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Abstract
The increasing global demand for farmlandproducts is placingunprecedentedpressureon theglobal
agricultural systemand itswater resources.Many regionsof theworld, that are affectedbya chronicwater
scarcity relative to their population, stronglydependon the import of agricultural commodities and
associated embodied (or virtual)water.The globalizationofwater throughvirtualwater trade (VWT) is
leading to adisplacementofwateruse andadisconnectionbetweenhumanpopulations and thewater
resources they relyon.Despite the recognized importanceof thesephenomena in reshaping thepatternsof
waterdependence through teleconnectionsbetweenconsumers andproducers, their effect onglobal and
regionalwater resourceshas just started tobequantified.This review investigates the global spatiotemporal
dynamics, drivers, and impacts ofVWTthroughan integratedanalysis of surfacewater, groundwater, and
root-zone soilmoisture consumption for agricultural production; it evaluateshowvirtualwaterflows
compare to themajor ‘physicalwaterfluxes’ in theEarthSystem; andprovides anewreconceptualizationof
thehydrologic cycle to account also for the role ofwater redistributionby thehidden ‘virtualwater cycle’.

1. Introduction

The water cycle, the global-scale pattern of water
circulation through, atmosphere, land masses, and
oceans that strongly controls life on Earth, has been
altered by human action since the onset of civilization as
a result of water withdrawals from streams, lakes, and
aquifers, river diversions, anddamming.This disruption,
however, has been exacerbated by the Industrial Revolu-
tion, the subsequent technological innovations of the
Green Revolution, and the associated socio-economic
dynamics. Not only climate change but also processes
associated with shifts in land use and land cover—such
as deforestation, large-scale irrigation, and dam con-
struction—have strongly altered the water cycle (Postel
et al 1996, Poff et al 1997, Gordon et al 2005, Oki and
Kanae 2006, Rost et al 2008, Rockström et al 2009,Gleick
andPalaniappan2010,Runyan andD’Odorico2016).

Freshwater resources are critical. Renewable, yet
finite, they are central for ecosystem functions, human
wellbeing, and societal development (Ammerman and
Cavalli-Sforza 1984, Falkenmark and Rockström
2004, Allan and Castillo 2007, D’Odorico et al 2010b).
As a consequence of increasing human pressure, in
some regions, water use is exceeding sustainable levels
(Rosa et al 2018a). Therefore, we are living in what has
been described as an era of water scarcity in which
water resources available to agriculture may limit the
planet’s ability to meet the growing crop demand by
human societies (Falkenmark and Rockstrom 2004,
D’Odorico et al 2018, Rodell et al 2018). This funda-
mental and increasingly scarce resource (relative to
increasing human demand) is crucial to agriculture,
mining, energy production, manufacturing, and
residential use (Vörösmarty et al 2010, Brauman et al
2016,Mekonnen andHoekstra 2016).
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The complex interdependence between human
societies and water, which tends to be thought of and
treated as a socio-environmental dynamic between
human needs and local hydrological resources,
often occurs through distant interconnections that
result through the globalization of water resources
(Hoekstra and Chapagain 2008). Indeed, humanity
affects and interacts with the global water cycle bymod-
ifying water stocks and moving substantial amounts of
water, both spatially and temporally. Traditionally,
though, scientists have evaluated the alterations to the
water cycle focusing only on its physical waterflows and
stocks. Yet, this approach fails to account for an impor-
tant aspect of the socio-hydrological interactions that
shape the global water cycle, namely the existence of
‘hidden’ virtual water fluxes that should be accounted
for in addition to the physical water flows. Under-
standing the drivers, processes and impacts of what we
define as the ‘virtual water cycle’ becomes a constitutive
aspect of understanding and redefining the notion of
the global hydrologic cycle.

This paper aims at deepening the understanding of
key elements of themain socio-hydrological dynamics
that are associated with an increasingly inter-
dependent globalized world. At the center of this
endeavor, lies the study of the main drivers, processes
and impacts of virtual water trade (VWT). Specifically,
the goal of this article is to (1) review the impact of
VWT on water resources (e.g. Pfister and Bayer 2014,
Lutter et al 2016) by looking at global patterns of sur-
face water, groundwater, and root-zone soil moisture
consumption and trade; (2) analyze how virtual water
flows fit into the ‘natural’ hydrological cycle by com-
paring their magnitude to those of major ‘physical
water fluxes’ in the Earth System; (3) evaluate to what
extent VWT establishes teleconnections (also known
as ‘telecoupling’) in the global water system through
dependencies on water resources available in other
regions of the world; (4) review gaps in current knowl-
edge, discuss about possible future research directions,
and highlight emerging research trends related
toVWT.

After an introduction of the general concept of
VWT and its importance, we highlight the dynamics
of global market integration and illustrate the main
features of contemporary trade policies and their
development. We then illustrate the key patterns of
VWT; discuss the different resolutions at which the
analysis of virtual water transfers occur; and reflect
on the epistemological implications of the analysis
of VWT and how these lead to a new analytical
reconceptualization of the global water cycle that
accounts also for a hidden ‘virtual water cycle’. We
then review the main drivers and models of VWT
and discuss the major socio-environmental con-
sequences of VWT. Finally, we conclude high-
lighting the key contribution of this review and point
at new areas of research that we believe deserve more
attention.

Box 1.Definitions.

Virtual water content (VWC) is the amount of water required to pro-

duce a good, considering all the steps involved in its production.

The term ‘virtual’ emphasizes that thewater is conceptually

embedded thoughnot physically present in the good. In this sense

the term ‘content’, though commonly used, can bemisleading

and in contradictionwith the adjective ‘virtual’ because virtual

water is not really contained in the commodity. TheVWC is gen-

erally expressed as thewater volume per unitmass of product (in
m3 ton−1 or kg−1). For example, in theUnited States of America,

the actual averagewater content of wheat is∼0.13m3 ton−1

whereas theVWC is∼1961 m3 ton−1.

Cropwater footprint (CWF) is the same as theVWCbut specifically

refers to crops. CWF is calculated as the ratio between total crop

evapotranspiration in the growing season and crop yield and is

expressed as awater volume per unitmass of product (in
m3 ton−1 or kg−1). The footprint can be calculated either through
a production-based accounting (PBA) or,most commonly,

through a consumption-based accounting (CBA). PBA refers to

impacts and resource inputs associatedwith production activity.

CBA reallocates those produced goods to final consumers. In the

case of crops, however,most of the water footprint is contributed

bywater losses by evapotranspiration in the course of the produc-

tion process, while thewater cost of processing and transporta-

tion is negligible. Therefore, there is no need to conceptually

distinguish PBA fromCBA and in this review thewater costs of

crop productionwill be simply expressed in terms of CWF (see
box 2 formore details).

Water footprint (WF) identifies the volume ofwater associatedwith a

certain (not unit)mass of a good and/or to a set of goods. Com-

putationmay followdifferent approaches, as detailed in box 2.

Greenwater footprint is the fraction of theWF that is contributed by

greenwater (i.e. precipitationwater directly contributing to the
soil water balance in the crops’ root zone in the absence of

irrigation).
Bluewater footprint is the fraction of theWF that is contributed by

the consumptive use of bluewater (i.e. irrigationwater with-
drawn from surfacewater bodies and aquifers).

Greywater footprint is an indicator of freshwater pollution defined as

the water volume required to dilute pollutants to a concentration

thatmeets thewater quality standards.

Virtual water trade (VWT) is the (international or intra-national)
trade of goods evaluated in terms of virtual water. Through the

trade of goods, water resources that are physically used in the area

of production are virtually transferred to the consumption

region. This transfer generates a virtual waterflux that links pro-

duction to consumption. Sometimes, it is also referred to as the

water footprint of trade.

Box 2. TheWater Footprint calculation

Thewater footprint is the amount of water needed to produce a com-

modity or a set of (produced or consumed) commodities.When

associated to the consumptive water use (i.e. water returned to the
atmosphere aswater vapor during the production process), itmay

include both rainwater (greenwater) and surfacewater or
groundwater (bluewater). For instance, crop production con-
sumes both greenwater and, in the case of irrigated agriculture,

bluewater (see box 1). These consumptive uses of water by crops

are due to evapotranspiration.Water footprint studies have used

different approaches:

1) The biophysical approach, most widely used for crops and

agricultural goods, estimates CWF as the ratio between evapo-

transpiration and the crop yield (see table 3). To estimate

VWT (box 3), theCWF is thenmultiplied by themass of

2
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(Continued.)
product traded and the resulting volume ofwater is then sum-

med across different goods. VWT is generally computedwith

theCWFof the country of origin of the trade flow, (see box 3
and section 5). Such an approach is usually named the ‘bot-

tom-up’ approach (e.g. Feng et al 2012).

1) Life Cycle Analysis (LCA) approaches use LCA datasets that

include a ‘water footprint’ library of products. The LCA

approach includesmulti-stage supply chains, so it would attri-

bute cottonwater use to thefinal purchaser of a t-shirt not to

the textile producer country, and corrects for re-exports (e.g.
Netherlands forwarding goods toGermany).

1) Top-down approaches refer to input–output analyses which

have been used largely in economics to investigate thewater

use and allocation in countries or regions. Top-down approa-

ches calculate theWFby tracingwater use in regional, national

or global supply chains using a Leontief demand-pullmodel.

Multi-regional input–output (MRIO) analyses in particular
use global supply chains and allow for an estimate of national

totals (e.g. Yang et al 2012, Arto et al 2016). The product reso-
lution, however, is often low as highlighted in Feng et al (2012)
and for example all agricultural goods are usually considered

as a bulk or classified in few categories. Recent efforts in the

MRIO analyses of water footprint are oriented to improving

the product resolution (Lutter et al 2016).

1) Finally, a good compromise between top-down and bottom-

up approaches could be found in the development of combi-

nationmethods that use both amonetaryMRIO to track

embodied goods and a physicalmodel (e.g. based on FAO-
STAT) to track physical flows (Bruckner et al 2015, deKoning
et al 2015, Giljum et al 2015).

Box 3. Calculation of virtual water trade

The virtual water trade for a single crop c, from a given location (e.g.
country) i, to another location j, VWTc,ij (m

3 yr−1) depends on
both the virtual water footprint of crops from that location,

VWFc,i (m
3 ton−1) and the trade amount of that cropTc,ij (ton

yr−1) or
TVWT VWC .c ij c i c ij, , ,=

Thus, in order to attempt to understand global patterns of virtual

water trade, resolution of virtual water content of a crop from a

given location and trade volume is required.Water use of a spe-

cific crop, both green (rain) and blue (water withdrawals from
ground or surface water), is necessary to constrain the virtual con-
tent, or water footprint, of that crop for a specific location and

growing season.

Biophysical approaches (Box 2) use a variety of grid basedmodels,

including, H08 (Hanasaki et al 2010), AquaCrop (Steduto et al
2009, Raes et al 2009), CROPWAT8.0 (Allen et al 1998) and
WaterStat (Mekonnen andHoekstra 2010), LPJmL (Bondeau et al
2007, Rost et al 2008), that calculate potential evapotranspiration
and the soil water balance at resolutions as fine at 5 arcmin by 5

arcmin scales using on global climate and soil datasets. There are

differences in approaches and assumptions among thesemodels,

such as use of crop-specific evapotranspiration (ET) coefficients
(Allen et al 1998,Mekonnen andHoekstra 2011), versus calculat-
ing ET based on crop functional types (Bondeau et al 2007, Rost
et al 2008), or the inclusion of calculations of a greywater foot-
print (Mekonnen andHoekstra 2011). However, there are also

similar underlying assumptions and databases, such as leveraging

(Continued.)
MIRCA2000 (Portmann et al 2010) to help ascertain rainfed ver-
sus irrigated agricultural areas and thus discriminate between

blue and greenwater. In all of thesemodels, water use and plant

production over a growing season can then be summed over a

given year, and crop yield estimates can be derived.Modeled yield

can then be adjusted based on reported values, as in the case of

Hoekstra andMekonnen (2011). Yields andwater use thus pro-
vide both the production volume, P (tons yr−1), and the blue and
greenwater use,WU (m3 yr−1)necessary to calculate theVWCof

a given crop as:
P

VWC
WU

.c i
c i

c i
,

,

,

= This provides a single year

estimate, however, interannual variability can be high and tempo-

rally-averaged (1996–2005) values are typically used (Mekonnen

andHoekstra 2010). As agricultural production and trade data
are, broadly speaking, estimated and reported, at the country

scale (FAO), VWCof a given crop is typically calculated as a coun-

try-average value. Consequently,most studies to date have

focused on international, rather than sub-national trade.Multi-

regional input–output (MRIO)-based approaches go beyond the
reconstruction of a tradematrix, tracing commodity flows across

countries and across sectors, therefore allowing for a finer resolu-

tion in space (e.g. sub-national trade).

2. VWT:what is it andwhy does itmatter?

Globalization increases the exchange and transfer of
materials, energy and resources among distant coun-
tries. Through the integration of markets, systems of
production and societal demands, globalization typi-
cally creates teleconnections (i.e. distant socio-envir-
onmental interactions) between coupled natural and
human systems (Liu et al 2013, Oberlack et al 2018). Of
all resources, water is virtually rather than physically
mobilized (Allan 1996).

Water is too heavy and bulky and not valued
enough to justify its transport costs. There are excep-
tions, like the South-to-NorthWater Diversion Project
in China, where 9.5 billion m3 yr−1 of freshwater are
transferred to meet the burgeoning water demand in
the North China Plains (Zhao et al 2017). Other exam-
ples ofmegaprojectswith inter-basinwater transfers are
theCalifornia StateWater Project, which roughly trans-
ports 3 billionm3 yr−1 (Cohen et al 2004) and the Great
Man-Made River Project in Libya, which roughly trans-
ports 1.34 billion m3 yr−1 (Sternberg 2016). There
are about 155 inter-basin water transfer schemes in
26 countries around the world, with a total capacity of
490 billionm3 yr−1 of which 138 billionm3 yr−1 are for
water transfers in Canada alone, and 30 billion m3 yr−1

in the rest of the Americas, 181 billion m3 yr−1 in Asia,
and 120 billion yr−1 in Europe (Verma et al 2009).
Moreover, about 60 new projects are under study (e.g.
Verma et al 2009, Shumilova et al 2018). Sometimes
drinking water is carried by truck, boat, or pipelines—
as in the case of the Botswana North–South Carrier
project (16 million m3 yr−1)—to supply water-stressed
communities either on a regular basis or in periods of
scarcity (Bevanger 1994). Drinking water can also be
available as bottled water, which is increasingly

3
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transported over long distances around the world
(Gleick and Cooley 2009, Cohen and Ray 2018). More-
over, humanshave also tried to divert precipitation arti-
ficially through cloud seeding (Bruintjes 1999) and to
harvest fog and dew (e.g. Cereceda et al 1992, Kaseke
andWang 2018).

However, the total volume of water consumed to
produce traded commodities (table 1) is by far greater
(and travels longer distances) than the volume of water
that is physically transferred in the world (Oki et al
2017). Indeed, water remains a resource physically
available mainly for local use (Konar et al 2016a,
Hoekstra et al 2018) because transporting crops or
other goods is considerably easier than transporting
the water required for their production. For this rea-
son, particularly important to the understanding of
water resources in a globalized world is the contrib-
ution of Allan (1996, 1998, 2002), which elaborates on
how water resources are appropriated through the
transnational trade of agricultural commodities. The
adjective ‘virtual’ is used to describe how such water is
not physically present in the commodities that are tra-
ded but is embedded in their production (see box 1).

Trade of crops and other goods existed even in
early civilizations. Estimates of the associated virtual
water flows indicate that even in the Roman Empire
water resources were shared through trade and the
water costs of crop production were often externalized
beyond regional boundaries (Dermody et al 2014).
In the modern world, trade has greatly intensified,
particularly in the last few decades (figure 1).
Contemporary globalization dynamics have greatly
enhanced the spatial and temporal dislocation of pro-
duction and consumption through VWT (D’Odorico
et al 2014, Porkka et al 2017).

The assessment of the net virtual water imports for
a given nation, compared to the national consumption
(figure 2), can be used to measure that country’s reli-
ance on trade for the food and water resources they

consume (Tamea et al 2013, Winter et al 2014). In the
course of the last century, the intensification of trade
has led some regions of the world to become strongly
dependent on food, energy, andmaterials produced or
extracted withwater resources existing elsewhere. This
raises concerns about issues of national water security
and control over the hydrological resources that are
necessary for societal development (Carr et al 2012).
Indeed, many countries are not self-sufficient and
depend on imports from other regions to meet their
needs (Hoekstra and Chapagain 2008, Carr et al 2013,
Nesme et al 2016). Because of their reliance on trade,
the populations of some of these countries often
exceed their ability to feed themselves with their lim-
ited agricultural resources (D’Odorico et al 2010b,
Van Ittersum et al 2016). For example, the scarce water
resources existing in the Middle East are currently
insufficient to meet the food demand of the local
populations (Allan 1998).

Water is a vital resource controlling production,
particularly in agriculture. Virtual water is embedded
in agricultural, forestry, industrial, and mining pro-
ducts (Marston et al 2018, D’Odorico et al 2018). In
particular, large volumes of water are required by
agriculture, the largest water consumer globally (e.g.
Falkenmark and Rockström 2004, Rosegrant et al
2009, Richter 2014). Virtual water flows (table 1) have
also been investigated in the context of specific subsets
of agricultural products used for biofuels (Rulli et al
2016), food aid (Jackson et al 2015), seafood (Gephart
et al 2017), and natural rubber production (Chiarelli
et al 2018). In 2005, virtual water transfers associated
with food aid (Jackson et al 2015), accounted for only
0.5% of the water footprint of all food trade. Water is
also required to produce electricity (Macknick et al
2012, Meldrum et al 2013) as well as to extract and
process minerals (Northey et al 2016) and both con-
ventional (Mielke et al 2010, Carr and D’Odorico
2017) and unconventional fossil fuels (Nicot and

Table 1.Global virtual waterflows.

Virtual waterflows Annualflow (×109m3 yr−1) Year Source

Industrial products (blue + graywater) 282 1996–2005 (Hoekstra andMekonnen 2012)
Agricultural products (Green + BlueWater) 2038 (1386+652) 1996–2005 (Hoekstra andMekonnen 2012)
Agricultural products 2810 2010 (Carr et al 2013)
Biofuels (green +bluewater) 7.31 2015 (Rulli et al 2016)
Virtual water trade of energy production (coal, oil, nat-
ural gas, and electricity) (bluewater)

6 1992–2010 (Zhang et al 2016a)

Total 2333–3105

Physical water transport (inter-basin water transfers) 490 (Verma et al 2009)
Groundwater depletion embedded in crop trade 25 2010 (Dalin et al 2017)
Water savings through trade 220 2007 (Dalin et al 2012a)

352 1997–2001 (Chapagain et al 2006)
Food aid 10 2005 (Jackson et al 2015)
Water grabbing (appropriation through land
investments)

380 2013 (Rulli andD’Odorico 2013)
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Scanlon 2012, Rosa et al 2017, Rosa et al 2018b, Rosa
andD’Odorico 2019).

Water is seldom explicitly accounted for in com-
modity trade analyses. Typically, labor, economic
value, geographic location, and access to capital are the
main inputs in trade models (see section 7). Recent
trade analyses have considered environmental impacts
such as those associated with CO2 emissions (Deng
et al 2016b, Vora et al 2017,Meng et al 2018), however,
the study of environmental and social footprints of
international trade (Wiedmann and Lenzen 2018) and
associated spillovers (Liu et al 2015) has often failed to
explicitly account for the impacts on water resources.
Recent work has explicitly incorporated water as a fac-
tor of production into a theoretical trade model

(Lenzen et al 2013, Lutter et al 2016, Dang et al 2016).
This work incorporates key tradeoffs in agricultural
production and decisionmaking.

Most water scarcity indicators only account for
local water consumption and local water availability
(Liu et al 2017), while an important share of water con-
sumption and pollution is due to global and regional
trade (Vörösmarty et al 2015). With virtual water
transfers affecting local water scarcity in importing
and exporting regions, there is a need to integrate vir-
tual water flows in water stress assessments (Lenzen
et al, 2013; Pfister and Bayer 2014, Lutter et al 2016)
and shed light on how water scarcity is embodied in
international trade (Liu et al 2017). In this sense the
virtual water concept has been criticized as a tool to

Figure 1.Globalization over five centuries (1500–2011 period). Shown as theworld exports and imports expressed as a share of world
GDP (%) (afterOrtiz-Ospina andRoser 2018).

Figure 2.Physical and virtual waterfluxes. Interval bars are computed by using different values fromprevious studies (see tables 1 and
4). Note: The horizontal scale is logarithmic.
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advise policy-makers because it lacks relevant eco-
nomic and environmental information about water
resources (Gawel and Bernsen 2013). Indeed, the
quantitative analysis of water footprint and VWT
focuses on water consumption and therefore does not
inform about the sustainability of water resource
exploitation (Gawel and Bernsen 2013). Thus, water
footprint and VWT analyses need to be integrated
with a water balance approach to compare the con-
sumption rates with locally available water resources
(Lenzen et al 2013; Mekonnen and Hoekstra 2016;
Soligno et al 2017; Rosa et al 2018a). Indeed, literature
on the globalization of water resources may miss a
description of the phenomenon ofVWT in the context
of its hydrological implications.

In order to understand the relevance and magni-
tude of the global VWT it is particularly important to
appreciate recent developments of international trade.
We will here synthesize some of the key moments of
contemporary trade patterns and its policies.

3. Recent history of virtual trade and trade
policies

In the last several decades, the global patterns of
agricultural production often co-evolved with the
international trade of agricultural goods and related
policies. The distinctive aspect of food trade in the
period after World War II with respect to the trade of
other commodities was the absence of a general
international agreement for liberalization and barrier
removal. In fact, the General Agreement on Tariffs and
Trade, which promoted liberalization of markets,
elimination of trade barriers and expansion of interna-
tional trade, did not include agricultural commodities.
Trade of food products was included only in the 1994
Agreement on Agriculture (Clapp 2016). Between
1947 and 1972, the world’s agriculture saw a big gap
between national and international regulations, which
led to the establishment of the so-called ‘food regime’,
whereby the United States (US) protected its domestic
economy (Friedmann 1993) following policies that
were put in place after the Great Depression. To
increase farmers’ incomes, the New Deal (1933–1938)
set minimum prices for commodities and maintained
these prices constant through government purchases.
This encouraged farmers to produce more, with a
consequent problem of surpluses that needed to be
disposed of, often by favoring exports through foreign
aid and export subsidies (Friedmann 1993).

In addition to the effects of economic policies,
major changes in global food production and trade
resulted from the adoption of modern agricultural
technology. After World War II production (and sur-
pluses) further increased as a result of technological
advances, and the industrialization of agriculture (e.g.
Erisman et al 2008, D’Odorico et al 2018). Many agri-
food corporations engaged themselves in intensive

livestock operations as well as maize and soy farming
sustained by the use of fertilizers, irrigation, new
crop varieties, and other innovations of the Green
Revolution (e.g. Delgado et al 1999, Pingali 2012). This
transition in the agricultural production system sig-
nificantly threatened the natural capital by inducing
loss of biodiversity, soil erosion, freshwater pollution,
and increased greenhouse gas emissions (e.g. Ward
1993, Montgomery 2007). It also provided an unpre-
cedented excess in the supply of crops that were used
as animal feed, thereby dramatically increasing live-
stock production often in concentrated operations,
a phenomenon known as the livestock revolution
(Delgado et al 1999, Davis and D’Odorico 2015). The
intensification of crop production came at the cost of
environmental damage (e.g. Ward 1993) and of a spe-
cialization in the production of a narrow range
of products, which further increased the reliance on
international trade of agricultural goods (Friedmann
1993).

The Marshall Aid to Europe (1947) was one of the
cornerstones of the ‘food regime’. In fact, theMarshall
Plan was the first example of big foreign aid, which
boosted the Atlantic agro-food relations; funds from
the Marshall Aid to Europe were used to purchase US
surplus commodities (maize and soybean, mostly) at
rates 50% below domestic price and, at the same time,
investments in the European livestock sector made it
reliant on the US industrial feedstuffs. Thus, the Mar-
shall Plan promoted an integration between the US
and European agricultural economies. In the same
period, Marshall Aid also replicated the US model for
rice production in Japan, South Korea and Taiwan,
but without achieving an integrationwith theUS agro-
food sector as in Europe.

The strict linkages between US and Europe did not
hamper the European protection policy for some
goods. In particular European wheat and dairy pro-
ducts were under import controls through the Com-
mon Agricultural Policy (CAP 1962), which made
Europe less dependent on wheat imports from the US.
Therefore, the US had to find other wheat importers
outside Europe, targeting particularly developing
countries in Asia and Africa (Friedmann 1993). By the
1970s, the developing world became therefore depen-
dent on cheap wheat imports from the US, while tro-
pical crops from developing countries (i.e. sugar and
vegetable oils) were replaced by new industrial sub-
stitutes made in the US using subsidized maize and
soybean surpluses (Friedmann 1993).

In the 1972–1973 period, the Soviet Union, taking
advantage of theDétente periodwith theUS (i.e. easing
of the strained relations), bought 30 million tonnes of
grain from the US (Brada 1983). The consequence was
a sudden food scarcity worldwide (e.g. Gerlach 2015).
This food shortage, combined with the concomitant
oil crises (Yergin 2011), and the beginning of the mul-
tidecadal Sahel drought (Nicholson 2000, Wang and
Eltahir 2000, Dai et al 2004) increased the cost of food
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in the world (Friedmann 1993). Therefore, the inter-
national market became unreliable for a number of
import-dependent countries, which started to look for
new suppliers (e.g. Japan found new suppliers in the
developing world). The subsequent decades then saw a
gradual decrease in the leading role of the US in the
global agricultural trade and the end of the US-cen-
tered ‘food regime’ with the emergence of multiple
new pivots. Countries of the developing world and of
the former socialist block joined the multilateral trade
negotiations at the GATT. A noteworthy example of
the end of the ‘food regime’ can be found in the case of
the soybean market. By the late 1980s, the US lost the
control of this market (figure 3), while Brazil started to
become a major exporter of soybeans and soy meals.
Overall, Brazil and other major agricultural countries
such as Argentina and India, were then able to com-
petewith theUS for exportmarkets.

The emergence of new suppliers and new trade
partnerships greatly enhanced international trade and
the globalization of food, as reflected by the increase in
the number of trade relationships and in the amount
of food traded (D’Odorico et al 2014). Between 1986

and 2011 international food trade and the associated
trade of virtual water almost tripled (figure 4) (Carr
et al 2012, Dalin et al 2012a). In 2010 international
trade accounted for 24% of global food production
and associated virtual water (Carr et al 2013). Major
changes in the recent history of agricultural trade
include the ever increasing presence of the People’s
Republic of China as a major food importer (in year
2005), particularly from South America, the increase
of soybean exports from Brazil and Argentina to
southeast Asia (da Silva et al 2016, Zhang et al 2016b),
and the escalating exports of palm oil from Indonesia
and Malaysia to China, India, Pakistan, and Europe
(Porkka et al 2013,MacDonald et al 2015) (figure 3).

The end of the US-centered agricultural trade era
left some developing countries in conditions of strong
food dependency, stagnating export revenues and
debts (Friedmann 1993, Ward 1993). Decades of
access to subsidized agricultural surpluses from theUS
impeded the development of domestic commercial
farming (e.g. Ward 1993, IAASTD 2009, Yu and Nin
Pratt 2011). In importer countries, local farmers,
whose crops instead of being subsidized were taxed,

Figure 3.Global patterns ofmajor virtual water trade in 1986 (top) and 2011 (bottom). In purple: net VWexporters. In pink: net VW
importers. (FromCarr andD’Odorico (2017). Usedwith permission fromAnthemPress.)
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were often run out of business by cheaper subsidized
imports from the US (Ward 1993, IAASTD 2009).
Thus, import dependency was often both a cause and
an effect of limited agricultural development rather
than of a shift to a more profitable non-agricultural
economy (OECD 2013). In response to import depen-
dency, debt, and import restrictions in developed
countries, developing countries had to export non-
traditional products such as exotic foods and flowers,
which often contributed to land degradation, destruc-
tion of local food systems, and social inequality
(Friedmann 1993, Hale and Opondo 2005, Mena-
Vásconez et al 2016, Lanari et al 2018). At the same
time, overproduction in developed countries often
occurred at huge environmental cost in terms of pollu-
tion from use of fertilizers and pesticides, loss of habi-
tat and biodiversity in intensive monocultures, and
topsoil erosion (Ward 1993, Montgomery 2007).
Thus, export subsidies benefited exporting companies
but had environmentally harmful impacts in produc-
tion regions and socio-economically detrimental
effects on the receivingmarkets (Ward 1993).

Through their investments in multiple regions of
the world, multinational agro-food corporations—
whose interests were often neither aligned with those
of producing nor importing countries—strongly con-
tributed in determining the global patterns of transna-
tional food trade (Murphy 2008).

3.1. Geography of trade routes and their
vulnerability
Commodities are traded by road, rail, and sea, often
through vulnerable routes (Bailey andWellesley 2017).
Disruption of these routes may cut off supplies while
raising prices. Bailey and Wellesley (2017) identified
3 inland and 11 maritime potential bottlenecks (or
chokepoints) worldwide (table 2 and figure 5). These
chokepoints might be enhanced by intensifying
meteorological events, underinvestment in infrastruc-
ture, increase in trade volumes, and conflicts.

The increasing importance of international trade
is also seen in the efforts to build new trade infra-
structures. The Chinese government is developing the
Belt and Road Initiative to connect Eurasian countries
(Weidong 2015). For some time, there have been plans
to build the channel of Nicaragua as an alternative of
the Panama Canal (Heilmann et al 2014). The Turkish
government with the Channel Istanbul is planning
to build an artificial waterway channel to connect
the Aegean and Mediterranean seas (Dogan and
Stupar 2017). A new railroad is planned to connect
Brazil to the Pacific Ocean (Müller and Colloredo‐
Mansfeld 2018). Climate warming is creating new
routes in the Arctic that could reduce shipping time and
pressure on the congested Turkish Straits (Patel and
Fountain 2017). The US and Ukraine are building new
capacity and expanding grain terminals (Bailey and
Wellesley 2017).

4. Patterns of VWT

The globalization of water (Hoekstra and Chapa-
gain 2008) associated with the transport of virtual
water resources from one region to another is an
interesting case of embedded complex systems. It
results from the intertwined nature of production,
distribution and consumption of products that lever-
age freshwater. Large-scale food systems, alongside
production, consumption and population changes,
also incorporate virtual water flows associated with
trade (Hoekstra and Chapagain 2008), large-scale land

Figure 4. (A)VWProduction of 150 primary and (B) subsequentVWTrade of 266 primary and secondarymajor food commodities
removing feed and seed. (Analysis based on FAOSTATdata.)

Table 2. Food infrastructures chokepoints and percentage of
global total key crops exported through each chokepoint (year
2015). Source: Bailey andWellesley (2017).

Wheat Rice Maize Soybean

Brazil’s ports — — 18% 33%

USGulf ports 4% 5% 20% 17%

Black Sea ports 26% — 18% —
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acquisitions (Rulli et al 2013), food waste (Gustavsson
et al 2011), and more in general cultural behaviors
(Ingram 2011).

The conversion of diverse elements (i.e. trade, land
acquisitions, or waste) to a common currency (e.g. vir-
tual water or virtual water per capita) allows us to
explore the combined effect of the redistribution and
disposal of agricultural commodities on the global
food system and its impact on the global freshwater
resources. Translation for a single year of detailed
trade data of 58 major crop commodities from the
Food and Agricultural Organization to the network of
VWT allowed for the analysis of the topological prop-
erties of this network using methods from network
theory (Konar et al 2011). The fluxes of virtual water
associated with international trade follow a power law
relationship with nodal degree (e.g. the number of
export links a country has). Interestingly, VW flows
remain concentrated to a small number of links and
country nodes (or ‘hubs’) (Konar et al 2011). The
structural properties of the VW network can be
explained by geographic factors such as rainfall on

arable land and economic indicators such as the gross
domestic product (GDP) of the nations participating
within the network (Suweis et al 2011).

The temporal reconstruction of the VWT network
(Carr et al 2012, Dalin et al 2012a) has allowed for
examination of changes in the geographic distribution
of VWT and network properties in the last few dec-
ades. These analyses have highlighted that cereal grains
tend to comprise the largest proportion of virtual
water fluxes with soybeans, vegetable oils, and luxury
goods such as coffee and chocolate also accounting for
large portion of the traded virtual water (figure 6; Carr
et al 2013). Simple VWT balances reveal that countries
such as the United States, Brazil, Argentina, India,
and Australia act consistently as net exporters, and
Germany, Italy, Russia, and Japan act as net importers
of virtual water (Carr et al 2013). Some regions, such as
the Middle East have increased their importation of
virtual water resources, while other regions such as
Central Africa and China have switched from being
net exporters to net importers of virtual water (Carr
et al 2013). Interestingly, increased exports from South

Figure 5.Majormaritime chokepoints of agricultural commodity international trade. Redrawn from: Bailey andWellesley (2017).

Figure 6.Relative contribution of different food commodities to virtual water trade. (Analysis based on FAOSTATdata.)
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America, specifically Brazil and Argentina decreased
the North American share of trade to both Asia and
Europe from 1986 to 2007, which reflect historical
changes in global trade and the loss of centrality of the
US in agricultural exports (section 2).

The analysis of VWT by commodity classes (i.e.
plant, animal, and luxury products, see Carr et al 2013)
shows completely different VWT patterns across class
(figure 7). Interestingly, many developing countries
are net exporters of VW associated with luxury goods
but importers of crops and animal products. In the
1986–2011 period, Brazil gained increasing impor-
tance as an exporting country of animal and plant-
based products.

Carr et al (2012) investigated the global trade of
309 crop commodities using data from the Food and
Agriculture Organization (2017) and showed that the
associated total virtual water flux doubled from 1986
to 2008, and concurrently the number of links in the
virtual water network increased 92%. Similarly, Dalin
et al (2012a) leveraging the H08 model (box 3) also
showed a doubling in both total virtual water flux and
number of links among 58 major commodities. Both
of these studies showed an almost doubling in average
node strength (total flux) and degree (number of trade
partners) over a similar 22–23 year period.

The VWT network is overall extremely dynamic
and even links which carry large volumes of virtual
water display intermittent behavior in the sense that
their strength is not consistent from year to year (Carr
et al 2012). Further, countries with few connections
tended to remain less connected over time as exempli-
fied by the broad lack of engagement of African
nations in the food trade network. D’Odorico et al
(2012) examined the temporal changes in community
structure of the virtual water network demonstrating
an increase in clustering of VWT, and that, while the

network is highly variable, trade tends to be organized
within communities.

The analysis of VWT has also led to ethical con-
siderations regarding the inequalities in the distribu-
tions of water and population (Seekell et al 2011). It
was found that VWT tends to reduce inequalities
among countries in water use for food relative to well-
being thresholds (Carr et al 2015). Moreover, interna-
tional food trade provides access to nutrients and
enables some poorer countries to be able to nourish
hundreds of millions of people (Suweis et al 2013,
Wood et al 2018). In these studies, it is unclear what
the null model of trade equality might look like. Dang
et al (2015) quantified the inequality within the US vir-
tual water flow network. The US network is relatively
homogeneous and social (e.g. normal node degree dis-
tribution, clustered Pennock et al 2002), making it a
suitable null model for global VWT. The US virtual
water flows have a Gini coefficient of 0.51 while the
Gini Coefficient of global VWT is 0.63 (Dang et al
2015).

5. Refining resolution of virtual water
transfers

When quantifying VWT, there are two main inputs:
the water footprint (or virtual water content, VWC,
see box 1) and trade (T). The resolution of each
variable restricts the resolution of VWT estimates.
This section analyzes the resolution in space, time,
water source, water boundary, and commodity cover-
age that have been used in global reconstructions of
VWT (see box 3).

The literature on VWT began by tracking the
water embodied in international trade. Early studies
assumed that the VWC of a product was constant
within a country (Hoekstra and Hung 2002). This

Figure 7.Major importers and exporters of luxury goods, animal products, and plant-based products in 1986 and 2011. Red countries
are net exporters, blue countries are net importers. I, E, and P are imported, exported, and produced quantities of luxury, animal and
plant-based commodities in each country, respectively. (Based on data analyses inCarr et al 2013.)
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assumption is problematic for large countries, due to
their high spatial heterogeneity in both climate and
production patterns. In those countries internal redis-
tribution of food and the attached virtual water can be
significant and some studies have begun to examine
this internal flow of virtual water (Guan and Hubacek
2007, Dang et al 2015). Data on trade initially
included only agricultural and food commodities,
ignoring non-food items thatmay also consume large
volumes of water. Similarly, early research used tem-
poral averages of VWC (Hoekstra and Chapagain
2007). This ignores the large interannual fluctuations
in climatic conditions over time, as well as productiv-
ity trends, such as those induced by increasing
demand or technological changes. Additionally, in
initial VWT studies water use was lumped across
source (i.e. rainfall, surface water, groundwater). In
this way, differences in the source of water being used
to produce commodities were ignored. Similarly,
early work did not use naturally occurring hydrologic
boundaries (i.e. watershed boundaries) to define the
system, making it difficult to link to water resources
management.

Water footprint and virtual water transfer esti-
mates have seen recent advances to address all of the
shortcomings outlined above. Here, we detail the state
of the literature in terms of refining our estimates of
VWT in space, time, commodity coverage, water
source, andwater body.

5.1. Spatial resolution
Initial VWT studies combined estimates of VWC at
the national scale with trade data that were also
national in spatial scale. Recently, great strides have
been made in refining the spatial resolution of VWC
(i.e. typically to a grid covering the globe, see figure 8)
and then combining with national trade data. Now,
the current frontier is in further resolving trade flows
in space.

To estimate crop water footprint, or VWC, most
studies utilize a crop water model to calculate the con-
sumptive water requirements (i.e. evapotranspiration,
ET). CROPWAT (Allen et al 1998) is a commonly used
model (Mekonnen and Hoekstra 2011, Tuninetti et al
2015), though models such as the Global Crop Water
Model (Siebert and Döll 2010, Hoff et al 2014), H08
(Hanasaki et al 2010, Dalin et al 2012a), and AQUA-
CROP (Zhuo et al 2016) have been widely utilized as
well. These models perform a calculation of potential
and actual evapotranspiration relying on a simplified
soil water balance. Their use of finer spatial scales is
only limited by the availability of fine-grain informa-
tion on crops, soil properties, and atmospheric vari-
ables, as well as by the computational time (e.g.
figure 8). To date most of the global analyses of the
water footprint of crops have been performed at reso-
lutions ranging between 5 and 30 arc min (or between
∼10 and∼50 km)(see table 3; Tuninetti et al 2015).

Most studies on VW trade quantify international
flows with commodity group resolution typically

Figure 8.Comparison of the spatial distribution of the cropwater footprint (CWF, also referred to as ‘virtual water content’, VWC) of
wheat in 1961 and 2013 based on the ‘fast-track’method fromTuninetti et al (2017b) using national yield data from years 1961 and
2013 (fromFAOSTAT). The spatial distribution ofwheat cultivations is kept constant in time and equal to the cultivated areas in the
reference year (2000). Irrigation variability in time is indirectly accounted for as it contributes to the definition of national yields.
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limited by the Harmonizing Commodity Description
and Coding System (HS code) and the FAO food
groups, since trade data are predominantly available at
this spatial scale (e.g. FAOSTAT, COMTRADE) and the
paucity of detailed sub-national trade data is a major
limiting factor. Sub-national VW trade studies typically
pair VWC with modeled estimates of sub-national
commodity transfers (e.g. Verma et al 2009, Zhang and
Anadon 2014, Dalin et al 2014, 2015, Rushforth and
Ruddell 2016,Hoekstra andMekonnen 2016) orMRIO
models (Guan and Hubacek 2007, Dong et al 2014,
Zhang andAnadon 2014,Deng et al 2016a, Serrano et al
2016,Ren et al2018).

Recently, sub-national studies of VWT based
upon empirical sub-national commodity transfers (i.e.
using Commodity Flow Survey (CFS) or Freight Ana-
lysis Framework (FAF) data) have been introduced for
the US (Lin et al 2014, Dang et al 2015). Sub-national
studies based upon modeled domestic transfers have
also been developed (e.g. China in Dalin et al 2014,
Brazil in Flach et al 2016).

VW trade estimates that are highly resolved in
space provide the greatest opportunity to evaluate
links between water scarcity, water resources sustain-
ability, and complex supply chains (Flach et al 2016).
For example, VWT resolved to the urban spatial scale
enables the quantification of exposure and resilience
of cities to direct and indirect water stress (Rushforth
and Ruddell 2016). There is significant potential to
evaluate high spatial resolution VWT within the US,
due to the availability of sub-national empirical trans-
fers (e.g. CFS and FAF databases), however these data-
bases are limited in commodities and temporal
resolution when compared to the international trade
databases. Improvements in the spatial refinement of
VW trade in other countries, however, will continue to
be limited by a lack of data, making commodity flow
modeling essential.

In hydrology, the watershed is the landscape unit
typically used in the analysis andmanagement of water
resources. Increasingly, VWT studies are attempting
to relate to this hydrologic unit of analysis. In this way,
VWT studies will be more able to link with watershed
scale hydrologic flows and management issues. Hoek-
stra and Mekonnen (2012) used the river basin as the
unit of analysis to assess water scarcity globally. They

found that roughly half of all basins evaluated are sub-
ject to severe water scarcity at least one month per
year. Wang and Zimmerman (2016) quantified the
impacts of VWT for water use and stress at both the
national andwatershed scale. To do this, they analyzed
over 12,000 watersheds. Their study concluded that
VWT mitigates water stress in some of the world’s
most stressed watersheds. VWT for the Great Lakes
(Mayer et al 2016), Yellow River basin (Feng et al
2012), and major aquifers of the US (Marston et al
2015) have been evaluated. These are examples of
VWT studies at the watershed scale that provide infor-
mation at a scale that ismeaningful for water resources
managers.

5.2. Temporal resolution
The temporal variability of VWT depends on the
annual trade patterns and on the VWC variability.
While annual trade patterns are readily available from
open dataset (e.g. FAOSTAT, COMTRADE), VWC
values need to be estimated typically through an
analysis of the consumptive use of water by crops and
crop yields (Mekonnen andHoekstra 2010). A number
of studies (e.g. Carr et al 2012, Konar et al 2012, Tamea
et al 2014, Tuninetti et al 2017a) adopted constant
values of the VWCs to reconstruct the VWT network
and its changes through time. This means that in these
analyses temporal changes in VWT result from
changes in trade patterns but not in VWC, which
corresponds to considering constant crop yields and
climate conditions. These studies showed a trend of
increasingVWT, as globalization led to increased trade
connections and exchanged volumes (Carr et al 2012,
Dalin et al 2012a). These results point to the important
role of temporal variability but only encapsulate time
trends in T (i.e. trade) and notVWC (see also box 3).

Improvements to the temporal resolution of
VWT, accounting for the interannual variability of the
VWC would permit exploration of changes in time
and in response to specific events (e.g. drought, poli-
tical disruption, agricultural advances). For instance,
Dalin and Conway (2016) show how socio-economic
change and climatic variability in southern Africa pro-
pagated through the global VWT network. Impor-
tantly, implementing the temporal variation in the
VWC is essential to evaluate sustainability issues that

Table 3. Studies about the global VWCof crop production at high spatial resolution (after Tuninetti
et al 2015).

Study Scale Resolution Period Crop yield

Rost et al 2008 Global 30 arcmin 1971–2000 Country average

Hanasaki et al 2010 Global 30 arcmin 1985–1999 Country average

Liu andYang 2010 Global 30 arcmin 2000 Country average

Siebert andDöll 2010 Global 5 arcmin 1998–2002 5 arcmin

Mekonnen andHoekstra 2010 Global 5 arcmin 1996–2005 5 arcmin

Zhuo et al 2014 Local 5 arcmin 1996–2005 5 arcmin

Tuninetti et al 2015 Global 5 arcmin 1996–2005 5 arcmin

Rosa et al 2018a Global 5 arcmin 2000 5 arcmin
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may not be evident when average values are
considered.

Recently, a ‘fast-track’ approach to deal with the
temporal dimension of the VWC has been introduced
and validated (Tuninetti et al 2017b). Accordingly, the
VWC temporal variability is solely ascribed to the yield
change, while the effect of evapotranspiration is
assumed to be negligible compared to the yield effect.
A comparison between the VWC of wheat in 2013 and
1961 (figure 8) shows a decrease in crop water require-
ment in the last 50 years, which reflects a concurrent
improvement in crop yields. The sensitivity of VWT
estimates to the temporal variability in VWC of the
main staple crops shows how, when the temporal
variability of VWC is accounted for, the corresp-
onding volumes of VWT in the last few years are smal-
ler than in the case with average VWC for the
1996–2005 period (figure 9).

Other studies on the temporal variability of VWT
estimated annual values of VWC, allowing for both
yields and the evapotranspiration to change (Hanasaki
et al 2008) in global (Dalin et al 2012b, Konar et al
2012) and local (Dalin et al 2014, Dalin and Conway
2016, Marston and Konar 2016) scale VWT assess-
ments. For instance, to evaluate the impact of the Cali-
fornia drought for the years 2012–2014, Marston and
Konar (2016) estimated annual VWT values. To do
this, they calculated annual values of both trade and
VWC, highlighting the importance of time trends in
both variables and providing amethodology for future
time-varyingVWT studies to emulate.

5.3. Commodity coverage
Early VWT literature quantified the water embodied
in agricultural and food trade (Hoekstra and
Hung 2002) with commodity group resolution typi-
cally limited by the Harmonizing Commodity
Description and Coding System (Harmonized System,
HS) and the FAO food groups. Now, studies are
increasingly including non-food commodities (both
from agriculture and mining) as well, due to the

realization that these commodities also use significant
volumes of water. Virtual water flows have been
assessed for industrial products (Hoekstra and
Mekonnen 2012, Hassan et al 2017), biofuels (Rulli
et al 2016), and natural rubber production (Chiarelli
et al 2018) (table 1). Virtual water flows have also been
estimated for energy sources such as fossil fuels
(table 1). Zhang et al (2016a) estimated that 10% of the
water needed to extract oil, natural gas, coal, and
produce electricity is embodied in energy that is
internationally traded. Chini et al (2018) quantified
VWT related to electricity production in the US.
Holland et al (2015) quantified the telecoupling
between global energy demand and pressure on scarce
freshwater resources in regions distant from the areas
of energy consumption. Quantification of non-food
VWT is possible due to recent advances in the
calculation of non-food VWC (Mielke et al 2010,
Hoekstra and Mekonnen 2012, Meldrum et al 2013).
Commodity specific trade information is available for
international trade. However, empirical information
on sub-national commodity transfers typically lump
commodities into groups (e.g. the CFS and FAF
databases) (Lin et al 2014, Dang et al 2015). In this way,
there is currently a tradeoff in the spatial resolution
and commodity resolution/coverage available to
VWT studies.

5.4.Water source
Identifying the water source is crucial to investigating
its availability, opportunity cost, and potential varia-
bility under a changing climate. For this reason, it is
increasingly important to distinguish ‘blue’ and ‘green’
components of VWT. Blue water (box 1) is comprised
of water flowing through and stored in surface water
bodies (streams, rivers and lakes) and aquifers,
or, more simply, surface water and groundwater
(Falkenmark and Rockström 2006). This water can be
withdrawn (e.g. pumped through wells, or diverted
from rivers and lakes), transported through channels
and pipelines, and then used for municipal, industrial,

Figure 9.Virtual water trade of wheat,maize, rice, and soybean as in Tuninetti et al (2017b). Dashed line refers toVWTestimates
based on a constant (i.e. time-averaged in 1996–2005) cropwater footprint (or virtual water content). The solid line refers to estimates
using time-varying cropwater footprint.
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and agricultural (i.e. irrigation) needs. Green water
(box 1) refers to water in the root zone from precipita-
tion supplies. In other words, green water refers to
water stored in the soil and used by plants in both
rainfed and irrigated agriculture (of course irrigated
agriculture also uses bluewater).

Recent studies have investigated the impact of
water use in agriculture on the water source. Environ-
mental flows describe the quantity, quality, and pat-
terns of water flows required to sustain freshwater
ecosystems and the ecosystem services they provide
(Acreman et al 2014). Thus, blue water use can be ana-
lyzed based on its environmental and sustainability
impacts (Mekonnen and Hoekstra 2016, Yano et al
2016, Zhuo et al 2016, Rosa et al 2018a).

5.4.1. Green and blue VWT
Green and blue water uses have different socio-
environmental effects in terms of competition with
other water needs and cost, though these two different
water reservoirs are inter-connected (e.g. when the soil
is filled to field capacity—with potential for green
water use—excess water undergoes gravity drainage to
the underlying aquifer and may eventually reach
streams or other surface water bodies—potential for
bluewater use).

First, there is generally more competition for blue
water use than for green water use. Competition may
be particularly high for water resources stored in reser-
voirs, rivers, and lakes, as this water can be used for
irrigation but also for hydropower generation, drink-
ing water, energy extraction and production, mining,
and other industrial purposes (Rosa et al 2018a, 2018b,
D’Odorico et al 2018). Likewise, groundwater reserves
are also often used for agriculture as well as industrial
and drinking needs. The main competition that may
arise for green water use is actually attached to the
land. If no crops were planted, the soil moisture would
have different fates depending on the land use type
(forest, grassland, or built-up land), but once crops are
planted, there is no other potential use of green water.
Second, beside the cost of land, using green water in
agriculture is a natural process and does not comewith
any additional direct operational cost. Indeed, green
water becomes available at no cost through precipita-
tion, though its productive use by crops requires indir-
ect costs to prepare the soil (e.g. plowing, mulching,
seeding, and weed removal) for rainfed agriculture.
Conversely, the use of blue water comes with a direct
cost, which is that of building, maintaining and pow-
ering irrigation infrastructure, such as canals, pumps,
wells, and drip or sprinkler irrigation systems.

Much of the VWT literature has focused on trade
of agricultural products, which not only are the main
water consumers (about 90% of blue water consump-
tion (BWC) by human activities globally, Postel et al
1996, Falkenmark and Rockström 2006) but also are
the only products that may have both a blue and green
VWC. Indeed, green water is only used in the

agricultural and forestry sectors, while all other goods
and services that are not related to agroforestry may
only have a blue VWC. It should be noted that aqua-
culture and livestock use of agroforestry products (e.g.
feed) accounts for the green water footprint associated
with fish and animals. Interestingly, most cropland is
rainfed (about 80%) and globally, blue water repre-
sents 12% of total (blue+green water) annual water
consumption over cropland (Rosa et al 2018a), but
irrigated land is twice as productive, accounting for
30%–40% of the global food calorie production (Rosa
et al 2018a).

Some global studies have tried to separate blue and
greenwater used in agriculture (Rost et al 2008, Aldaya
et al 2010, Siebert and Döll 2010, Rosa et al 2018a).
Blue and greenwater are virtually traded via cropswith
a similar ratio: Konar et al (2012) estimate that 12% of
the global VWT is contributed by blue water, and this
ratio has been stable over time, based on a study on five
crops and three livestock products between 1986 and
2006 (Konar et al 2012). However, the shares of blue
and green water in crop production significantly vary
across products and locations. For instance, there is
relatively more irrigation in some regions like South
Asia than in other regions of the world. Likewise, the
production of some commodities such as poultry uses
much more blue water than others (Konar et al 2011).
The share of blue and green water sources contribut-
ing to the total VWC of the same commodities may
also greatly vary within countries. For instance, in
China irrigation on average contributes to roughly
25% of the VWC of crops but in Xinjiang, Ningxia,
and Inner Mongolia, crop production more strongly
depends on irrigation (85%, 69%, and 49% of their
VWC, respectively) (Dalin et al 2014). Similarly, the
country-average blue water footprint of livestock
accounts for 16% of its VWC, while in Ningxia the
blue water share of the VWCof livestock is about 54%.
This greater reliance on blue water reflects an arid cli-
mate with scarce growing-season precipitation. Con-
versely, other provinces, such as Chongqing and
Guizhou, rely almost exclusively on rainfall with only
2% and 3% of water inputs from irrigation, respec-
tively (Dalin et al 2014). These differences are then
reflected in VW exports from these regions, and
explain, for example, why Asia exports relatively more
bluewater than SouthAmerica (Konar et al 2011).

5.4.2. Surface water versus groundwater
Key distinctions also exist within different sources of
blue water, such as groundwater and surface water,
which can both be used by all economic sectors (e.g.
irrigation, industrial, andmunicipal uses).

A handful of studies have partitioned blue water
into surface and groundwater, since the implications
of using each is different (Aldaya and Llamas 2008,
Aldaya et al 2010, Schyns and Hoekstra 2014 Marston
et al 2015, Schyns et al 2015, Yano et al 2015). Now,
several studies further distinguish between various
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types of surface and groundwater resources (e.g.
renewable groundwater, groundwater depletion, small
reservoirs, large reservoirs) (Hanasaki et al 2010, Dalin
et al 2017).

Greater attention has recently been drawn to
groundwater use, as it has been increasingly used for
irrigation inmany regions (Konikow and Kendy 2005,
Wada et al 2010, Siebert et al 2010, Gleeson et al 2012,
Scanlon et al 2012). The overuse of groundwater can
lead to multiple environmental damages, including
land subsidence, salt intrusion in coastal aquifers, or
die-off of phreatophytes (Konikow and Kendy 2005,
Taylor et al 2013). A few studies have recently focused
on groundwater resources embedded in food trade. In
the US, 46 km3 of groundwater per year is withdrawn
from three major aquifers and 13% of blue VWT from
US (and 35% of blue water use for US production)
come from three aquifers (Marston et al 2015).

As groundwater depletion becomes a more alarm-
ing issue in several regions across the world (Gleeson
et al 2012), studies have analyzed the unsustainable use
of groundwater due to withdrawal rates exceeding the
rates of natural recharge. In some extreme cases, the
recharge rates are very small (e.g. the Nubian aquifer
in North Africa—see Konikow 2011) and non-renew-
able water resources accumulated during wetter
epochs are ‘mined’.

Wada et al (2012) found that unsustainable ground-
water abstraction contributes to approximately 20% of
the global gross irrigation water demand for the year
2000. The greatest rates of groundwater depletion are
occurring in India (68 km3 yr−1) followed by Pakistan
(35 km3 yr−1), the US (30 km3 yr−1), Iran (20 km3 yr−1),
China (20 km3 yr−1), Mexico (10 km3 yr−1), and Saudi
Arabia (10 km3 yr−1). In addition, globally, this contrib-
ution more than tripled from 75 to 234 km3 yr−1 over
the 1960–2000period.

In many countries, some aquifers are unsustain-
ably mined as a result of crop production for the
export market (Dalin et al 2017). Unsustainable
groundwater use is not a local problem only, because
increasingly global markets, companies and con-
sumers worldwide depend on the products derived
from unsustainable water supplies (Hoekstra et al
2018). Dalin et al (2017) estimated crop-specific
groundwater depletion associated with irrigation
globally, and determined the amounts of groundwater
depletion embedded in international food trade in
years 2000 and 2010. They found that global ground-
water depletion for irrigation increased by 22% from
2000 to 2010 (240–292 km3 yr−1), mainly in China
(+102%) and the US (+31%). About 11% of non-
renewable groundwater use for irrigation is embedded
in international food trade, of which two-thirds are
exported by Pakistan, the US, and India alone. The
trade of crops resulting from groundwater depletion
by top crop exporters has greatly increased from 2000
to 2010 (100% increase in India, 70% in Pakistan and
57% in the US), and the largest increase in the imports

of groundwater depletion occurred in China (tri-
pling), and were mainly associated with imports from
theUS and India.

5.4.3. New versus ancient water
Water can be either physically or virtually transferred
not only in space (through pipelines, trade, or foreign
direct investments) but also in time. For instance, in
some regions groundwater depletion (see previous
section) may be contributed by the mining of ancient
(or fossil) water that accumulated in aquifers during
wetter epochs.

Groundwater mining (Konikow 2011, Taylor et al
2013) is an example of a physical use of ancient water.
Water from the geological past can also be used in a
virtual sense, by using commodities that were pro-
duced using ancient water. A notable example is the
case of fossil fuels, which formed from the decay of
biomass from organism that existed several million
years ago. Such biomass contains energy from ancient
photosynthesis which relied on the consumptive use
of water. An indirect estimate of the ancient water vir-
tually embodied in fossil fuels used worldwide
(D’Odorico et al 2017) has shown how one year of fos-
sil fuel use by human societies corresponds to a virtual
consumption of an amount of ancient water of
roughly 7.4×1013 m3 yr−1, which is close to the total
annual evapotranspiration from terrestrial ecosys-
tems. These results highlight how, to meet its present
energy needs, humanity is borrowing water from a
geological past. Constraints imposed by the global
water cycle (in addition to land availability and food
production) do not allow humanity to meet its energy
demand by replacing fossil fuels with bioenergy (Carr
and D’Odorico 2017). The reliance on ancient water is
an example of highly unsustainable use of virtual water
resources. Like in the case of groundwater depletion,
such resources will not be available to future genera-
tions andwill not be replenished.

5.5. GreyVWT
The notion of grey water was recently introduced by
Hoekstra and Chapagain (2008). Grey water quantifies
the theoretical volume of water polluted by agricul-
tural production (see also section 8.4). It represents the
volume of water needed to dilute pollutants (namely,
nitrogen and phosphorous) to a given water quality
standard. Estimates of grey VWT have not been as
widespread as estimates of blue and green water
(O’Bannon et al 2014). This is because estimation of
grey water is a theoretical rather than an actual
consumptive measure, making it difficult to combine
directly with blue and green values. Moreover, the
calculation of the grey water footprint depends on the
number and type of pollutants that are accounted for,
and the quality standards, which are both pollutant-
and country-specific. To date,most studies on the grey
water footprint (e.g. Hoekstra and Mekonnen 2012)
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have concentrated on nitrate from fertilizer applica-
tions with nitrate concentrations in drainage and
runoff water from agricultural field calculated as a
fixed fraction of nitrate applications withoutmodeling
the underlying soil biogeochemical processes and their
variability. It is still unclear how the grey water
footprint associated with multiple pollutants (includ-
ing other fertilizers and pesticides)would be calculated
(i.e. as the sum of the grey water footprints of each
pollutant or accounting also for their interactions?).

Grey water flows have been used as a proxy for the
pollution left in the production region. Thus, when
country B imports a certain agricultural commodity
from country A, country B is virtually exporting pollu-
tants to country A. Environmental degradation is avoi-
ded by diluting those pollutants with an amount of
water defined as the grey water footprint. Thus, coun-
try A needs to allocate a fraction of its freshwater
resources for the dilution of pollutants. A global analy-
sis (O’Bannon et al 2014) of grey water flows asso-
ciated with pollution from nitrogen fertilizers has
highlighted the countries bearing the bigger shares of
the planetary grey water footprint (figure 10). Interest-
ingly, most of the burden is supported by more devel-
oped agricultural countries that make a relatively
heavier use of fertilizers. However, the grey water con-
cept has some limitations because it does not entirely
describe pollution as a result of production processes.
For instance, soybeans imported by Europe from Bra-
zil are used as feed for pigs that are subsequently
exported. This causes a manure and NO3 excess that
pollutes groundwater and surface water in Europe, not
in Brazil. Thus, part of the environmental costs caused
by fertilizers used in Brazil are exported to Europe, but
the analysis of grey water footprints does not show this

effect. Moreover, international food trade also may
have negative environmental impacts in importing
countries. For example, because of its reliance on
imports, China is converting soybean croplands into
corn fields and rice paddies with consequent increase
in nitrogen pollution (Sun et al 2018). A related con-
cept was developed by Galloway et al (2007), with the
notion of ‘virtual nitrogen’ (or ‘embodied nitrogen’).
When applied to a geographic analysis of that scale
(e.g. at the country scale) the nitrogen footprint of that
region represents the nitrogen pollution (both of water
bodies and of the atmosphere) caused by the con-
sumption habits of the people living in that region.
Like its water and ecological counterparts (Wack-
ernagel et al 1999, Hoekstra and Chapagain 2008), part
of the nitrogen footprint of a country falls outside the
boundaries of that country, meaning that pollution is
partly exported to other regions of the world (Oita et al
2013). Thus, the external component of the nitrogen
footprint represents a virtual nitrogen export or,
equivalently, a virtual import of grey water. Likewise,
other authors have investigated the global phosphorus
(and embodied phosphorus) flows associated with
agricultural trade (MacDonald et al 2012, Nesme et al
2016,Hamilton et al 2018).

6. Reconceptualizing the global water cycle:
accounting for the ‘virtual water cycle’

The previous sections have highlighted some important
patterns and properties of VWT. But to what extent is
VWT redistributing (virtual)water resources around the
globe? How do virtual water flows (table 1) compare to
the major physical water fluxes in the water cycle

Figure 10. Share of total nitrogen pollution burden from agricultural trade on exporting countries in 2008 (based on analyses in
O’Bannon et al 2014).
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(table 4)? We define ‘virtual water cycle’ as a representa-
tion of the hydrologic cycle that highlights the virtual
water fluxes. Like the physical water cycle, its virtual
counterpart includes water stocks (e.g. ocean, land,
terrestrial water bodies, and glaciers), and (virtual)water
fluxes. The virtual water cycle is powered not by solar
energy and gravity forces as the physical water cycle, but
by trade and the energy sources (formost part fossil fuels)
used for transport by trucks, trains, and ships (figure 11).
An integrative representation of the global water cycle,
should take into account both the physical water fluxes
(traditionally the ‘natural water cycle’) and the virtual
ones (the ‘virtual water cycle’). Early insights about the
mutual presence and interdependence of the physical
and virtual water can be found in a local case study about
Egypt (Abdelkader et al2018).

In this framing it is important to consider the dis-
tinction between the different types of water that are
consumed. All consumptive water uses entail a loss of
water to the atmosphere as water vapor fluxes due to
evaporation and transpiration. Thus, BWC accounts
for only part of the water withdrawals from water bod-
ies, with the remaining part being returned to water
bodies by drainage and runoff processes. The BWC of
humanity is dominated by water use in irrigation
((0.85–1.28)× 1012m3 yr−1), which by far exceeds
BWCby industrial production (0.038×1012 m3 yr−1),
and municipal uses (0.042×1012 m3 yr−1). Collec-
tively, these blue water uses account for (0.93–1.37)×
1012 m3 yr−1 (figure 11). Even though these estimates
of BWC are only a small fraction (2.4%) of global sur-
face and groundwater runoff, water withdrawals for

Table 4.Physical fluxes in thewater cycle.

Annualflow (m3 yr−1) Year Source

Precipitation over land 120×1012

Evapotranspiration from land (greenwaterflows) 73×1012 (Chow et al 1988)
Global runoff (bluewaterflows) 47×1012

Bluewater withdrawal for irrigation 2.56×1012 2000 (Sacks et al 2009)
2.41×1012 1980–2009 (Jägermeyr et al 2017)

2.66×1012 2000 (Oki andKanae 2006)
Bluewater consumption for irrigation 0.90×1012 1996–2005 (Hoekstra andMekonnen 2012)

1.28×1012 2000–2010 (Siebert et al 2010)
0.85×1012 2000 (Rosa et al 2018a)

Greenwater consumption in croplands

For 16major crops 6.15×1012 2000 (Rosa et al 2018a)
For 150 crops 6.79×1012 2000 (Carr et al 2013)
Unsustainable bluewater consumption for

irrigation

0.34×1012 2000 (Rosa et al 2018a)

Water consumption industrial production 0.038×1012 1996–2005 (Hoekstra andMekonnen 2012)
Water consumption domestic supply 0.042×1012 1996–2005 (Hoekstra andMekonnen 2012)
Groundwater consumption for irrigation 0.54×1012 2000–2010 (Siebert et al 2010)
Groundwater withdrawals 0.73×1012 2000 (Wada et al 2010)
Groundwater depletion 0.14×1012 2001–2008 (Konikow 2011)

0.28×1012 2000 (Wada et al 2010)
0.29×1012 2010 (Dalin et al 2017)

Figure 11.Comparison between physical and virtual waterfluxes in integrative depiction of the global water cycle (based on data from
table 4).
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agriculture and other uses are known for having
strongly depleted several rivers, aquifers and other
water bodies around the world—such as the Rio
Grande or Colorado River in North America—with
consequent destruction of aquatic habitat (e.g. Jäger-
meyr et al 2017) and depletion of groundwater
resources ((0.14–0.28)×1012 m3 yr−1). Blue water
withdrawals, however, are a much bigger fraction of
global runoff. In the case of agriculture (figure 12) blue
water withdrawals account for 2.56×1012 m3 yr−1, or
roughly 5% of surface and groundwater runoff. Inter-
estingly, according to these estimates, about 65% of
these withdrawals are not consumed and are subse-
quently returned to aquifers and surface water bodies.
Based on estimates for the year 2000, evapotranspira-
tion from agroecosystems (7.0×1012 m3 yr−1)—i.e.
sum of BWC and crop uptake of root-zone soil moist-
ure (or green water consumption, GWC≈6.15×
1012 m3 yr−1)—is roughly 10% of global evapo-
transpiration fromcontinental landmasses (figure 12).

Thus, agriculture contributes to the consumption
of 2.4% of the blue water flows and 10% of the green
water flows from the global land masses (figure 12). In
other words, in the year 2000 human appropriation of
water resources (blue and green) for agriculture
accounted for 10% of terrestrial evapotranspiration,
which is not a trivial amount of water if we consider
that large land areas are not suitable for agriculture
(e.g. D’Odorico et al 2018, Rosa et al 2018a). These
estimates, however, are very conservative because they
are based on a limited set of major crops (16 crops in
Rosa et al 2018a, accounting for 73% of the planet’s
cultivated areas and 70% of global crop production)
and do not account for many non-food crops, such as
fibers, which would increase the total water consump-
tion (i.e. evapotransiration) by agroecosystems to
(7.4–7.7)×1012 m3 yr−1 in the year 2000 (Oki and
Kanae, 2006, Mekonnen andHoekstra 2011, Carr et al

2013). If we include also water consumption for graz-
ing (i.e. pastures) and direct water consumption by
livestock, the total water consumption by agroecosys-
tems in the 1995–2005 decade becomes 8.4×
1012 m3 yr−1 (Mekonnen and Hoekstra 2012), or
11.5% of terrestrial evapotranspiration. About 20%–

24% of the water consumed by agriculture is virtually
traded internationally (1.4×1012 m3 yr−1 in the year
2000 and 2.04×1012 m3 yr−1 in 1996–2005 see
figure 4 and table 1).

How have these figures changed recently?-
Between the year 2000 and more recent years agri-
cultural production has increased along with the blue
and green water consumption by agroecosystems [up
to (10.2–11.8)×1012 m3 yr−1 in 2010, according to
some estimates (see figure 4 and Carr et al 2013)],
while the changes in total terrestrial evapotranspira-
tion associated with climate warming and land use
change impacts on the water cycle have likely been
much smaller. Thus, the share of terrestrial evapo-
transpiration contributed by agroecosystems has
increased since 2000 (up to 14%–16% by 2010; see
figure 12). Likewise, trade volumes have dramatically
increased in the last few years (see section 4), reaching
about (2.1–2.8)×1012 m3 yr−1 in 2010 (see figure 4
and D’Odorico et al 2018), which is again close to
20%–24% of the more recent estimates of water
consumption in agriculture, while the share of terres-
trial evapotranspiration that is virtually traded
internationally has increased from 1.9%–2.4% to
2.8%–3.8% between 2000 and 2010 and is expected to
escalate in the near future as a result of the increasing
water demand by agriculture.

Future increase in human appropriation of fresh-
water resources will likely continue to be dominated
by agriculture. Should the increasing crop demand be
met through agricultural intensification (i.e. by
enhancing crop yields on currently cultivated land) the

Figure 12.Global physical and virtual waterfluxes in agriculture for the year 2000 (left) and 2010 (right) (source: tables 1 and 4,
figure 4 and references cited in the text; all values are expressed in 1012m3 yr−1). Bluewaterflows are reported both as consumptive
uses and bluewater withdrawals (between parentheses). The asterisk (*) denotes average values for 2000–2010. In red are values that
have changed between 2000 and 2010.
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green water consumption by agroecosystems would
likely remain substantially unchanged. However,
BWC would increase as a result of the expansion of
irrigation on farmlands that are currently rainfed.
Recent estimates have shown that irrigation water (i.e.
blue water) consumption can sustainably increase at
most by 48%, thereby increasing total water consump-
tion (blue+green) for agriculture by 5% (Rosa et al
2018b). This 48% increase would bring irrigation
water consumption close to 5% of global runoff.
Therefore, unless agriculture is expanded to non-agri-
cultural areas (an approach that has often led to soil
degradation, ‘dust bowls’, and habitat loss) agriculture
will not be able to appropriate a much greater share of
thewater cycle thanwhat we see today.

7.Models and drivers ofVW trade

Modeling the VWT enables the understanding of
governing mechanisms, the identification of driving
factors determining network topology and trade flows,
and the prediction of future VW trade. The first
models of VWT (Suweis et al 2011, Dalin et al 2012)
were fitness models, which generated synthetic net-
works with similar properties to the observed patterns
of VW trade (e.g. Sartori et al 2017). Suweis et al (2011)
used country-specific values of GDP and average
rainfall on agricultural areas to reproduce the undir-
ected VW trade network (obtained by summing
bilateral flows exchanged between any two nodes).
Dalin et al (2012b) considered the directed VW trade
network and included the population of each country
as an additional explanatory variable, with rainfall
being a determinant of agricultural production and
exports, and population a determinant of food (and
water) consumption and imports. Sartori et al (2017)
identified country GDP, water endowment (or total
renewable water resource), and precipitation per
capita as drivers of the VW trade network structure. In
all cases, the comparison of the real and reconstructed
VW trade network is based on network’s statistical
properties, such as the degree distribution or trade flux
distribution, while no attempt is made to evaluate
the agreement on individual fluxes between model
and data.

A different set of studies focused on the estimation
of real fluxes using multi-regression, or gravity mod-
els. Tamea et al (2014) developed a gravity-like model
establishing multi-regressive linear relations for the
imports and exports of each country. Despite some
differences among countries, a widespread significant
dependency is found between VW flows, and drivers
such as population, GDP, geographical trade dis-
tances, and the agricultural production of exporting
countries (e.g. Wang et al 2016). A similar model was
recently developed to describe the presence or absence
of trade links between pairs of countries (Tuninetti
et al 2017a) who highlighted that population,

geographical distances and agricultural efficiency (e.g.
due to fertilizers use) are the main factors driving the
activation and deactivation of trade links over time.
Multi-regression models have also been used to inves-
tigate the global relationship between VW trade, culti-
vated land and water resources. Kumar and Singh
(2005) identified cropped land as a relevant factor,
although agricultural land appears to have a minor
role in other studies (e.g. Tamea et al 2014, Tuninetti
et al 2017b). Irrigated land is found to be relevant for
net VW flow associated with specific traded crops,
even when they are produced in rainfed conditions
(Chouchane et al 2018a). Many authors highlight that
(blue) water scarcity is not a driver of VW trade
(Kumar and Singh 2005, Fracasso 2014, Chouchane
et al 2018a).

Gravitymodels have also been used to investigate to
what extent VW trade is affected by the water endow-
ment and water scarcity of countries (Lenzen et al 2013,
Fracasso 2014, Fracasso et al 2016). In addition to deter-
minants of bilateral trade flow such as country-specific
values of population, GDP, distance and dummy vari-
ables about country-pair relationships, Fracasso (2014)
found other possible drivers such as per-capita water
endowment (measured by water volumes available for
agriculture, freshwater availability of exporting coun-
tries, and the ratio of dietary requirement over total
available water) and water demand (expressed as the
ratio of water withdrawals and renewable water). Rele-
vant drivers vary if one considers specific regions
instead of the global trade network (Fracasso 2014). For
example, in Mediterranean countries large water
endowments do not lead to large VW exports, while
exports may be hindered by high irrigation water prices
(Fracasso et al 2016).

At the global scale, water-intensive goods across
many different sectors tend to be exported by countries
with relatively abundantwater resources, in termsof per-
capita freshwater resources, as shown by an econometric
analysis of country exports by sector (Debaere 2014).
Water is found to induce an international specialization
of production and is a source of comparative advantage
among countries (Wichelns 2004, Debaere 2014). How-
ever, VWT reflects more (and is possibly driven by) the
opportunity cost of water, i.e. the cost of the best alter-
native, rather than its comparative advantage, i.e. the
lower opportunity costs relative to other countries
(Wichelns 2001). For a holistic view of international
agricultural trade it is important to consider different
metrics, i.e. monetary, nutritional and environmental
resource metrics. Such metrics may offer com-
plementary information on causes and implications of
trade as well as on how countries’ allocation of water and
cropland resources determine the globalization patterns
of agriculture and trade (Galli et al 2013,MacDonald et al
2015,WiedmannandLenzen2018).

Other frameworks used to describe VW trade
include general equilibriummodels of trade economics
that have beenused, for example, to analyze the changes
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of VW trade induced by modifications (reductions) of
local water availabilities (Berrittella et al 2007). Water
reductions are expected to shift trade patterns of VW
and induce large welfare losses, although possibly indu-
cing an improvement of water use/allocation effi-
ciency. Yet another model setup is based on complex
system dynamics, exemplified by El-Gafy (2014) who
proposed a multi-sector model including population,
crop production, land use, water footprint of crop pro-
duction and consumption, and VW balance. The
model enables the accounting of sector dynamics and
inter-sector feedbacks at the county level and the devel-
opment of scenarios to support decision making. Like-
wise, partial equilibrium framework has also been
proposed by (Dang et al 2016) to describe the effects of
policies and decision making on water use in agri-
culture. This literature on themodeling of the impact of
shocks on food prices and trade will be reviewed in the
context of resilience analyses ofVWtrade (section 8.5.).

Figure 13 summarizes the drivers identified in the
publications on VWT reviewed in this section. Many
of themodels presented above enable the development
of future projections of the structure of the VWT net-
work and/or of VW flows. Both fitness models and
gravity models can be run with projected inputs to
assess the possible evolution of trade network
and flows (e.g. Suweis et al 2011, Sartori et al 2017,
Abdelkader et al 2018). Equilibriummodels as well can
be applied to assess different future scenarios.

8. Socio-environmental consequences
ofVWT

Research on VWT has highlighted the existence of
regional and global benefits for societies and the

environment (Allan 1998). VW transfers are often
used for famine relief and to mitigate the effects of
regional food crises. VWT prevents massive migra-
tions from arid regions of the world where water
resources would be insufficient to meet the needs
(food security) of local populations and for this reason
it has been argued that they prevent conflict and wars
(see sections 8.2 and 8.3) (Allan 1993, 1998). VWT is
also associated with important water savings because
the overall patterns of agricultural production and
trade show that crops are planted in areaswithinwhich
they have higher water use efficiency and the export to
areas in which their production would require more
water. This suggests that VWT entails a more efficient
use of water resources, which results in a water saving
(section 8.1). Other studies have also highlighted how
trade either decrease the inequality existing among
countries in their access to water for food production
(Seekell et al 2011, Carr et al 2015, 2016). However,
trade decisions are seldom directly driven by water
needs, as many other factors (including the availability
of capital, raw materials, labor, technical knowledge,
and policies) contribute to the determination of the
global patterns of production and trade (see section 7).

On the other hand, even though VWT can reduce
local water deficits by virtually redistributing water
resources (Suweis et al 2013), it is not a real long-term
solution to water scarcity (Suweis et al 2013, Jia et al
2017) because water remains a globally limited
resource that is subjected to increasing pressure from
agricultural, industrial, andmunicipal uses (figure 12).
As noted in section 6, human appropriation of fresh-
water resources for agriculture can sustainably
increase in presently cultivated land only by up to 48%
(Rosa et al 2018a), which would enhance total water
consumption in agriculture by 5%. The projected

Figure 13.Drivers of VW trade identified in the publications reviewed in section 7. The radial coordinate expresses the number of
publications reporting a significant dependence on each variable. Details are provided in the supplementary information (table S1 is
available online at stacks.iop.org/ERL/14/053001/mmedia).
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increase in water demand for food production bymid-
century is expected to be an order of magnitude
greater (e.g. Falkenmark and Rockström 2006). Thus,
curbing water demand by using water more efficiently
—through soil water conservation, ‘more crop per
drop’ methods, and adoption of water-efficient diets
—, while reducing food demand and food waste,
appears to be a much needed approach for long-term
water sustainability.

VWTmay have some negative impacts on societies
and the environment (e.g. Carr et al 2013). Recent
research has highlighted the impact of the globaliza-
tion of water (and agricultural products) through
trade on the resilience of the global food system
(D’Odorico et al 2010a, Tamea et al 2016, Marchand
et al 2016). The establishment of teleconnections
between people and the resources they rely on, may
distance consumers from the environmental impact of
their decisions with the effect of undermining the ethic
of environmental stewardship (Chapin et al 2009, Carr
et al 2013, D’Odorico and Rulli 2014). Some of the
environmental externalities of trade have only recently
started to be investigated (see section 8.4).

In the following sections we review some of the
benefits and impacts of VWT.

8.1.Water savings
International trade can save national water resources
through the importation of water-intensive commod-
ities from other countries. National water savings
through trade can imply saving water at a global level if
the flow is from sites with high to sites with low water
productivity (Chapagain et al 2006,Martinez-Melendez
and Bennett 2016, Brindha 2017). It has been estimated
that VWT saves 352 km3 yr−1 that would be otherwise
used to produce agricultural products in the importing
countries (Chapagain et al 2006) (table 1). Other studies
found smaller savings and reported the existence of a
growing trend, from savings of roughly 50 km3 yr−1 in
1986–240 km3 yr−1 in 2008 (Dalin et al2012a).

Water-scarce nations and regions on average save
water resources by importing food commodities. For
example, it has been estimated that VWT alleviates
water stress and promotes water sustainability in
China (Zhao et al 2018). Moreover, VWT alleviates
water scarcity in importing wealthy countries, while it
has limited effects on water scarcity alleviation in
poorer countries (Distefano and Kelly 2017). In some
cases, international trade can also increase water con-
sumption of agricultural commodity production if
crops are grownwhere they are produced in less envir-
onmentally efficient and in more unsustainable ways
(Martinez-Melendez and Bennett 2016). Many coun-
tries produce commodities at the cost of additional
pressures on their water resources. For example, agri-
food products are sometimes traded from an area with
low water productivity to an area with higher water
savings in production (Lamastra et al 2017). However,

regional trade inAfrica ismuchmore efficient in terms
of embodied water resources than any other region in
the world. Thus, internal African trade patterns
may be compensating for poor water productivities
in their domestic production systems (Konar and
Caylor 2013).

Konar et al (2013) have shown that the volume of
water savings is likely to increase under a changing cli-
mate (see also Dermody et al 2014 for the case of the
Roman Empire). This is despite the fact that the total
volume of VWT is projected to increase under climate
change, due to increased crop prices. Water savings
occur under climate change because crop trade re-
organizes into a more water-efficient structure (Konar
et al 2013). When free trade policies are enabled, the
volume of global water savings increases even more
under a changing climate (Konar et al 2016b). This
indicates that trade liberalization leads to water
resources being more efficiently used in the global
trade system, making it a potentially important adap-
tation measure to climate change (Konar et al 2016b).
These findings are supported by recent causal infer-
ence work that shows that trade openness leads
nations to use less of their domestic water resources on
average (Dang andKonar 2018).

8.2.Hydropolitics of VWT
VWT is a concept that has radically influenced the
development of hydropolitical theories. Allan intro-
duced this concept as the result of several years of
research on the role of embedded water in agricultural
commodities to understand key questions on food
security and social stability in water-scarce countries,
such as in the Middle East and North Africa
(Allan 1996, 1998, 2002). One of the key theoretical
implications, is in its power to dispel the myth of
futurewater wars.

The analytical definition of water wars, which
should not be confusedwith the general notion ofwater
conflicts, has several operational categorizations (Del-
l’Angelo et al 2018a). A key characteristic of the formal
definition is that a water war occurs when violence is at
the State level, specifically when there is interstate mili-
tary confrontation (Wolf 1998, 2007). Referring to this
precise analytical definition, many scholars have coher-
ently worked to debunk the ‘water leads to war thesis’.
One of the strongest arguments in the literature that
contributes to this theory of water peace is the one that
derives from theVWTassessment. Allan explained how
several water-stressed countries such as in the Middle
East do not have enough water to grow locally the food
that would be necessary to satisfy the needs of their
populations (Allan 1996, 1998, 2002). This condition of
hydrological scarcity should lead to expected social ten-
sions, unrest and competition with neighboring coun-
tries which could lead to violent escalations and
potentially to formal military engagement among
different countries.
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What the work of Allan demonstrates, is that inter-
national trade allows countries to circumvent their local
physical water scarcity restrictions. His studies showed
that countries’ dependence on agricultural production,
which on average is the most water-intensive sector in
society, can be almost entirely satisfied by the importa-
tion of agricultural commodities (Allan 1996, 1998).
Historical evidence about North Africa and the Middle
East for example shows that the virtual water flows
associated with grain imports from North America are
larger than the actual water flows of the Nile river
(Allan 1998). It is on the bases of these kinds of hydro-
logical assessments and his observation of trade and
agricultural policies, that Allan developed a coherent
theory about the irrelevant likelihood that countries
could go to war because of water. The underlying logic
that Allan highlights is that for water-scarce countries it
is much more convenient to benefit from virtual water
through agricultural commodities importation than to
compete and fight with other countries for direct con-
trol of physicalwater resources.

Despite some criticism (see Ansink 2010), the role
of VWT represents one of the fundamental arguments
that are invoked to refute the ‘water leads to war’ the-
sis. This perspective has been recently confirmed by
quantitative tests. De Angelis et al (2017) analyzing
data on VWT, found that bilateral and multilateral
trade openness reduce the probability of interstate
war. This is in agreement with the theories that show
how trade openness, in general and not only of virtual
water, reduces the likelihood of interstate conflicts
(Dorussen 2006, Hegre et al 2010). A concern that has
been raised though, is that the de-escalation of the risk
of interstate water wars produced by VWT could have
other, neglected, yet important social implications.
Dell’Angelo et al (2018b) discuss the notion of the
‘neglected costs of water peace’ pointing out that the
hydropolitical understanding of VWTmight be ignor-
ing some hidden but important social consequences.
They raise the hypothesis that ‘as water is a limited
resource—both in local and global terms—, when
competition over water is resolved by fetching it from
abroad, the social tensions that can consequently
emerge or escalate, are shifted elsewhere rather than
being dissolved’ (Dell’Angelo et al 2018a). Their cen-
tral message is that the social tensions, that are
believed to be dissolved by virtual water imports are in
reality transferred to the countries where water is
appropriated. This is described by the authors as a spe-
cific typology of environmental cost-shifting that takes
place in an increasingly telecoupled world, described
as ‘hidden socio-environmental costs of virtual water
transfers’. It is clear then that VWT has strong societal
influences,many that still need to be understood.

8.3. VWTandpopulation growth
The study of human demographic growth in relation
to the resources available on Earth has been at the

center of important debates since Malthus developed
his theory that human population grows faster than
increase in resource availability, a condition that
should eventually limit population growth (Malthus
1789). This theory has been subsequently criticized on
the grounds that technological innovations have
historically allowed humanity to tremendously
increase food production (Boserup 1981) and there is
no evidence that food availability has constrained
population growth at the global scale (Sen 1981).
Therefore, most demographic models do not even
account for resource limitation as a determinant of
fertility andmortality rates (Lee 2011). In recent years,
however, the question of whether the planet has
enough natural resources to feed its increasing popula-
tion (Cohen 1995) has resurfaced (Godfray et al 2010,
Foley et al, 2011, Warren 2015). Because crop produc-
tion requires water, a finite resource, and contributes
to roughly 85% of freshwater use by humanity, the
same question about resource limitation has been
explicitly reformulated in terms of water (Falkenmark
and Rockström 2006, Suweis et al 2013). Specifically,
there have been concerns as to whether the planet had
enough water resources to meet the increasing needs
of the growing and increasingly demanding human
population (e.g. Smil 1994). This challenge, however,
is not only about a near future. Many countries today
are already in conditions of water deficit and need to
import food because they consumemore virtual water
than their water balance is able to provide (Allan 1998,
Hoekstra and Chapagain 2008). This means that trade
has allowed their population to grow way beyond the
limits imposed by the locally available water resources
(Suweis et al 2013). In other words, part of the global
demographic growth has been sustained by VWT and
would not have been possible without an increasing
reliance on food imports by water-scarce regions such
as North Africa and the Middle East (sensu,
Allan 1998). It is unclear, however, to what extent
trade patterns have historically been shaped by demo-
graphic dynamics or, vice versa, population growth
affected by trade.

In recent years a number of studies have combined
projections of population growth with predictions
of water availability and agricultural productivity
under a variety of climate change and land use scenar-
ios (Rosegrant et al 2001, Foley et al 2011). These pre-
dictions have been used to assess whether mankind
will run out of water in the next few decades, and to
investigate possible strategies to deal with the global
food-water-energy nexus (Hoekstra and Wiedmann
2014). These studies have highlighted how effective
management strategies and policies can account for
both global and local water resources. Suweis et al
(2013) expressed the country-scale carrying capacity as
a function of both local and virtual water resources on
the basis of water footprint and trade calculations.
Using these carrying capacities in country-specific
logistic growth models fitted to population records,
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they highlighted the existence of a global water unba-
lance. In fact, they found that the long-term demo-
graphic growth of net exporter countries relies on local
water resources, while in trade-dependent countries it
relies also on virtual water imports. Thus, both water-
rich and water-scarce populations are counting in the
long run on the same pool of water resources (Suweis
et al 2013). Therefore, there are some concerns that
exporter countries might at some point reduce their
exports as happened during recent food crises (e.g.
Fader et al 2013). Moreover, exporters might have to
reduce their exports if new policies impose amore sus-
tainable use of water resources that prevents the deple-
tion of groundwater stocks or environmental flows.
Thus, while trade and globalization are crucial to
increase the carrying capacity of water-scarce coun-
tries and improve their present food security, they also
induce a dangerous loss in long-term resilience (see
section 8.5) of the coupled water-food system which
may, in the long run, lead to social unrest (D’Odorico
et al 2010a, Orlowsky et al 2014, Puma et al 2015).

8.4.Water pollution and other environmental
externalities ofVWT
The environmental impacts of trade have been at the
center of decades of research on trade policies (e.g.
Zaelke et al 1993). One of the corollaries of the theory
of comparative advantage—i.e. that in a free trade
scenario every country specializes in the goods it can
produce most efficiently—is that production is
expected to shift to regions of the world in which
socio-environmental regulations are loose, absent or
poorly enforced (e.g. Daly 1993, Wathen 1993). Even
though free trade does not necessarily require environ-
mental deregulation, its combination with low socio-
environmental standards (e.g. poor regulations on
pollution or labor rights)may have detrimental effects
on local environmental conditions because firms can
relocate to countries where there are lower standards.
Alternatively, companies could be outcompeted
by those who are already operating under weaker
environmental policies with consequently lower
production costs. Therefore, there have been calls
for the inclusion of environmental and worker protec-
tion standards in international trade agreements
(e.g. Bailey 1993, Charnovitz 1993). The General
Agreement of Trade and Tariffs (see section 3), did not
adopt environmental regulations but recognized the
right of countries to ban imports of goods made with
prison labor (e.g. Charnovitz 1993). The same notion
could be extended to environmental standards
through a process of ‘environmental harmonization’
of trade policy with the adoption of similar product
and production standards by different countries
(Charnovitz 1993).

In the case of mining, manufacturing, or other
industrial productions the avoidance of strict environ-
mental laws often coincides with a shift of production

to regions of the developing world, where it can occur
at a lower cost because of unaccounted environmental
externalities. The associated costs are often borne by
the entire society or future generations, while profits
remain with the corporations that invest in these sys-
tems of production and export (Ward 1993). This out-
come is in agreement with the theory of ‘ecological
unequal exchange’, whereby core industrialized coun-
tries disproportionately use natural resources of less
developed countries and force them to sustain nega-
tive environmental costs (e.g. Rice 2007, Moran et al
2013, 2015,Dorninger andHornborg 2015).

The case of agricultural commodities, however, is
different because they are not necessarily produced in
the developing world for export to more developed
countries (figure 10). Rather, these commodities—
which have a bigger water footprint than their indus-
trial counterparts and therefore are major con-
tributors to VWT—are often exported by developed
countries, such as the US that have historically domi-
nated the global production and trade of agricultural
products. In theUS, agricultural exports contribute up
to 6.9×109 m3 yr−1 of groundwater depletion. As
noted in section 3, the negative foreign impacts of the
US export policy have been more of an economic nat-
ure (through their impact on agricultural develop-
ment) than environmental.

The main environmental costs of agricultural pro-
duction are associated with soil and water pollution
from pesticide applications and fertilizer overuse, as
well as groundwater depletion, land use change, habi-
tat destruction, and soil erosion (Montgomery 2007,
Meyfroidt et al 2013). These environmental effects are
often difficult to relate to VWT, except for the case of
pollution because its impact can be expressed in terms
of the grey water footprint, the amount of water that is
needed to reduce the pollutant concentration within
acceptable environmental standards. In section 5.5 we
have already highlighted some of the limitations of the
grey water framework (particularly in the case of mul-
tiple pollutants). Its applicability requires the homo-
genization of the environmental standards among
countries operating under the same trade agreement.

A global assessment of grey water trade has high-
lighted patterns of externalization of agricultural pol-
lution from net importing countries (O’Bannon et al
2014). Interestingly, this research found that agri-
cultural exports from the US are virtually associated
with a substantial importation of pollution and other
environmental costs that remain in the production
country (section 5.5). The more developed countries
have promoted agricultural policies that have favored
intensified models of production to enhance crop
yields at the expenses of habitat and soil loss and envir-
onmental pollution (Ward 1993). In the US export
subsidies have promoted surplus production and
exports of agricultural commodities and other land-
based resources (e.g. water and topsoil) to the benefit
of agribusiness corporations while the remediation
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costs are or will be borne by the entire society (see
section 3).

There are also other environmental externalities
associated with water overuse. For instance. importing
goods irrigated from overexploited water sources (e.g.
lakes and aquifers), may have detrimental impacts on
the aquatic habitats and water sustainability. Recent
research has investigated the extent to which the clo-
sure of the yield gap ofmajor crops collides with envir-
onmental health because it threatens environmental
flows (Soligno et al 2017, Rosa et al 2018a). In these
conditions the overexploitation of water resources
may lead to increased pollution and irreversible losses
of biodiversity (e.g. Postel and Richter 2003). Some
studies have highlighted the existence of hotspots of
water overuse, which are partly induced by trade
exports (e.g. Dalin et al 2017).

Unlike fossil fuels as input to energy production,
which can technically be replaced by solar or wind
energy, there is no alternative to water as an essential
input for agricultural production. Therefore, sustain-
able use of water resources could be attained by adapt-
ing both supply and demand of water consumption in
agriculture to acceptable rates. For example, crop pro-
duction could be optimally distributed across the pla-
net to maximize efficiency of land and water use (e.g.
Davis et al 2017), while national policies favoring food
self-sufficiency in regions without adequate renewable
water resources may need to be abandoned and
replaced to enable food imports via multilateral trade
agreements.

8.5. VWTand resilience in the global food system
As noted in the previous sections, the global food
system strongly relies on international trade because
there is a mismatch between the rates of food produc-
tion and consumption in different regions of the
world, which explains the existence of areas with
surplus and deficits in food availability (Fader et al
2013, D’Odorico et al 2014). Because of the non-
uniform distribution of resources (e.g. land, water,
and energy) and population density only 15% of the
world’s countries are fully self-sufficient while the
others rely on imports of agricultural goods (Puma
et al 2015). Food imports allow countries to overcome
resource limitations, compensate for temporary
reductions of food supply, and partly adapt to changes
in productivity induced by climate change (Huang et al
2011). International trade, however, exposes coun-
tries to possible shocks in food supply in response to
production crises occurring in other regions of the
world. In fact, countries tend to decrease their exports
during crises, thereby decreasing the overall amount of
food (and virtual water) available for trade (Puma et al
2015, Tamea et al 2016). The expansion and intensifi-
cation of international trade, thus, raises some con-
cerns about the vulnerability of the water-food system
and its resilience to shocks.

While food production shocks are well studied, the
response to them and the complex dynamics leading
to larger-scale food crises are less understood (Jones
and Hiller 2017). Network analysis tools have been
applied to investigate the structure and dynamics of
food trade. Scaling properties of food flow networks
from the village to the global scale were found to have
consistent statistical distributions, indicating that
similar governing mechanisms may be driving the
redistribution of food across spatial scales (Konar et al
2018). Other work concludes that the global food net-
work is becomingmore connected, but not necessarily
less stable (Sartori and Schiavo 2015) and that shocks
induce long-term structural changes leading to an
evolution in the network’s capability to absorb shocks
(Fair et al 2017). At short time scales, the vulnerability,
and resilience, of countries to external shocks has been
analyzed using shock propagation models. These
range from parsimonious ones, assessing only the
direct effects of—partial or total—export reductions
as in (Puma et al 2015), to more complex models
mimicking the cascade effect of a crisis propagating in
the trade network, for example applied to single com-
modity trade (Gephart et al 2016, Fair et al 2017,
Distefano et al 2018), global food trade (Marchand et al
2016) or VWT (Tamea et al 2016). These models
mimic the trade redistribution following a local crisis,
i.e. a decrease in food supply, according to simple
dynamics and a limited number of parameters. The
number of network connections and the corresp-
onding imported volumes can determine country vul-
nerability, which can be offset by the country adaptive
capacity through governance, infrastructure, and
socio-economic factors (Gephart et al 2016), as well as
food reserves (Marchand et al 2016) or redundancies
in the food production system (Fader et al 2016). The
shock propagation model applied to VWT with data-
based country-specific parameters reproduces well the
propagation of observed shocks, such as the
2008–2009 crisis in Argentina (Tamea et al 2016). The
analysis reveals that countries with the most abundant
water resources have the strongest impact on interna-
tional trade, while water-scarce, trade-dependent
countries are among the most exposed to external cri-
ses. The analysis of shock propagation of single com-
modities highlights that least developed countries are
likely to suffer more from import losses when they
strongly depend on food imports (Distefano et al
2018).

Local food production and economic capacity
(expressed as the ratio of low income levels and the
cost of food) are the major factors determining the
resilience of a country, defined as its ability to respond
and adapt to food supply disruptions (Seekell et al
2017). Local agriculture also contributes to the accu-
mulation of food reserves, which modify the short-
term response to food supply shocks (Fader et al 2016,
Marchand et al 2016). Food reserves, or stocks, have a
key role in the dynamic balance between food demand
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and food supply, with the former being quite rigid and
the latter undergoing high variability (Laio et al 2016).
During food crises, stocks buffer the temporary food
shortage caused by a loss of local production or a
decrease in imports, and limit the effects of food avail-
ability on the local population. Therefore, the spatial
distribution of food stocks is as important as interna-
tional trade in determining the impact of food supply
shocks andmust be taken into account when develop-
ing food crises propagation models (Headey 2011,
Marchand et al 2016).

The dynamics of international food trade are
tightly connected to the international economics of
agricultural commodities and the dynamics of food
prices. Trade shocks, together with other non-trade-
related factors (e.g. crop failures due to droughts or
pests), are likely to trigger food price spikes
(Headey 2011), which in turn may cause food shorta-
ges (Bren d’Amour et al 2016) and socio-political
instability, e.g. (Lagi et al 2011). Studies developed in
the economics literature use global -or partial- equili-
brium models to infer a system’s response to altera-
tions at longer time scales (to allow for the
establishment of ‘equilibrium conditions’), based on
the behavior of rational individuals. An example is the
Global Trade Analysis Project (GTAP) that provides a
dataset and amodeling framework to simulate the glo-
bal system of household behaviors, international trade
and investments, in response to a change in policy,
technology, population or endowments. Specifically
for water resources, a GTAP-W global equilibrium
model has been developed, considering (Calzadilla
et al 2010) or not (Berrittella et al 2007) the separate
role of irrigated and rainfed agriculture. This model
allows for the assessment of the global effects of water-
crisis or sustainable-water-use scenarios (Calzadilla
et al 2010). Konar et al (2016b) applied the GTAP
model in conjunction with a global hydrological
model to investigate changes in trade under climate
and policy scenarios. Konar et al (2016b) show that
trade liberalization leads to more water savings under
a changing climate.

Unlike global equilibrium models, partial equili-
brium models focus on single sectors of the economy
—which are described with greater accuracy—but do
not consider the effects of perturbations outside the
considered sector. For instance, the IMPACT model
(Rosegrant et al 2002) mimics the link between food
production and food demand. This model includes a
hydrologic module with multiple water uses, and
explicitly accounts for the availability of water and its
role in food production. The IMPACTmodel was first
applied to VWT to assess the water savings associated
with agricultural trade (de Fraiture et al 2004). While
these equilibriummodels are suitable to predict trends
in food prices, access to food and population dynamics
overmedium-to-long-term time scales, theymay offer
an incomplete picture about real crises and food
shortages (Distefano et al 2018) when the dynamics of

food supply, availability and related prices are extre-
mely fast and not well reproduced by equilibrium con-
ditions (Headey 2011, Lagi et al 2015). In these
conditions, non-equilibrium approaches based on
shock propagation and conservation ofmass appear to
provide a more realistic description of the food sys-
tem’s response to a crisis.

An alternative approach to investigate the long-
term response of the system to perturbations uses a
framework based on linear stability analysis of the
coupled resource-population dynamics, with resour-
ces becoming available both through local production
and global trade. The stability analysis uses mathema-
tical tools developed by Lyapunov (e.g. Strogatz 2014)
in nonlinear systems theory, to explain how their
dynamics behave around an equilibrium state (or a
local stationarity). Suweis et al (2015) applied this
approach to the global food trade network coupled
with a delayed logistic model for country-specific
population dynamics. They found that globalization
(increasing number of trade links) decreases the sys-
tem’s resilience and increase their fragility to perturba-
tions (Suweis et al 2015, Porkka et al 2016, 2017).

8.6. Governing the invisible or invisible governance?
Virtual water has been described as ‘economically
invisible and politically silent’ (Allan 2003). While
virtual water it has been at the center of hydropolitical
theorization, it received less attention in policy devel-
opment. Studies on VWT often result in policy
recommendations and point to the desired or unde-
sired policy implications that emerge when opening
the black box of water globalization (e.g. Hoekstra and
Hung 2002). Virtual water strategies have also been
presented as possible solutions for water-scarce coun-
tries in international watermeetings such as theWorld
Water Forum or as a way to influence consumption
and production behavior through tools such as virtual
water labeling (Mori 2003, Leach et al 2016). However,
the awareness of the potential power of VWT to
address issues of water scarcity and food security is
difficult to translate in direct concrete policies and
governance priorities. While the hydrological and
environmental effects of VWT have a clear local
biophysical manifestation, the governance of the
phenomenon goes beyond the sphere of water man-
agement and enters other realms of political economy.
Very relevant are the agricultural trade and transna-
tional land investment dimensions. VWT is ultimately
governed by the politics of agricultural trade and land
investments which tends to playout with little or no
consideration of hydrological conditions such as water
stress or other important social dimensions such as
those associated with food security and malnutrition
(Dell’Angelo et al 2018b).

The framework of ‘virtual water hegemony’
(Sujamo et al 2012) developed using the approach of
hydro-hegemony (Zeitoun and Warner 2006), is
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useful to understand that rather than a ‘visible’ gov-
ernance of an ‘invisible’ socio-hydrological phenom-
enon, what may happen is the opposite. Some authors
suggest the ‘invisible hand’ of neoliberal markets
impacts the direction, magnitude and dynamics of vir-
tual water flows thorough transnational investments
in land and agricultural commodities. Powerful agri-
business actors may then compete and cooperate in
hydro-hegemony dynamics of persuasion, co-opta-
tion, and compromise that can include coercive
leverages or incentives at multiple political levels
(Sujamo et al 2012). The contemporary global land
rush (Rulli et al 2013, Dell’Angelo et al 2017) is a good
example of how the politics of VWT can be concretely
studied. In this context, the study of the global govern-
ance of land grabbing (Margulis et al 2013) provides
deeper understanding of what ultimately impacts the
governance of global water appropriation and water
grabbing (Rulli et al 2013, Dell’Angelo et al 2018a).
The main notion here is that in order to engage with
the governance dynamics of VWT, we need to move
our focus to transnational regulations such as indus-
trial exports, trade, agribusiness and transnational
land acquisitions.

Moreover, there can be some concerns with the ‘vir-
tual’ aspect of VWT and the associated attempt to apply
an abstractmodel to reality. By abstractingwater from its
material context, which includes traded commodities as
well as the dynamics of human labor and environmental
resources, virtual water ignores important functions of
the human-water interaction (Barnes 2013). While vir-
tual water studies point to problematic aspects of water
globalization whichmight justify a call for a global water
governance based on ethical and normative grounds
(Hoekstra 2006) the concrete actionability of global gov-
ernance approaches continues to raise several concerns
(Gawel and Bernsen 2013). The validity of the VWT as a
governance tool also could be considered in the context
of neoliberal globalization where the dominant imposi-
tions of markets and profits may overshadow the need
for stronger socio-environmental regulation.

9. Conclusions

Modern society has enabled the spatial and temporal
dislocation of production and consumption. A commu-
nity (e.g. a village, province or country) no longer has to
consume only what it is able to produce but different
locations specialize in commodities for which they have
the comparative advantage, given the local resources and
policies. VWT allows societies to feed people in areas
where there are not enough water resources to produce
sufficient food to feed everyone. The emergence of trade
dependencies can be ascribed to a number of factors that
are not necessarily related to water scarcity but include
drivers of comparative advantage, trade policies, demo-
graphic dynamics, historical patterns of agricultural
development and related legacies.

The notions of virtual water and VWT were devel-
opedmore than 20 years ago (Allan 1998). In recent years
these concepts have been investigated in the context of
food andwater securitywith an approach that has lednot
only to the quantificationof traded virtualwater volumes
but also to the analysis of the topological properties of the
virtual water network and how they have changed
through time. Recent research has clarified to what
extent the traded (virtual) water comes from rainfed or
irrigated agriculture, or from surface water bodies and
aquifers, thereby allowing for a better evaluation of the
hydrologic implications of this phenomenon and its
impacts on local andglobalwater systems.

Through an analysis of the ‘virtual water cycle’ we
have related physical water flows in the hydrologic cycle
to virtual water flows, which allows for an evaluation of
the magnitude of the VWT phenomenon. This inte-
grative analysis completes a more comprehensive assess-
ment of human impacts on and appropriation of the
water cycle. Agriculture, consumes 2.4% of global runoff
for irrigation and contributes to more than 10%–16% of
the global evapotranspiration fromterrestrial ecosystems;
about one fourth of these water resources are virtually tra-
ded as water embodied in agricultural goods. Because the
major physical water fluxes in the hydrologic cycle are
changing at amuch slower rate (e.g. as an effect of climate
warming or land use change) thanwater consumption in
agriculture or other uses, the share of water resources
appropriated by human activities is expected to increase.
Likewise, as international trade in commodities increases
without changes in water productivities, the amount of
water virtually (butnot physically) transferred around the
worldwill also increase.However, a changing climate and
geo-politicswill also impact this complex system.

What are the socio-environmental key aspects of the
globalization of water resources?The literature has often
highlighted the benefits of VWT as an approach to deal
with local or regional water scarcity (either through trade
or food aid) and feed populations living inwater-stressed
areas without engendering massive migrations or water
wars. In this review we have critically discussed some of
the socio-environmental impacts of an increasing reli-
ance on VWT and associated dependency on water
resources existing inother regionsof theworld.

A recent body of literature on the role playedby trade
on the resilience of the food system, has shown how the
globalization of food and water through trade has
increased the likelihood of global crises. Some authors
have also re-examined the relationship existing between
VWT and demographic growth, water inequalities,
environmental externalities, and the societal and political
implications of VWT, particularly with respect to con-
flict and food or energy security. Collectively, these
results provide an integratedperspective on thephenom-
enonof the globalizationofwater.

This review has highlighted some major gaps in
the analysis and understanding of global VWT. More
specifically, (1)more work needs to be done to investi-
gate VWT at sub-national scales, including both
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agricultural and industrial water uses. Therefore, there
is the need to identify new data sources or proxies that
can improve our understanding of the VWT and its
hydrological consequences at sub-national scales; (2)
likewise, previous studies have assessed the environ-
mental consequences of VWT considering a ‘well
mixed’ system of production within each country.
This review has shown that to improve the analysis of
the local environmental impacts of VWT there is a
need to study intra-regional VWT and identify the
exact location of production of exported commod-
ities; (3) the analysis of the environmental impacts of
VWT requires improved process-based tools for the
estimate of grey water flows, based on mechanistic
models of non-point source pollution from nitrates,
phosphates, fungicides, pesticides and other chemi-
cals; (4) while a relatively large body of literature has
quantified the environmental impacts of exporting
countries, the environmental effects of international
trade on importing countries remain for most part
unexplored (Sun et al 2018); (5) there are also more
direct environmental impacts of VWT associated with
the intensification of trade and the establishment of
new and/or more frequently used shipping routes.
These effects have only started to be evaluated (Ste-
phenson et al 2018); (6) it is not clear to what extent
VWT is contributing to the unsustainable use of water
resources at the expense of environmental flows.
Therefore, there is a need to evaluate the unsustainable
fraction of crop production and the associated VWT;
(7) with population growth and climate change
exacerbating water scarcity in some regions of the
world, it is not clear how VWTwill evolve in the com-
ing decades and whether it will be able to meet
the growing demand for agricultural products
(Chouchane et al 2018b); (8) the effect ofVWTonwater
scarcity remains difficult to evaluate. In fact, adding net
virtual water import to domestic production and sub-
tracting water demand results in an overly simplistic
approach that assumes that the demand (due to eco-
nomic and population growth) does not depend on
trade itself. Therefore, analyses based on integrated
assessment modeling are likely needed to backcast past
development with and without trade and evaluate the
effect of VWT on water scarcity; (8) directly addressing
a critical, yet ‘invisible’ phenomenon such as a VWT
remains a governance challenge where research has to
play a key role in informing policy decisions. There is a
growing need for actionable research that translates
knowledge on the VWT phenomenon into policies
aiming at an environmentally more sustainable and
sociallymore equitablewater governance.
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