¢u£ is continuous in a neighborhood of K, \ K,. As
in the first part, we have also E(ug,up) = cap(Ki) and (4I) is proved. Now we note that, if
x € K, \ K,, the L-harmonicity of the Green function and the Harnack inequality in [I9] provide
that g(z,§) < Cg(z,y) for any & € Ki" Thus we get

| wmdn@= [ ge9dn € duyla) < CennlK)un(y
Ko~Kr K,\NK, JKr

.4>

and the proof is complete. O
Let us now give the full statement of our main result and conclude the proof.

Theorem 4.2. A point y € ) is L-reqular if and only if

dist(y,0D)
/0 cap(K,)

p
dp = +o00.
1By (y)]
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Proof. Put R = dist(y,0D). By (B3, the statement is equivalent to the following

R
lim wu,(y) =0 iff / cap(K, dp < +o00.
ol ) P B,

p—0t

For small p, the estimates on the Green function (B.1]) show that u,(y) behaves like

R S
dsdp,(x).
/Kp /d(x7y) |Bs(y)’ p( )

This quantity is, up to constants, equivalent to

+00 R s
= Sy T (0 5) =K ).

The summation by parts and ([3.7) imply then

B s s
(4.2) up(y) is equivalent to cap(Kp)/ Bl ds + /p By )‘,up(K s)ds.

Suppose first that M = fOR cap(Ks )| Ba)] ds < +00. For any positive € there exists dg > 0 such that

f05° cap(Ks)m ds < e. Moreover, since s — cap(Kj) is increasing and tends to 0 as s — 0T (see
[41, Proposition 3.6]), there exists 0 < § < Jp such that cap(K,) < ecap(Ks,) for every s < d. By (i)
in Lemma [T and (£2) we get, for p < 0, that u,(y) is controlled from above by

8o s R S
cap( K ds+5/ cap(Kg)———ds+¢e < 2e+eM.
[ et s e ety

Therefore u,(y) — 0.

Viceversa, suppose lim,_,o+ u,(y) = 0. Take pg > 0 such that u,(y) < % for p < po, where C
is the constant appearing in (i) of Lemma [l That lemma infers that, for any r < p < py, we
have cap(Kz) < 2u,(K;). By the assumption and (.2)), we have also fo B |up( Kg)ds < +o0.
Therefore, for p < pg, by the doubling property we get

P P

4 S 4 S A2 P s
| ety <2 [t g e < g [l

which is finite. Hence also fOR cap(Ks )IB @y 48 < +oo. O
We finally observe that the X-ellipticity condition and the definition of capacity imply that cap(K,)
is in fact equivalent to

inf{HXqu |lu € W3 (D, X), u>1on K, in the W) (D, X) sense}.

This quantity depends just on the vector fields X7, ..., X,,. That is why the following corollary can
be directly deduced from our Wiener criterion.

Corollary 4.3. For a fized system of vector fields X, any operator in the class of the X -elliptic
operators defined by (I1l)-(12) has the same regular points for Q. In particular the L-regularity of
the boundary points of 2 does not depend on the coefficients b; of L (but only on the vector fields
X).
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We conclude with a geometric criterion for the regularity of a boundary point.

Proposition 4.4. Let Q) be an open set compactly contained in D and let y € 9Q. Suppose that
there exist r1, 8 > 0 such that

[Br(y) \ Q] = [K;[ = 6|Br(y)]  for any r €]0,71].
Then y is L-regular for any X -elliptic operator L.

Proof. Let us fix ro > 0 such that Bapaor,(y) C D. For any 0 < r < r¢, there exists D, satisfying
condition (L7) with Bsosr(y) C Dy C Baoar(y) (by [41l Lemma 3.8]). We denote by g, the Green
function of D, and we consider the function
1
ve(x) = = /KT gr(x,2)dz.

We note that for any x € Ba,(y) we have K, C Bs.(z), and d(x,z) < 3r < 10~2dist(x, D,) for
every © € By, (y) and z € Bs,(z). By [41, Theorem 3.9], g, satisfies the bounds in ([B1) for some C
independent of r. In order to obtain a bound for v,, we are going to use the following inequalities

Q@ n

|Br| > lL’ and [Bx| < lri?
|Bs| = As@ |Bs| = Bst

The first inequalities comes from the doubling condition (IL3]), whereas the second one follows from
the reverse doubling |B,| < 8 |Ba,| which locally holds true in our Carnot-Carathéodory setting (see
e.g. [IIl, Section 2]). Here p = log, % can be assumed less than 2, since § < 1 can be always thought

close to 1. Thus, for any = € Ba,(y), we get

dist(x,0Dr) C 3r dist(x,0Dr) s |B3 ($)|
ve(z) < ———dsdz = / sds+/ s
@< af ol BattTE ( : . B.(@)

C /9 (3r 406r 9 3)H
< 3 <2r2+ B) /3 1“d) C(2+ﬁ((2)—u) ((406)2“—32“)) =: (.

On the other hand, by exploiting the cone-type condition and assuming r < r1, we deduce

1 d dist(y,0Dy) S S
— >
’Ur(y) TQ/TgT Y,z)adz T2/T/d(y, y)| sdz

C s| K| dist(y,0Dr) s| Kr\ co (2 ,Q dist(y,0D:) .
= d d > — 4+ — Qq
r? </0 [B(y)| ”/T By ==\ 2 A/ s s

1 1
= 00+ ——(1-(303)>9) ) = ..
2+ a@=5 1-@9"9) =0
Hence, we can consider the function v, = ”—’; € W01 (D, X) and compare it to the capacitary potential
u, of K,. It is not difficult to see that
(O — up) ™ € W3(Dy N Ky X).
As a matter of fact, we can take 1» € C3°, with ¢» = 1 in an open neighborhood of K,, 0 < ¢ <1,
and supported in Ba,(y). Since (1 —¥)(0, —u,)T < (1 — )0, and (0, — u,)™ < (1 — u,), both
functions belong to Wi (D, \ K., X).

for 0<r<s.
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By the L£-harmonicity, we get 0, < u, in D, \ K, from the maximum principle ([2.2]) (and from the
continuity outside K,). Therefore

e i ()
ur(y) = lim nf ur(2) 2 lim inf or(z) 2 0r(y),

where the last inequality follows from the lower-semicontinuity of ¥, and the first equality is our
relation ([B.6). We have thus obtained that u,(y) > % for any small positive r. The characterization
B5) gives the regularity of y € 9Q and concludes the proof. a
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