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We study the level set equation in a bounded domain when the velocity of the interface is given by the mean curvature plus a
discontinuous velocity. We prove a comparison principle for the initial-boundary value problem whose consequence is uniqueness
of continuous solutions and well- posedness of the level set method.

1. Introduction

We consider the Dirichlet initial-boundary value problem for
a mean curvature flow equation

𝑢
𝑡
(𝑥, 𝑡) + 𝑓 (𝑥) |𝐷𝑢 (𝑥, 𝑡)| + 𝐹 (𝐷𝑢 (𝑥, 𝑡) , 𝐷

2
𝑢 (𝑥, 𝑡))

= 0, (𝑥, 𝑡) ∈ Ω × (0, +∞) ,

𝑢 (𝑥, 0) = 𝑢
𝑜
(𝑥) ∈ 𝐶 (Ω) ,

𝑢 (𝑥, 𝑡) = 𝑔 (𝑥, 𝑡) , (𝑥, 𝑡) ∈ 𝜕Ω × [0, +∞) ,

(1)

where Ω ⊂ R𝑛 is open and bounded, 𝐹 : R𝑛 \ {0} × S𝑛 → R

is the standard mean curvature operator

𝐹 (𝑝,𝑋) = − tr[(𝐼 −

𝑝





𝑝





⊗

𝑝





𝑝





)𝑋] , (2)

S𝑛 denotes the space of the 𝑛 × 𝑛 symmetric matrices, and
the function 𝑓 : Ω → R is piecewise Lipschitz continuous
across Lipschitz hypersurfaces. Since (1) is nonlinear, it has
a singularity at 𝐷𝑢 = 0 and discontinuous coefficients;
then the appropriate notion of solution is that of viscosity
solution as in Crandall et al. [1]. We will address uniqueness
of solutions of (1) by proving a comparison principle. The
consequence will be uniqueness of continuous solutions of
(1). At the present time we do not have existence results for
continuous solutions although the coercivity of the norm

and the regularizing effect of the mean curvature operator
appearing in the equation lead to conjecture that this should
be the case.

Equation (1) appears in the study of the weak front evolu-
tion of hypersurfaces with a given normal velocity. It appears,
for instance, in the study of the refraction phenomenon
in anisotropic media with a discontinuous refraction index
or in the study of phase transitions occurring in singular
perturbation problems for nonlinear parabolic equations.The
main novelty of the paper is that we address the problem
when the coefficient 𝑓 may be discontinuous while in the
literature 𝑓 is always assumed to be continuous.

One can easily observe that if 𝑢 solves the pde in (1) and
𝜓 : R → R is smooth and increasing, then, at least formally,
also 𝜓(𝑢) solves the same pde. Hence the equation is called
geometric. As a consequence, if 𝑢

1

𝑜
and 𝑢

2

𝑜
are two initial

conditions such that

Λ
𝑜
= {𝑥 : 𝑢

1

𝑜
(𝑥) = 0} = {𝑥 : 𝑢

2

𝑜
(𝑥) = 0} (3)

is a closed hypersurface and comparison principle holds, then
if 𝑢1, 𝑢2 are the corresponding solutions of (1), one shows that

{𝑥 : 𝑢
1
(𝑥, 𝑡) = 0} = Λ

𝑡
= {𝑥 : 𝑢

2
(𝑥, 𝑡) = 0} ,

for 𝑡 > 0.

(4)

We can define the family (Λ
𝑡
)
𝑡
as the geometric flow of

the hypersurface Λ
𝑜
with discontinuous normal velocity
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(𝜅 + 𝑓(𝑥))n in the unisotropic medium, 𝜅 being the mean
curvature of the front and n its normal vector. This is the
key observation of the level set method for weak front
propagation introduced by Osher and Sethian [2].

The theory of viscosity solutions for Hamilton-Jacobi
equations with discontinuous coefficients has now a rather
long history. The problem was first studied by Ishii [3] who
defined viscosity solutions for Hamiltonians discontinuous
in the variables (𝑡, 𝑢). In the case that discontinuities of
the coefficients concern the state variable 𝑥, the problem
is quite interesting and more delicate. In order to have
well-posed problems, one needs some strong structure of
the equation either (i) to strengthen the classical notion of
viscosity solution or (ii) to strongly limit the class of allowed
discontinuities. Within the first group of papers we recall the
work on uniformly elliptic/parabolic pdes by Jensen [4] and
by Caffarelli et al. [5]; see also the references therein. For first-
order, convex, and coercive Hamiltonians (i.e., 𝐻(𝑥, 𝑝) →

+∞ as |𝑝| → ∞) uniqueness results have been obtained
by Camilli and Siconolfi [6]. Other studies on more general
classes of equations, in particular degenerate and noncoercive
Hamiltonians, using the standard notion of viscosity solu-
tion, are limited to piecewise continuous coefficients. Our
problem fits into this category. We recall previous work of
one of the authors on the characterization of uniqueness of
viscosity solutions [7], existence and uniqueness results for
the stationary eikonal equation [8], and general uniqueness
results for degenerate elliptic equations [9]; see however also
the references therein for additional work on the subject. For
more recent works, in the case of time dependent first order
problems also including equations of evolving interfaces,
we recall the paper of the authors [10] on the evolution
equation for the eikonal equation as well as Chen andHu [11],
Deckelnick and Elliott [12], Barles et al. [13, 14], Bressan and
Hong [15], and Coclite and Risebro [16].

2. The Level Set Approach

In this section we briefly recall the main ideas of the weak
evolution of interfaces named the level set approach. Let Λ

𝑡

be a generic interface at time 𝑡 > 0; we suppose that Λ
𝑡
is

the topological boundary of an open set 𝐷
𝑡
⊂ R𝑛, that is,

Λ
𝑡
= 𝜕𝐷
𝑡
⊂ R𝑛. Assumemoreover that, for any point 𝑥 ∈ R𝑛,

the exterior normal vector n(𝑥) at 𝑥 ∈ 𝐷
𝑡
is well defined and

smooth and that 𝑥moves with normal velocity

𝑉 = V (𝑥, 𝑡,n (𝑥) , 𝐷n (𝑥)) . (5)

A classical problem is the following: given 𝐷
0

⊂ R𝑛 open,
study the evolution of the interfaces 𝑡 → Λ

𝑡
moving with

normal velocity 𝑉 = V(𝑥, 𝑡, 𝐷n(𝑥),n(𝑥)) and starting at time
𝑡 = 0 fromΛ

0
= 𝜕𝐷
0
. One of themain difficulties in interface

dynamics with normal velocity as in (5) is that they develop
singularities in finite time, independently of the smoothness
of the initial surface Λ

0
. To interpret the evolution past the

singularities it is appropriate to use the theory of viscosity
solutions for partial differential equations.The so-called level
set approach, based on viscosity solutions, was first developed
for themean curvature flow equation independently by Evans

and Spruck in [17] and by Chen et al. in [18] for more general
geometric equations.Theseworkswere later extended by Ishii
and Souganidis in [19] and by Goto in [20] for more general
motions and more general initial surfaces. For a detailed
analysis of this approach we refer the reader to the book by
Giga [21], Souganidis [22], and the references therein. We
now briefly discuss the main ideas.

Problem (5) can be reformulated in an equivalent way.
Suppose that there exists a smooth function 𝑢 : R𝑛 ×

[0, +∞) → R such that

Λ
𝑡
= {𝑥 ∈ R

𝑛
: 𝑢 (𝑥, 𝑡) = 0} ,

𝐷
𝑡
= {𝑥 ∈ R

𝑛
: 𝑢 (𝑥, 𝑡) > 0} ,

𝐷𝑢 ̸= 0 on Λ
𝑡
;

(6)

it can be easily seen that

𝑉 =

𝑢
𝑡

|𝐷𝑢|

,

n = −

𝐷𝑢

|𝐷𝑢|

,

𝐷n = −

1

|𝐷𝑢|

(𝐼 −

𝐷𝑢 ⊗ 𝐷𝑢

|𝐷𝑢|
2

)𝐷
2
𝑢

(7)

and so (5) becomes

𝑢
𝑡
= 𝐹 (𝑥, 𝑡, 𝐷𝑢,𝐷

2
𝑢) (8)

with 𝐹 defined as
𝐹 (𝑥, 𝑡, 𝑝, 𝑋)

=




𝑝




V(𝑥, 𝑡, −

𝑝





𝑝





, −

1





𝑝





(𝐼 −

𝑝 ⊗ 𝑝





𝑝





2
)𝑋) ,

(𝑥, 𝑡, 𝑝, 𝑋) ∈ R
𝑛
× (0, +∞) ×R

𝑛
×S
𝑛
.

(9)

This means that 𝐹 is as smooth as V with possible singularity
at 𝑝 = 0 and that 𝐹 is geometric; that is, it satisfies, for any
(𝑥, 𝑡) ∈ R𝑛 × (0, +∞), 𝑝 ∈ R𝑛 and𝑋 ∈ S𝑛,

𝐹 (𝑥, 𝑡, 𝜆𝑝, 𝜆𝑋 + 𝜇 (𝑝 ⊗ 𝑝)) = 𝜆𝐹 (𝑥, 𝑡, 𝑝, 𝑋)

∀𝜆 > 0, 𝜇 ∈ R.

(10)

The so-called level set approach wants to solve the inter-
face evolution equation (5) starting at a given Λ

0
= 𝜕𝐷

0

looking at the (viscosity) solutions of (8). To do this we take
an auxiliary function 𝑢

0
: R𝑛 → R, at least continuous and

such that
Λ
0
= {𝑥 ∈ R

𝑛
: 𝑢
0
(𝑥) = 0} ,

𝐷
0
= {𝑥 ∈ R

𝑛
: 𝑢
0
(𝑥) > 0} .

(11)

Once function 𝑢
0
is chosen one solves (8) with initial data

𝑢(𝑥, 0) = 𝑢
0
(𝑥) and defines for any 𝑡 > 0 and such a solution

𝑢

Λ
𝑡
= {𝑥 ∈ R

𝑛
: 𝑢 (𝑥, 𝑡) = 0} ,

𝐷
𝑡
= {𝑥 ∈ R

𝑛
: 𝑢 (𝑥, 𝑡) > 0} .

(12)
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In order to consider the collection of pairs (Λ
𝑡
, 𝐷
𝑡
)
𝑡≥0

as a
generalized solution of our evolution problem with initial
data (Λ

0
, 𝐷
0
) it is crucial to prove that, under suitable

hypothesis, (Λ
𝑡
, 𝐷
𝑡
)
𝑡≥0

depends only on (Λ
0
, 𝐷
0
) and not on

the particular chosen function 𝑢
0
. Key properties on 𝐹 to this

end are ellipticity of 𝐹, that is,

𝐹 (𝑥, 𝑡, 𝑝, 𝑋) ≤ 𝐹 (𝑥, 𝑡, 𝑝, 𝑌) , if 𝑋 ≥ 𝑌, (13)

the fact that 𝐹 is geometric as described above, the technical
fact that 𝐹∗(𝑥, 𝑡, 0, 0) = 𝐹

∗
(𝑥, 𝑡, 0, 0), for all (𝑥, 𝑡) ∈ R𝑛 ×

(0, +∞), and a comparison principle for pde (8). Recall here
that if 𝑔 : Ω → R is a generic locally bounded function we
define the upper semicontinuous envelope of 𝑔 as 𝑔∗ : Ω → R,

𝑔
∗
(𝑥) = lim

𝑟→0
+

sup
|𝑦−𝑥|<𝑟,𝑦∈Ω

𝑔 (𝑦) = inf
𝑟>0

sup
|𝑦−𝑥|<𝑟,𝑦∈Ω

𝑔 (𝑦) , (14)

and the lower semicontinuous envelope of 𝑔 as

𝑔
∗
(𝑥) = lim

𝑟→0
+

inf
|𝑦−𝑥|<𝑟,𝑦∈Ω

𝑔 (𝑦) = sup
𝑟>0

inf
|𝑦−𝑥|<𝑟,𝑦∈Ω

𝑔 (𝑦) . (15)

Indeed one can prove that (8) is invariant by nondecreas-
ing changes of variable 𝑢 → 𝜃(𝑢) and the weak evolution is
well defined. Case (1) that we consider in the present paper is
a notable example of the theory in that it contains the mean
curvature operator and adds a discontinuous coefficient in
the space variable which is a novelty in the theory.

We end this section by recalling the definition of viscosity
solution for our equation, due to Ishii.

Definition 1. LetΩ ⊂ R𝑛 be an open set.
(i) An upper semicontinuous function 𝑢 : Ω×(0, +∞) →

R is a viscosity subsolution of the differential equation in (1) if
for every 𝜑 ∈ 𝐶

2
(Ω × (0, +∞)) and for every local maximum

point (𝑥, 𝑡) ∈ Ω × (0, +∞) of 𝑢 − 𝜑, we have

𝜑
𝑡
(𝑥, 𝑡) + 𝑓

∗
(𝑥)





𝐷𝜑 (𝑥, 𝑡)






+ 𝐹
∗
(𝐷𝜑 (𝑥, 𝑡) , 𝐷

2
𝜑 (𝑥, 𝑡)) ≤ 0.

(16)

One calls 𝜑 a test function at (𝑥, 𝑡) for the subsolution 𝑢.
Similarly, one has the following.

(ii) A lower semicontinuous function 𝑢 : Ω × (0, +∞) →

R is a viscosity supersolution of the differential equation in (1)
if and only if for every 𝜑 ∈ 𝐶

2
(Ω × (0, +∞)) and for every

local minimum point (𝑥, 𝑡) ∈ Ω × (0, +∞) of 𝑢 − 𝜑, we have

𝜑
𝑡
(𝑥, 𝑡) + 𝑓

∗
(𝑥)





𝐷𝜑 (𝑥, 𝑡)






+ 𝐹
∗
(𝐷𝜑 (𝑥, 𝑡) , 𝐷

2
𝜑 (𝑥, 𝑡)) ≥ 0.

(17)

(iii) A locally bounded function 𝑢 : Ω × (0, +∞) → R

is a viscosity solution of the differential equation in (1) if and
only if 𝑢

∗ is a viscosity subsolution and 𝑢
∗
is a viscosity

subsolution.

3. The Comparison Principle

As we mentioned in the Introduction, we will consider only
special discontinuities in the coefficient 𝑓 and we now make

this precise. The function 𝑓 : Ω → R will be piecewise Lip-
schitz continuous across a Lipschitz hypersurface according
to the following definition.

Definition 2. One says that𝑓 : Ω → R is a piecewise Lipschitz
continuous function across a Lipschitz hypersurface if the
discontinuity set Γ ⊂ Ω of𝑓 satisfies the following properties.
One can partitionΩ like

Ω = Ω
+
∪ Ω
−
∪ Γ, (18)

where Ω± are nonempty, open, and connected (the two sides
of Γ). Moreover, 𝑓 is locally Lipschitz continuous in Ω \ Γ; 𝑓
has a Lipschitz continuous extension in Ω

+
∪ Γ (i.e., 𝑓+) and

in Ω
−
∪ Γ (i.e., 𝑓−):

𝑓
∗
(𝑥) = 𝑓

+
(𝑥) > 𝑓

−
(𝑥) = 𝑓

∗
(𝑥) , ∀𝑥 ∈ Γ. (19)

For all 𝑥 ∈ Γ we have 𝑓(𝑥) ∈ [𝑓
∗
(𝑥), 𝑓

∗
(𝑥)].

Technically crucial although straightforward in what fol-
lows is the next remark.

Remark 3. Suppose that𝑓 is piecewise continuous as in Defi-
nition 2 and let Γ be the Lipschitz continuous hypersurface
of its discontinuities. Then it is not hard to show that we
can always find unit vectors 𝜂

+
, 𝜂
−

∈ R𝑛 inward Ω
+
, Ω
−,

respectively, at every �̂� ∈ Γ. This means that for some ℎ, 𝑐 > 0

we have that 𝐵(𝑦 + 𝑡𝜂
+
, 𝑡𝑐) ⊂ Ω

+ for all 𝑦 ∈ 𝐵(�̂�, ℎ) ∩ Ω

+,
𝑡 ∈ (0, 𝑐) and for all �̂� ∈ Γ and that 𝐵(𝑦 + 𝑡𝜂

−
, 𝑡𝑐) ⊂ Ω

− for
all 𝑦 ∈ 𝐵(�̂�, ℎ) ∩ Ω

−, 𝑡 ∈ (0, 𝑐) and for all �̂� ∈ Γ. We may also
suppose that 𝜂− = −𝜂

+. For this straightforward computation
see, for instance, [23].

If moreover we suppose that Γ is globally the graph of a
Lipschitz continuous function of 𝑛 − 1 variables with 𝐿

𝑓
>

0 as a Lipschitz constant then the vectors 𝜂± may be chosen
independent of the point �̂�.

We will indicate below convenience Ω
∞

= Ω × (0, +∞),
and the parabolic boundary 𝜕Ω

∞
= (Ω×{0})∪(𝜕Ω×[0, +∞)).

We are studying the equation

𝑢
𝑡
(𝑥, 𝑡) + 𝑓 (𝑥) |𝐷𝑢 (𝑥, 𝑡)| + 𝐹 (𝐷𝑢 (𝑥, 𝑡) , 𝐷

2
𝑢 (𝑥, 𝑡))

= 0, (𝑥, 𝑡) ∈ Ω
∞
,

(20)

where 𝐹 : R𝑛 \ {0} ×S𝑛 → R is the mean curvature operator
(see (2)).

We now state and prove our comparison result for (20)
in Ω
∞
, when Ω ⊂ R𝑛 is open and bounded. The techniques

used in this proof are a combination of the classical ideas
of Chen et al. [18] (see also the book by Giga [21]) to treat
the singularity of the mean curvature term at 𝑝 = 0 and
the techniques developed by one of the authors [9] to prove
uniqueness of viscosity solutions of degenerate second-order
Hamilton-Jacobi equations with discontinuous coefficients.

Theorem 4. Let Ω ⊂ R𝑛 be open and bounded. Assume that
𝑓 : Ω → R is a piecewise continuous function across a
Lipschitz graph Γ. Let 𝑢, V : Ω

∞
→ R be, respectively, an upper
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semicontinuous subsolution and a continuous supersolution of
(20) in Ω

∞
. If 𝑢 ≤ V on 𝜕Ω

∞
, then 𝑢 ≤ V on Ω

∞
.

Before going to the proof we just observe that in the
statement the roles of 𝑢, V can be interchanged; that is, 𝑢 can
be a continuous subsolution and V a lower semicontinuous
supersolution of (20) inΩ

∞
.

Proof. Since (20) is invariant by an increasing change of the
dependent variable, it is not restrictive to assume that 𝑢 and
V are bounded by taking tanh 𝑢, tanh V instead of 𝑢, V.

Assume by contradiction that there exists a point
(𝑥
𝑜
, 𝑡
𝑜
) ∈ Ω

∞
such that 𝑢(𝑥

𝑜
, 𝑡
𝑜
) − V(𝑥

𝑜
, 𝑡
𝑜
) = 𝐴 > 0. Fix

any 𝛼 ∈ R, 0 < 𝛼 < 𝐴/𝑡
𝑜
and let (�̂�, �̂�) be a maximum point

of

Φ (𝑥, 𝑡) fl 𝑢 (𝑥, 𝑡) − V (𝑥, 𝑡) − 𝛼𝑡, (𝑥, 𝑡) ∈ Ω
∞
. (21)

Clearly the maximum of Φ exists since Ω is bounded, 𝑢 − V
is upper semicontinuous, Φ(𝑥

𝑜
, 𝑡
𝑜
) = 𝐴 − 𝛼𝑡

𝑜
> 0, Φ ≤ 0

on 𝜕Ω
∞
, and Φ(𝑥, 𝑡) ≤ 0 for large 𝑡 since 𝑢, V are bounded.

Notice that (𝑥
𝑜
, 𝑡
𝑜
) ∉ 𝜕Ω

∞
and max

Ω×[0,+∞)
Φ ≥ Φ(𝑥

𝑜
, 𝑡
𝑜
) =

𝐴−𝛼𝑡
𝑜
= 2𝛾 > 0; therefore everymaximumpoint ofΦ cannot

be on 𝜕Ω
∞
.

We now define

𝜔
𝜀
(𝑥, 𝑦, 𝑡, 𝑠) fl 𝑢 (𝑥, 𝑡) − V (𝑦, 𝑠) −

𝛾

4









𝑥 − 𝑦

𝜀

+ 𝜂









4

−

𝛾

2









𝑡 − 𝑠

𝜀









2

− 𝛼𝑡,

(22)

where 𝜂 = 𝜂
−

= −𝜂
+ is as in Remark 3, and consider

(𝑥
𝜀
, 𝑦
𝜀
, 𝑡
𝜀
, 𝑠
𝜀
) ∈ Ω
∞

× Ω
∞

such that

𝜔
𝜀
(𝑥
𝜀
, 𝑦
𝜀
, 𝑡
𝜀
, 𝑠
𝜀
)

= max {𝜔𝜀 (𝑥, 𝑦, 𝑡, 𝑠) : (𝑥, 𝑦, 𝑡, 𝑠) ∈ Ω
∞

× Ω
∞
} .

(23)

As above the maximum of 𝜔𝜀 exists and it is positive since

𝜔
𝜀
(�̂�, �̂�, �̂�, �̂�) = Φ (�̂�, �̂�) −

𝛾

4





𝜂





4

≥ 2𝛾 −

𝛾

4

≥ 𝛾 > 0. (24)

Moreover from 𝜔
𝜀
(𝑥
𝜀
, 𝑦
𝜀
, 𝑡
𝜀
, 𝑠
𝜀
) ≥ 𝜔

𝜀
(�̂�, �̂�, �̂�, �̂�) > 0 and the

boundedness of 𝑢, V we obtain that









𝑥
𝜀
− 𝑦
𝜀

𝜀

+ 𝜂









,









𝑡
𝜀
− 𝑠
𝜀

𝜀









(25)

are uniformly bounded in 𝜀 > 0 since we have assumed that
𝑢 and V are bounded, and we get that |𝑥

𝜀
− 𝑦
𝜀
|, |𝑡
𝜀
− 𝑠
𝜀
| → 0

if 𝜀 → 0. Therefore (𝑥
𝜀
, 𝑡
𝜀
), (𝑦
𝜀
, 𝑠
𝜀
) stay in a bounded region

uniformly in 𝜀 > 0 and

lim
𝜀→0
+

(𝑥
𝜀
, 𝑦
𝜀
, 𝑡
𝜀
, 𝑠
𝜀
) = (𝑥, 𝑥, 𝑡, 𝑡) ∈ Ω

∞
× Ω
∞
. (26)

Using the upper semicontinuity of 𝑢 and the continuity of V
we compute

Φ(𝑥, 𝑡) = 𝑢 (𝑥, 𝑡) − V (𝑥, 𝑡) − 𝛼𝑡

≥ lim sup
𝜀→0
+

(𝑢 (𝑥
𝜀
, 𝑡
𝜀
) − V (𝑦

𝜀
, 𝑠
𝜀
) − 𝛼𝑡

𝜀
)

≥ lim sup
𝜀→0
+

𝜔
𝜀
(𝑥
𝜀
, 𝑦
𝜀
, 𝑡
𝜀
, 𝑠
𝜀
)

≥ lim
𝜀→0
+

𝜔
𝜀
(�̂�, �̂� + 𝜀𝜂, �̂�, �̂�)

= lim
𝜀→0
+

(𝑢 (�̂�, �̂�) − V (�̂� + 𝜀𝜂, �̂�) − 𝛼�̂�)

= Φ (�̂�, �̂�) ≥ Φ (𝑥, 𝑡) .

(27)

From here we obtain that (𝑥, 𝑡) is a maximum point forΦ, so
(𝑥, 𝑡) ∈ Ω

∞
and moreover

lim
𝜀→0
+

𝑢 (𝑥
𝜀
, 𝑡
𝜀
) = 𝑢 (𝑥, 𝑡) . (28)

Expanding again

𝜔
𝜀
(𝑥, 𝑥 + 𝜀𝜂, 𝑡, 𝑡) ≤ 𝜔

𝜀
(𝑥
𝜀
, 𝑦
𝜀
, 𝑡
𝜀
, 𝑠
𝜀
) . (29)

By the continuity of V and (28) we improve previous estimates
as

lim
𝜀→0
+









𝑥
𝜀
− 𝑦
𝜀

𝜀

+ 𝜂









= 0,

lim
𝜀→0
+









𝑡
𝜀
− 𝑠
𝜀

𝜀









= 0.

(30)

Hence for 𝜀 sufficiently small




𝑥
𝜀
− 𝑦
𝜀
+ 𝜀𝜂





≤ 𝑐𝜀, (31)

where 𝑐 appears in Remark 3. In particular (31) shows that if
𝑥 ∈ Γ and 𝑥

𝜀
∈ Ω
−
∪ Γ, then 𝑦

𝜀
∈ Ω
− by Remark 3 which is

something that we keep inmind for later. Up to nowwe never
used the equation. Now consider two different cases.

Case 1. Suppose that there exists a sequence 𝜀
𝑘
→ 0
+ such that

𝑦
𝜀
𝑘

= 𝑥
𝜀
𝑘

+ 𝜀
𝑘
𝜂 for all 𝑘. We omit from now on the subindex

𝑘. Since 𝜔
𝜀
(𝑥, 𝑦
𝜀
, 𝑡, 𝑠
𝜀
) ≤ 𝜔

𝜀
(𝑥
𝜀
, 𝑦
𝜀
, 𝑡
𝜀
, 𝑠
𝜀
) for any (𝑥, 𝑡) ∈ Ω

∞

we get

max
Ω
∞

(𝑢 − 𝜑
+
) = 𝑢 (𝑥

𝜀
, 𝑡
𝜀
) − 𝜑
+
(𝑥
𝜀
, 𝑡
𝜀
) , (32)

where

𝜑
+
(𝑥, 𝑡) =

𝛾

4









𝑥 − 𝑦
𝜀

𝜀

+ 𝜂









4

+

𝛾

2









𝑡 − 𝑠
𝜀

𝜀









2

+ 𝛼𝑡. (33)

Similarly we see that

min
Ω
∞

(V − 𝜑
−
) = V (𝑦

𝜀
, 𝑠
𝜀
) − 𝜑
−
(𝑦
𝜀
, 𝑠
𝜀
) , (34)

with

𝜑
−
(𝑦, 𝑠) = −

𝛾

4









𝑥
𝜀
− 𝑦

𝜀

+ 𝜂









4

−

𝛾

2









𝑡
𝜀
− 𝑠

𝜀









2

. (35)
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Since we have assumed that 𝑥
𝜀

= 𝑦
𝜀

+ 𝜀𝜂 we have
|𝐷𝜑
+
(𝑥
𝜀
, 𝑡
𝜀
)| = |𝐷

2
𝜑
+
(𝑥
𝜀
, 𝑡
𝜀
)| = 0 and |𝐷𝜑

−
(𝑦
𝜀
, 𝑠
𝜀
)| =

|𝐷
2
𝜑
−
(𝑦
𝜀
, 𝑠
𝜀
)| = 0. And so, using the fact that 𝑢 is a viscosity

subsolution and V a supersolution of (20) we obtain by
computing derivatives

𝛼 +

𝛾

𝜀
2
(𝑡
𝜀
− 𝑠
𝜀
) ≤ 0 ≤

𝛾

𝜀
2
(𝑡
𝜀
− 𝑠
𝜀
) , (36)

since here 𝐹
∗
(𝑦
𝜀
, 𝑠
𝜀
, 0, 0) = 𝐹

∗
(𝑥
𝜀
, 𝑡
𝜀
, 0, 0) = 0. This contra-

dicts 𝛼 > 0.

Case 2. We now suppose that 𝑥
𝜀

̸= 𝑦
𝜀
+𝜀𝜂 for 𝜀 small enough.

We set 𝜉 = (𝑥, 𝑡), 𝜁 = (𝑠, 𝑦), and

𝜑 (𝑥, 𝑡, 𝑦, 𝑠) =

𝛾

4









𝑥 − 𝑦

𝜀

+ 𝜂









4

+

𝛾

2









𝑡 − 𝑠

𝜀









2

. (37)

We now use classical matter. Observe that since (𝑥, 𝑡, 𝑦, 𝑠) →
𝑢(𝑥, 𝑡) − V(𝑦, 𝑠) − 𝛼𝑡 − 𝜑(𝑥, 𝑡, 𝑦, 𝑠) takes its maximum over
Ω
∞

× Ω
∞

at (𝑥
𝜀
, 𝑡
𝜀
, 𝑦
𝜀
, 𝑠
𝜀
), we see that

((

𝐷
𝜉
𝜑 (𝜉
𝜀
, 𝜁
𝜀
)

𝐷
𝜁
𝜑 (𝜉
𝜀
, 𝜁
𝜀
)

) , 𝐴) ∈ 𝐽
2,+

(𝑢 (𝜉
𝜀
) − V (𝜁

𝜀
) − 𝛼𝑡

𝜀
) , (38)

the superjet of the indicated function, where

𝐴 = (

𝐷
2

𝜉𝜉
𝜑 (𝜉
𝜀
, 𝜁
𝜀
) 𝐷
2

𝜉𝜁
𝜑 (𝜉
𝜀
, 𝜁
𝜀
)

𝐷
2

𝜁𝜉
𝜑 (𝜉
𝜀
, 𝜁
𝜀
) 𝐷
2

𝜁𝜁
𝜑 (𝜉
𝜀
, 𝜁
𝜀
)

) . (39)

Now we apply the theorem on sums (see [1]) to find that for
every 𝜆 > 0 there exist two matrices𝑋,𝑌 ∈ S𝑛 such that

(𝛼 + 𝜑
𝑡
(𝜉
𝜀
, 𝜁
𝜀
) , 𝐷
𝑥
𝜑 (𝜉
𝜀
, 𝜁
𝜀
) , 𝑋) ∈ P

2,+

𝑢 (𝑥
𝜀
, 𝑡
𝜀
)

(−𝜑
𝑠
(𝜉
𝜀
, 𝜁
𝜀
) , −𝐷

𝑦
𝜑 (𝜉
𝜀
, 𝜁
𝜀
) , 𝑌) ∈ P

2,−

V (𝑦
𝜀
, 𝑠
𝜀
)

(40)

the closed parabolic super- and subjets, and

−(

1

𝜆

+




𝐴
0





) 𝐼 ≤ (

𝑋 𝑂

𝑂 −𝑌

) ≤ 𝐴
0
+ 𝜆𝐴
2

0
, (41)

where

𝐴
0
= (

𝐷
2

𝑥𝑥
𝜑 (𝑥
𝜀
, 𝑡
𝜀
, 𝑦
𝜀
, 𝑠
𝜀
) 𝐷
2

𝑥𝑦
𝜑 (𝑥
𝜀
, 𝑡
𝜀
, 𝑦
𝜀
, 𝑠
𝜀
)

𝐷
2

𝑦𝑥
𝜑 (𝑥
𝜀
, 𝑡
𝜀
, 𝑦
𝜀
, 𝑠
𝜀
) 𝐷
2

𝑦𝑦
𝜑 (𝑥
𝜀
, 𝑡
𝜀
, 𝑦
𝜀
, 𝑠
𝜀
)

) . (42)

Using again the fact that 𝑢 and V are, respectively, sub-
and supersolution of (20) and that 𝐷

𝑥
𝜑(𝑥
𝜀
, 𝑡
𝜀
, 𝑦
𝜀
, 𝑠
𝜀
) =

−𝐷
𝑦
𝜑(𝑥
𝜀
, 𝑡
𝜀
, 𝑦
𝜀
, 𝑠
𝜀
) ̸= 0, we have by the equation of 𝑢

𝛼 + 𝛾 (𝑡
𝜀
− 𝑠
𝜀
) + 𝑓
∗
(𝑥
𝜀
)




𝐷
𝑥
𝜑 (𝑥
𝜀
, 𝑡
𝜀
, 𝑦
𝜀
, 𝑠
𝜀
)





+ 𝐹 (𝐷
𝑥
𝜑 (𝑥
𝜀
, 𝑡
𝜀
, 𝑦
𝜀
, 𝑠
𝜀
) , 𝑋) ≤ 0

(43)

and by the equation of V

𝛾 (𝑡
𝜀
− 𝑠
𝜀
) + 𝑓
∗
(𝑦
𝜀
)






−𝐷
𝑦
𝜑 (𝑥
𝜀
, 𝑡
𝜀
, 𝑦
𝜀
, 𝑠
𝜀
)







+ 𝐹 (−𝐷
𝑦
𝜑 (𝑥
𝜀
, 𝑡
𝜀
, 𝑦
𝜀
, 𝑠
𝜀
) , 𝑌) ≥ 0.

(44)

Adding these two inequalities we obtain

𝛼 ≤ (𝑓
∗
(𝑦
𝜀
) − 𝑓
∗
(𝑥
𝜀
))





𝐷
𝑥
𝜑 (𝑥
𝜀
, 𝑡
𝜀
, 𝑦
𝜀
, 𝑠
𝜀
)





+ 𝐹 (−𝐷
𝑦
𝜑, 𝑌) − 𝐹 (𝐷

𝑥
𝜑,𝑋) .

(45)

Since

𝐷
2

𝑥𝑥
𝜑 (𝑥
𝜀
, 𝑡
𝜀
, 𝑦
𝜀
, 𝑠
𝜀
) = 𝐷

2

𝑦𝑦
𝜑 (𝑥
𝜀
, 𝑡
𝜀
, 𝑦
𝜀
, 𝑠
𝜀
)

= −𝐷
2

𝑥𝑦
𝜑 (𝑥
𝜀
, 𝑡
𝜀
, 𝑦
𝜀
, 𝑠
𝜀
)

= −𝐷
2

𝑦𝑥
𝜑 (𝑥
𝜀
, 𝑡
𝜀
, 𝑦
𝜀
, 𝑠
𝜀
)

(46)

multiplying the second matrix inequality in (41) twice by
vectors of the form (𝜉, 𝜉) ∈ R𝑛+1 × R𝑛+1 implies 𝑋 ≤ 𝑌.
Therefore since 𝐹 is elliptic,

𝐹 (−𝐷
𝑦
𝜑 (𝑥
𝜀
, 𝑡
𝜀
, 𝑦
𝜀
, 𝑠
𝜀
) , 𝑌)

= 𝐹 (𝐷
𝑥
𝜑 (𝑥
𝜀
, 𝑡
𝜀
, 𝑦
𝜀
, 𝑠
𝜀
) , 𝑌)

≤ 𝐹 (𝐷
𝑥
𝜑 (𝑥
𝜀
, 𝑡
𝜀
, 𝑦
𝜀
, 𝑠
𝜀
) , 𝑋)

(47)

and the inequality in (45) simply becomes

𝛼 ≤ (𝑓
∗
(𝑦
𝜀
) − 𝑓
∗
(𝑥
𝜀
))





𝐷
𝑥
𝜑 (𝑥
𝜀
, 𝑡
𝜀
)





=

𝛾

𝜀

(𝑓
∗
(𝑦
𝜀
) − 𝑓
∗
(𝑥
𝜀
))









𝑥
𝜀
− 𝑦
𝜀

𝜀

+ 𝜂









3

.

(48)

Now we analyze the right hand side of (48) as 𝜀 → 0. If
𝑥 ∈ Γ and 𝑥

𝜀
∈ Ω
−
∪ Γ then (31) implies that also 𝑦

𝜀
∈ Ω
−, for

all 𝜀 sufficiently small as we already observed. Inequality (48)
and Lipschitz continuity of 𝑓 in the regionΩ

− therefore yield

𝛼 ≤ 𝛾𝐿
𝑓





𝑥
𝜀
− 𝑦
𝜀






𝜀









𝑥
𝜀
− 𝑦
𝜀

𝜀

+ 𝜂









3

, (49)

where 𝐿
𝑓
is a Lipschitz constant for 𝑓 in Ω

−. Notice that the
same estimate holds true if 𝑥 ∉ Γ as 𝑓 is Lipschitz continuous
in a neighborhood of 𝑥. Finally, letting 𝜀 → 0

+ and using (30)
we get a contradiction in these cases since the right hand side
of (49) tends to 0 as 𝜀 → 0

+.
We are left with the case 𝑥 ∈ Γ and 𝑥

𝜀
∈ Ω
+ along

a subsequence. We have two further subcases: either for 𝜀

small 𝑦
𝜀
∈ Ω
+
∪ Γ and we proceed similarly as above by the

Lipschitz continuity of 𝑓 in the region Ω
+ or for 𝑦

𝜀
∈ Ω
− on

a subsequence. In the latter situation we observe that

lim
𝜀→0
+

[𝑓 (𝑦
𝜀
) − 𝑓 (𝑥

𝜀
)] = [𝑓

∗
(𝑥) − 𝑓

∗
(𝑥)] < 0 (50)

and again we obtain a contradiction in (48) for 𝜀 small ending
the proof.

An immediate consequence of the previous result is the
uniqueness of solutions of (1).

Corollary 5. Assume that 𝑓 : Ω → R is a piecewise con-
tinuous function across a Lipschitz graph. Let 𝑢 : Ω

∞
→ R

be a continuous viscosity solution of (1). Then 𝑢 is the unique
solution of (1) within the class of possibly discontinuous viscos-
ity solutions V : Ω

∞
→ R which are continuous at the points

of the parabolic boundary.
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Proof. Just apply the theorem to 𝑢 and V
∗
first and then to 𝑢

and V∗. Therefore V∗ ≤ 𝑢 ≤ V
∗
in Ω
∞
; hence V is continuous

as well and 𝑢 = V.
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