
METRIC UNIFORMIZATION OF MORPHISMS OF BERKOVICH CURVES VIA

p-ADIC DIFFERENTIAL EQUATIONS

FRANCESCO BALDASSARRI AND VELIBOR BOJKOVI�

Abstract. We consider a �nite rig-étale morphism f : Y → X of quasi-smooth Berkovich curves over

a complete algebraically closed valued �eld extension k of Qp and a skeleton Γf = (ΓY ,ΓX) of the

morphism f . We prove that Γf radializes f if and only if ΓX controls the pushforward of the constant

p-adic di�erential equation f∗(OY , dY ).

Furthermore, when f is a �nite étale morphism of open unit discs and k is of arbitrary characteristic,

we prove that f is radial if and only if the number of preimages of a point x ∈ X, counted without

multiplicity, only depends on the radius of the point x.
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1. Introduction

One of the most important results concerning the structure of smooth projective k-algebraic curves,

where k is a complete, nonarchimedean, and nontrivially valued algebraically closed �eld, is the
1
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semistable reduction theorem : such curves admit a semistable model. In Berkovich's approach to

nonarchimedean geometry, this theorem has many avatars, and extends to a more general class of

curves, namely to quasi-smooth k-analytic curves (close analogs of classical Riemann surfaces in com-

plex analytic geometry) via the notion of triangulation or, alternatively, of skeleton. Namely, a quasi-

smooth k-analytic curve X admits a skeleton [15, Chapter 5]. Here, a skeleton of a curve is a locally

�nite �graph� Γ in X such that X \Γ is a disjoint union of open (unit) discs (this pretty much resembles

the classical situation where if X is a Riemann surface and T a triangulation of X , then X \ T is a

disjoint union of open discs).

If we consider a �nite morphism f : Y → X of smooth projective k-algebraic curves then results

of Lorenzini-Liu [23], Coleman [14], and Liu [22], show the existence of semistable models of Y and

X , respectively, to which f extends as a �nite morphism. An elegant and far-reaching presentation of

this topic appears in section 4 of [1]. With no surprise, using e. g. methods and results from the latter

source, the previous result extends to �nite morphisms f : Y → X of quasi-smooth k-analytic curves

where it can be stated as follows : there exists a skeleton of the morphism Γf = (ΓY ,ΓX) where ΓY

and ΓX are skeleta of Y and X, respectively, such that ΓY = f−1(ΓX) (see Section 2.4). Among the

many consequences of this result, one in particular simpli�es the study of the morphism f . Namely,

for any open disc D in Y \ ΓY which is attached to ΓY (meaning that the closure of D in Y intersects

ΓY in only one point), the restriction f|D is a �nite morphism of open discs, and the image f(D) is

an open disc attached to ΓX . Furthermore, for every open disc D attached to ΓX , f
−1(D) is a �nite

disjoint union of open discs attached to ΓY .

One may ask to what extent does the skeleton Γf of a morphism f capture its properties. Conversely,

can one �nd a skeleton Γf which �controls� the behavior of f on discs attached to ΓY , in such a way

that at least some properties of f over such a disc D only depend on its boundary point of D on ΓY ?

We will show that this is the case for all metric properties of the morphism f .

To be more precise, we introduce some terminology. Given a �nite morphism f : D1 → D2 of open

unit discs, we say that f is radial if for any pair of compatible coordinates T on D1 and S on D2,

(i.e. such that f sends T = 0 to S = 0), the valuation polygon of the expansion S(T ) of f is the same

(De�nition 2.6). In other words, for any x ∈ D1, the radius of the point f(x) only depends upon

the radius of x. Following Temkin [27] we call such a valuation polygon (or rather its multiplicative

version) the pro�le of f . One of the main results of [27] is the existence of radializing skeleta, i.e. for a

�nite morphism f : Y → X of quasi-smooth k-analytic curves, there exists a skeleton Γf = (ΓY ,ΓX)
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such that for any two discs D1 and D2 in Y attached to the same point on ΓY , the restrictions f|D1

and f|D2
are radial morphisms and their pro�les coincide.

The other half of our story concerns p-adic di�erential equations on quasi-smooth Berkovich k-

analytic curves. In that case we assume that k is a valued �eld extension of Qp.

The theory �ourished in the past decade or so, in an e�ort of globalizing over a curve convergence

properties of solutions and index theorems of the operators, discovered by Dwork and Robba for

equations on standard a�noid and dagger a�noid domains in the projective line. The global approach

to index theorems was then developed by Christol and Mebkhout in a series of important papers. We

refer to [18] for a systematic exposition, and a deep re�nement, of the results known until the year

2010, or so. A new interpretation of the Dwork-Robba radius of convergence and a related conjecture,

due to the senior author [2], then opened the way to a clean global understanding of convergence

properties of local solutions of di�erential equations on a Berkovich curve [25, 24].

Let us shortly recall the results which are most important for the present paper. Let X be a

quasi-smooth Berkovich k-analytic curve, (E ,∇) be a coherent OX -module of rank r equipped with a

connection ∇ : E → E ⊗Ω1
X (simply called a p-adic di�erential equation from now on), and let Γ = ΓX

be a skeleton of X. Then, to every k-rational (i.e. of type 1) point x ∈ X(k) one may associate an

r-tupleMRΓ(x, (E ,∇)) = (R1, . . . ,Rr) of numbers in (0, 1], called the multiradius of convergence of

solutions of (E ,∇) at x, in the following way. We pick the unique open disc D =: DΓ(x, 1−) which

contains x and is attached to Γ : we call D the open Γ-unit disc centered at x, so that the graph Γ plays

the role of a global unit of measurement. Then, the number Ri, for i = 1, . . . , r is the supremum of

numbers s ∈ (0, 1) such that there are at least r−i+1 solutions of (E ,∇) on the open subdisc DΓ(x, s−)

of D centered at x and of relative radius s (see Section 3 for more detail). The de�nition of multiradius

extends to all points of the curve X, with the method of [2, �0.1]. The fundamental result is that the

multiradius is a continuous function on X : this was proven in [2] for the the component R1 and in

[25, 24] in general. Furthermore, it is proved in [24] that there exists a skeleton Γ′ containing Γ such

that for any open disc D in X \ Γ′, attached to the point ξ ∈ Γ′,MRΓ(x, (E ,∇)) =MRΓ(ξ, (E ,∇)),

for any x ∈ D. We say that such a Γ′ is a controlling skeleton for (E ,∇) with respect to Γ. Notice that

if Γ′ is a controlling skeleton for (E ,∇) with respect to Γ, it is so with respect to Γ′, as well [2, �3.2].

A particular case is when X is an open unit disc, so one can take Γ = ∅ as a skeleton of X. Then ∅
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is controlling for (E ,∇) with respect to ∅ precisely when the multiradius function is constant all over X.

The aim of the present article is to study the relation between radializing skeleta of a �nite rig-étale1

morphism f : Y → X of quasi-smooth k-analytic curves and controlling graphs of the p-adic di�erential

equation f∗(OY , dY ) on X. Our main result is the following (Theorem 4.1).

Theorem. Let f : Y → X be a �nite rig-étale morphism of quasi-smooth k-analytic curves and let

Γf = (ΓY ,ΓX) be a skeleton for f . Then Γf is radializing for f if and only if ΓX is controlling for

f∗(OY , dY ) with respect to ΓX , where (OY , dY ) is the constant p-adic di�erential equation on Y .

The close relation between radial morphisms and pushforwards of the constant connection has al-

ready been studied in [9]. There, the multiradius MRΓ(x, f∗(OY , dY )) at a rational point x ∈ X(k)

has been described in terms of the pro�le of the restriction of f on the connected components of

f−1(DΓX (x, 1−)) (all of them open ΓY -unit discs). Our result above further clari�es this relation.

Our �rst main ingredient is Lemma 3.9 below which indicates how the multiradius of convergence

of solutions of f∗(OY , dY ) at x ∈ D2(k) is related to the jumps of the function �cardinality of the �ber

f−1(xρ)�. Secondly, we need a criterion of radiality for f expressed in terms of a function on the target

disc. We end up with the following simple characterization of radial morphisms of open unit discs

(here, the base �eld k is algebraically closed, complete with respect to a non-trivial non-archimedean

valuation and of arbitrary characteristic) (cf. Theorem 2.20 below)

Theorem. A �nite morphism of open unit discs f : D1 → D2 is radial if and only if, for any point

x ∈ D2, the cardinality of the �ber f−1(x) only depends on the radius of x.

Notice that our statement is harder to prove than Lemma 2.3.6 of [27] which relates instead radiality

of f to radiality of the function �multiplicity of f � on the source disc.

We now describe the contents of the paper. In section 2 we recall some properties of �nite morphisms

of open discs. In particular, we introduce the notion of (weakly) n-radial morphism which generalizes

the one of radial morphism. From a careful study of those, we obtain the criterion of radiality for

morphisms of open discs presented in Section 2.3. In order to prove our main result we further

need to simplify the situation at a point η ∈ Y of type 2, and to reduce to the case when f is a

1that is, étale at any rational points Y (k)
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morphism of a�noid curves with good reduction and maximal points η and f(η), respectively, which

is residually purely inseparable at η, as this is the case when our criterion for radiality applies. Then,

we discuss the problem of when does a �nite morphism factor into a product of a residually purely

inseparable morphisms, followed by a residually separable one (see Section 2.5 for the result and

de�nitions involved). In Section 3 we recall the general properties of p-adic di�erential equations and

in Section 4 we prove our main result.

2. Some properties of morphisms of open discs

2.1. Morphisms of open discs.

2.1.1. Throughout the paper (k, | · |) will be an algebraically closed �eld complete with respect to a

non-trivial valuation | · |.

By an open (resp. closed) disc (or k-disc for precision) of radius r ∈ R>0 we mean a k-analytic curve

(in the sense of Berkovich geometry) D isomorphic to a standard open (resp. closed) disc centered at

0 and of some radius r > 0 in the Berkovich a�ne T -line A1
k. We recall that to any point ξ ∈ A1

k we

can assign its (T -)radius r(ξ) := infa∈k |T − a|ξ, where | · |ξ is the seminorm that corresponds to ξ.

For any k-analytic domain D′ ⊂ D which is also a disc, the relative radius of D′ in D is well-de�ned.

Similarly, to any point x ∈ D we intrinsically associate the relative radius r(ξ) = rD(ξ) of ξ. Then,

for any k-rational point a ∈ D(k) and s ∈ (0, 1), D(a, s−) (resp. D(a, s)) will denote the open (resp.

closed) disc of relative radius s in D containing a and ζa,s ∈ D, or simply as, will indicate the maximal

point of D(a, s). Similarly, for 0 < r1 ≤ r2 ≤ r, we will denote by A(a; r1, r2) (resp. A[a; r1, r2] if

r2 < r) an open (resp. closed) annulus centered at a and with inner radius r1 and outer radius r2.

That is A(a; r1, r2) = D(a, r−2 ) \D(a, r1). Most often we will deal with a unit disc, namely a disc D

equipped with a �xed isomorphism T : D
∼−−→ D(0, 1−) (resp. D(0, 1)) in which case the previous

notions coincide with the ones de�ned in terms of the coordinate T . In an open unit disc D, for any

a ∈ D(k), there is a unique path from a to the exit, namely la := {ar | r ∈ [0, 1)} (where a0 = a) which

we equip in a natural way with the topology of a real segment.

2.1.2. Let D be an open (resp. closed) unit disc with coordinate T and let f(T ) =
∑

i≥0 ai T
i be an

analytic function on D. We recall that the function v(f, ·) : (0,∞)→ R, ( resp. [0,∞)→ R) de�ned
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by

λ 7→ inf
i≥0
{v(ai) + i · λ} = − log

(
sup
a∈k
|a|≤e−λ

{|f(a)|}
)

= − log(r(f(ζ0,e−λ))),

where v(·) := − log | · |, and r(·) is calculated with respect to T -a�ne line, is called the valuation

polygon of the function f . We recall some of the basic properties of the valuation polygon functions

that will be used throughout this paper, while for a more detailed study we refer the reader to [20].

So :

(1) v(f, ·) is a continuous, piecewise a�ne and concave function, with integral non negative slopes,

departing at (0, 0) and situated in the �rst quadrant. Let i1 > i2 > · · · > in ≥ 0 be the

slopes of v(f, ·). Then, using the convention of [18, De�nition 2.1.3], the classical (convex)

Newton polygon of f is situated in the second quadrant and has vertices at (−i1, v(f [i1](a))),

. . . , (−in, v(f [in](a))) (= (0, v(f(a)), if in = 0 and f(a) 6= 0). For λ ∈ R≥0 we denote by

∂+v(f, λ) (resp. ∂−v(f, λ)) the right (resp. the left) slope of v(f, ·) at λ.

(2) The values λ ∈ R≥0 such that ∂+v(f, λ) 6= ∂−v(f, λ) are necessarily elements of v(k×), called

the break values of the valuation polygon of f . The number ∂−v(f, λ)−∂+v(f, λ) is the number

of zeroes of f(T ), counted with multiplicities, of valuation λ (i.e. of absolute value e−λ).

(3) The valuation polygon is invariant under automorphisms of the disc D, T → h(T ), which

preserve the origin (i.e. such that h(0) = 0).

2.1.3. Let f : D1 → D2 be a quasi-�nite morphism of open unit discs and let T and S be coordinates

on D1 and D2, respectively. Then f can be expressed in the form

(2.0.1) S = S(T ) =
∑
i≥0

ai T
i, ai ∈ k,

where the coe�cients ai satisfy the usual convergence property

lim
i→∞
|ai|ri = 0 , ∀r ∈ (0, 1) .

We call (2.0.1) the (T, S) expansion of f and denote the power series on the right-hand side of it

by f(T,S)(T ). If a0 = 0, we will say that (T, S) is a compatible pair of coordinates for f . We denote

the valuation polygon of the right-hand side of (2.0.1) by v(T,S)(f, ·) and call it the (T, S)-valuation

polygon of f .
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Let a ∈ D1(k) be a k-rational point of D1, let b = f(a) ∈ D2(k), and T be a coordinate on D1 such

that T (a) = 0. We will say that T is centered at a. Let S be a coordinate on D2 centered at f(a)

(note that T and S are then compatible). We note that the (T, S)-valuation polygon of f then only

depends on the point a and not on the coordinates T and S (the property (3) above). We call it the

valuation polygon of f at a ∈ D1(k), and denote it by λ 7→ va(f, λ), ∀λ ∈ R≥0.

2.1.4. We next explain the geometric meaning of the terms ∂+v(f, λ) and ∂−v(f, λ) introduced above.

Let f : D1 → D2 be a quasi�nite morphism of open unit discs, let a ∈ D1(k) and let λ ∈ (0,∞)

be such that r := e−λ ∈ (0, 1) ∩ |k|. Then, y = ζa,r and x = f(y) = ζf(a),r′ are points of type 2.

The set of open discs in D1 (resp. D2) attached to y (resp. x) is naturally identi�ed with the set of

closed points of an a�ne line C ′y (resp. C ′x) over k̃ and f naturally induces a �nite morphism of a�ne

k̃-lines f̃ ′ : C ′y → C ′x, corresponding to the �nite extension H̃ (y)/H̃ (x) of function �elds over k̃. The

maximal open annulus in D1 (resp. D2) attached to y (resp. x) corresponds to the point at in�nity

on the projective completion Cy (resp. Cx) of C ′y (resp. C ′x), and completes f̃ ′ into a �nite morphism

of projective k̃-lines f̃ : Cy → Cx.

Following a suggestive picture, we regard the closed points of Cy (resp. Cx) as �tangent vectors� on

Y at y (resp. on X at x); in particular, we denote by ~ty,a ∈ Cy(k̃) the point corresponding to the open

disc D(a, r−) and by ~ty,∞ the point at in�nity on Cy. Similarly on Cx.

We note that for any s′ ∈ (0, 1) there exists an s ∈ (0, 1) such that the restriction f|D(a,s) : D(a, s)→

D(f(a), s′) is a �nite morphism of a�noid discs (it is enough to take a connected component of

f−1(D(f(a), s′)) that contains a). By the theory of Newton polygons, the degree of the latter mor-

phism, i.e. the number of zeroes counting multiplicities of f in D(a, s) is ∂−va(f, λ
′), where e−λ

′
= s.

Similarly, the restriction f|D(a,s−) : D(a, s−)→ D(f(a), s′−) is a �nite morphism of open discs of degree

∂+va(f, λ
′). On the other hand, for our choice of y, x and λ, ∂+va(f, λ) coincides with the algebraic

multiplicity of f̃ at ~ty,a (cf. [15, Théorème 4.3.13]). In this case, both Cy and Cx are projective lines

over k̃, equipped with the a�ne coordinate T̃a := T−a
π mod k◦◦, S̃f(a) := S−f(a)

π′ mod k◦◦, where

π, π′ ∈ k, |π| = r and |π′| = r′. Then f̃ is represented in the coordinates T̃a and S̃f(a) as a polynomial

of degree ∂−va(f, λ) with a zero of order ∂+vb(f, λ) at ~ty,b, for any b ∈ D(a, r)(k). In particular,

[H̃ (y) : H̃ (x)] = [H (y) : H (x)]
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(the equality following from the fact that the valued �eld H (x) is stable and |H (x)| = |H (y)| = |k|)

is the sum of the multiplicities of f̃ at ~ty,b for all ~ty,b 7→ ~tx,f(a) and coincides with the geometric

rami�cation index νf (y) of the point y in the sense of [5, �6.3.]. The order of the pole of f̃ at the

tangent vector ~ty,∞, represented by the annulus D1 −D(a, r), is then ∂−va(f, λ).

Summing up the multiplicities of the zeros of T̃a on Cy = P1
k̃
we obtain the classical proof of

harmonicity of the function x 7→ − log |f(x)| on D1.

The previous discussion proves assertions (1) and (2) in the following lemma, while (3) is not di�cult

to prove using the properties 1) and 2) of valuation polygons.

Lemma 2.1. Let f : D1 → D2 be a quasi-�nite morphism of open unit discs, let a ∈ D1 and r ∈ (0, 1).

(1) Then, f|D(a,r−) : D(a, r−) → f(D(a, r−)) (resp. f|D(a,r) : D(a, r) → f(D(a, r))) is a �nite

morphism of open (resp. closed) discs of degree ∂+va(f,− log r) (resp. ∂−va(f,− log r)).

(2) If f is �nite, then f−1(D(a, r−)) (resp. f−1(D(a, r))) is a �nite disjoint union of open (resp.

closed) discs in D1 and restriction of f to each of them is a �nite morphism to D(a, r−) (resp.

D(a, r)).

(3) The morphism f induces a continuous increasing bijection between the sets la and lf(a), given

by r 7→ r′, where r′ is such that D(f(a), r′) = f(D(a, r)).

In the light of the Lemma we give some de�nitions.

De�nition 2.2. Let f : D1 → D2 be a �nite morphism of open unit discs and a ∈ D1(k). Let T and

S be compatible coordinates for f where T is centered at a. Then, we call the function

pa,f = p(T,S),f : [0, 1]→ [0, 1] given by pa,f (ρ) =


0 if ρ = 0,

1 if ρ = 1,

ρ′ otherwise,

where ρ′ is such that f(D(a, ρ)) = D(a, ρ′), the (T, S)-pro�le of f or simply the pro�le of f at a.

Remark 2.3. The relation between the pro�le of f at a and the valuation polygon of the morphism

f at a is given by

∀r ∈ (0, 1), va(f,− log r) = − logpa,f (r).

From this relation one concludes, having in mind the basic properties of valuation polygons, that pa,f

is a continuous, piecewise monomial, increasing and convex (∪-shaped) function.
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Lemma 2.4. Let f : D1 → D2 be a �nite morphism of open unit discs and let x ∈ D2 be a point of

type 2. Then ∑
y∈f−1(x)

νf (y) = deg(f).

Proof. See [5, Remark 6.3.1.]. The νf (y) is introduced just before Lemma 2.1. �

Corollary 2.5. If all the preimages of x have the same geometric rami�cation index, say ν, then

#f−1(x) = deg(f)/ν.

2.2. (Weakly) n-radial morphisms.

De�nition 2.6. Let f : D1 → D2 be a �nite morphism of open unit discs. We say that it is radial if

the functions va(f, ·) (or equivalently, the functions pa,f ) are the same for all a ∈ D1(a). If f is radial

we will simply write v(f, ·) and pf instead of va(f, ·) and pa,f , respectively, and call the latter function

the pro�le of f .

Remark 2.7. If f : D1 → D2 is radial, and ρ ∈ (0, 1), then for any a ∈ D1(k), νf (ζa,ρ) does not depend

on a. Indeed, by de�nition νf (ζa,ρ) = ∂−va(f,− log ρ) = ∂−v(f,− log ρ) which does not depend on a.

Remark 2.8. Radial morphisms of open discs were �rst introduced in [27, Section 2.3.] to which we

refer for their main properties. For our purposes, we note that Lemma 2.3.12. and Remark 2.3.13.

of loc.cit. imply that if the residue characteristic of k is 0, then f is radial if and only if it is an

isomorphism (so that this case will not be of particular interest), while if the residue characteristic of

k is p > 0, then the slopes of the valuation polygon v(f, ·) are all powers of p.

It follows from the de�nition that to check whether the morphism f is radial one picks, for any

point a ∈ D1(k), a pair of compatible coordinates (T, S) for f , where T is centered at a and then

compares the pro�le functions pa,f . An obvious choice of compatible coordinates, for any a ∈ D1(k),

is Ta := T − T (a) and Sf(a) := S − S(f(a)). If S =
∑

i≥i aiT
i is the (T, S)-expansion of f , then the

(Ta, Sf(a))-expansion is given by

(2.8.1) Sf(a) =
∑
i≥1

f [i](a)T ia, where f [i](T ) :=
∑
j≥0

ai+j

(
i+ j

i

)′
T j ,

where
(
i+j
i

)′
denotes

(
i+j
i

)
mod char(k).

In this way, a �nite morphism f : D1 → D2 of open unit discs is radial if and only if the valuation

polygon of the function
∑

i≥1 f
[i](a)T ia is the same for all a ∈ D1(k).
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Remark 2.9. Suppose that char(k) = p > 0. Then, any �nite morphism f : D1 → D2 of open unit

discs, given in some compatible coordinates (T, S) as S = S(T ) =
∑

i≥1 apiT
pi , is radial. Indeed,

for a ∈ D1(k) and i ≥ 1, we note that by formula (2.8.1), f [i](a) =
∑

j≥j0 apj
(
pj

i

)′
ap

j−i, where j0 is

minimal positive integer such that pj0 ≥ i. Then, by Kummer theorem on p-adic valuation of binomial

coe�cients, it follows that if i is not a power of p, f [i](a) = 0 (since
(
pj

i

)′
= 0), and if i = pj , then

f [i](a) = apj . Hence, (Ta, Sf(a))-expansion of f is given by Sf(a) =
∑

i≥1 apiT
pi
a and f is radial.

Lemma 2.10. Let f : D1 → D2 be a radial morphism of open unit discs and let i be the minimal slope

of v(f, ·). Then, if i = 1, f is étale. Otherwise, the characteristic of k is p > 0 and i = pα is a power

of p. In the latter case, f factorizes through f1 : D1 → D and f2 : D → D2, where

(1) f1 is a radial morphism of open unit discs, which in some compatible coordinates (T,Z) on D1

and D, respectively, can be expressed as Z = Z(T ) = T p
α
;

(2) f2 is an étale radial morphism of open unit discs.

Proof. If i = 1 then the claim amounts to showing that f is étale (by simply taking f1 to be identity).

In fact, if f were not étale, there would exist a rami�ed point a ∈ D1(k), so in particular the valuation

polygon va(f, ·) would have smallest slope equal to the multiplicity of a, hence bigger than 1, which

contradicts the assumption that f is radial.

Suppose now that i > 1. We �rst note that the characteristic of k is then bigger than zero because

if not, there would exist a ∈ D1(k) which is not rami�ed, and the smallest slope of va(f, ·) would be 1

instead of i which is a contradiction. If we put char(k) = p > 0, then, by Remark 2.8, i = pα for some

integer α > 0.

Let T and S be some compatible coordinates on D1 and D2 respectively, and write f in the form

S = S(T ) =
∑

j≥i ajT
j , with aj ∈ k◦ and ai 6= 0.

Claim. If for some j, aj 6= 0, then j is divisible by pα.

Proof of the claim. Suppose there is some j0 for which the claim does not hold and write j0 = mpα+ l,

for m and l positive integers and 0 < l ≤ pα − 1. We note that
(
j0
l

)
is not divisible by p (by Kummer

theorem on p-adic valuation of binomial coe�cients) and in particular, from (2.8.1) it follows that

there exists some a ∈ D1(k) such that f [l](a) 6= 0, since the coe�cient aj0
(
j0
l

)
in f [l](T ) is di�erent

from zero. But this means that the (Ta, Sf(a))-valuation polygon of f has the smallest slope which is

less or equal to l, hence less than pα, which is a contradiction. �



UNIFORMIZATION OF MORPHISMS AND p-DIC DIFFERENTIAL EQUATIONS 11

The claim implies that we can write S = S(T ) =
∑

j≥1 ajpα(T p
α
)j , so that we may de�ne f1 : D1 →

D to be given with respect to compatible coordinates (T,Z) as Z = T p
α
and f2 : D → D2 to be

given with respect to compatible coordinates (Z, S) as S =
∑

j≥1 ajpαZ
j . We note that f1 is radial by

Remark 2.9 while f2 is radial by [27, Lemma 2.3.8.] or by direct inspection of its valuation polygon

(see also Remark 2.28).

Finally, to prove that f2 is in addition étale, it is enough to note that the coe�cient with Z in its

(Z, S)-expansion is nonzero, hence the corresponding valuation polygon has the smallest slope 1, which

means that 0 is not rami�ed (hence none of the other rational points by radiality). �

2.2.1. A generalization of radial morphisms are the (weakly) n-radial ones (cf. [8]).

De�nition 2.11. We say that a �nite morphism f : D1 → D2 of open unit discs is n-radial, where

n ∈ Z>0, if there exists a number r ∈ (0, 1) such that:

(1) for every a ∈ D1(k) the restriction of va(f, ·) on (0,− log r) does not depend on a;

(2) va(f, ·) has exactly n slopes on (0,− log r).

The in�mum of the numbers r above is denoted by bf,n and is called the border of n-radiality. The

slopes of the valuation polygon of f at a (independent of a ∈ D1(k)) over (0,− log r) are called the

n-dominating terms of va(f, ·) and we denote their set by Df,n. Finally, by a 0-radial morphism we

will simply mean a �nite one and in this case we take border of 0-radiality to be 1.

De�nition 2.12. Let f : D1 → D2 be a �nite morphism of open unit discs. We will say that f is

weakly (n+ 1)-radial, where n ∈ Z≥0, if the following holds:

(1) f is n-radial.

(2) Let r be the border of n-radiality. Then, for every ε > 0 and small enough, the valuation

polygon va(f, ·) has at least n+ 1 slopes on (0,− log(r − ε)), of which the �rst n+ 1 slopes do

not depend on the choice a ∈ D1(k). The set of these slopes will still be denoted by Df,n+1.

As we see every n-radial morphism is weakly n-radial (for n > 0), while weakly n-radial does not

necessarily imply n-radial, as is shown in Remark 2.14.

Lemma 2.13. Every �nite morphism of open unit discs f : D1 → D2 is weakly 1-radial.

Proof. The morphism is 0-radial by de�nition. Suppose that f is of degree d, and let (T, S) be any

pair of compatible coordinates on D1 and D2. The highest (which is the �rst) slope of v(T,S)(f, ·) is
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then necessarily equal to d, as this represents the number of solutions of the equation f(T,S) = c, for

any c ∈ D2(k). The claim follows. �

Remark 2.14. Assume that the �eld k is of mixed characteristics (0, p), where p > 2. Let f : D1 → D2

be a �nite morphism of open unit discs given by S = T 2p + αT , where 1 > |α| > |p|. Then f is étale

and for a ∈ D1(k), its (Ta, Sf(a)) expansion is given by

Sf(a) = T 2p
a +

2p−1∑
i=1

(
2p

i

)
a2p−i T ia + αTa.

Since
∣∣(2p

i

)∣∣ = 1, for i = p and i = 2p, and
∣∣(2p

i

)∣∣ = |p| otherwise, we have for λ ≥ 0

inf
i=1,...,2p

{v(

(
2p

i

)
a2p−i) + i λ} = inf{v(

(
2p

i

)
a2p−i) + i λ | i = 1, p, 2p}.

It follows that

va(f, λ) = inf{v(

(
2p

1

)
a2p−1 + α) + λ, v(

(
2p

p

)
a2p−p) + p λ, v(

(
2p

2p

)
a2p−2p) + 2 p λ}

= inf{v(α) + λ, p v(a) + p λ, 2 p λ}.

If we choose a with |a|2p−1 > |α|, the slopes of the valuation polygon of f at a will be 1, p and 2p and

the two break points b1 and b2 are given by b1 = − log |a| and b2 = − 1
p−1(log |α|− p log |a|) (our choice

of a implies b1 < b2). Obviously, they both vary with |a| and for |a| → 1, b1 → 0, so in particular, f is

not 1-radial.

2.2.2. We point out that, if f : D1 → D2 is a weakly n-radial morphism of open unit discs, then for

any a ∈ D1(k), and i ∈ Df,n, |f [i](a)| does not depend on a. When i = i1, this is clear because i1 is the

degree of the morphism and limλ→0 va(f, λ) = − log |f [i1](a)| + i1 λ = 0 (since f is a �nite morphism

of open unit discs), that is, |f [i1](a)| = 1.

Let n ≥ 2 and suppose the claim is true for each term in Df,n up to some ij , 1 < j ≤ n, and let

b := bf,j−1 be the border of (j − 1)-radiality. We will prove that the claim holds also for ij . It follows

from the de�nition of the border (De�nition 2.11) that for every a ∈ D1(k), the valuation polygon

va(f, ·) has j − 1 slopes over the interval (0,− log(b)), the smallest of these being ij−1. On the other

side, since 1 < j ≤ n, f is (j − 1)-radial and weakly j-radial, hence De�nition 2.12 implies that for

every a ∈ D1(k), and every ε > 0 and small enough, the valuation polygon va(f, ·) has at least j

slopes on (0,− log(b− ε)), the j highest of these being i1, . . . , ij . In other words, for every a ∈ D1(k),
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− log b is the break point for the valuation polygon va(f, ·) and the left and right slope of va(f, ·) at

− log(b) are ij−1 and ij . This means that − log(f [ij ](a))− ij log b = − log(f [ij−1](a))− ij−1 log b, that

is |f [ij ](a)| = |f [ij−1](a)| bij−1−ij , hence our claim is true also for ij , and by induction for all i ∈ Df,n.

For i ∈ Df,n we will write |f [i]| instead of |f [i](a)| in what follows.

De�nition 2.15. Let f : D1 → D2 be a �nite morphism of open unit discs, and suppose that it is weakly

n-radial. Let i1 > · · · > in be all the elements in Df,n. We de�ne the function θn : D1(k) → [0, 1),

given by

a ∈ D1(k) 7→ min

{
ρ ∈ [0, 1) | max

i

{
|f [i](a)|ρi

}
= |f [in]|ρin

}
,

and call it the exact n-boundary function.

In other words, either θn(a) = 0, or − log(θn(a)) is the n-th break of the valuation polygon va(f, ·)

(see Figure 1).

-

6
va(f, λ)

�
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�
�
�
�
�
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∗�
�
�
��
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∗��
��

�∗  
   

− log(θn(a))

slope i1

slope i2

slope in

slope in+1(a) . . .

. . .

λ

Figure 1. The valuation polygon va(f, ·).

2.2.3. We list some properties of the function θn.

(1) θn(a) does not depend on the chosen compatible coordinates on D1 and D2 with respect to which

we calculate the terms f [i](a) in the de�nition. This follows from property (3) of valuation polygons.
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(2) For a ∈ D1(k), the �rst n slopes of the (Ta, Sf(a))-valuation polygon of f are in Df,n. Then,

there are two possibilities, either θn(a) = 0, or θn(a) 6= 0. In this latter case, we put in+1(a) to be

the �rst next slope of the (Ta, Sf(a))-valuation polygon of f (see Figure 1). In other words, in+1(a) is

minimal index with the following property:

|f [in+1(a)](a)|(θn(a))in+1(a) = |f [in]|(θn(a))in .

Consequently we have

θn(a) =

(
|f [in+1(a)](a)|
|f [in]|

) 1
in−in+1(a)

.

(3) It follows from de�nition that for every a ∈ D1(k), θn(a) = ρ, where ρ is such that

(2.15.1) max
1≤i<in

{|f [i](a)|ρi} = |f [in]|ρin .

For each i = 1, . . . , in − 1 let us de�ne the functions

θn,i : D1(k)→ [0, 1)

a 7→ ρ such that |f [i](a)|ρi = |f [in]|ρin ,

that is

(2.15.2) θn,i(a) =

(
|f [i](a)|
|f [in]|

) 1
in−i

.

Formula (2.15.1) then implies that, for every a ∈ D1(k)

θn(a) = max
1≤i<in

{θn,i(a)}

= max
1≤i<in

{( |f [i](a)|
|f [in]|

) 1
in−i }

.(2.15.3)

(4) The coe�cient functions f [i](T ) are analytic functions on the open unit disc and from the

valuation polygon theory it follows that the following property holds: for every interval I ′ ⊂ [0, 1), there

exists a subinterval I = (r1, r2) ⊂ I ′ such that for every a ∈ A(0; r1, r2)(k) and every i = 1, . . . , in − 1,

we have |f [i](a)| = |f [i](T )||a|, where for an analytic function on an open unit disc g(T ) =
∑

i≥0 gi T
i

and r ∈ (0, 1) we put |g(T )|r := max{|gi| ri | i ≥ 0}.
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Moreover, by shrinking I if necessary, we may assume that for every i 6= j and both in {1, . . . , in−1}

we have (
|f [i](T )||a|
|f [in]|

) 1
in−i

6=

(
|f [j](T )||a|
|f [in]|

) 1
in−j

, for all a ∈ k, |a| ∈ I,

or (
|f [i](T )||a|
|f [in]|

) 1
in−i

=

(
|f [j](T )||a|
|f [in]|

) 1
in−j

, for all a ∈ k, |a| ∈ I.

Lemma 2.16. Let I ′ = (r′1, r
′
2) ⊂ (0, 1) be an interval. Then, there exists a subinterval I = (r1, r2) ⊂ I ′

and an i ∈ {1, . . . , in − 1} such that for every a ∈ A(0; r1, r2)(k)

θn(a) =

(
|f [i](T )||a|
|f [in]|

) 1
in−i

.

In particular, if θn(a) > 0 for some a ∈ A(0; r′1, r
′
2)(k), then we may choose I such that in addition for

every a ∈ A(0; r1, r2)(k), θn(a) > 0 and in+1(a) = i.

Proof. Indeed, equation (2.15.3) together with the �rst part of point (4) implies that there exists an

interval I ′′ ⊂ I ′ such that for every a ∈ k, |a| ∈ I ′′, we have

θn(a) = max
1≤i<in

{( |f [i](T )||a|
|f [in]|

) 1
in−i }

.

The second part of the point (4) implies that there exists a subinterval I ⊂ I ′′ and an i ∈ {1, . . . , in−1},

such that for every a ∈ k, |a| ∈ I, the maximum in the previous equation is achieved by the function(
|f [i](T )||a|
|f [in]|

) 1
in−i

. �

Keeping notation as above, we also have

Lemma 2.17. Suppose there exists an interval (r1, r2) ⊂ (0, 1) such that θn is constant on A(0; r1, r2)(k).

Then θn is constant on D(0, r−2 ). If in addition, θn is also positive on A(0; r1, r2)(k), then in+1(a) does

not depend on a ∈ A(0; r1, r2)(k).

Proof. If in = 1, then θn is 0 since in this case the morphism is radial. So we may assume in what

follows that in > 0.

If θn is 0 on A(0; r1, r2)(k), then so are θn,i, for i ∈ {1, . . . , in − 1}, by equation (2.15.3). Together

with (2.15.2) this implies that each function f [i](T ) is zero on A(0; r1, r2)(k) hence is zero on D(0, r−2 ).

Then, (2.15.3) implies that θn is 0 on D(0, r2).
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Suppose now that θn > 0 on A(0; r1, r2)(k). By the previous Lemma, there exists an interval

(r′1, r
′
2) ⊂ (r1, r2) and j0 ∈ {1, . . . , in − 1} such that for every a ∈ A(0; r′1, r

′
2)(k)

θn(a) =

(
|f [j0](T )||a|
|f [in]|

) 1
in−j0

.

Since θn(a) is constant on A(0; r′1, r
′
2)(k), then so is |f [j0](T )||a|. Then, by the property (1) of valuation

polygons, |f [j0](T )||a| is constant for all a ∈ D(0, r′−2 ) and then so is θn,j0(a).

Suppose that for some a1 ∈ D(0; r′−2 )(k) we have that in+1(a1) = j1 6= j0, so that θn,j1(a1) >

θn,j0(a1) or θn,j1(a1) = θn,j0(a1) and j1 < j0. Again by the property (1) of valuation polygons there

exists an a2 ∈ A(0; r′1, r
′
2)(k) such that |f [j1](a2)| ≥ |f [j1](a1)|. Then, by (2.15.2)

θn,j1(a2) ≥ θn,j1(a1) > θn,j0(a1) = θn,j0(a2) = θn(a2), or

θn,j1(a2) ≥ θn,j1(a1) = θn,j0(a1) = θn,j0(a2) = θn(a2) and j1 < j0

which is a contradiction in both cases. Hence, in+1(a) = j0 and θn is constant on all of D(0, r′−2 ).

Finally we note that we could have chosen the interval (r′1, r
′
2), so that r′2 is arbitrarily close to r2,

again by Lemma 2.16, which ends the proof. �

Corollary 2.18. Let f : D1 → D2 be a weakly n-radial morphism of open unit discs. Then,

(1) If there exists an ε > 0 such that θn is zero on A(0; 1− ε, 1)(k), then f is radial.

(2) f is weakly (n+ 1)-radial if and only if there exists an ε > 0 such that the restriction of θn on

A(0; 1− ε, 1)(k) is a positive constant.

Proof. The �rst point is clear since by Lemma 2.17, θ0 is 0 on D1(k). For the second point, if f is

weakly (n + 1)-radial, then it is n-radial and θn is constant on the whole disc D1(k) by de�nition.

In the other direction, from Lemma 2.17 it follows that θn(a) is constant for every a ∈ D1(k) which

means that f is n-radial, with border of radiality equal to θn(a) (which is the same for any a ∈ D1(k)).

The same lemma implies that in+1(a) does not depend on a ∈ D1(k), hence the second condition in

De�nition 2.12 follows. �

Remark 2.19. It is worth noting that part (2) in the previous corollary also implies the following.

Suppose f : D1 → D2 is an n-radial morphism of open unit discs with r > 0 the border of n-radiality.

Then, if − log(r) is a breakpoint of va(f, ·) for all a ∈ D1(a), f must be weakly (n+ 1)-radial.
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2.3. A criterion for radiality.

Theorem 2.20. Let f : D1 → D2 be a �nite morphism of open unit discs of degree d. Then, f is

radial if and only if the following holds: there exists a function N : [0, 1) → Z>0 such that for every

rational point y ∈ D2(k) and every ρ ∈ [0, 1] we have #f−1(yρ) = N(ρ).

Moreover, the pro�le pf is uniquely determined by the function N .

Proof. Let (T, S) be a pair of compatible coordinates for f .

Suppose that f is a radial morphism of degree d, and let pf be its pro�le. Let x1, . . . , xl be all the

preimages of the point y. Then, all the preimages of the point xρ are of the form ζxi,ρi , i = 1, . . . , l

(some of which may coincide). Since pf (ρi) = ρ, and pf is bijective the numbers ρ1, . . . , ρl are all

equal and p−1
f (ρ) = {ρ1 = · · · = ρl}.

The multiplicity of each point ηxi,ρi is then equal to

νf (ηxi,ρi) = ∂−vxi(f,p
−1
f (ρ)), i = 1, . . . , l,

and, since the right hand side only depends on ρ and not on xi due to radiality of f , we also have

νf (ζx1,ρ1) = · · · = νf (ζxl,ρl). Corollary 2.5 then implies that #f−1(yρ) = d
νf (ηxi,ρ1 ) . Clearly, this

number only depends on ρ and not on y: this is then our function N(ρ). This proves the �only if� part

of the statement.

In the other direction, suppose we are given a function N satisfying the conditions of the theorem.

If f is radial, we are done, so suppose that f is not radial. By Lemma 2.13, f is weakly 1-radial.

Let n be the maximal number such that f is weakly n-radial, but not weakly (n+1)-radial. Then in

particular in > 1, where in is the minimal element in Df,n. Let (rm, r
′
m) be a sequence of subintervals

of (0, 1), satisfying the following properties (see Lemma 2.16):

(1) (rm+1, r
′
m+1) ⊂ (r′m, 1);

(2) limm→∞ rm = 1 and

(3) there exists jm ∈ {1, . . . , in − 1} such that for every a ∈ A(0; rm, r
′
m)(k)

θn(a) =

(
|f [jm](T )||a|
|f [in]|

) 1
in−jm

.

The formula shows that, for su�ciently big m and for a ∈ A(0; rm, r
′
m)(k), θn(a) only depends on |a|

and increases with |a|. On the other hand, there exists arbitrary large m, such that θn is not constant
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on the annulus A(0; rm, r
′
m)(k), because otherwise it would be constant on all of the disc D1(k), due to

Lemma 2.17 and, by Corollary 2.18, f would be (n+ 1)-radial, against the assumption. Hence, there

exists arbitrary large m0 such that θn is not constant on Am0 := A(0; rm0 , r
′
m0

)(k) and hence for every

a ∈ Am0 , in+1(a) is de�ned. Moreover, we can choose m0 so that for every a ∈ Am0 , |f(a)| = |a|d.

Indeed, since f is a morphisms of degree d, its (T, S)-valuation polygon will have the highest slope d

and this implies that for each a ∈ D1(k) and of norm close to 1, f(a) will have norm precisely |a|d. This

latter condition is equivalent to f(A[0; |a|, |a|]) = A[0; |a|d, |a|d] and f−1(A[0; |a|d, |a|d]) = A[0; |a|, |a|].

Let r ∈ (0, 1) be such that there exist a, b ∈ Am0 , |a| < |b| and

(2.20.1) p(Ta,Sf(a)),f (θn(a)) < r < p(Tb,Sf(b)),f (θn(b)),

or, in the other words, let us choose r such that

vb(f,− log(θn(b))) < − log r < va(f,− log(θn(a))),

as is shown in the Figure 2. We note that we can always �nd such an r because θn is not constant on

-
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Figure 2. The valuation polygons va(f, ·) and vb(f, ·).

Am0 and increases with the absolute value of the argument, and furthermore, f being weakly n-radial

and our choice of Am0 imply that the (Ta, Sf(a)) and (Tb, Sf(b))-pro�les of f coincide on the segment

[θn(b), 1] (that is, va(f, ·) and vb(f, ·) coincide on the segment (0,− log(θn(b))]). Let y1 := ζf(a),r and
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y2 := ζf(b),r. We note that y1 and y2 have the same radius, so they have the same number N(r) of

preimages, counted without multiplicities.

We next study the preimages of the points y1 and y2. Let a = a1, . . . , al and b = b1, . . . , bl be all the

preimages of the points f(a) and f(b), respectively. Our choice of Am0 implies that for i = 1, . . . , l, all

the points ai have the same norm as a, while all the points bi have the same norm as b. Lemma 2.1

(3) implies that for each i = 1, . . . , l, there is exactly one preimage of the point y1 (resp. y2) on the

canonical path lai (resp. lbi), which we denote by ζai,ri (resp. ζbi,si). Clearly, we have

pai,f (ri) = r and pbi,f (si) = r.

Next, since f is weakly n-radial and because of our choice of Am0 , the values θn(ai), for i = 1, . . . , l, all

coincide. In particular, all the pro�le functions pai,f , i = 1, . . . , l, coincide on the segment [θn(a), 1).

Remark 2.3 then implies, because of the �rst inequality in (2.20.1), that r1 = · · · = rl. For the same

reason, all the points ζai,ri have the same geometric rami�cation index which is precisely in. Corollary

2.5 then gives

(2.20.2) N(r) = #f−1(y1) =
d

in
.

Similarly, the (Tbi , Sf(bi))-pro�les of f coincide on the segment [θn(b), 1]. The second inequality in

(2.20.1) implies that si < θn(b), and consequently for each i = 1, . . . , l, νf (ζbi,si) ≤ in+1(bi) < in. Let

ν2 be the maximal number among the νf (ζbi,si), i = 1, . . . , n. Lemma 2.4 implies

(2.20.3) N(r) = #f−1(y2) ≥ d

ν2
>

d

in
.

Inequalities (2.20.2) and (2.20.3) give us a contradiction, hence f is radial.

As for the last assertion of the theorem, we notice that to determine the pro�le pf amounts to

determining the valuation polygon v(f, ·) or, equivalently, to �nding breakpoints and corresponding

slopes in between of the latter polygon (since we already know the behavior of the function λ 7→ v(f, λ)

for λ close to 0).

If 0 < b1 < · · · < bn < 1 are the points of discontinuity of N on the path l0 from 0 to the exit

of D, it is easy to see that − log bn < · · · < − log b1 are the breakpoints of v(f, ·). Moreover, if

ρ ∈ (bi, bi+1) for i = 1, .., n − 1 (resp. ρ ∈ (0, b1)), then Remark 2.7 and Corollary 2.5 imply that the

∂−v(f,− log ρ) = d
N(ρ) . �
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Remark 2.21. In the previous theorem, because of the continuity of the (T, S)-pro�les for f , that

is the right-continuity of the function N , one can restrict ρ to vary in an everywhere dense subset of

[0, 1], in particular [0, 1] ∩ |k∗| will su�ce.

De�nition 2.22. Let f : D1 → D2 be a �nite morphism of open unit discs and let a ∈ D2(k). We

de�ne the function Na := Nf,a : [0, 1)→ Z>0 by

Na(ρ) := #f−1(ζa,ρ).

Remark 2.23. Let d be the degree of the �nite morphism f . Let a1, . . . , an, with n ≤ d, be the distinct

inverse images of a. The set of connected components of f−1(D(a, ρ−)) consists of discs D(ai, ρ
−
i ), for

i = 1, . . . , n, not necessarily distinct. Then the inverse images of ζa,ρ are among the points ζai,ρi , for

i = 1, . . . , n. We deduce from this that Na(ρ) coincides with (using the previous notation)

(1) the number N1 of distinct points ζai,ρi , for i = 1, . . . , n;

(2) the maximum number N2 of connected components of the inverse image of a connected a�noid

domain in D2 with good reduction and with maximal point ζa,ρ;

(3) the maximum number N3 of connected components of the inverse image of a connected a�noid

domain in D2 with good reduction and with maximal point ζa,ρ, containing a.

The equalities N1 = N2 = Na(ρ) and N3 ≤ N2 are clear. We only need to show that N2 ≤ N3.

In fact, let A be a connected a�noid domain in D2 with good reduction and with maximal point

ζa,ρ such that A1, . . . , AN2 ⊂ D1 are the distinct connected components of the inverse image of A in

D1. Then any Aj has good reduction and as maximal point one of the points ζai,ρi . This is because

A is just the disc D in D2 with the maximal point ζa,ρ minus �nitely many open discs in D2 that are

attached to ζa,ρ. Consequently, each Aj is just a disc in D1 with maximal point one of the points ζaj ,ρi

minus �nitely many open discs in D1 that are attached to ζai,ρi (see also Lemma 2.1). Conversely, any

point ζai,ρi belongs to exactly one of the a�noids A1, . . . , AN2 . We may then re-index the a�noids

Aj and the points ζai,ρi in such a way that, for j = 1, . . . , N2, ζaj ,ρj is the maximal points of Aj . For

j = 1, . . . , N2, let Aj := Aj ∪ D(aj , ρ
−
j ). Then A := A ∪ D(a, ρ−) is a connected a�noid domain in

D2 with good reduction and with maximal point ζa,ρ which contains a, and Aj is a connected a�noid

with good reduction with maximal point ζaj ,ρj , and it is a connected component of f−1(A). Moreover,

A1, . . . , AN2 are disjoint. We conclude that N2 ≤ N3.
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It follows from the previous remark that, for any a ∈ D2(k), the function Na is non-increasing,

right-continuous, and has �nitely many jumps (= points of discontinuity). Moreover, for ρ close to 1,

Na(ρ) = 1 while for ρ close to 0, Na(ρ) ≤ deg(f), with strict inequality if and only if a is a branching

point.

An immediate consequence of these properties and the previous theorem is the following

Corollary 2.24. Let f : D1 → D2 be a �nite morphism of open unit discs.

(1) For each a ∈ D2(k), Na is uniquely determined by its jumps and by the values it takes at them.

(2) The morphism f is radial if and only if for every two points a, b ∈ D2(k) the functions Na and

Nb coincide. Moreover, the pro�le of f is uniquely determined by the function Na.

We will return to the functions Na in Lemma 3.9, where we will study its close relation with

multiradius of pushforwards of the constant p-adic di�erential equations (see Section 2).

2.4. Radializing skeleton of a morphism.

2.4.1. For any quasi-smooth k-analytic curve X, the analytic skeleton S(X) of X is the complement

of the union of all open discs in X. If X = A(0; r1, r2) is an open annulus, the analytic skeleton S(A)

is homeomorphic to the open segment (r1, r2) ⊂ R.

Let X be a connected quasi-smooth strictly k-analytic curve. It follows from the existence of

triangulations of quasi-smooth curves ([15, Chapter 5.]) (or semistable reduction) that there exists a

locally �nite set T of type 2 points in X, such that X \ T is a disjoint union of open analytic domains

each of which is isomorphic to an open disc or an open annulus (for our purposes we also consider a

punctured open disc to be an open annulus of inner radius 0). The union of the set T with all the

analytic skeleta of annuli which are connected components of X \ T is called the (semistable) skeleton

of X with respect to T and we denote it by ΓT . The complement X \ΓT is then a disjoint union of open

discs and because of this we note that the only case in which X admits an empty analytic semistable

skeleton is when X is an open unit disc. Note that our notion of skeleton is slightly di�erent from the

one used in [15, Section (5.1.8)] where a skeleton is a complement of all points in a curve that admit

a neighborhood isomorphic to an open disc. According to that de�nition, the projective analytic line

P1
k admits an empty skeleton as well.

Now if X is as above and Γ a nonempty semistable skeleton of X, we de�ne the retraction function

rΓ : X → Γ in the following way. If x ∈ Γ then we set rΓ(x) = x. If x ∈ X \ Γ, then the connected
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component of X \Γ containing x admits a unique boundary point z ∈ Γ. In this case we set rΓ(x) = z.

In the latter situation we will say that D is attached to the point z.

The following is an easy result that will be used in the proof of the Lemma 3.5.

Lemma 2.25. Let D be an open disc, Γ a nonempty skeleton of D and x ∈ D a point in D \Γ. Then,

there exists y ∈ D(k) with rΓ(x) = rΓ(y).

Proof. Let D′ be an open disc which is a connected component of D \ Γ that contains x. Then since

rΓ(D′) = rΓ(x), any rational point y ∈ D′ will do the job. �

2.4.2. Let f : Y → X be a �nite morphism of quasi-smooth strictly k-analytic curves. By a skeleton

of the morphism f we mean a pair (ΓY ,ΓX) such that ΓY (resp. ΓX) is a skeleton of Y (resp. X) and

such that f−1(ΓX) = ΓY .

The following result can be easily deduced from [1, Corollary 4.26.].

Theorem 2.26. Any �nite morphism f : Y → X of quasi-smooth (strictly) k-analytic curves admits

a (nonempty) skeleton.

Let f : Y → X be a �nite morphism of quasi-smooth strictly k-analytic curves and let Γf = (ΓY ,ΓX)

be a nonempty skeleton of f . Then it is a direct consequence of the de�nition of skeleton of a morphism

that for any open disc D which is a connected component of Y \ ΓY , the restriction f|D : D → D′ is a

�nite morphism of open discs, and D′ is a connected component of X \ ΓX . We recall that any such a

disc D can be identi�ed with an open unit disc.

De�nition 2.27. Let f : Y → X and Γf = (ΓY ,ΓX) be as above. We say that the morphism f is

radial with respect to Γf if for any two open discs D1 and D2 that are attached to the same point in

ΓY (that is rΓY (D1) = rΓY (D2)), the restrictions f|D1
and f|D2

are radial morphisms having the same

pro�le function.

Remark 2.28. We will use the following, easily established fact ([27, Lemma 3.3.13.]). Suppose that

f : Y → Z and g : Z → X are two �nite morphisms of quasi-smooth strictly k-analytic curves, and

suppose that Γf = (ΓY ,ΓZ) and Γg = (ΓZ ,ΓX) are their respective skeleta, so that Γg◦f = (ΓY ,ΓX)

is a skeleton for g ◦ f . Then, if two out of the three skeleta Γf , Γg and Γg◦f are radializing, then so is

the third one.
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Remark 2.29. One of the main results of [27] is the existence of a radializing skeleton for �nite

morphisms of quasi-smooth strictly k-analytic curves (loc.cit. Theorem 3.4.11.). We will reprove this

result by establishing a close relation between the radializing skeleta of a morphism and the controlling

graphs of the pushforward of the constant connection by the morphism, which will be the subject of

Sections 3 and 4.

2.5. Factorization of morphisms.

2.5.1. From now on, k is assumed to be a complete and algebraically closed valued �eld extension of

Qp.

We recall brie�y some properties of reduction of a�noid curves. For more details we refer to [12,

Section 6.3], [4, Section 2.4] or to the book project [15]. If X is a quasi-smooth, strictly k-a�noid

curve, its canonical reduction ([4, Section 2.4]), denoted by X̃, is a k̃-algebraic a�ne curve. If AX is

the corresponding a�noid algebra, let A◦X denote the k◦-algebra {f ∈ A | supx∈X |f(x)| ≤ 1} and let

A◦◦X := {f ∈ A◦X | supx∈X |f(x)| < 1}. Then, the k̃-algebra of regular functions O(X̃) on X̃ is A◦X/A◦◦X
and X̃ = SpecA◦X/A◦◦X .

Let us denote the reduction map by red : X → X̃. If X̃ is smooth, we say that X has (canonical)

good reduction. In this case, the Shilov boundary of X consists of a single point ([4, Proposition

2.4.4.]).

Let f : Y → X be a �nite morphism of quasi-smooth strictly k-a�noid curves with good reduction

with maximal points η and ξ, respectively, and let f̃ : Ỹ → X̃ be its canonical reduction. Then X \{ξ}

is a disjoint union of open unit discs, each of which is attached to the point ξ. In this case the reduction

map induces a 1-1 correspondence between the smooth points of X̃ and the connected components of

X \ {ξ} ([4, Theorem 4.3.1], [15, Section 4.2.11.1]). For any y ∈ Y , we have red(f(y)) = f̃(red(y)). In

particular ({η}, {ξ}) is a skeleton of f and connected components of Y \ {η} are mapped to connected

components of X \ {ξ}, or, in other words, if D is any disc in Y attached to η, then f(D) is a disc

in X attached to ξ and for every disc E in X attached to ξ, f−1(E) is a disjoint union of discs in Y ,

attached to η. We will use freely this correspondence in what follows.

2.5.2. Recall that if f̃ : Ỹ → X̃ is a �nite morphism of smooth connected k̃-algebraic curves, then f̃

factors canonically as

(2.29.1) Ỹ
f̃ins−−→ Z̃

f̃sep−−→ X̃
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where f̃ins : Ỹ → Z̃ is a �nite, radicial morphism while f̃sep : Z̃ → X̃ is �nite and generically étale.

The factorization in fact corresponds to the �eld extensions κ(X̃) ⊂ κ(Z̃) ⊂ κ(Ỹ ), where κ(Z̃) is the

separable closure of κ(X̃) in κ(Ỹ ). More precisely, we have Z̃
∼−−→ Ỹ (pr), where Ỹ → Ỹ (pr) is the

r-fold relative Frobenius morphism and where pr is the degree of κ(Ỹ ) over κ(Z̃) ([21, p. 291] or [26,

Part 3, Prop. 53.13.7]).

De�nition 2.30. Let f : Y → X be a �nite morphism of strictly k-a�noid curves having good

reduction. We say that f is a residually separable (resp. residually radicial, resp. residually étale)

morphism (at the maximal point of Y ) if the reduced morphism f̃ : Ỹ → X̃ is a generically étale (resp.

radicial, resp. étale) morphism of smooth a�ne k̃-algebraic curves. We put s(f) := deg(f̃sep) and

i(f) := deg(f̃ins).

Remark 2.31. If f : Y → X is a quasi-�nite morphism of quasi-smooth k-analytic curves, the notions

of residually separable and residually radicial from De�nition 2.30 extend to a type 2 point η ∈ Y . In

this case, one simply chooses an a�noid domain Y ′ in Y with good reduction and maximal point η

such that f|Y ′ is a �nite morphism of k-a�noid curves with good reduction, and proceeds as in the

previous de�nition.

Remark 2.32. De�nition 2.30 and Remark 2.31 extend to a quasi-�nite morphism f : Y → X of

quasi-smooth k-analytic curves and to any point η ∈ Y of type > 1, by a suitable extension of scalars.

See [9, Section 1.2.]. This generalization is not needed for our present purposes.

The main result of this section is the existence of a lifting of the canonical factorization (2.29.1)

for a morphism of a�noid curves. We will be able to lift the factorization for the class of morphisms

described in the next de�nition and in the lemma that follows it.

De�nition 2.33. Let f : Y → X be a �nite morphism of quasi-smooth, strictly k-a�noid curves with

good reduction. We say that f is uniformly residually rami�ed (at the maximal point of Y ) if the degree

deg(f|D), where D is any open disc in Y attached to its maximal point, does not depend on D. This is

the case i� the morphism f̃ has the same multiplicity at every closed point ỹ ∈ Ỹ .

In what follows we say that a morphism of k-analytic curves f : Y → X is rig-étale if it is étale at

any point y ∈ Y (k).
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Lemma 2.34. Let f : Y → X be a �nite rig-étale morphism of strictly k-a�noid curves with good

reduction. Then, f is uniformly residually rami�ed if and only if one of the following equivalent

conditions holds:

(1) Let f̃ = f̃sep ◦ f̃ins be as in (2.29.1). Then, f̃sep is étale.

(2) For every open disc D attached to the maximal point of Y , deg(f|D) = i(f).

(3) For every open disc E attached to the maximal point of X, the number of connected components

of f−1(E) is equal to s(f).

Proof. (1) Let ỹ ∈ Ỹ be a closed point and let e
f̃ ,ỹ

denote the algebraic multiplicity of f̃ at ỹ. Then

from (2.29.1)

e
f̃ ,ỹ

= i(f) e
f̃sep,f̃ins(ỹ)

,

so we see that uniformity of residual rami�cation is equivalent to the fact that, for any closed point

ỹ ∈ Ỹ , e
f̃sep,f̃ins(ỹ)

is the same number, necessarily = 1. This in turn means that f̃sep is étale.

(2) Continuing (1), f̃sep étale is equivalent to the condition that every point ỹ ∈ Ỹ (k̃) has the same

multiplicity equal to i(f), or in other words, that for every open disc D attached to the maximal point

of Y we have deg(f|D) = i(f).

(3) Finally, that every point ỹ ∈ Ỹ (k̃) has the same multiplicity equal to i(f) is equivalent to that,

for every point x̃ ∈ X̃(k̃), #f̃−1(x̃) = deg(f̃sep) (using
∑

ỹ∈f̃−1(x̃)
e
f̃ ,ỹ

= deg(f̃)). This is equivalent to

the condition that for every open disc E attached to the Shilov point of X, the number of connected

components of f−1(E) is equal to #f̃−1(x̃) = s(f). �

Remark 2.35. Let f : Y → X be a �nite morphism of strictly k-a�noid curves with good reduction

and let η and ξ be the maximal points of Y and X, respectively.

(1) If f is, in addition, a rig-étale morphism Y → X, and it is residually separable at η, then f is

residually étale at η and therefore also residually uniformly rami�ed at η. To prove this it will

su�ce to show that e
f̃ ,ỹ

= 1 for any ỹ ∈ Ỹ (k̃). We let D be the open unit disc attached at η

and corresponding to ỹ and let D′ be its image (D′ will be an open disc attached to ξ). Let

T ∈ OY,η = κ(η) ⊂H (η)

be a coordinate on D. Note that in order to �nd such T we may take any parameter T̃ ∈ O(Ỹ )

of the local ring O
Ỹ ,ỹ

; then T̃ induces a generically étale covering Ỹ → Z̃, étale at ỹ, where Z̃

is an open a�ne in P1
k̃
. Any lift T ∈ O(Y )◦ of T̃ provides a �nite étale morphism of an open
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formal neighborhood Y of ỹ in Spf (O(Y )◦) onto an open formal neighborhood P of f̃(ỹ) in

the formal projective line over k◦. By [7, Lemma 4.4] this morphism induces a coordinate on

each residue class of Y, and in particular on D. Similarly, let S ∈ OX,ξ be a coordinate on D′.

By removing some of the open discs from Y and X di�erent from D and D′, respectively, we

may express f as a power series S = f(T ) with coe�cients in k◦ (because T and S have norm

1 at the corresponding maximal points). Then f rig-étale implies that dS/dT has constant

norm on D, and moreover on Y . Now, f̃ generically étale means that dS̃/dT̃ 6= 0, in particular,

there is a ỹ′ ∈ Ỹ (k̃), where dS̃/dT̃ (ỹ′) 6= 0. This implies that the norm of dS/dT is equal to

1 all over Y , since by our choice of T and S we have d̃S/dT = dS̃/dT̃ . Finally, if e
f̃ ,ỹ

> 1 we

would have (dS̃/dT̃ )(ỹ) = 0 hence the norm of dS/dT over D would be smaller than 1 which

is a contradiction.

(2) If f is a rig-étale morphism Y → X, but is not residually separable at η, then f need not be

residually uniformly rami�ed at η. For example, if p 6= 2, S = a T + T 2p, a ∈ k◦, |p| < |a| < 1

is a �nite rig-étale morphism from the closed T -disc D(0, 1) to itself. However, the reduction f̃

of f is a �nite morphism A1
k̃
→ A1

k̃
of the form T̃ 7→ T̃ 2p which factorizes as T̃ 7→ T̃ p 7→ (T̃ p)2,

the morphism T̃ p 7→ (T̃ p)2 being the separable part of f̃ . Clearly, it is rami�ed over 0, hence

the morphism is not residually uniformly rami�ed.

(3) Notice that if f is residually uniformly rami�ed at an interior point of type 2 (necessarily

of residual genus 0), the reduced morphism is the product of a �nite radicial morphism of a

projective line over k̃ followed by a �nite étale morphism of projective lines over k̃. But the

latter is an isomorphism, so a map residually uniformly rami�ed at an interior point of type 2

reduces to a power of relative Frobenius.

Suppose now that f : Y → X is a �nite morphism of strictly a�noid curves with good reduction

which is radial with respect to the skeleton ({η}, {ξ}) coming from the Shilov points of Y and X,

respectively. Then, by the de�nition of radiality, for every open disc D in Y , attached to the Shilov

point of Y , deg(f|D) is the same for all of them. Consequently,

Corollary 2.36. A radial morphism of strictly quasi-smooth k-a�noid curves with good reduction is

residually uniformly rami�ed.

In the other direction, we have
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Corollary 2.37. A residually étale morphism f : Y → X of strictly k-a�noid curves with good

reduction is radial with respect to the skeleton coming from the Shilov points of Y and X, respectively.

Proof. Indeed, if D is any disc in Y attached to its Shilov point, the restriction f|D is an isomorphism

(because it has degree 1), hence is radial. �

2.5.3. We may now factorize.

Theorem 2.38. Let f : Y → X be a �nite rig-étale morphism of strictly k-a�noid curves with

good reduction which is residually uniformly rami�ed. Then, there exists a strictly k-a�noid curve Z

with good reduction, together with �nite rig-étale morphisms fi : Y → Z and fs : Z → X such that

f = fs ◦ fi, Z̃
∼−−→ Ỹ (pr), (̃fs) = f̃sep and (̃fi) = f̃ins, where i(f) = pr.

Proof. Let us show that the morphism f : Y → X canonically induces a �nite morphism Φ : Y → X

of a�ne smooth k◦-formal schemes topologically of �nite presentation whose special �ber identi�es

with the reduction f̃ : Ỹ → X̃ while its generic �ber identi�es with f . In fact, let A → B be the

morphism of k-a�noid algebras corresponding to f . By a result of Grauert and Remmert [16, �4],

which applies since k is algebraically closed, the k◦-subalgebras A◦ ⊂ A and B◦ ⊂ B are topologically

of �nite type. On the other hand, they have no k◦◦-torsion, and therefore by [10, �2.3 Cor. 5] both are

of topologically �nite presentation. By [12, �6.4, Cor. 6], B◦ is a �nite A◦-algebra. Then, we de�ne

Y (resp. X) as Spf B◦ (resp. Spf A◦), and Φ as the morphism corresponding to A◦ ⊂ B◦. Notice that

both Y and X are smooth k◦-formal schemes by [11, Lemma 1.2].

In the reduction of f we have the factorization

Ỹ
f̃ins−−→ Z̃

f̃sep−−→ X̃ .

as in (2.29.1). By Lemma 2.34, f̃sep is (�nite and) étale so that, by [6, Lemma 2.1] (see also [17, Exp.

I, Cor. 8.4]) there exists an a�ne smooth k◦-formal scheme topologically of �nite presentation Z and a

�nite étale morphism Φsep : Z→ X with special �ber f̃sep. Let Z be the generic �ber of Z, so that Z is a

quasi-smooth strictly k-a�noid curve with good reduction Z̃. The generic �ber of Φsep is then a �nite

morphism of quasi-smooth strictly k-a�noid curves with good reduction f2 : Z → X whose reduction

is f̃sep. Now, we are in the range of applicability of [13, Theorem 1.1.] (where one takes W = ∅) and

we may conclude that there exists a lifting f1 : Y → Z of f̃ins such that we have f = f2 ◦ f1. It follows

by their construction that f1 and f2 satisfy the properties required in the statement. �
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3. Pushforwards of the constant connection

3.1. Generalities on p-adic di�erential equations.

3.1.1. Let X be a connected quasi-smooth strictly k-analytic curve. If (E ,∇) is a p-adic di�erential

equation onX, by which we mean a locally freeOX -module E of �nite type and of rank r, equipped with

an integrable connection ∇, then for every semistable skeleton Γ of X, we can de�ne the multiradius

function,MRΓ : X(k)→ (0, 1]r, in the following way.

Let x ∈ X(k) be a rational point. Then, there exists a unique maximal open disc, say Dx in X,

which is a connected component of X \Γ and such that x ∈ Dx. We can choose a coordinate T on Dx

which identi�es it with the standard open unit disc, and as such we have a well de�ned radius function

on Dx. For r ∈ (0, 1) we denote as usual by D(x, r−) the open disc centered at x and of radius r. This

disc does not depend on the chosen coordinate T .

De�nition 3.1. Keeping the situation above, we de�ne the multiradius of convergence of solutions of

(E ,∇) at a rational point x, denoted byMRΓ(x, (E ,∇)), as the r-tuple of numbers

MRΓ(x, (E ,∇)) := (R1,Γ(x, (E ,∇)), . . . ,Rr,Γ(x, (E ,∇))),

where r is the rank of E and Ri := Ri,Γ(x, (E ,∇)) is given by

Ri := sup{s ∈ (0, 1) | dimkH
0(D(x, s−), (E ,∇)) ≥ r − i+ 1}.

Here H0(D(x, s−), (E ,∇)) is the k-vector space of the elements of E(D(x, s−)) that are in the kernel

of ∇.

We extend the previous de�nition to any point x ∈ X by extending the scalars to the completion

K of an algebraic closure of the completed residue �eld H (x), extending the skeleton Γ to a skeleton

of X⊗̂K, picking a suitable rational point in X⊗̂K which is �above� x and repeating the previous

procedure, as is done with more details in [2, De�nition 3.1.11] or [24, Section 2.2].

The number R1 is commonly referred to as the radius of convergence of solutions of (E ,∇) at the

point x.

3.1.2.
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De�nition 3.2. We say that the skeleton Σ ⊃ Γ of X controlsMRΓ(·, (E ,∇)) (with respect to Γ) if,

in case Σ 6= ∅, for any point x ∈ X we have

MRΓ(x, (E ,∇)) =MRΓ(rΣ(x), (E ,∇)).

If Σ = ∅, this is taken to mean thatMR(·, (E ,∇)) is a constant vector over X.

Remark 3.3. IfX is a quasi-smooth strictly k-analytic curve, Γ its skeleton, (E ,∇) a p-adic di�erential

equation on X and x ∈ X(k), then it follows from the de�nition of the multiradius of convergence that

MRΓ(x, (E ,∇)) =MR∅(x, (E ,∇)|D),

where D is the open unit disc in X \ Γ, attached to Γ and that contains x.

We introduce some notation. For two vectors ~v ∈ Rn and ~u ∈ Rm, we denote by ~v ∗ ~u the vector

~w ∈ Rn+m, which is obtained from ~v and ~u by concatenation and arranging the coe�cients in a

nondecreasing order (for example, (1, 2, 9) ∗ (4, 6) = (1, 2, 4, 6, 9)). For a d-fold ∗-product of a vector ~v

with itself we will write ~v∗d.

In the next theorem we recall some of the fundamental results on p-adic di�erential equations (the

multiradius of convergence is a continuous function on X and that a controlling skeleton exists) as well

as some properties that will be used in this article.

Theorem 3.4. For any X, Γ and (E ,∇) as above, there exists a skeleton Σ of X that controls (E ,∇)

with respect to Γ. Moreover, the following holds:

(1) The multiradius function is continuous as a function from X → (0, 1]r, where r is the rank of

E. It is constant around type 1 and type 4 points.

(2) Any skeleton Σ′ of X that contains Σ, controls (E ,∇) with respect to Γ.

(3) Suppose that (E ,∇) = (E1,∇1)⊕ (E2,∇2). Then, for every x ∈ X,

(3.4.1) MRΓ(x, (E ,∇)) =MRΓ(x, (E1,∇1)) ∗MRΓ(x, (E2,∇2)).

Moreover, Σ controls (E ,∇) if and only if it controls both (E1,∇1) and (E2,∇2).

Proof. The part one is in [2, Theorem 0.1.7] for R1, and [25, Theorem 3] and [24, Theorem 3.6] in

general. The local constancy around type 4 points is proved in [19, Section 4.4]. Point (2) comes

directly from the de�nition of controlling graphs, while the �rst part of (3) comes from the de�nition
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of the multiradius. The �if� direction in the second part of (3) is clear while the �only if� direction

amounts to show that both (E1,∇1) and (E2,∇2) have constant multiradius on connected components

of X \Σ. But, if D is one such connected component and x ∈ D, then if either of the two multiradii is

not constant in some neighborhood of x, the continuity of the multiradius and formula (3.4.1) would

imply that the multiradius of (E ,∇) is not constant in the chosen neighborhood of x, which is a

contradiction. �

For us, the following property of the controlling graphs will be particularly useful.

Lemma 3.5. Let X be a quasi-smooth strictly k-analytic curve, Γ a skeleton of X, let (E ,∇) be a

p-adic di�erential equation on X, and Σ ⊃ Γ another skeleton of X. Suppose that Σ 6= ∅. Then, Σ

controls (E ,∇) with respect to Γ if and only if for every x, y ∈ X(k) such that rΣ(x) = rΣ(y), we have

MRΓ(x, (E ,∇)) =MRΓ(y, (E ,∇)).

Proof. We recall that X(k) is dense in X. The �only if� part is clear, so, suppose that for every x, y ∈

X(k) with rΣ(x) = rΣ(y) the corresponding multiradii coincide. We note that a consequence of this

condition and continuity of multiradius (Theorem 3.4) is thatMRΓ(x, (E ,∇)) =MRΓ(rΣ(x), (E ,∇)).

Suppose, for the sake of contradiction, that Σ is not controlling for (E ,∇). This means that there

exist a point ξ ∈ X \ Σ, such that

MRΓ(ξ, (E ,∇)) 6=MRΓ(rΣ(ξ), (E ,∇)).

By continuity of the multiradius, we may even assume that ξ is of type 2. Let D be a connected

component of X \Σ which contains ξ and let Σ′ be any controlling graph of (E ,∇) which contains Σ.

Necessarily, Σ′D := D ∩ Σ′ 6= ∅ and is a skeleton of D. By Lemma 2.25 there exists a point x ∈ D(k)

such that rΣ′D
(x) = rΣ′D

(ξ). Then, since Σ′ is controlling

MRΓ(ξ, (E ,∇)) =MRΓ(x, (E ,∇)) =MRΓ(rΣ(x), (E ,∇))

=MRΓ(rΣ(ξ), (E ,∇)) 6=MRΓ(ξ, (E ,∇)),

which is a contradiction. �

3.1.3. For this section let f : Y → X be a �nite rig-étale morphism of degree d of quasi-smooth strictly

k-analytic curves. We recall that in this case f∗OY is a locally free OX -module of �nite rank which is
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equal to the degree deg(f). More generally, if E is a locally free OY -module of �nite rank r, ϕ∗E is a

locally free OX -module of �nite rank r · d.

We also note that since f is rig-étale, we have an isomorphism Ω1
Y
∼= f∗Ω1

X . Then if we are given

(E ,∇) a p-adic di�erential equation on Y we may push forward by f the integrable connection

∇ : E → E ⊗ Ω1
Y ,

to obtain (using the projection formula)

f∗(∇) : f∗E → f∗(E ⊗ Ω1
Y ) ∼= f∗(E ⊗ f∗Ω1

X) ∼= f∗E ⊗ Ω1
X ,

hence an integrable connection on f∗E . We call the p-adic di�erential equation (f∗E , f∗∇) on X the

pushforward of (E ,∇) by f . We refer to [3, Section 1.] for more details.

By a slight abuse of notation, we will write ∇ for f∗∇ hoping it will be clear from the context which

connection it denotes.

Remark 3.6. We note an important consequence of the de�nition of pushforward of p-adic di�erential

equations. Namely (keeping the previous notation), if U is any analytic subdomain of X, then we have

an isomorphism of k-vector spaces

(3.6.1) H0(U, (F ,∇))
∼−−→ H0(f−1(U), (E ,∇)).

A natural question that arises is the relation between the multiradius of convergence of (E ,∇) at

some point y ∈ Y and the one of (F ,∇) at the point x = f(y). The answer is given in [9] while in

lemmas 3.7 and 3.9 we will recall two particular cases that we will use later on.

Lemma 3.7. Let f : Y → X be a �nite rig-étale morphism of degree d where Y and X are strictly

k-a�noid curves with good reduction and with Shilov points η and ξ, respectively. Let (E ,∇) be a p-adic

di�erential equation on Y and (F ,∇) be its pushforward on X. Suppose that f is residually étale, let

x ∈ X(k) and let f−1(x) = {y1, . . . , yd}. Then

(3.7.1) MR{ξ}(x, (F ,∇)) =
d∗
i=1
MR{η}(yi, (E ,∇)).

Proof. Let D be the connected component (open unit disc) of X \ {ξ} that contains x. Since f is

residually étale, f−1(D) is a disjoint union of d open discs, each of which is attached to η and if D′

is any of them the restriction f|D′ is an isomorphism of open unit discs (Lemma 2.34). Then, for
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each i = 1, . . . , d, there is a unique open disc, say Di which is a preimage of D, that contains yi. We

conclude that

(F ,∇)|D = f∗((E ,∇)|
⋃d
i=1Di

) =
d⊕
i=1

(f|Di)∗((E ,∇)|Di),

so that by Theorem 3.4 and Remark 3.6

MR(x, (F ,∇)|D) =
d∗
i=1
MR(x, (f|Di)∗((E ,∇)|Di)) =

d∗
i=1
MR(yi, (E ,∇)|Di).

Finally, since by Remark 3.3

MR{ξ}(x, (F ,∇)) =MR(x, (F ,∇)|D) and MR{η}(yi, (E ,∇)) =MR(yi, (E ,∇)|Di),

we obtain (3.7.1). �

Corollary 3.8. Let f : Y → X be a �nite rig-étale, residually étale morphism of degree d of strictly

k-a�noid curves with good reduction. Let (E ,∇) be a p-adic di�erential equation on Y of rank r and

let (F ,∇) be its pushforward on X. Let η and ξ be the Shilov points of Y and X, respectively.

Then, {η} is controlling for (E ,∇) with respect to {η} if and only if {ξ} is controlling for (F ,∇)

with respect to {ξ}.

Proof. Let x ∈ X(k) and suppose that {η} is controlling for (E ,∇). Let y1, . . . , yd be all the preimages

of x. Then, by Lemma 3.7

MR{ξ}(x, (F ,∇)) =
d∗
i=1
MR{η}(yi, (E ,∇)) =MR{η}(η, (E ,∇))∗d,

hence by Lemma 3.5, {ξ} is controlling for (F ,∇).

For the other direction, suppose that {ξ} is controlling for (F ,∇), and let Σ be any controlling

skeleton for (E ,∇). If Σ = {η} we are done so suppose that η is properly contained in Σ. Since Σ is a

skeleton of Y , there are only �nitely many connected components of Y \ {η} that intersect Σ. Let us

denote their union by Z. We note that for every y ∈ Y \ Z, rΣ(y) = η so that

(3.8.1) MR{η}(y, (E ,∇)) =MR{η}(η, (E ,∇)), for all y ∈ Y \ Z.

Let x ∈ X(k)\f(Z). Then, keeping the notation {y1, . . . , yd} = f−1(x), the previous formula together

with (3.7.1) implies that

(3.8.2) MR{ξ}(x, (F ,∇)) =MR{η}(η, (E ,∇))∗d.
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Since {ξ} is controlling for (F ,∇), the previous formula is valid for all x ∈ X(k).

Now let y ∈ Z(k) be arbitrary and let x = f(y), and let y1 = y, y2, . . . , yd be all the preimages

of x. Formulas (3.7.1) and (3.8.2) imply that all the entries of the multiradius MR{η}(y, (E ,∇)) =

MR{η}(rΣ(y), (E ,∇)) are contained in the discrete set of entries ofMR{η}(η, (E ,∇)). Let Dy be the

connected component of Z that contains y. Since MR{η}(·, (E ,∇)) is continuous along the skeleton(
Σ∩Dy

)
∪ {η} (where the skeleton is equipped with the induced topology), and it takes values in the

discrete subset of (0, 1]r, it must be constant, hence equal toMR{η}(η, (E ,∇)). Since y was arbitrary

rational point in Z, and having in mind (3.8.1) we conclude that for every y1, y2 ∈ Y (k),

MR{η}(y1, (E ,∇)) =MR{η}(y2, (E ,∇)),

hence by Lemma 3.5 we conclude that {η} itself is controlling for (E ,∇). �

The following is Corollary 4.4 in [9], but for the convenience we provide the full proof here.

Lemma 3.9. (See [9, Corollary 4.4.]) Let f : D1 → D2 be a �nite étale morphism of degree d of open

unit discs, let (F ,∇) := f∗(OD1 , dD1) be the pushforward of the constant connection and let x ∈ D2(k).

Let further b1 < · · · < bn−1 be the jumps of the function Nx, let b0 = 0 and put Ni := Nx(bi−1),

i = 1, . . . , n. Then, the multiradius

MR(x, (F ,∇)) = (R1, . . . , Rd),

is given by

R1 = · · · = Rd−N2 = b1;

Rd−N2+1 = · · · = Rd−N3 = b2;

...

Rd−Nn−1+1 = · · · = Rd−1 = bn−1;

Rd = 1.

Proof. We start by noticing that for i = 0, . . . , n − 1 and s ∈ (bi, bi+1), #f−1(D(x, s−)) = Ni+1.

Indeed, in this case Nx is constant on (bi, bi+1) and each connected component of f−1(D(x, s−)) is

determined by the point in D1 to which it is attached, and there is precisely Nx(bi) = Ni+1 of these.
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From the de�nition of multiradius of convergence and using Remark 3.6 we obtain

Ri = sup{s ∈ (0, 1) | dimkH
0(D(x, s−), (F ,∇)) ≥ d− i+ 1}

= sup{s ∈ (0, 1) | dimkH
0(f−1(D(x, s−)), (OD1 , dD1)) ≥ d− i+ 1}.

Next we note that

dimkH
0(f−1(D(x, s−)), (OD1 , dD1)) =

∑
D c.c. of f−1(D(x,s−))

dimkH
0(D, (OD1 , dD1))

= #f−1(D(x, s−)).

where "c.c." stands for "connected component" and we used that H0(D, (OD1 , dD1)) = k. Finally, we

obtain

(3.9.1) Ri = sup{s ∈ (0, 1) | #f−1(D(x, s−)) ≥ d− i+ 1}.

Since by Remark 2.23 for s close enough to 1, #f−1(D(x, s−)) = 1, we immediately obtain that

Rd = 1. To �nd Rd−1 and the rest of the radii we use the remark from the beginning of the proof

to see that the supremum of s ∈ (0, 1) such that #f−1(D(x, s−)) ≥ 2 is precisely bn−1 and since

#f−1(D(x, b−n−1)) = Nn−1 we obtain that Rd−Nn−1+1 = · · · = Rd−1 = bn−1. The same reasoning gives

us the rest of the radii. �

The following lemma should be compared to the Corollary 2.36 as it �announces� the relation between

the controlling graphs of the pushforward of the constant connection and radializing skeleta of the

morphism.

Lemma 3.10. Let f : Y → X be a �nite rig-étale morphism of strictly k-a�noid curves with good

reduction and maximal points η and ξ, respectively. Let (F ,∇) := f∗(OY , dY ).

If {ξ} is controlling forMR{ξ}(·, (F ,∇)) then f is residually uniformly rami�ed.

Proof. Let x ∈ X(k), let Dx be the maximal disc in X attached to ξ and which contains x. Let

D1, . . . , Ds be all the preimages of the disc Dx. We will prove that s does not depend on x. By

equality

(F ,∇)|Dx =

s⊕
i=1

(f|Di)∗(ODi , dDi).
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and Remark 3.3 it follows that

MR{ξ}(x, (F ,∇)) =MR(x, (F ,∇)|Dx) =
s∗
i=1
MR(x, (f|Di)∗(ODi , dDi)).

The last equality and Lemma 3.9 imply that there are exactly s entries in MR{ξ}(x, (F ,∇)) which

are equal to 1. In particular, since {ξ} is controlling for (F ,∇), it follows that s is the same for all

x ∈ X(k), hence the number of preimages of any open disc in X that is attached to ξ is constant. By

Lemma 2.34 f is residually uniformly rami�ed. �

4. Radializing and controlling skeleta

We are ready for our main result.

Theorem 4.1. Let f : Y → X be a �nite rig-étale morphism of quasi-smooth strictly k-analytic curves

and let Γf = (ΓY ,ΓX) be a skeleton of f . Then, Γf is a radializing skeleton for f if and only if ΓX is

controlling for the connection f∗(OY , dY ) with respect to ΓX .

Proof. Let us put (F ,∇) := f∗(OY , dY ).

First we consider the case where ΓY = ΓX = ∅ so that both Y and X are open unit discs. In

this case, f being radial is equivalent to for any x, y ∈ X(k), Nx ≡ Ny, by Corollary 2.24 (2). Then,

by Corollary 2.24 (1) and Lemma 3.9 this is equivalent to MR(x, (F ,∇)) = MR(y, (F ,∇)) so that

MR(·, (F ,∇)) is constant all over X.

Assume now that ΓY and ΓX are not empty.

Let ξ ∈ ΓX be of type 2 and let Cξ be a strictly k-a�noid domain in X with good reduction and

with Shilov point ξ ∈ ΓX and such that Cξ ∩ ΓX = {ξ} (we note that the k-rational points of such

k-a�noid domains cover X(k), that is, for every rational point in X and an open disc D in X \ΓX that

contains it we may �nd a k-a�noid domain of the form Cξ that contains D) . Since Γf is a skeleton of

f , f−1(Cξ) is a disjoint union of a�noid domains Cηi , where each Cηi is an a�noid domain in Y with

good reduction, with Shilov point ηi ∈ ΓY and Cηi ∩ ΓY = {ηi}, for i = 1, . . . , n. Then,

(4.1.1) (F ,∇)|Cξ =

n⊕
i=1

f∗(OCηi , dCηi ).

Let us suppose that f is radial and let x ∈ Cξ(k). Let D be the connected component of X \ Γ that

contains x. So D ⊂ Cξ and f−1(D) is a disjoint union of open discs in Y \ΓY each of which is attached

to Γ. Let us denote, for i = 1, . . . , n, by Di,1, . . . , Di,l(i) those of the previous discs which are contained
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in Cηi , and let us write fi,j := f|Di,j . We note that by Corollary 2.36 and Lemma 2.34 that, for any

i = 1, . . . , n, l(i) does not depend on the disc D that is attached to ξ. Then, we may write

(F ,∇)|D =
n⊕
i=1

l(i)⊕
j=1

(fi,j)∗(ODi,j , dDi,j ).

By Theorem 3.4 and Remark 3.3 it follows that

(4.1.2) MRΓ(x, (F ,∇)) =MR(x, (F ,∇)|D) =
n∗
i=

l(i)∗
j=1
MR(x, (fi,j)∗(ODi,j , dDi,j )).

Since f is radial, each of the morphisms fi,j is radial and for a �xed i, the pro�le of fi,j does not

depend on j. Consequently, for a �xed i, the functions Nfi,j ,x do not depend on j and neither on x nor

on the disc D in Cξ attached to ξ (see Corollary 2.24 (2)). Finally, by Lemma 3.9 we may conclude

that the right-hand side of (4.1.2) does not depend on x ∈ Cξ(k) so that ΓX is controlling for (F ,∇).

In the other direction, suppose that ΓX is controlling for (F ,∇). We note that in order to prove

that f is radial it is enough to prove that for each i = 1, . . . , n, f|Cηi : Cηi → Cξ is radial (with respect

to the skeleton ({ηi}, {ξ})). The fact that ΓX is controlling for (F ,∇), hence that {ξ} is controlling

for (F ,∇)|Cξ together with (4.1.1) implies that {ξ} controls each of the p-adic di�erential equations

f∗(OCηi , dCηi ) by Theorem 3.4. This means that, without loss of generality, we may assume that

f : Y → X is a �nite rig-étale morphism of a�noid domains with good reduction and with maximal

(type 2) points η and ξ, respectively, and our goal is to prove that it is radial with respect to the

canonical skeleton ({η}, {ξ}), assuming that {ξ} controls (F ,∇).

By Lemma 3.10 f is residually uniformly rami�ed and by Theorem 2.38 there exists a strictly

k-a�noid curve Z with good reduction and Shilov point ω together with �nite rig-étale morphisms

fi : Y → Z and fs : Z → X such that fi is residually radicial, fs is residually étale, and f = fs ◦ fi.

Since fs is radial with respect to ({η}, {ξs}) (Corollary 2.37) then f will be radial if and only if fi is

radial (Remark 2.28). Moreover, since (F ,∇) = (fs)∗
(
(fi)∗(OY , dY )

)
Corollary 3.8 implies that {ξ} is

controlling for (F ,∇) (w.r.t. {ξ}) if and only if {ω} is controlling for (fi)∗(OY , dY ) (w.r.t. {ω}). In

other words, without loss of generality we may assume that our morphism f : Y → X is in addition

also residually radicial at η.

Now, for any disc B in Y attached to η, the restriction f|B : B → D := f(B) is a �nite étale

morphism of open discs, and f−1(D) = B (Lemma 2.34). Hence, (F ,∇)|D = (f|B)∗(OB, dB) and for
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any x ∈ D

MR{ξ}(x, (F ,∇)) =MR(x, (F ,∇)|D) =MR(x, (f|B)∗(OB, dB)).

Since the left hand side of the previous equation is constant on Cξ it follows from Lemma 3.9 that

the functions Nf|D,x do not depend on x, hence f|D is radial. For the same reason the functions NfD,x

coincide for all discs D and x ∈ D(k). Then Corollary 2.24 (2) implies that for all D the morphisms

f|D have the same pro�le. The morphism f is then radial. �

Remark 4.2. The previous theorem together with 3.4 (1) implies the existence of radializing skeleta

for �nite rig-étale morphisms of quasi-smooth strictly k-analytic curves, [27, Theorem 3.4.11.]. One

can also allow classical rami�cation. Given a �nite f : Y → X morphism of quasi-smooth k-analytic

curves, one restricts f to a �nite rig-étale morphism g : Y − f−1(B) → X − B, where B ⊂ X(k)

denotes the branching locus of f . Once a radializing skeleton for g is obtained, a skeleton for f is

found by adding edges to reach the points of f−1(B) and B, respectively.
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