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THE DEGREE OF THE TANGENT AND SECANT VARIETY TO

A PROJECTIVE SURFACE

ANDREA CATTANEO

Abstract. In this paper we present a way of computing the degree of the
secant (resp., tangent) variety of a smooth projective surface, under the as-
sumption that the divisor giving the embedding in the projective space is
3-very ample. This method exploits the link between these varieties and the
Hilbert scheme 0-dimensional subschemes of length 2 of the surface.

Introduction

In this paper we study the link between the secant variety of a smooth projective
complex surface S and the Hilbert scheme of 0-dimensional subschemes of length 2
of S. In particular, when the embedding of S in the projective space Pn is given by a
2-very ample divisor, then (cf. [12]) we can identify the Hilbert scheme Hilb2 S with
the subvariety of the Grassmannian G(1, n) parametrising all the secant lines to S.

We can then write (the class of) Hilb2 S as a linear combination of Schubert cycles
of G(1, n), and we expect the coefficients of this linear combination to have some
geometric meaning. In particular, they should reflect how the surface is embedded
in Pn. As a consequence, denoting by h the very ample divisor which embeds S
in Pn, we expect these coefficients to depend both on some intrinsic invariant of
the surface, such as K2

S , and on some properties of the embedding, such as the
degree h2 of the embedded surface. Our purpose is then to explicitly compute
these coefficients and give also their enumerative interpretation: it turns out that
one of them is exactly the degree of the secant variety of the embedded surface,
whose value is computed in Theorem 5.1.

Under the assumption that the divisor h is 3-very ample, we can study in an
analogous way the subvariety of the Grassmannian G(2, n) parametrising the tan-
gent planes to S (i.e., the image of the Gauss map of S). As a result, we give a
formula for the degree of the tangent variety to S in Theorem 5.3.
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We shall say that these results can be obtained also in other more classical ways,
for example as an application of the double point formula (see, e.g., [14, Theorem
9.3] or [11, §0]), but in our exposition we want to emphasize and exploit the link
between the enumerative properties of the surface S and the geometry of its Hilbert
scheme Hilb2 S. Nevertheless, our formulae are quite simple and explicit and we
can easily apply them to some examples of special interest: the case of a generic
projective K3 surface and the case of the Veronese surfaces in Pn.

Our method, in principle, can also be used to study higher secant varieties to
surfaces embedded by k-very ample divisors, but there are some difficulties. First
of all, the growth of the dimension of the higher secant varieties forces one to work
with higher-dimensional Schubert cycles in the Grassmannian G(k − 1, n), which
leads to a corresponding growth in the complexity of the computations. Moreover,
in this paper we exploit a fact which is peculiar of the Hilbert scheme Hilb2 S,
namely that it can be defined as a quotient of the blow up of S×S in the diagonal.
This is not the case for Hilbk S with k > 2 (cf. Remark 1.1), and as a consequence
in order to compute the degree of the higher secant varieties one needs to be more
careful with the intersection theoretic arguments we propose here.

The structure of the paper is as follows. In Section 1 we recall the construction
of the secant variety and of the Hilbert scheme of a projective surface, explaining in
the last part the relation between them. In Section 2 we give some general results
on the secant variety to a projective surface: in particular, we determine the class of
the variety parametrising the secant lines to S in the corresponding Grassmannian;
we give an explicit enumerative interpretation of all the coefficients involved and
compute all of them except the one corresponding to the degree of the secant variety
of the surface. In Section 3 we focus on the subvariety parametrising the tangent
planes to the surface: writing its class in the cohomology ring of the Grassmannian
as a combination of Schubert cycles, we can provide an enumerative interpretation
of the coefficients which appear. In Section 4 we recall some facts on the intersection
theory in the Hilbert scheme, and determine the intersection number we will need
in Section 5 to compute the degree of the secant and tangent variety. In Section 5
we exploit a linear relation and the intersection numbers computed in the previous
Sections to prove our main results: in Theorem 5.1 we compute the degree of the
secant variety and in Theorem 5.3 the one of the tangent variety. Finally, in Section
6 we specialise our result in two concrete situations, the one of K3 surfaces and of
the image of P2 under the m-th Veronese embedding.

Conventions. Throughout we will work over the field C of complex numbers.
Moreover, we always implicitly assume that the embedded surfaces are non-defec-
tive, meaning that their secant and tangent variety have the expected dimension,
i.e., dimSecS = 5 and dimTanS = 4 (this will be a harmless constraint, see the
discussion in Section 6.2). As a consequence, from Section 2 we will always consider
surfaces S ⊆ Pn with n ≥ 5.

1. The secant variety and the Hilbert scheme

In this Section we briefly recall the definition and the construction of the secant
variety SecS to a smooth projective surface S as well as of the Hilbert scheme
Hilb2 S parametrising the 0-dimensional subschemes of length 2 of S. Our main
references are [13, §1(a)] and [4, §6] respectively.
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We introduce here the notation we use throughout the paper for the Grass-
mannians: Grass(k, n) denotes the Grassmannian parametrising the k-dimensional
subspaces of a complex n-dimensional vector space, whileG(k, n) denotes the Grass-
mannian parametrising the k-dimensional subspaces of a complex n-dimensional
projective space. Hence G(k, n) = Grass(k + 1, n+ 1).

1.1. The secant variety. Let S ⊆ Pn be a smooth projective surface, which is
not contained in any hyperplane. Consider the map

f : (S × S)r∆S −→ G(1, n)
(P,Q) 7−→ line 〈P,Q〉,

where ∆S is the diagonal of S × S. Let Γ(S) be the closure of the graph of f in
Pn×Pn×G(1, n), and Σ(S) be the image of Γ(S) in G(1, n) under the projection on
the last factor. Then Σ(S) is the subset of the Grassmannian which parametrises
the lines which are secant to S.

In order to define the secant variety, we consider the incidence variety

I = {(x, l) ∈ Pn ×G(1, n) |x ∈ l} ,

and restrict it to the set of secant lines: we let ΣB(S) be the inverse image in I of
Σ(S) under the projection on the second factor. The secant variety, SecS, of S is
the image of ΣB(S) in Pn.

We have then the following situation (we denote by pr the projections, and use
the subscripts to indicate the factors):

Pn
× Pn

×G(1, n) ⊇ Γ(S)

pr12

ww♥♥
♥♥
♥♥
♥♥
♥♥
♥♥

pr3

""❋
❋❋

❋❋
❋❋

❋
ΣB(S)

pr2

{{✈✈
✈✈
✈✈
✈✈
✈

pr1

''P
PP

PP
PP

PP
PP

P
⊆ I ⊆ Pn

×G(1, n)

S × S Σ(S) SecS

(1)

We recall that

(1) pr12 is the blow up of S × S along ∆S ;
(2) pr3 is generically finite, and if the generic secant line cuts S in m distinct

points, then it is m(m− 1) : 1. In particular:
(a) if n = 3, and S is a surface of degree d, then m = d,
(b) if n > 3, then by [13, Theorem 1.8] or [17, Corollary 2.7, Corollary 2.8]

we have m = 2, and so pr3 is 2 : 1;
(3) pr2 is a P1-bundle;
(4) the fibre pr−1

1 (x) represents all the secants passing through x ∈ SecS.

1.2. The Hilbert scheme. Let S be a projective surface. The (second) symmetric
product S(2) of S is the quotient of S × S by the involution exchanging the two
factors: it is the variety representing the effective 0-dimensional cycles on S, and
it is singular along the image of the diagonal. Let ε : Hilb2 S −→ S(2) be the
blow up of the singular locus. We obtain then a smooth variety, whose points
parametrize the 0-dimensional subschemes of length 2 of S. The morphism ε is
called the Hilbert–Chow morphism.

Another way to define the Hilbert scheme Hilb2 S is to blow up S × S along the
fixed locus of the involution, i.e., the diagonal ∆S , and then take the quotient of
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the blown up variety by the induced involution. This leads to the commutative
square

S̃ × S
η

//

ρ

��

S × S

π

��

Hilb2 S
ε

// S(2),

(2)

and we recall that the action induced on S̃ × S by the one on S × S acts as the
identity on the exceptional divisor.

Remark 1.1. We can define Hilbk S as the variety parametrising the 0-dimensional
subschemes of S of length k. The first of the two constructions we recalled for
Hilb2 S generalises to the Hilbert schemes Hilbk S. However, the second one does
not generalise: call ∆ij the subset of Sk of the k-uples (x1, . . . , xk) with xi = xj ,

and let ∆ = π
(

⋃

i,j ∆ij

)

; then ∆ is the singular locus of S(k) and ε coincides

with the blow up of ∆ only on an open part of S(k) (the image in S(k) of the set
of k-uples with at most two equal entries), whose complement has codimension at
least 3 (cf. [4, §6, p. 766]). Because of this, the methods we will describe may be
hard to generalise to higher dimensional secant varieties.

1.3. k-very ampleness. We now recall the concept of k-very ampleness (cf. [8,
§2] and [12]). Let S be a surface, and h be a divisor on it. Fix a 0-dimensional
subscheme Z of S of length k + 1, defined by the ideal sheaf IZ , and consider the
exact sequence

0 −→ IZ ⊗OS(h) −→ OS(h) −→ OZ ⊗OS(h) −→ 0.

This sequence induces the long cohomology sequence

0 −→ H0(S, IZ⊗OS(h)) −→ H0(S,OS(h))
resZ−−−→ H0(Z,OZ⊗OS(h)) −→ . . . , (3)

and we say (cf. [12, Definition 0.1(iii)]) that h is k-very ample if the restriction map
resZ in (3) is onto for every 0-dimensional subscheme Z of length at most k + 1.

It is immediate to see that 0-very ampleness is equivalent to global generation,
and that 1-very ampleness is equivalent to very ampleness. Moreover, any (k − 1)-
very ample divisor h induces a map

ϕk−1 : Hilbk S −→ Grass(k,H0(S,OS(h))
∗), (4)

associating to any 0-dimensional subscheme of length k of S the point representing
the k-dimensional subspace H0(Z,OZ ⊗OS(h))

∗ in H0(S,OS(h))
∗. The answer to

the question whether this map is an embedding is given in the following Theorem.

Theorem 1.2 ([12, Main Theorem]). The map ϕk−1 defined in (4) is an embedding
if and only if h is k-very ample.

1.4. The link. We begin to see the link between the Hilbert scheme and the secant
variety since the diagrams (1) and (2) overlap:

Γ(S) = S̃ × S
η=pr12

//

ρ

xxqq
qq
qq
qq
qq
q

pr3

%%▲
▲▲

▲▲
▲▲

▲▲
▲▲

S × S

Hilb2 S Σ(S) ⊆ G(1, n).
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As observed, the action on S × S is the one exchanging the two factors, and

fixes the diagonal ∆S . The induced action on S̃ × S coincides with this one outside
the exceptional divisor, and fixes it pointwise. This implies that the morphism

pr3 : S̃ × S −→ Σ(S) is constant on the orbits of the action, and so we have a
morphism ϕ making the following diagram commute:

Γ(S) = S̃ × S

ρ

xxqq
qq
qq
qq
qq
q

pr3

&&▲
▲▲

▲▲
▲▲

▲▲
▲▲

Hilb2 S
ϕ

// Σ(S).

(5)

We now want to compare this map with the map ϕ1 defined in (4).

Lemma 1.3. Let h be a very ample divisor on the surface S. Then the maps ϕ1

of (4) and ϕ of (5) coincide.

Proof. Since both ϕ1 and ϕ are morphisms, it suffices to show that they agree set-
theoretically on a dense open subset of Hilb2 S. We will consider then the open
subset obtained as the complement to the exceptional divisor of the Hilbert–Chow
morphism ε. This open set parametrises the length 2 subschemes of S supported
on two distinct points.

Use h to embed S in Pn = P(H0(S,OS(h))
∗). Let Z be a 0-dimensional sub-

scheme of S of length 2, defined by the ideal sheaf IZ , whose support consists of

the distinct points P and Q. Consider then (P,Q) ∈ S̃ × S a lift of Z, and observe

that via the identification S̃ × S = Γ(S) this point corresponds to (P,Q, 〈P,Q〉).
As a consequence, pr13(P,Q, 〈P,Q〉) = 〈P,Q〉, and since this expression is clearly
symmetric in P and Q we deduce that

ϕ(Z) = line through Z in P(H0(S,OS(h))
∗)

on this open subset.
We will now show that ϕ1(Z) admits the same description on the open subset we

are considering. Since OS(h) is a very ample line bundle on S, we have the short
exact sequence

0 −→ H0(S, IZ ⊗OS(h)) −→ H0(S,OS(h)) −→ H0(Z,OZ ⊗OS(h)) −→ 0,

whose dual

0 −→ H0(Z,OZ ⊗OS(h))
∗ −→ H0(S,OS(h))

∗ −→ H0(S, IZ ⊗OS(h))
∗ −→ 0

shows that H0(Z,OZ ⊗OS(h))
∗ = AnnH0(S, IZ ⊗OS(h)). But then

ϕ1(Z) = line P(H0(Z,OZ ⊗OS(h))
∗) in P(H0(S,OS(h))

∗) =
= line P(AnnH0(S, IZ ⊗OS(h))) in P(H0(S,OS(h))

∗) =
= line through Z in P(H0(S,OS(h))

∗).

�

Corollary 1.4. Let h be a very ample divisor on the surface S. Then the morphism
ϕ of (5) is an embedding if and only of h is 2-very ample.

Proof. In fact this is true for ϕ1 of (4) by Theorem 1.2. �
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Remark 1.5. Let S be a surface embedded in Pn by means of the very ample
divisor h. The map ϕk−1 defined in (4) associates to any 0-dimensional subscheme
Z of length k of S the point representing the linear subspace of Pn spanned by Z,
i.e., the unique (k − 1)-dimensional linear subspace of Pn containing Z.

Thanks to this geometric description it is now easy to see that if the embedding
of S in Pn is given by a 2-very ample line bundle, then (the image of) S contains
no lines.

Proposition 1.6 ([6, (0.5.1)]). Let S be a surface and h be a very ample divisor
on it. If there exists a divisor l such that l ≃ P1 and degOS(h)|l = 1, then h is not
2-very ample.

Proof. This Proposition is a classical result on k-very ampleness (see, e.g., [8] or [6,
(0.5.1)]), it also follows directly from the geometric description of the map ϕ given
in the proof of Lemma 1.3, as we show now.

Assume by contradiction that h is 2-very ample. In particular, it is very ample
and so embeds S in Pn = P(H0(S,OS(h))

∗) in such a way that l is a line contained
in S. From Lemma 1.3 we deduce that the map ϕ is constant on Hilb2 l ⊆ Hilb2 S,
with value the point of G(1, n) corresponding to the line l, thus contradicting the
fact that ϕ is an embedding. �

Remark 1.7. Assume that S is embedded in Pn by means of a k-very ample
divisor h, with k ≥ 2. This embedding has the property that for any 0-dimensional
subscheme Z of S of length k, the linear subspace spanned by Z intersects S exactly
in Z (a priori, it could have cut on S a subscheme of higher length containing Z).
In particular:

(1) If k ≥ 2, then for any 0-dimensional subscheme Z of S of length 2 the secant
line spanned by Z has no further intersections with S. As a consequence,
a tangent line meets S only in the tangency point, and so we deduce that
for any P ∈ S we have TPS ∩ S = {P}.

(2) If k ≥ 3, then for any pair of distinct 0-dimensional subschemes Z, Z ′ of
S of length 2, the secant lines spanned by Z and Z ′ are either disjoint or
they meet in a point of S. In fact, if they intersect away from S, then
these two lines span a plane which contains a length 4 subscheme of S,
which contradicts the 3-very ampleness of h. As a consequence, each point
in SecS r S belongs to one and exactly one secant line. In particular,
any pair of tangent planes are disjoint, i.e., for P,Q ∈ S we have that
TPS ∩ TQS 6= ∅ if and only if P = Q.

2. The secant variety in the Grassmannian

In this Section we want to present a strategy to determine the degree of the
secant variety of a smooth surface.

Let S be a smooth projective surface, embedded in Pn by means of the very ample
divisor h: call d = h2 the degree of S in Pn. In this Section we assume that n ≥ 5
and that h is 3-very ample: as a consequence we have Hilb2 S ≃ Σ(S) ⊆ G(1, n).
We want to determine the class [Σ(S)] of Σ(S) in the cohomology ring of G(1, n),
so we begin this Section describing the Schubert cycles we are interested in the
Grassmannian.
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As a matter of notation, we will denote by Λk a generic k-dimensional linear
subspace of Pn, and given a subvariety W in a manifold V we denote by [W ] the
class of W in the cohomology ring of V .

Throughout this Section, we refer to [15, §1.5] both for the notation for Schubert
cycles (σa1,...,ak

) and the intersection theoretic properties that we use. In particular,
we recall that the Schubert cycle σa1,...,ak

in Grass(k, n) parametrises all the Λk ⊆
Vn such that

dim(Λk ∩ Ln−k+1−ai
) ≥ i for all i,

where Vn is a complex vector space of dimension n and 0 = L0 ⊆ L1 ⊆ . . . ⊆
Ln−1 ⊆ Ln = Vn is a complete flag in Vn.

2.1. The variety of secant lines in the Grassmannian. The dimension of
Grass(2, n + 1) is 2(n − 1), and the Plücker map embeds it in PN−1 with N =
(

n+1
2

)

= n(n+1)
2 . The Plücker embedding is induced by the linear system associated

to the Schubert cycle σ1,0, which represents (i.e., its points are in bijection with)
all the lines in Pn which meet a fixed Λn−2. This means that

P = ϕ|σ1,0| : G(1, n) −→ P
(n+2)(n−1)

2 , P ∗(H) = σ1,0,

where P is the Plücker embedding and H is a hyperplane in Pn.
There are three Schubert cycles of codimension 4 in G(1, n):

(1) σ4,0, which represents all the lines in Pn meeting a fixed Λn−5;
(2) σ3,1, which represents all the lines in Pn contained in a fixed Λn−1 and

meeting a fixed Λn−4 ⊆ Λn−1;
(3) σ2,2, which represents all the lines in Pn contained in a fixed Λn−2.

There are three Schubert cycles of dimension 4, i.e., of codimension 2(n − 3), in
G(1, n):

(1) σn−1,n−5, which represents all the lines in Pn contained in a fixed Λ5

through a fixed point P ∈ Λ5;
(2) σn−2,n−4, which represents all the lines in Pn contained in a fixed Λ4 and

meeting a fixed line Λ1 ⊆ Λ4;
(3) σn−3,n−3, which represents all the lines in Pn contained in a fixed Λ3.

Remark 2.1. We have then that σn−3,n−3 ≃ G(1, 3), that σn−2,n−4 is isomorphic
to the Schubert cycle σ2,0 ⊆ G(1, 4) and finally that σn−1,n−5 ≃ P4.

These Schubert cycles intersect according to Table 1.

· σ4,0 σ3,1 σ2,2

σn−1,n−5 1 0 0
σn−2,n−4 0 1 0
σn−3,n−3 0 0 1

Table 1. Intersection table of the Schubert cycles of dimension
and of codimension 4 in G(1, n).

Since h is at least 2-very ample on S, we can write

[Σ(S)] = ασn−1,n−5 + βσn−2,n−4 + γσn−3,n−3, (6)
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and we want to compute the coefficients α, β and γ. Thanks to table 1, we have
that

α = [Σ(S)] · σ4,0, β = [Σ(S)] · σ3,1, γ = [Σ(S)] · σ2,2.

By the 2-very-ampleness of h (and Remark 1.7), a line cutting S in 2 points can
not have further intersections with S, and so we can characterize Σ(S) ⊆ G(1, n)
as

Σ(S) = {l ∈ G(1, n) | length(l ∩ S) = 2} . (7)

2.2. Enumerative meaning of the coefficients. In this Subsection we give an
enumerative meaning of the coefficients α, β and γ introduced in (6). We compute
two of them in this Section in terms of numerical properties of the surface, and
compute the last one in Section 5.

We start by determining γ. Since γ = [Σ(S)] · σ2,2, by (7) it coincides with the
number of lines in Pn which are contained in a given Λn−2 and meet S in 2 points.

Now, a generic Λn−2 cuts d = h2 distinct points on S, and so we have at most
(

d
2

)

lines. Since h is at least 2-very ample, no three of those points lie on the same line
(cf. Remark 1.7), hence this gives a proof of the following Lemma.

Lemma 2.2. The value of the coefficient γ in (6) is

γ =
1

2
h2(h2 − 1).

Now we determine β.

Remark 2.3. In this Remark we explain an easy consequence of the Jacobian
criterion for smoothness, which will be used in the proof of Lemma 2.4 and Lemma
3.3. Let S ⊆ Pn be a smooth variety and let H be a smooth hypersurface not
containing S. Let P ∈ S ∩H : choosing a set of (local) equations f1, . . . , fm for S
and an equation f for H which are centred in P , we have that P is singular for
S ∩H if and only if

rk















∂f
∂x0 |P

· · · ∂f
∂xn |P

∂f1
∂x0 |P

· · · ∂f1
∂xn |P

...
. . .

...
∂fm
∂x0 |P

· · · ∂fm
∂xn |P















< n− dim(S ∩H) = n− dimS + 1.

As the submatrix

(

∂fi
∂xj |P

)

1≤i≤m

0≤j≤n

has rank n− dimS since P is a smooth point,

hence the condition that P is singular for S∩H becomes equivalent to TPS ⊆ TPH .
In the following, we will use this observation when S is a smooth non-degenerate
surface and H a is hyperplane.

Since β = [Σ(S)] · σ3,1, by (7) it coincides with the number of lines in Pn which
are contained in a given Λn−1, meet a given Λn−4 ⊆ Λn−1 and cut S in 2 points.

Lemma 2.4. Let S ⊆ Pn be a surface embedded by a 3-very ample divisor h. Let
C = S∩Λn−1 be an irreducible smooth hyperplane section of S. Then the coefficient
β in (6) coincides with the degree of the secant variety of C in Λn−1, and its value
is

β =
1

2
(h2(h2 − 4)− h ·KS).
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Proof. For a generic choice of Λn−1 ⊆ Pn, the curve C = S ∩Λn−1 is an irreducible
and smooth curve of genus

g(C) = 1 +
1

2
h · (KS + h),

where KS is a canonical divisor on S, and its degree in Λn−1 is d = h2.
A line l contained in Λn−1 and meeting S in a length 2 subscheme can be of the

following types:

(1) l is a secant of C;
(2) l is a tangent of C;
(3) l is tangent to S in a point P of C, but l is not the tangent of C at P .

Assume we are in the third case: then Λn−1 contains l and the tangent line TPC to
C at P , since C is smooth. Then Λn−1 contains the linear subspace generated by
these two lines in Λn−1, i.e., TPS, and by Remark 2.3 this implies that C is singular
at P , which is a contradiction. Hence a line l ⊆ Λn−1 meeting S in 2 points is of
the first or second kind. Then l is contained in the secant variety of C in Λn−1.

The secant variety SecC is a threefold contained in Λn−1, and so β can as well be
computed as the degree of SecC in Λn−1: a generic linear subspace of codimension
3 meets this secant variety in a point which is not on C, and such a point uniquely
determines a secant line by the 3-very ampleness of h by Remark 1.7. By [13,
Theorem 4.3] or [1, Theorem 3.5], the degree of the secant variety to a smooth
curve of genus g and degree d is

deg SecC =

(

d− 1

2

)

− g,

which in our case says that

β =
1

2
(h2(h2 − 4)− h ·KS).

�

The proof of Lemma 2.4 can be adapted to show that the coefficient α in (6) is
the degree of the secant variety to S in Pn.

Lemma 2.5. Let S ⊆ Pn be a surface embedded by a 3-very ample divisor h. The
coefficient α in (6) coincides with the degree of the secant variety of S.

Proof. Since α = [Σ(S)] · σ4,0, by (7) it coincides with the number of lines in Pn

which meet a fixed Λn−5 and cut S in 2 points. The secant variety of S is 5-
dimensional, so a generic linear subspace of codimension 5 cuts SecS in deg SecS
distinct points which do not lie on S. By the 3-very ampleness of h and Remark 1.7,
each such point determines uniquely a secant line to S and the Lemma follows. �

The degree of Σ(S) in P
(n+2)(n−1)

2 under the Plücker embedding P can easily be
computed in terms of the coefficients α, β and γ. As the restriction of the hyper-
plane class to the Grassmannian is the Schubert cycle σ1,0, this degree coincides
with

deg(σ4
1,0 · [Σ(S)]).

Using Pieri formula, we can compute that σ4
1,0 = σ4,0 + 3σ3,1 + 2σ2,2, and

deg(σ4
1,0 · [Σ(S)]) = α+ 3β + 2γ. (8)
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To determine the value of α is then the same as to determine the degree of
σ4
1,0 · [Σ(S)].

3. The tangent variety

In the same spirit we defined the secant variety to a surface S embedded in Pn,
we can define the tangent variety to S in the following way. We consider the Gauss
map

T : S −→ G(2, n)
P 7−→ TPS,

and the incidence relation

I ′ = {(x, π) ∈ Pn ×G(2, n) |x ∈ π} ⊆ Pn ×G(2, n).

We denote T (S) = imT ⊆ G(2, n), and then define

TanS = pr1(pr
−1
2 (T (S))) ⊆ Pn.

Observe that we can describe TanS as well as the variety given by the union of all
the (embedded) tangent planes to S:

TanS = {x ∈ Pn |x ∈ TPS for some P ∈ S} .

Remark 3.1. Let S be a surface embedded in Pn by means of the very ample
divisor h. As a consequence of Remark 1.7, we have that if H is 2-very ample then
T is injective.

3.1. The variety of tangent planes in the Grassmannian. Assume from now
on that the embedding of S in Pn is induced by a 2-very ample divisor h. We
want to describe T (S) in terms of the 2-dimensional Schubert cycles of G(2, n) =
Grass(3, n+ 1).

We give a brief description of the Schubert cycles involved. In codimension 1
we have the cycle σ1,0,0, representing the set of all the planes in Pn intersecting a
given Λn−3. The map induced by σ1,0,0 is the Plücker embedding in PN−1 (with

N =
(

n+1
3

)

).
In codimension 2 we have the cycles

(1) σ2,0,0 parametrising all the planes of Pn which intersect a given Λn−4;
(2) σ1,1,0 parametrising all the planes of Pn which intersect a given Λn−2 in (at

least) a line.

Finally, in dimension 2 we have the cycles

(1) σn−2,n−2,n−4 parametrising all the planes of Pn which are contained in a
given Λ4 and contain a given line Λ1 ⊆ Λ4;

(2) σn−2,n−3,n−3 parametrising all the planes of Pn which are contained in a
given Λ3 and pass through a given point P ∈ Λ3.

Remark 3.2. Observe that σn−2,n−2,n−4 is isomorphic to the Schubert cycle
σ2,2,0 ⊆ G(2, 4), and that σn−2,n−3,n−3 ≃ P2.

The intersection table among these cycles is given in table 2.
We can write

[T (S)] = α′σn−2,n−2,n−4 + β′σn−2,n−3,n−3, (9)

and we want now to determine the values of α′ and β′.
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· σ2,0,0 σ1,1,0

σn−2,n−2,n−4 1 0
σn−2,n−3,n−3 0 1

Table 2. Intersection table of the Schubert cycles in G(2, n).

3.2. Enumerative meaning of the coefficients. As we have the description

T (S) = {π ∈ G(2, n) |π is tangent to S} , (10)

we can give an enumerative meaning to the coefficients α′ and β′ in (9).
We start with β′ = [T (S)] · σ1,1,0, which by (10) corresponds to the number of

tangent planes to S intersecting an (n− 2)-dimensional linear subspace in at least
one line.

Let Λn−2 = Λn−1∩Λ′
n−1, and call C = S∩Λn−1 and C′ = S∩Λ′

n−1. For a generic
choice of Λn−1, Λ

′
n−1 we have that C and C′ are smooth curves meeting transversely

in d = h2 distinct points. Let P be one of these points: then the lines TPS ∩ Λn−1

and TPS ∩ Λ′
n−1 are distinct and meet only at P . So TPS ∩ Λn−1 ∩ Λ′

n−1 = {P},
and this means that no line contained in TPS can be contained in Λn−2. As
a consequence, if we have a line contained in TPS ∩ Λn−2, we can assume that
P ∈ S r Λn−2.

Lemma 3.3. The point P ∈ S r Λn−2 is such that TPS ∩ Λn−2 is a line if and
only if there is a curve Γ in the pencil generated by C and C′ which is singular at
P .

Proof. Let P be a point such that TPS ∩ Λn−2 contains a line l. Since P /∈ Λn−2,
there exists a unique hyperplane H in the pencil of hyperplanes through Λn−2

passing through P . Let Γ = S ∩H, then Γ is a curve in the pencil generated by C
and C′, and since l ⊆ H and P ∈ H we deduce that TPS ⊆ H which implies that
Γ is singular at P (see Remark 2.3).

Viceversa, let Γ be a curve in the pencil generated by C and C′ which is sin-
gular at P . Then Γ is the intersection of S with a hyperplane H in the pencil
of hyperplanes through Λn−2, and TPS ⊆ H since Γ is singular at P . But then
TPS∩Λn−2 = TPS∩H∩Λn−1 = TPS∩Λn−1 is a line by the Grassmann formula. �

We can then conclude that

β′ =
∑

C∈Pencil in |h|

#(SingC),

which is a number we can determine.

Lemma 3.4. The value of β′ in (9) is

β′ = χtop(S) + h · (2KS + 3h).

Proof. The surface S is embedded in Pn by means of the 2-very ample divisor h,
hence for a pencil of curves in |h| the generic curve C is smooth of genus 1 + 1

2h ·
(KS + h) and its topological Euler characteristic is

χtop(C) = −h · (KS + h).

The generic singular curve has only one node, and so its topological Euler charac-
teristic is −h · (KS+h)+1. Finally, the base points of the generic pencil are d = h2
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distinct points. We blow up S in these points to find a surface S̃ having a fibration
S̃ −→ P1 induced by the pencil. In this setting β′ corresponds to the number of
singular fibres, i.e., to the degree of the discriminant locus of the fibration: we can
compute this degree by means of topological methods. Denote by F the generic
(smooth) fibre of the fibration, by ∆ ⊆ P1 the discriminant locus and by FSing the
singular fibre over the points of ∆. Choosing the pencil generically, ∆ consists of β′

distinct points and FSing has only one node. Since S̃ is obtained from the surface

S after the blow up of d points, we have that χtop(S̃) = χtop(S) + d. But then:

χtop(S) + d = χtop(S̃) =
= χtop(P

1 r∆) · χtop(F ) + χtop(∆) · χtop(FSing) =
= (2− β′)(−h · (KS + h)) + β′(−h · (KS + h) + 1),

and this allows us to conclude that β′ = χtop(S)+ h2 +2h · (KS + h), which proves
the Lemma. �

Now we focus on α′ = [T (S)]·σ2,0,0. By (10) its value corresponds to the number
of tangent planes to S meeting a given (n − 4)-dimensional linear subspace Λn−4

of Pn. Such a Λn−4 is the intersection of 4 hyperplanes, say Λn−1, Λ
′
n−1, Λ

′′
n−1 and

Λ′′′
n−1: it is not restrictive to assume that each of them cuts S in a smooth curve

and that Λn−4 ∩ S = ∅.

Remark 3.5. Under the assumption that C = S ∩ Λn−1 is smooth, we have that
Λn−1 intersects any tangent space TPS in a line. In fact, by the Grassmann formula
we have dim(Λn−1 ∩ TPS) ≥ 1, and finally that dim(Λn−1 ∩ TPS) = 2 if and only
if TPS ⊆ Λn−1 which happens if and only if C is singular at P (see Remark 2.3).
Moreover, this line is the tangent line to C in P .

Lemma 3.6. Let S ⊆ Pn be a surface embedded by a 3-very ample divisor h. The
number α′ in (9) is the degree of TanS in Pn, and it coincides with the number of
tangent lines to S which intersect a given Λn−4 ⊆ Pn.

Proof. For Q ∈ S, we write lQ = TQS ∩ Λn−1 (and analogously define l′Q and so

on). Let {P} = lQ ∩ l′Q, we have the following possibilities:

(1) P = Q is one of the d points where Λn−1 ∩ Λ′
n−1 meets S.

(2) Q is one of the finite number of points which determine a tangent space
TQS where lQ = l′Q. It is easy to see that this number is finite since each
such Q determines a tangent plane meeting a Λn−2 in at least a line, and
we know that there are at most β′ such planes.

(3) lQ 6= l′Q and P 6= Q. This is the generic situation, and we observe that in
this case the point P determines uniquely three data: the tangent plane it
belongs to (here is where the 3-very ampleness come into play, in view of
Remark 1.7), a tangent line in this tangent plane (the line through P and
Q), and a length 2 non-reduced subscheme of S (obtained as the intersection
of that tangent line with S).

This shows that the intersection of Λn−1 ∩ Λ′
n−1 with TanS is a surface, with

the property that all but a finite number of its points determine uniquely a tangent
plane, a tangent line and a non-reduced length 2 subscheme. When we intersect
again TanS with Λ′′

n−1 and Λ′′′
n−1 we get on this surface a finite number of distinct

points (this number equals the degree the surface in Λn−2) and so the number of
tangent panes to S which intersect a given Λn−4 is the same as the degree of TanS
as well as the number of tangent lines to S which intersect that given Λn−4. �
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3.3. Reduction to the Grassmannian of lines. In this Section we assume that
the divisor h embedding S in Pn is 3-very ample. Lemma 3.6 allows us to compute
the number α′ = [T (S)] ·σ2,0,0 in the Grassmannian G(1, n) rather than in G(2, n).
In fact, the set of lines intersecting a given Λn−4 is described in G(1, n) by the
codimension 3 Schubert cycle σ3,0, while the set of non-reduced subschemes is
the image of the exceptional divisor E of the Hilbert–Chow morphism under the
embedding ϕ : Hilb2 S →֒ G(1, n). Hence, calling X the image of E in G(1, n), we
have

α′ = [X ] · σ3,0. (11)

In the Grassmannian G(1, n) we have the codimension 3 cycles

(1) σ3,0 representing all the lines in Pn meeting a given Λn−4,
(2) σ2,1 representing all the lines in Pn contained in a Λn−1 and meeting a

given Λn−3 ⊆ Λn−1;

and the 3-dimensional cycles

(1) σn−1,n−4 representing all the lines in Pn contained in a given Λ4 and through
a fixed point P ∈ Λ4,

(2) σn−2,n−3 representing all the lines in Pn contained in a given Λ3 and meeting
a fixed line Λ1 ⊆ Λ3.

We can then write

[X ] = α′σn−1,n−4 + β′′σn−2,n−3, (12)

and we observe that the notation α′ in this Section is coherent to the one used in
(9) thanks to Lemma 3.6 and (11).

Lemma 3.7. Let S ⊆ Pn be a surface embedded by a 3-very ample divisor h, and
let C = S ∩Λn−1 be an irreducible smooth hyperplane section of S. The coefficient
β′′ in (12) coincides with the degree of the tangent variety of C in Λn−1, and its
value is

β′′ = h · (KS + 3h).

Proof. Observe that β′′ = X · σ2,1 is the number of tangent lines to S which are
contained in a given Λn−1 and meet a fixed Λn−3 ⊆ Λn−1. Choosing Λn−1 such
that the curve C = S ∩ Λn−1 is smooth, it is easy to see that β′′ is the degree
of the tangent variety to the curve C in Λn−1: as in the proof of Lemma 2.4, the
smoothness of C implies that a tangent line to S contained in Λn−1 must be a
tangent line to S ∩ Λn−1.

By [1, Proposition 3.3], the degree of the tangent variety of a smooth curve
of degree d and genus g in Pn is 2d + 2g − 2: in our case we have d = h2 and
2g − 2 = h · (KS + h), and so we get

β′′ = 2h2 + h · (KS + h).

�

Remark 3.8. We have a linear constraint among α′ and β′′: the Pieri formula
implies that σ3

1,0 = σ3,0 + 2σ2,1, and so we see that [X ] · σ3
1,0 = α′ + 2β′′ is the

degree of X under the embedding induced by P = ϕ|σ1,0|.
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4. Intersection numbers in the Hilbert scheme

In this Section we recall some facts about the intersection theory of Hilb2 S. We
mainly focus on the following situation: given an ample divisor h on a surface S,
we let H be the divisor induced by h on Hilb2 S and E = 2δ the exceptional divisor
of the Hilbert–Chow morphism; we want to compute the intersection numbers H4,
H3δ, H2δ2, Hδ3 and δ4.

To fix the notation, we recall and complete the diagram (2) with the exceptional
divisor of the blow up η:

S̃ × S
η

//

ρ

��

S × S

π

��

Hilb2 S
ε

// S(2),

D
�

� j
//

p

��

S̃ × S

η

��

S �
� i

// S × S
pr1

//

pr2
// S,

where i : S −→ S × S is the diagonal embedding and p : D −→ S is the structure
map of the projective bundle P(NS|S×S) ≃ P(TS) under the isomorphism D ≃
P(NS|S×S). Given an effective divisor h on S we write hi = pr∗i h, so h1 + h2 is
invariant under the action exchanging the two factors. As a consequence there
exists a divisor H on Hilb2 S such that ρ∗H = η∗(h1 + h2); this H is the divisor
induced by h on Hilb2 S.

The map ρ which was defined as a quotient map on S̃ × S can equally be viewed
as the order 2 covering of Hilb2 S branched along the exceptional divisor E of the
Hilbert–Chow morphism and defined by the line bundle OHilb2 S(δ), where δ is a
divisor such that E = 2δ. It follows, e.g., from [3, Lemma I.17.1], that ρ∗E = 2D
and ρ∗δ = D. Moreover, by [14, Example 8.3.12] we have that for every pair of

cycles x and y on Hilb2 S the equality

x · y =
1

2
(ρ∗x · ρ∗y)

holds, and this allows us to determine the intersection numbers we are interested

in as intersection numbers in S̃ × S rather than on Hilb2 S.

The structure of the Chow ring of S̃ × S is related to that of S × S by [14,
Proposition 6.7] for what concerns the additive structure and by [14, Example
8.3.9] for what concerns the multiplicative structure: for every cycle y, y′ on S × S
and x, x′ on D we have

η∗y · η∗y′ = η∗(y · y′),
j∗x · j∗x′ = j∗(c1(ND|S̃×S

) · x · x′),

η∗y · j∗x = j∗((p
∗i∗y) · x).

In our situation, we observe the following:

(1) as i is the diagonal embedding, i∗(h1 + h2) = 2h;
(2) as D ≃ P(TS) is the projective bundle associated to the tangent bundle

TS of S, writing ζ = c1(OD(1)), we have N
D|S̃×S

= OD(−1) and so

c1(ND|S̃×S
) = −ζ satisfies the relation

ζ2 + p∗c1(TS)ζ + p∗c2(TS) = 0.
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As a consequence of this discussion, we can compute the intersection numbers
H4, H3δ, H2δ2, Hδ3 and δ4. Indeed:

H4 = 1
2ρ

∗H4 = 1
2η

∗(h1 + h2)
4 = 1

26h
2
1h

2
2 =

= 3h2h2;

H3δ = 1
2ρ

∗H3ρ∗δ = 1
2η

∗(h1 + h2)
3D = 1

2η
∗(h1 + h2)

3j∗(1D) =
= 1

2j∗p
∗i∗(h1 + h2)

3 = 1
2j∗p

∗(2h)3 =
= 0;

H2δ2 = 1
2ρ

∗H2ρ∗δ2 = 1
2η

∗(h1 + h2)
2D2 = 1

2η
∗(h1 + h2)

2 · j∗(1D)j∗(1D) =
= 1

2η
∗(h1 + h2)

2 · j∗(−ζ) = − 1
2j∗(p

∗i∗(h1 + h2)
2 · ζ) =

= − 1
2j∗(p

∗(2h)2 · ζ) =
= −2h2;

Hδ3 = 1
2η

∗(h1 + h2)D ·D2 = 1
2j∗(p

∗(2h))j∗(−ζ) = j∗(p
∗h · ζ2) =

= −j∗(p
∗h · p∗c1(TS) · ζ) =

= h ·KS ;

δ4 = 1
2 (j∗1D)2 · (j∗1D)2 = 1

2j∗(ζ)j∗(ζ) = − 1
2j∗(ζ

3) =
= 1

2 (χtop(S)−K2
S).

The following result is an easy observation, and it gives a condition to transfer
the ampleness of a divisor h on S to a divisor on Hilb2 S built from the induced
divisor H .

Lemma 4.1 ([9, §2]). Let S be a smooth surface, with a 2-very ample divisor h.

Then the divisor H − δ on Hilb2 S is very ample.

Proof. Since h is 2-very ample we get an embedding

Hilb2 S
�

� ϕ1
//

((P
PP

PP
PP

PP
PP

PP
P Grass(2, H0(S, h)∗)

Plücker

��

PN−1,

where the first arrow is the immersion (4). By [9, §2], the pull-back of the hyper-
plane divisor of PN−1 under the composite embedding is H − δ, which is then a
very ample divisor on Hilb2 S. �

5. The degree of the secant and tangent variety of a surface

In this Section we compute the degree of the secant (resp., the tangent) variety
of a surface S, which is embedded in Pn = P(H0(S,OS(h))

∗) by means of a 3-very
ample divisor h. By Lemma 2.5 this amounts to compute the value of the coefficient
α in (6).

Theorem 5.1. Let S be a surface embedded in Pn = P(H0(S,OS(h))
∗) by means

of a 3-very ample divisor h. The degree of the secant variety to S is

deg SecS =
1

2
(h2h2 − 10h2 − 5h ·KS + χtop(S)−K2

S).
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Proof. To compute the degree of SecS we make use of (8) together with Lemma
2.4 and Lemma 2.2: the embedded variety Σ(S) has degree

deg[Σ(S)] · σ4
1,0 = α+ 3β + 2γ = α+

5

2
h2h2 − 7h2 −

3

2
hKS.

On the other hand, by Lemma 4.1 and the intersection numbers computed in Section
4,

deg σ1,0
4
|Σ(S)

= (H − δ)4 = 3h2h2 − 12h2 − 4hKS +
1

2
(χtop(S)−K2

S),

and so we can now compute the value of α. �

As σ1,0 is the Schubert cycle representing the lines intersecting a codimension 2
linear subspace, from the proof of Theorem 5.1 we deduce the following result.

Corollary 5.2. Let S be a surface embedded in Pn = P(H0(S,OS(h))
∗) by means

of a 3-very ample divisor h.

(1) There are 3h2h2 − 12h2 − 4hKS + 1
2 (χtop(S) − K2

S) lines meeting S in 2
points and four (n− 2)-dimensional linear subspaces in general position.

(2) The degree of Σ(S) under the Plücker embedding of G(1, n) is

3h2h2 − 12h2 − 4hKS +
1

2
(χtop(S)−K2

S).

We focus now on the tangent variety TanS.

Theorem 5.3. Let S be a surface embedded in Pn = P(H0(S,OS(h))
∗) by means

of a 3-very ample divisor h. The degree of the tangent variety to S is

degTanS = 6h2 + 4hKS +K2
S − χtop(S).

Proof. By Lemma 3.6, we only need to compute the value of α′ in (12). By Remark
3.8 and Lemma 3.7 we have that

α′ + 2hKS + 6h2

is the degree of the embedded exceptional divisor E of the Hilbert–Chow morphism
under the natural inclusion (4). As E = 2δ and this embedding is induced by (the
restriction to E of) ϕ|H−δ|, we can compute this degree also as

E · (H − δ)3 = 2δ · (H − δ)3 = 12h2 + 6hKS +K2
S − χtop(S).

Equating these two expressions leads to α′ = 6h2 + 4hKS +K2
S − χtop(S). �

Combining Theorem 5.3 with Lemma 3.4 we have that (9) reads as

[T (S)] = (6h2 + 4hKS +K2
S − χtop(S))σn−2,n−2,n−4+

+ (χtop(S) + h · (2KS + 3h))σn−2,n−3,n−3.

From this expression we easily deduce the following facts.

Corollary 5.4. Let S be a surface embedded in Pn = P(H0(S,OS(h))
∗) by means

of a 3-very ample divisor h.

(1) There are (KS + 3h)2 tangent planes to S which intersect two (n − 3)-
dimensional linear subspaces in general position.

(2) The degree of T (S) under the Plücker embedding of G(2, n) is

(KS + 3h)2.



DEGREE OF TANGENT AND SECANT VARIETY TO SURFACES 17

(3) The degree of E under the Plücker embedding of G(1, n) (i.e., the degree of
the variety parametrising the tangent lines to S) is

12h2 + 6hKS +K2
S − χtop(S).

Proof. Observe that both the number of tangent planes to S which intersect two
(n − 3)-dimensional linear subspaces in general position and the degree of T (S)
under the Plücker embedding of G(2, n) can be computed as

[T (S)] · σ2
1,0,0 = T (S) · (σ2,0,0 + σ1,1,0) =

= (6h2 + 4hKS +K2
S − χtop(S)) + (χtop(S) + h · (2KS + 3h)) =

= 9h2 + 6hKS +K2
S =

= (KS + 3h)2.

Analogously, the degree of E under the Plücker embedding of G(1, n) is given by

[X ] · σ3
1,0 = 12h2 + 6hKS +K2

S − χtop(S).

�

6. Two explicit examples

In this Section we will use Theorem 5.1 and Theorem 5.3 to compute explicitly
the degree of the secant and tangent variety in two concrete examples.

The first one is the one of the K3 surfaces, and was the original motivation for
the paper (see Remark 6.4). We focus mainly on the case of the generic projective
K3 surface, i.e., those having Picard group of rank 1, because in this case we can
link directly the k-very ampleness of the generator of the Picard group with its
self-intersection.

The second one concerns the surfaces Vm obtained as the image of P2 under the
m-th Veronese embedding.

6.1. Embedding of K3’s in Pn. Let S be a K3 surface with PicS = Z ·h, where
h is a very ample divisor on S and h2 = 2t for some t ≥ 2. Then we have an
embedding ϕ|h| : S →֒ Pt+1 = P(H0(S,OS(h))

∗). In this Section we study the the
k-very ampleness of h, and in particular we determine the integer k such that h is
k-very ample but not (k + 1)-very ample.

The main tool is the following result by Knutsen, which improves general results
of Reider (see [19] and [5]) in the case of K3 surfaces.

Theorem 6.1 ([18, Theorem 1.1]). Let L be a nef and big divisor on a K3 surface
and let k ≥ 0 be an integer. Then the following are equivalent:

(i) L is k-very ample;
(ii) L2 ≥ 4k and there is no effective divisor D satisfying







2D2 ≤ LD ≤ D2 + k + 1 ≤ 2k + 2
2D2 = LD ⇐⇒ L ∼ 2D and L2 ≤ 4k + 4
D2 = k + 1 ⇐⇒ L ∼ 2D and L2 = 4k + 4.

(13)

In our situation it is easy to see that the generator h of PicS is very ample for
t ≥ 3 (e.g., by using results in [20]), here we address the question of finding a bound
for its k-very ampleness. As a direct application of Theorem 6.1 we can show that
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h is
[

t
2

]

-very ample, but not
([

t
2

]

+ 1
)

-very ample. Indeed if h is k-very ample,
then by Theorem 6.1 we conclude that

h2 ≥ 4k 2t ≥ 4k  k ≤
t

2
.

So h is not k-very ample for k ≥
[

t
2

]

+1. To show that h is k-very ample for k ≤
[

t
2

]

we only have to show that there is no divisor D = ah, with a > 0, satisfying (13).
In particular, we will show that the inequality 2D2 ≤ 2k + 2 is never satisfied. In
fact, since 2k + 2 ≤ t+ 2, from 2D2 = 4ta2 ≤ 2k + 2 ≤ t+ 2 we deduce that

a2 ≤
t+ 2

4t
=

1

4
+

1

2t
≤

1

4
+

1

4
=

1

2
,

and so that a = 0.
It follows easily from this observation that h is 3-very ample if t ≥ 6. As a

consequence we can state the following version of Theorem 5.1 and Theorem 5.3 for
the generic projective K3 surface. To deduce it, just recall that for a K3 surface S
we have KS = 0 and χtop(S) = 24.

Proposition 6.2. Let S be a K3 surface with an ample divisor h such that PicS =
Z · h and h2 = 2t. Use h to embed S in Pt+1. If t ≥ 6, then

(1) the degree of the secant variety to S is

deg SecS = 2(t− 2)(t− 3);

(2) the degree of the tangent variety to S is

deg TanS = 12(t− 2).

Remark 6.3. If S is a non-generic K3 surface, then PicS has rank greater than
1. In this case, if h is a 3-very ample divisor on S with h2 = 2t, then under the
embedding of S in P(H0(S,OS(h))

∗) provided by ϕ|h| we can compute the degree
of the secant (resp., tangent) variety with the same formulae as in Proposition 6.2.
The only difference is that to prove the 3-very ampleness of h, the condition t ≥ 6
is still necessary but not sufficient, and we need to use the characterization given
by Theorem 6.1.

Remark 6.4. In the paper [10] the authors determine the automorphism group
of the Hilbert scheme of two points on a generic projective K3 surface, showing
that there are at most two automorphisms and giving a characterisation of the
cases when there is a non-trivial automorphism. Up to now there is no geometric
description of this extra automorphism: the present paper was written while trying
to achieve a description, as an automorphism induced by a more natural one defined
on the secant variety of the K3 surface.

6.2. The Veronese embeddings of P2. As a final application, we want to com-
pute the degree of the secant and tangent variety to the (image of the) m-th
Veronese embedding of P2, i.e., of the surface Vm = νm(P2) where

νm = ϕ|O
P2(m)| : P

2 −→ P(
m+2
m )−1.

Before we apply Theorem 5.1 and Theorem 5.3 to this situation, we need to take
a little digression on the expected dimension of the secant variety. The expected
dimension of the secant variety to a smooth projective surface is 5, nevertheless
there exist surfaces whose secant variety has lower dimension. Such surfaces are
called defective, and their classification was a matter of interest for the Italian
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school of algebraic geometry: we mention Palatini, Scorza, Terracini and Severi
who worked on this topic. So we can give a classification for the smooth projective
defective surfaces.

Theorem 6.5 ([16, (5.37), (6.17), (6.18)]). Let S ⊆ Pn be a surface.

(1) If S has degenerate tangent variety, then either S lies in a P3, or else is a
cone or a developable ruled surface.

(2) If S is defective, then either S is a cone, the tangential ruled surface of a
curve in P4, or else S lies in a P5.

(3) In this last case, if moreover the tangent variety is non-degenerate, then
either S lies in P4 or else S is the Veronese surface V2.

Remark 6.6. If we restrict to the case of smooth projective surfaces embedded in
Pn with n ≥ 5, we see easily that the only defective such surface is the Veronese
surface V2. The degree of its secant variety is classically known, see, e.g., [15, p.
179-180], and its value is deg SecV2 = 3.

Remark 6.7. If we consider the Veronese embeddings of Pn, given by νn,m =
ϕ|OPn (m)|, then the problem of determining the dimension of the higher secant

varieties Seck νn,m(Pn) was solved by the Alexander–Hirschowitz Theorem (see [2]):
they all have the expected dimension, except for a finite number of cases where the
dimension lowers.

We consider now the variety Vm, switching from the language of divisors to the
language of line bundles for ease of notation. As it is explained in [7, Lemma 0.3.5],
the tensor product of k very ample line bundles gives rise to a k-very ample line
bundle, and as a consequence we have that OP2(m) is 3-very ample for m ≥ 3
(observe that we are discarding the value m = 2 in view of Remark 6.6). Recalling
that KP2 = OP2(−3) and that χtop(P

2) = 3 we easily deduce the following result.

Proposition 6.8. Let Vn ⊆ P(
m+2
m )−1 be the image of P2 under the m-th Veronese

embedding Vm, with m ≥ 3. Then

deg SecVm =
1

2
(m− 1)(m− 2)(m2 + 3m− 3), degTanVm = 6(m− 1)2.
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