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Abstract. In this note we prove a Wiener criterion of regularity of boundary points for the Dirichlet

problem related to X-elliptic operators in divergence form enjoying the doubling condition and the

Poincaré inequality. As a step towards this result, we exhibit some other characterizations of regularity

in terms of the capacitary potentials. Finally, we also show that a cone-type criterion holds true in

our setting.

1. Introduction

Let us consider an X-elliptic operator (in the sense of Lanconelli and Kogoj [29]) with measurable

coefficients, in the divergence form

(1.1) Lu =
∑N

i,j=1 ∂i(bi,j(x)∂ju).

The operator L is degenerate-elliptic but its degeneracy is controlled by a family X of vector fields

with suitable properties. More explicitly, we assume that the coefficients of the matrix B(x) =

(bi,j(x)) = (bj,i(x)) satisfy the so called X-ellipticity condition

(1.2) λ
∑m

j=1〈Xj(x), ξ〉
2 ≤ 〈B(x)ξ, ξ〉 ≤ Λ

∑m
j=1〈Xj(x), ξ〉

2,

for every ξ ∈ R
N and for every x in a bounded open set O ⊆ R

N . Here X = (X1, . . . , Xm) is a family

of locally Lipschitz vector fields in R
N with a well-defined control distance d which is continuous

w.r.t. the Euclidean topology. We suppose that the following local doubling condition holds for the

d-metric balls Bs(x): for every compact set K of RN , there exist A > 1 and R0 > 0 such that

(1.3) 0 < |B2r| ≤ A|Br|,

for every d-ball Br centered at a point of K and of radius r ≤ R0. Hereafter we denote by |E| the

Lebesgue measure of E. We also assume the following Poincaré inequality: for every compact set K

of RN there exists a positive constant C such that

(1.4)

∫

—
Br

|u− ur| ≤ Cr

∫

—
B2r

|Xu|,

for every C1 function u and for every d-ball Br centered at a point of K and of radius r ≤ R0. We

have used the notations

ur =

∫

—
Br

u =
1

|Br|

∫

Br

u, and |Xu|2 =
m
∑

j=1

(Xju)
2.
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We remark that, for example, the PDOs of the form

∑m
i,j=1X

∗
i (ai,j(x)Xju) and

∑m
i,j=1Xi(ai,j(x)Xju),

where (ai,j) is an m×m uniformly elliptic symmetric matrix of measurable functions, can be written

(up to l.o.t.) as X-elliptic operators in the form (1.1)-(1.2). Moreover any second order linear PDO

with nonnegative characteristic form and sufficiently smooth coefficients is X-elliptic w.r.t. a suitable

family X of vector fields. Indeed, if the matrix (ai,j) is nonnegative definite and ai,j ∈ C2, then, by a

result of Phillips and Sarason [39], there exists a nonnegative definite locally Lipschitz matrix (αi,j)

such that
∑N

i,j=1 ai,j(x)ξiξj =
∑N

h=1(
∑N

j=1 αh,jξj)
2 for every ξ ∈ R

N . We refer to [29, 19] for more

details and comments.

The notion of X-ellipticity was explicitly introduced by Lanconelli and Kogoj in [29] where a

Harnack inequality was proved for the equation Lu = 0, but the same ideas were already used, for

the first time in a non-euclidean context, by Franchi and Lanconelli in [13, 14, 15]. Several authors

have enlightened the fundamental role of conditions (1.3) and (1.4) in the study of PDEs modeled on

vector fields, see e.g. the survey in [20] and references therein. See also the recent papers [26, 27, 28]

for some other examples of X-elliptic operators (not in the Hörmander class) enjoying (1.3)-(1.4).

Gutiérrez and Lanconelli [19] established maximum principles and homogeneous Harnack inequalities

for X-elliptic operators with lower order terms and, in the case of dilation invariant vector fields X,

nonhomogeneous Harnack inequalities and Liouville theorems. Other Liouville theorems are also

proved in [25]. Some estimates of the Green function for the X-elliptic operator L were proved in

[34] in the special case that the measure of the d-balls behaves like a power rQ of the radius r and,

only recently, in [41] without this restriction. A nonhomogeneous Harnack inequality is also proved

in [41]. We also refer to [5, 6, 11, 24, 32, 43] for other related papers.

Before proceeding, we would like to give some motivation for our research, and more generally

for the study of X-elliptic operators. In the last decades there has been a growing interest in

second order linear and nonlinear partial differential equations of sub-elliptic type. In particular the

underlying metric and/or algebraic properties have been investigated and successfully exploited in

order to understand the qualitative and quantitative behavior of the solutions. These equations arise

in many different settings: geometric theory of several complex variables, curvature problems for

CR-manifolds, sub-Riemannian geometry, diffusion processes, control theory, mathematical models

in finance and in the description of the visual cortex, see e.g., [1, 7, 9, 10, 17, 20, 22, 23, 30, 31,

35, 38, 40, 42]. The common features of such equations are the following ones: their characteristic

forms are non-negative definite, and, even if their ellipticity directions do not span the whole ambient

space, they do enjoy an underlying geometry with connectivity properties. Tipically the directions

of non-ellipticity are recovered by commutations, as in the case of the operators structured on vector

fields satisfying the celebrated Hörmander condition.

Our aim is to prove a Wiener criterion of regularity of boundary points for the Dirichlet problem

related to the X-elliptic operator L in (1.1). In order to state our results, we need to go into some

more details. Let us fix a compact set K0 of RN with interior containing the closure of O and set

Q = log2A, where A is the doubling constant in (1.3) which can be assumed such that Q > 2. We
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recall that our assumptions on the vector fields Xj imply the Sobolev inequality

(1.5) ‖u‖ 2Q
Q−2

≤ C(D) ‖Xu‖2 for every u ∈ C1
0 (D)

on every open set D with diameter small enough and with closure contained in the interior of K0

(see e.g. [20]). Let now D ⊆ O be a bounded domain supporting the above Sobolev inequality. We

shall assume the following condition:

(1.6) the boundaries of the small d-balls contained in D are connected .

This ensures the validity of a crucial Harnack inequality on d-rings, which is exploited in [41] to

prove two-sided pointwise estimates for the Green function of L. We would like here to point out

some more comments on condition (1.6). In the (elliptic) case of N vector fields X1, . . . , XN linearly

independent at any point, it is known that the small spheres of the control metric are homeomorphic

to the euclidean ones and so are connected. But, even in this case, the same property may fail to be

true if the sphere is not small. We can convince ourselves of this fact by taking in R
2 vector fields

in the form X1 = ϕ(x)∂x1
, X2 = ϕ(x)∂x2

, with 0 < δ ≤ ϕ ≤ 1, ϕ(x0) = δ, and ϕ ≡ 1 outside a

neighborhood of x0, so that the d-balls centered far enough from x0 have disconnected boundaries for

some radii. In the sub-Riemannian case, it is proved in [2] that small d-spheres are homeomorphic to

euclidean spheres (and so are connected) if X is a step 2 distribution of vector fields, or if our vector

fields are invariant under some group of dilations (see also [35]).

Under the hypotheses we have just fixed, we shall prove (see Theorem 4.2 below) that the L-

regularity of a boundary point y of an open set Ω compactly contained in D is related to the behavior

(near ρ = 0) of the integral
∫ δy

0
cap

(

Bρ(y)r Ω
) ρ

|Bρ(y)|
dρ.

We refer to the beginning of Section 3 for the definition of the L-capacity cap. By using the doubling

property, it is easy to recognize that the behavior of this integral is equivalent to the one of the series

∑

k

λ2kcap(Bλk(y)r Ω)

|Bλk(y)|
,

for 0 < λ < 1 (see [37]).

As in the classical elliptic case (see Littman, Stampacchia, and Weinberger [33]), our criterion al-

lows us to deduce that the L-regularity of a boundary point of Ω does not actually depend on the

coefficients bij of the operator L but just on the vector fields Xj ’s (see Corollary 4.3).

We recall that Wiener tests of regularity were proved in [33, 18] for classical elliptic equations

with measurable coefficients, in [21, 36, 37] for Hörmander operators, in [12, 8] for degenerate elliptic

equations with weights, in [3, 4] for Poincaré-Dirichlet forms. The approach we follow in the proof of

our Wiener criterion is inspired by the papers [33, 12]. In particular, in the position of the problem

we adapt the classical formulation given in [33]. In our exposition we try to enlight what are the

tools really needed in order to get the result. Indeed, we do not use quasicontinuity arguments nor

multiple characterizations of capacity as done in [33, 12].
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The estimates of the Green function proved in [41] are our starting point. We explicitly remark

that in [41] the following further hypothesis on D was assumed: there exist r1, θ > 0 such that

(1.7) |Br(x) \D| ≥ θ|Br(x)| for every r ∈]0, r1] and x ∈ ∂D.

Moreover, it was also assumed that the conditions (1.3), (1.4), and (1.6) hold true for any d-ball con-

tained in D. Here these further hypotheses are not necessary because of the local nature of the notion

of regularity (provided by Lemma 3.2 below) and the fact that any domain can be approximated by

domains satisfying condition (1.7) (see [41, Lemma 3.7]).

This note is organized as follows. In Section 2 we introduce the notions of barrier and of regularity

of boundary points. To this aim we first prove and exploit a Caccioppoli-type estimate. In Section

3 we study the relationship between regularity and capacitary potentials, and we prove some char-

acterizations of the regularity. In Section 4 we conclude the proof of our Wiener test. Moreover we

also provide a cone criterion which ensures the regularity at a boundary point where condition (1.7)

is satisfied.

2. Regularity and barriers

For any open set Ω ⊆ D, we define W 1
0 (Ω, X) as the closure of C1

0 (Ω) w.r.t. the norm ‖Xu‖2,

whereas W 1(Ω, X) = {u ∈ L2(Ω) |Xu ∈ L2(Ω)} is equipped with the norm ‖u‖2 + ‖Xu‖2.

By using some results of good approximation for functions in W 1(Ω, X) (see e.g. [16]), one can

prove that many general properties about W 1-functions hold true also in our setting. For instance,

the following facts will be used several times throughout the paper without further comments. Any

function in W 1(Ω, X) vanishing in a neighborhood of ∂Ω belongs to W 1
0 (Ω, X). If f ∈ W 1(Ω, X)

and 0 ≤ f ≤ g a.e in Ω for some g ∈ W 1
0 (Ω, X), then f ∈ W 1

0 (Ω, X). If f ∈ W 1(Ω, X) is continuous

in a neighborhood of ∂Ω and f = 0 on ∂Ω, then f ∈W 1
0 (Ω, X).

Let us recall the definition of solution to the equation Lu = 0. To this aim, let us consider the

bilinear form

(2.1) L(u, v) =

∫

Ω
〈B(x)∇u,∇v〉 dx

for u ∈ C1(Ω) and v ∈ C1
0 (Ω). By using the uniform X-ellipticity of L and the Sobolev inequality

(1.5), L can be extended continuously to W 1(Ω, X) × W 1
0 (Ω, X). We shall say that a function

u ∈W 1(Ω, X) is a (weak) solution to Lu = 0 in Ω, if L(u, v) = 0 for every v ∈W 1
0 (Ω, X). A function

u ∈ W 1
loc(Ω, X) will be called a (weak) solution to the same equation in Ω if it is a weak solution

in every domain with closure contained in Ω. In [19, Proposition 2.4], the authors showed that, for

any h ∈ W 1(Ω, X), there exists a unique function u ∈ W 1(Ω, X) solution of Lu = 0 in Ω such that

u− h ∈W 1
0 (Ω, X). We note that the application h 7→ u clearly factors through the quotient, i.e. we

have B̂ : W 1(Ω,X)
W 1

0
(Ω,X)

→W 1(Ω, X).

For u ∈W 1(Ω, X) and l ∈ R, we will also say that u ≤ l on ∂Ω if

(u− l)+ = max{u− l, 0} ∈W 1
0 (Ω, X).
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We denote sup∂Ω u = inf{l ∈ R : u ≤ l on ∂Ω}. In [19, Theorem 3.1], the following maximum

principle is proved: if u ∈W 1(Ω, X) is a weak solution of Lu = 0 in Ω, then we have the inequality

(2.2) sup
Ω
u+ ≤ sup

∂Ω
u+.

By definition, it is not difficult to show that sup∂Ω |h| defines actually a norm in

H =
{h ∈W 1(Ω, X) : sup∂Ω |h| < +∞}

W 1
0 (Ω, X)

,

which we will denote by ‖·‖H . Thus, the maximum principle ensures the boundedness of the map

B̃ : H −→ L∞(Ω)

h 7→ u = B̂h.

To introduce the notion of regularity, we need to associate a solution of Lu = 0 in Ω to any function

in C(∂Ω). We are going to follow the lines of the procedure of the celebrated paper [33] which can

be adapted to our context. We start by proving the following Caccioppoli-type estimate.

Lemma 2.1. Let u ∈W 1
loc(Ω, X) be a weak solution to Lu = 0 in Ω. There exists C > 0 (independent

of u) such that, for any compact K ⊂ Ω, we have

‖Xu‖L2(K) ≤
C

dist(K, ∂Ω)
‖u‖L2(Ω) ,

where dist(K, ∂Ω) denotes the d-distance between K and ∂Ω.

Proof. First we prove that, if 0 < ρ < r,

(2.3) ‖Xu‖L2(Bρ)
≤

C

r − ρ
‖u‖L2(Br)

for any ball Br compactly contained in Ω (and thus for any ball in Ω). Let us take a continuous

nonnegative cut-off function η satisfying

η ≡ 1 in Bρ, η ≡ 0 outside Br, and |Xη| ≤
c

r − ρ
a.e.

for some positive constant c (for the existence of such a function see e.g. [16]). By the fact that

L(u, η2u) = 0 and condition (1.2), we get

λ

∫

Br

η2 |Xu|2 ≤ 2Λ

∫

Br

η |u| |Xu| |Xη| ≤
λ

2

∫

Br

η2 |Xu|2 +
2Λ2

λ

∫

Br

u2 |Xη|2 .

Hence we have
∫

Bρ

|Xu|2 ≤

∫

Br

η2 |Xu|2 ≤
4Λ2

λ2

∫

Br

u2 |Xη|2 ≤
4Λ2

λ2
c2

(r − ρ)2

∫

Br

u2

which proves (2.3). We now use a covering argument to conclude the proof. Let {Brj (xj)} be a

countable family of d-metric balls such that

Ω =
⋃

j

Brj (xj), rj =
3

20
dist(B rj

3

(xj), ∂Ω), and
∑

j

χB 4
3
rj
(xj) ≤ C1χΩ
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for some positive constant C1 (see [16, Lemma 2.15]), where χE denotes the characteristic function

of the set E. Let us fix a compact set K ⊂ Ω and let F = {j ∈ N : Brj (xj)∩K 6= ∅}. Thus, for any

j ∈ F , we have

dist(K, ∂Ω) ≤ 2rj + dist(Brj (xj), ∂Ω) ≤
26

3
rj .

Hence, since B 4

3
rj
(xj) ⊆ Ω and by (2.3), we get

‖Xu‖2L2(K) ≤
∑

j∈F

‖Xu‖2L2(Brj
(xj))

≤
∑

j∈F

C2

(43rj − rj)2
‖u‖2L2(B 4

3
rj
(xj))

≤ C1
(26C)2

(dist(K, ∂Ω))2
‖u‖2L2(Ω) .

�

Let us put

B = {u ∈W 1
loc(Ω, X) : ‖u‖

B
= ‖u‖L∞(Ω) + sup

K⊂⊂Ω
dist(K, ∂Ω) ‖Xu‖L2(K) < +∞}.

The space (B, ‖·‖
B
) is a Banach space, and the inclusion in W 1

loc(Ω, X) is continuous. The previous

lemma tells us that the linear map B̃ : H −→ B is well-defined and bounded.

Let us consider also the space C = W 1(Ω,X)∩C(Ω)

C0(Ω)
, where C0(Ω) is the space of continuous functions in Ω

vanishing on ∂Ω. By Tietze extension theorem, it can be thought as a subspace of (C(∂Ω),max∂Ω |·|).

Moreover, by Stone-Weierstrass theorem, C is dense in C(∂Ω).

By the inclusion map W 1(Ω, X) ∩ C(Ω) →֒ {h ∈ W 1(Ω, X) : sup∂Ω |h| < +∞}, we have a well-

defined map j : C → H with ‖jϕ‖H ≤ max∂Ω |ϕ|. We define B = B̃ ◦ j. By continuous linear

extension, we can extend it to a linear and bounded map

B : C(∂Ω) → B.

By (2.2), it is easy to see that supΩBϕ ≤ max∂Ω ϕ for any ϕ ∈ C(∂Ω). Furthermore, by density, the

W 1
loc(Ω, X)-function Bϕ is a weak solution to L(Bϕ) = 0 in Ω for every ϕ. The Harnack inequality

in [19, Theorem 4.1] ensures the continuity in Ω of the functions Bϕ. Thus, we are finally in the

position to give the definition of regular points.

Definition 2.2. A point y ∈ ∂Ω is said to be (L-)regular if, for any ϕ ∈ C(∂Ω), we have

lim
Ω∋x→y

Bϕ(x) = ϕ(y).

Arguing as in [33, Lemma 3.1], we can prove that it is enough to check the regularity condition

just for all the functions ϕ ∈ C.

The notion of regularity is classically related with barrier functions. It seems natural to model our

definition of barrier on the maximum principle (2.2).

Definition 2.3. A function Vy ∈W 1(Ω, X) is called a barrier at y ∈ ∂Ω if

(i) Vy is a solution to LVy = 0 in Ω;

(ii) limΩ∋x→y Vy(x) = 0;

(iii) for every ρ > 0 (small enough) there exists ψ ∈ C∞
0 (RN

rBρ(y)), 0 ≤ ψ ≤ 1 with ψ ≡ 1 in a

neighborhood of ∂ΩrB2ρ(y) and there exists m > 0 such that ψ(m− Vy)
+ ∈W 1

0 (Ω, X).
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Remark 2.4. We note that condition (ii) in the previous definition makes sense since Vy is contin-

uous by condition (i). Moreover, we stress that a barrier function has to be nonnegative in Ω. As

a matter of fact, for any positive ε, there exists ρ such that Vy(x) ≥ −ε if x ∈ Ω with d(x, y) ≤ 2ρ.

Fixed such a ρ, let us consider ψ and m as in condition (iii). We have

0 ≤ (−ε− Vy)
+ = ψ(−ε− Vy)

+ + (1− ψ)(−ε− Vy)
+ ≤ ψ(m− Vy)

+ ∈W 1
0 (Ω, X).

Thus, (−ε− Vy)
+ ∈W 1

0 (Ω, X) and L(−ε− Vy) = 0. By (2.2), we get Vy ≥ −ε in Ω for any ε > 0.

Proposition 2.5. A point y ∈ ∂Ω is regular if and only if there exists a barrier Vy at y.

Proof. Suppose first y is regular. Put Φ(x) = d(x, y). The function Φ belongs to W 1(Ω, X) ∩C(Ω)

(see e.g. [16]). We denote by ϕ its restriction to ∂Ω and we consider Vy = Bϕ. By definition,

since ϕ ∈ C, Vy ∈ W 1(Ω, X) (and not just in W 1
loc(Ω, X)). The function Vy is actually a barrier.

Conditions (i) and (ii) follow indeed by construction and regularity assumption. Moreover, if we

fix a positive ρ and we consider a C∞
0 nonnegative function ψ which vanishes in Bρ(y), we have

0 ≤ ψ(ρ− Vy)
+ ≤ ψ(ρ−Φ)+ + ψ(Φ− Vy)

+ = ψ(Φ− Vy)
+ ∈W 1

0 (Ω, X). Thus, even condition (iii) is

satisfied.

Suppose now the existence of a barrier Vy. For what we said after Definition 2.2, it is enough to

check that Bϕ(x) → ϕ(y) as x → y for any ϕ ∈ C. Let us consider Φ ∈ W 1(Ω, X) ∩ C(Ω) whose

restriction is a fixed ϕ ∈ C. Put M = maxΩ |Φ|. By continuity, for any positive ε, there exists ρ

such that |Φ(x)− Φ(y)| ≤ ε if x ∈ Ω with d(x, y) ≤ 2ρ. Fixed such a ρ, since we have a barrier we

can consider ψ and m as in condition (iii). We get 0 ≤ h(x) := (Φ(x) − Φ(y) − ε − 2M
m
Vy(x))

+ ≤

ψ(2M − 2M
m
Vy)

+ ∈W 1
0 (Ω, X) by using that Vy ≥ 0. Hence we have 0 ≤ (Bϕ−Φ(y)− ε− 2M

m
Vy)

+ ≤

h + (Bϕ − Φ)+ ∈ W 1
0 (Ω, X). Since L(Bϕ − Φ(y) − ε − 2M

m
Vy) = 0 in Ω, the maximum principle

implies that Bϕ ≤ Φ(y) + ε+ 2M
m
Vy in Ω. Considering also h̃ = (Φ(y)− Φ− ε− 2M

m
Vy)

+, we get at

the end

|Bϕ− Φ(y)| ≤ ε+
2M

m
Vy in Ω.

The fact that Vy(x) → 0 as x→ y and the arbitrariness of ε complete the proof. �

3. Capacitary potentials and regularity

Given a compact set K ⊆ D, we define the (L-)capacity of K in D as

cap(K) = inf{L(u, u) |u ∈W 1
0 (D,X), u ≥ 1 on K in the W 1

0 (D,X) sense}.

We say that u ≥ c on K in the W 1
0 (D,X) sense, if there exists a sequence ϕj ∈ Lip0(D) (Lipschitz

functions compactly supported in D) such that ϕj ≥ c on K and ϕj → u in W 1(D,X). We shall also

say that u = c on K in the W 1
0 sense if both u ≥ c and −u ≥ −c on K in the W 1

0 sense. Because of

the X-ellipticity condition, it can be showed that there exists a unique u0 ∈ W 1
0 (D,X) with u ≥ 1

on K in the W 1
0 (D,X) sense such that cap(K) = L(u0, u0). The function u0 is called the capacitary

potential of K in D. It is also a weak solution to Lu0 = 0 in D \ K. Furthermore, there exists

a positive measure µ0 supported on ∂K such that L(u0, ϕ) =
∫

ϕ dµ0 for every ϕ ∈ C∞
0 (D). The

measure µ0 is called the capacitary distribution of K in D and it holds µ0(K) = L(u0, u0) = cap(K)

(see [41, Section 3]).



8 G. TRALLI, F. UGUZZONI

Remark 3.1. Let us consider a function h ∈ W 1(D,X) ∩ C(D) such that h ≡ 1 in a neighborhood

of K and h ≡ 0 in a neighborhood of ∂D. With our notations and with Ω = D rK, we have

u0 = B(h|∂Ω).

As a matter of fact, by [41, Proposition 3.1] there exists a sequence ϕj ∈ Lip0(D) with ϕj ≡ 1 in K

such that ϕj → u0 in W 1(D,X). The functions ϕj − h vanish on K and in a neighborhood of ∂D.

We thus have ϕj − h ∈W 1
0 (Ω, X) and hence u0 ∈W 1

0 (Ω, X).

With these notions, we can show that the existence of our barriers (and so the regularity) at some

point y is a local issue.

Lemma 3.2. Let Ω,Ω0 be open sets compactly contained in D, with Ω ⊆ Ω0. Let y ∈ ∂Ω ∩ ∂Ω0 and

suppose there exists δ > 0 such that Ω ∩ Bδ(y) = Ω0 ∩ Bδ(y). Then y is regular for Ω if and only if

it is regular for Ω0.

Proof. Suppose first y is regular for Ω. If Φ(x) = d(x, y), by the proof of Proposition 2.5, the

function Vy = B(Φ|∂Ω) is a barrier. We want that V0 = B0(Φ|∂Ω0
) is a barrier at y for Ω0, where

B0 denotes the operator we built up in the previous section related to Ω0. To prove this, we will

not exploit that Ω0 is compactly contained in D. We claim there exists C > 0 such that V0 ≤ CVy
in Ω: so we get condition (ii) in Definition 2.3, which is the one missing. Since V0 in Ω0 is bounded

by construction, we can take M > δ
2 such that V0 ≤ M . Let us consider ψ ∈ C∞

0 (RN
r B δ

2

(y)),

0 ≤ ψ ≤ 1, ψ ≡ 1 in a neighborhood of Ω0 rBδ(y). If C = 2M
δ
, we have

(V0 − CVy)
+ ≤ Cψ

(

δ

2
− Vy

)+

+ (1− ψ)(V0 − Φ)+ + (1− ψ)(Φ− Vy)
+.

By noting that V0 −Φ ∈W 1
0 (Ω0) and (1− ψ) is supported in Bδ(y), we get that the right hand side

of the above inequality belongs to W 1
0 (Ω, X) and so does (V0−CVy)

+. By (2.2), we deduce the claim

and the fact that y is regular even for Ω0.

Suppose now that y is regular for Ω0. Since Ω0 is compactly contained in D, we can find D0 ⊆ D

satisfying condition (1.7) with Ω0 ⊂ D0. Fix ρ < δ such that Bρ(y) ⊂ D0. By the first part of

the proof, y is regular even for D0 r

(

B ρ
k
(y)r Ω0

)

(for all positive integers k). We denote by uk

the capacitary potentials of B ρ
k
(y) r Ω0 in D0. We want to prove that Vy :=

∑+∞
k=2 2

−k(1 − uk)

defines a barrier in Ω. Let us first note that Br(y) r Ω = Br(y) r Ω0 for every positive r ≤ ρ, and

that LVy = 0 in Ω. Moreover, the assumptions on D0 assure that uk are (equal a.e. to) continuous

functions on D0r

(

B ρ
k
(y)r Ω0

)

(see [41, Lemma 2.5]), vanishing on ∂D0 and bounded by 1. Hence,

for any positive σ, consider an integer k0 such that B ρ
k0

(y) ⊂ Bσ
2
(y) and a positive number mσ

with mσ ≤ 2−k0(1 − u ρ
k0

(x)) for a.e. x ∈ D0 r Bσ(y). We stress that the existence of such mσ

is provided by a strong maximum principle (following from the Harnack inequality proved in [19]).

Thus, for ψ ∈ C∞
0 (RN

r Bσ(y)), 0 ≤ ψ ≤ 1 with ψ ≡ 1 outside B2σ(y), we get ψ(mσ − Vy)
+ ≤

ψ(mσ − 2−k0(1− u ρ
k0

))+ = 0. Finally, the regularity of y and Remark 3.1 imply limΩ∋x→y uk(x) = 1

and Vy(y) = 0. This proves that Vy is a barrier at y for Ω. �
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The previous lemma allows us to consider, without any loss of generality, a domain D satisfying

condition (1.7), and such that the conditions (1.3), (1.4), and (1.6) hold true for any d-ball contained

in D. For such D, we can now introduce and exploit the Green function g related to D. The main

result in [41, Theorem 3.9] is that

(3.1) C−1

∫ distd(x,∂D)

d(x,y)

s

|Bs(x)|
ds ≤ g(x, y) ≤ C

∫ distd(x,∂D)

d(x,y)

s

|Bs(x)|
ds,

for every x, y ∈ D such that 0 < d(x, y) ≤ 10−2distd(x, ∂D). In particular we deduce that g(x, y) →

+∞ as d(x, y) → 0 since |Bs(x)| ≤ csN by the boundedness of the coefficients of the vector fields

Xj ’s in D. This fact and the continuity of g outside the diagonal (see [41, Theorem 3.4]) imply also

that the Green kernel g is lower semicontinuous in D ×D.

From now on, we fix Ω as a bounded open set compactly contained in D. For y ∈ ∂Ω and

ρ > 0 such that Bρ(y) ⊂ D, we denote Kρ = Bρ(y) r Ω and by uρ and µρ the capacitary potential

and distribution of the compact set Kρ. More precisely, uρ will denote the lower semi-continuous

representative of the capacitary potential of Kρ, i.e.

uρ(x) =

∫

g(x, y) dµρ(y)

(see [41, Lemma 3.5]). This function is continuous outside Kρ and in its interior, where it is respec-

tively less than and equal to 1. By lower semi-continuity it has to be bounded by 1 everywhere.

We want to prove the counterpart in our setting of some classical characterizations for the regularity

in terms of the behavior of uρ. To do this, we mainly follow the arguments in [12, Section 5]. We

stress that, unlike in [12], we are not going to use fine properties of quasi-continuity and capacity.

We start with the following lemma, where we denote by W−1 the dual space of W 1
0 (D,X).

Lemma 3.3. Let µ be a positive Borel measure compactly supported in D. Suppose also µ ∈ W−1.

Then

u(x) :=

∫

D

g(x, y) dµ(y) ∈W 1
0 (D,X).

Proof. By the X-ellipticity and Lax-Milgram Theorem, there exists (a unique) v ∈W 1
0 (D,X) such

that L(v, ϕ) = 〈µ, ϕ〉W−1,W0
for any ϕ ∈ W 1

0 (D,X). Moreover, if ϕ ∈ C1
0 (D), we have L(v, ϕ) =

∫

ϕdµ. By arguing as in the proof in [41, Lemma 3.5], we actually have

(3.2) L(v, ϕ) =

∫

ϕdµ for every ϕ ∈ C(D) ∩W 1
0 (D,X)

and
∫

v(x)h(x) dx =
∫

u(x)h(x) dx for any h ∈ Lp (for a fixed p > Q
2 : we remind that u ∈ Lp′ by [41,

Theorem 3.4]). Since v ∈W 1
0 (D,X), we get u = v and the assertion. �

The following proposition is crucial to our aim.

Proposition 3.4. Let µ ∈ W−1 be a positive Borel measure compactly supported in D. Let us

consider u(x) =
∫

D
g(x, y) dµ(y) (which belongs to W 1

0 (D,X) for the last lemma), and suppose u is

bounded. Then

u(y) ≥ lim inf
x→y

ũ(x) for any function ũ = u almost everywhere.
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Proof. For any fixed a > 0, we put Fa(t) = t, if t ≤ a, Fa(t) = t − 1
4a(t − a)2, if a ≤ t ≤ 3a,

and Fa(t) = 2a if t ≥ 3a. We consider ha = Fa(g(y, ·)) as in [33, Section 8]. We have ha ∈

W 1
0 (D,X) ∩ C(D). By monotone convergence we also get u(y) = lima→+∞

∫

ha(z)dµ(z). In the

distributional sense, −Lha = fa ∈ L1, where fa(t) can be thought as 1
2a 〈B(x)∇g(y, x),∇g(y, x)〉, if

a ≤ g(y, x) ≤ 3a, and it vanishes elsewhere. We note that fa ∈ L1 by the X-ellipticity and the fact

that g(y, ·) is in W 1 outside any neighborhood of {y}. Moreover fa ≥ 0 and it is supported in a

compact K ⊂ D. We claim that
∫

ha(z) dµ(z) =

∫

u(x)fa(x) dx.

We know that L(ha, ϕ) =
∫

ϕ(x)fa(x)dx for any ϕ ∈ C1
0 (D). Let ϕ ∈ L∞ ∩W 1

0 (D,X). If we take

ψ ∈ C∞
0 (D) with 0 ≤ ψ ≤ 1 and ψ ≡ 1 in a neighborhood ofK, then we have (1−ψ)ϕ ∈W 1

0 (DrK,X)

and L(ha, (1−ψ)ϕ) = 0. On the other hand, the mollifiers (ψϕ) 1

n
converge both uniformly and inW 1

0

to ψϕ in K (see [16, Proposition 1.4]). Since L(ha, (ψϕ) 1

n
) =

∫

(ψϕ) 1

n
fa, we get L(ha, ψϕ) =

∫

ϕfa.

Thus L(ha, ϕ) =
∫

ϕfa for all ϕ ∈ L∞ ∩W 1
0 (D,X), and in particular for ϕ = u. By (3.2) and the

symmetry of L inW 1
0 ×W

1
0 , we get

∫

ha(z) dµ(z) = L(u, h) = L(h, u) =
∫

u(x)fa(x) dx and the claim

is proved. Therefore

u(y) = lim
a→+∞

∫

u(x)fa(x) dx.

Now we can follow closely the arguments in [12]. Let us put Ja = {x ∈ D : g(y, x) ≥ a}. The

set Ja is compact and we denote by va and νa respectively its capacitary potential and distribution.

Since va(x) =
∫

g(x, z)dνa(z) is continuous at y ∈ int(Ja) and ∂Ja ⊆ {x ∈ D : g(y, x) = a}, we have

1 = va(y) = acap(Ja). We also have va(x) =
1
a
g(y, x) outside Ja, since they solve the same Dirichlet

problem for L in D r Ja (see Remark 3.1, and note that g(y, ·) is continuous up to the boundary

of D r Ja). So we get 1
a
= L(va, va) = 1

a2

∫

DrJa
〈B(x)∇g(y, x),∇g(y, x)〉, which implies

∫

fa = 1.

Hence, we finally deduce that u(y) = lima→+∞

∫

ũ(x)fa(x) dx ≥ lim infx→y ũ(x) for any function

ũ = u almost everywhere. �

We are now in the position to state and prove the following characterizations of the regularity of

a boundary point.

Proposition 3.5. Let y ∈ ∂Ω. We have

(3.3) y is regular iff limΩ∋x→y uρ(x) = 1 for all ρ > 0,

(3.4) y is regular iff uρ(y) = 1 for all ρ > 0,

(3.5) y is not regular iff lim
ρ→0+

uρ(y) = 0.

Proof. We start with (3.3). Suppose y is regular. For the first part of the proof of Lemma 3.2, y is

also regular for Ω0 = D rKρ, for any fixed ρ > 0. Then, Remark 3.1 implies limΩ∋x→y uρ(x) = 1.

Viceversa, if we suppose uρ → 1 for every ρ, we can use the barrier Vy :=
∑+∞

k=2 2
−k(1 − u ρ

k
) as in

the second part of Lemma 3.2.

In order to prove (3.4), we first note that the measure µρ belongs toW
−1. In fact we have

∣

∣

∫

ϕdµρ
∣

∣ =

|L(uρ, ϕ)| ≤ C ‖uρ‖W 1
0

‖ϕ‖W 1
0
for any ϕ ∈ C1

0 (D). Moreover uρ is bounded by 1. Hence we can apply



WIENER CRITERION FOR X-ELLIPTIC OPERATORS 11

Proposition 3.4 with ũ = uρ in D r Kρ and equal to 1 in Kρ. We deduce that, for all positive ρ,

uρ(y) ≥ lim infDrKρ∋x→y ũ(x) = lim infDrKρ∋x→y uρ(x). On the other hand, the lower semicontinuity

provides the opposite inequality. Hence we get

(3.6) uρ(y) = lim inf
Ω∋x→y

uρ(x).

Thus, (3.4) follows from (3.3) and the fact that uρ ≤ 1.

Let us turn to (3.5). If limρ→0+ uρ(y) = 0, then y is certainly not regular by (3.4). Viceversa, if we

suppose that y is not regular, for some ρ0 we have uρ0(y) < 1. We are going to adapt the arguments

in [12, Lemma 5.7]. First we recognize that

(3.7) lim
r→0+

∫

Br(y)
g(y, z) dµρ(z) = 0.

This holds true by dominated convergence and by the fact that cap({y}) = 0 (see [41, Proposition 3.6])

which implies µρ({y}) = 0. Thus, if we fix ε > 0, there exists σ < ρ0 such that
∫

Bσ(y)
g(y, z) dµρ(z) ≤

ε. Put uρ0(x) =
∫

Bσ(y)
g(x, z) dµρ(z)+

∫

DrBσ(y)
g(x, z) dµρ(z) = v(x)+u(x). We know that v(y) ≤ ε

and v, u ∈ W 1
0 (D,X) since we can apply Lemma 3.3. Moreover, u(y) ≤ uρ0(y) < 1 and u is

continuous in y. Hence, there exists τ0 <
σ
2 such that u ≤ 1

2(1 + uρ0(y)) in B2τ0(y). We fix τ ≤ τ0
and we put h(x) = 1

2(1 − uρ0(y))uτ (x) − v(x) ∈ W 1
0 (D,X). Let us take a C∞

0 -function ψ such that

0 ≤ ψ ≤ 1, ψ ≡ 1 in a neighborhood of DrB2τ (y), and ψ ≡ 0 in a neighoborhood of Kτ . Therefore

ψh+ ∈W 1
0 (D rKτ , X) and

(1−ψ)h+ ≤ (1−ψ)

(

1

2
(1− uρ0(y))− uρ0 +

1

2
(1 + uρ0(y))

)+

= (1−ψ)(1−uρ0)
+ ∈W 1

0 (DrKτ , X)

since uρ0 can be approximated in W 1-norm by a sequence of functions which are identically 1 in

Kρ0 ⊇ Kτ . Thus, h
+ ∈W 1

0 (D rKτ , X). On the other hand

L(h, ϕ) = −

∫

Bσ(y)
ϕdµρ ≤ 0 for any ϕ ∈ C1

0 (D rKτ ), ϕ ≥ 0,

i.e. h is a weak subsolution of Lu = 0. By the maximum principle proved in [19, Theorem 3.1], we

get supDrKτ
h+ ≤ sup∂(DrKτ ) h

+ = 0 that is v ≥ 1
2(1−uρ0(y))uτ almost everywhere in DrKτ . But,

in D rKσ, v and uτ are continuous and so v ≥ 1
2(1− uρ0(y))uτ always in D rKσ. Hence, by (3.6),

we have lim infΩ∋x→y v(x) ≥ lim infΩ∋x→y
1
2(1 − uρ0(y))uτ (x) = 1

2(1 − uρ0(y))uτ (y). On the other

hand, if we set E = {x ∈ Kτ : v ≥ 1
2(1 − uρ0(y))}, we have |Kτ r E| = 0. By considering ṽ = v in

(D rKτ ) ∪ E and equal to 1 elsewhere, we can apply Proposition 3.4 and deduce that ε ≥ v(y) ≥

lim infx→y ṽ(x) = lim infDrKτ∋x→y v(x) since v(x) > ε ≥ v(y) for x ∈ E (if ε < 1
2(1 − uρ0(y))). In

conclusion we get ε ≥ 1
2(1− uρ0(y))uτ (y) for any τ ≤ τ0 which proves the desired implication. �

The characterization given by (3.5) will be crucial also to get the regularity for boundary points

with an exterior cone-type property. We will prove this fact at the end of the next section.

4. Wiener’s integral and regularity

In this section we finally prove our Wiener criterion. In the following lemma we try to extrapolate

the essential tools in order to avoid the quasi-continuity issue for the capacitary potentials.
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Lemma 4.1. Let 0 < r < ρ. Then, in our notations we have

(i) µρ(Kr) ≤ cap(Kr) and

(ii) there exists a positive constant C (independent of r, ρ) such that

cap(K r
4
) ≤ µρ(Kr) + Ccap(K r

4
)uρ(y).

Proof. Let ϕρ
j and ϕr

j be two sequence of functions in Lip0(D) approaching respectively uρ and ur
in the W 1(D,X)-norm and such that ϕρ

j ≡ 1 in Kρ, ϕ
r
j ≡ 1 in Kr. We have L(uρ, ur) = L(ur, uρ).

On one side we get

L(ur, uρ) = lim
j→+∞

L(ur, ϕ
ρ
j ) = lim

j→+∞

∫

Kr

ϕ
ρ
j dµr = µr(Kr) = cap(Kr)

since Kρ ⊃ Kr. On the other hand

L(uρ, ur) = lim
j→+∞

L(uρ, ϕ
r
j) = lim

j→+∞

∫

Kρ

ϕr
j dµρ ≥ lim

j→+∞

∫

Kr

ϕr
j dµρ = µρ(Kr)

since we can assume ϕr
j ≥ 0, and (i) is proved.

In order to prove (ii), we first show that

(4.1) cap(K r
4
) ≤ µρ(Kr) +

∫

KρrKr

u r
4
dµρ.

We take ψ ∈ C∞
0 (D) with 0 ≤ ψ ≤ 1 and ψ ≡ 1 in a compact neighborhood K of Kρ. Then

L(uρ, ur) = L(uρ, ψur). Let us consider the mollifiers hj = (ψu r
4
) 1

j
. Hence we get

L(uρ, u r
4
) = lim

j→+∞
L(uρ, hj) = lim

j→+∞

∫

KρrKr

hjdµρ +

∫

Kr

hjdµρ

≤ µρ(Kr) + lim
j→+∞

∫

KρrKr

hjdµρ = µρ(Kr) +

∫

KρrKr

u r
4
dµρ

since hj → ψu r
4
in W 1(K,X), hj ≤ 1, and ψu r

4
is continuous in a neighborhood of Kρ r Kr. As

in the first part, we have also L(u r
4
, uρ) = cap(K r

4
) and (4.1) is proved. Now we note that, if

x ∈ Kρ r Kr, the L-harmonicity of the Green function and the Harnack inequality in [19] provide

that g(x, ξ) ≤ Cg(x, y) for any ξ ∈ K r
4
. Thus we get

∫

KρrKr

u r
4
dµρ(x) =

∫

KρrKr

∫

K r
4

g(x, ξ) dµ r
4
(ξ) dµρ(x) ≤ Ccap(K r

4
)uρ(y)

and the proof is complete. �

Let us now give the full statement of our main result and conclude the proof.

Theorem 4.2. A point y ∈ ∂Ω is L-regular if and only if

∫ dist(y,∂D)

0
cap(Kρ)

ρ

|Bρ(y)|
dρ = +∞.
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Proof. Put R = dist(y, ∂D). By (3.5), the statement is equivalent to the following

lim
ρ→0+

uρ(y) = 0 iff

∫ R

0
cap(Kρ)

ρ

|Bρ(y)|
dρ < +∞.

For small ρ, the estimates on the Green function (3.1) show that uρ(y) behaves like
∫

Kρ

∫ R

d(x,y)

s

|Bs(y)|
ds dµρ(x).

This quantity is, up to constants, equivalent to

+∞
∑

j=0

∫ R

2−jρ

s

|Bs(y)|
ds
(

µρ(K ρ

2j
)− µρ(K ρ

2j+1
)
)

.

The summation by parts and (3.7) imply then

(4.2) uρ(y) is equivalent to cap(Kρ)

∫ R

ρ

s

|Bs(y)|
ds+

∫ ρ

0

s

|Bs(y)|
µρ(Ks) ds.

Suppose first that M =
∫ R

0 cap(Ks)
s

|Bs(y)|
ds < +∞. For any positive ε there exists δ0 > 0 such that

∫ δ0
0 cap(Ks)

s
|Bs(y)|

ds ≤ ε. Moreover, since s 7→ cap(Ks) is increasing and tends to 0 as s → 0+ (see

[41, Proposition 3.6]), there exists 0 < δ < δ0 such that cap(Ks) ≤ εcap(Kδ0) for every s < δ. By (i)

in Lemma 4.1 and (4.2) we get, for ρ < δ, that uρ(y) is controlled from above by
∫ δ0

ρ

cap(Ks)
s

|Bs(y)|
ds+ ε

∫ R

δ0

cap(Ks)
s

|Bs(y)|
ds+ ε ≤ 2ε+ εM.

Therefore uρ(y) → 0.

Viceversa, suppose limρ→0+ uρ(y) = 0. Take ρ0 > 0 such that uρ(y) ≤ 1
2C for ρ ≤ ρ0, where C

is the constant appearing in (ii) of Lemma 4.1. That lemma infers that, for any r < ρ < ρ0, we

have cap(K r
4
) ≤ 2µρ(Kr). By the assumption and (4.2), we have also

∫ ρ

0
s

|Bs(y)|
µρ(Ks) ds < +∞.

Therefore, for ρ < ρ0, by the doubling property we get
∫

ρ
4

0
cap(Ks)

s

|Bs(y)|
ds ≤ 2

∫
ρ
4

0
µρ(K4s)

s

|Bs(y)|
ds ≤

A2

8

∫ ρ

0
µρ(Ks)

s

|Bs(y)|
ds

which is finite. Hence also
∫ R

0 cap(Ks)
s

|Bs(y)|
ds < +∞. �

We finally observe that theX-ellipticity condition and the definition of capacity imply that cap(Kρ)

is in fact equivalent to

inf
{

‖Xu‖22 |u ∈W 1
0 (D,X), u ≥ 1 on Kρ in the W 1

0 (D,X) sense
}

.

This quantity depends just on the vector fields X1, . . . , Xm. That is why the following corollary can

be directly deduced from our Wiener criterion.

Corollary 4.3. For a fixed system of vector fields X, any operator in the class of the X-elliptic

operators defined by (1.1)-(1.2) has the same regular points for Ω. In particular the L-regularity of

the boundary points of Ω does not depend on the coefficients bij of L (but only on the vector fields

X).
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We conclude with a geometric criterion for the regularity of a boundary point.

Proposition 4.4. Let Ω be an open set compactly contained in D and let y ∈ ∂Ω. Suppose that

there exist r1, θ > 0 such that

|Br(y) \ Ω| = |Kr| ≥ θ|Br(y)| for any r ∈]0, r1].

Then y is L-regular for any X-elliptic operator L.

Proof. Let us fix r0 > 0 such that B4040r0(y) ⊂ D. For any 0 < r < r0, there exists Dr satisfying

condition (1.7) with B303r(y) ⊂ Dr ⊂ B404r(y) (by [41, Lemma 3.8]). We denote by gr the Green

function of Dr and we consider the function

vr(x) =
1

r2

∫

Kr

gr(x, z) dz.

We note that for any x ∈ B2r(y) we have Kr ⊂ B3r(x), and d(x, z) < 3r < 10−2dist(x, ∂Dr) for

every x ∈ B2r(y) and z ∈ B3r(x). By [41, Theorem 3.9], gr satisfies the bounds in (3.1) for some C

independent of r. In order to obtain a bound for vr, we are going to use the following inequalities

|Br|

|Bs|
≥

1

A

rQ

sQ
, and

|Br|

|Bs|
≤

1

β

rµ

sµ
, for 0 < r ≤ s.

The first inequalities comes from the doubling condition (1.3), whereas the second one follows from

the reverse doubling |Bρ| < β |B2ρ| which locally holds true in our Carnot-Carathéodory setting (see

e.g. [11, Section 2]). Here µ = log2
1
β
can be assumed less than 2, since β < 1 can be always thought

close to 1. Thus, for any x ∈ B2r(y), we get

vr(x) ≤
C

r2

∫

B3r(x)

∫ dist(x,∂Dr)

d(x,z)

s

|Bs(x)|
ds dz =

C

r2

(

∫ 3r

0
s ds+

∫ dist(x,∂Dr)

3r

s |B3r(x)|

|Bs(x)|
ds

)

≤
C

r2

(

9

2
r2 +

(3r)µ

β

∫ 406r

3r
s1−µds

)

= C

(

9

2
+

(3)µ

β(2− µ)

(

(406)2−µ − 32−µ
)

)

=: C1.

On the other hand, by exploiting the cone-type condition and assuming r ≤ r1, we deduce

vr(y) =
1

r2

∫

Kr

gr(y, z) dz ≥
C

r2

∫

Kr

∫ dist(y,∂Dr)

d(y,z)

s

|Bs(y)|
ds dz

=
C

r2

(

∫ r

0

s |Ks|

|Bs(y)|
ds+

∫ dist(y,∂Dr)

r

s |Kr|

|Bs(y)|
ds

)

≥
Cθ

r2

(

r2

2
+
rQ

A

∫ dist(y,∂Dr)

r

s1−Qds

)

= Cθ

(

1

2
+

1

A(Q− 2)

(

1− (303)2−Q
)

)

=: C2.

Hence, we can consider the function ṽr =
vr
C1

∈W 1
0 (Dr, X) and compare it to the capacitary potential

ur of Kr. It is not difficult to see that

(ṽr − ur)
+ ∈W 1

0 (Dr rKr, X).

As a matter of fact, we can take ψ ∈ C∞
0 , with ψ ≡ 1 in an open neighborhood of Kr, 0 ≤ ψ ≤ 1,

and supported in B2r(y). Since (1 − ψ)(ṽr − ur)
+ ≤ (1 − ψ)ṽr and ψ(ṽr − ur)

+ ≤ ψ(1 − ur), both

functions belong to W 1
0 (Dr rKr, X).
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By the L-harmonicity, we get ṽr ≤ ur in Dr rKr from the maximum principle (2.2) (and from the

continuity outside Kr). Therefore

ur(y) = lim inf
Ω∋x→y

ur(x) ≥ lim inf
Ω∋x→y

ṽr(x) ≥ ṽr(y),

where the last inequality follows from the lower-semicontinuity of ṽr and the first equality is our

relation (3.6). We have thus obtained that ur(y) ≥
C2

C1
for any small positive r. The characterization

(3.5) gives the regularity of y ∈ ∂Ω and concludes the proof. �
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[38] J. Petitot, Y. Tondut, Vers une neurogéométrie. Fibrations corticales, structures de contact et contours subjectifs

modaux. Math. Inform. Sci. Humaines 145 (1999) 5–101

[39] R.S. Phillips, L. Sarason, Elliptic-parabolic equations of the second order. J. Math. Mech. 17 (1967) 891–917

[40] E.M. Stein, Harmonic analysis: real-variable methods, orthogonality, and oscillatory integrals. Princeton Mathe-

matical Series 43, Princeton University Press, Princeton, 1993

[41] F. Uguzzoni, Estimates of the Green function for X-elliptic operators. Math. Ann. 361 (2015) 169–190

[42] N.T. Varopoulos, L. Saloff-Coste, T. Coulhon, Analysis and geometry on groups. Cambridge Tracts in Mathematics

100, Cambridge University Press, Cambridge, 1992.

[43] S. Zheng, Z. Feng, Green functions for a class of nonlinear degenerate operators with X-ellipticity. Trans. Amer.

Math. Soc. 364 (2012) 3627–3655
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