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Abstract
1,1

We study quantitative compactness estimates in W, for the map Sy, t > 0 that as-
sociates to every given initial data ug € Lip(R™) the corresponding solution Siug of a
Hamilton-Jacobi equation

ut—l—H(VIu):O, t>0, zeRY,

with a uniformly convex Hamiltonian H = H(p). We provide upper and lower estimates of
order 1/e™ on the the Kolmogorov e-entropy in W! of the image through the map S; of
sets of bounded, compactly supported initial data. Estimates of this type are inspired by a
question posed by P.D. Lax [18] within the context of conservation laws, and could provide
a measure of the order of “resolution” of a numerical method implemented for this equation.
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1 Introduction

Consider a first-order Hamilton-Jacobi equation
u(t,z) + H(Vyu(t,z)) =0, t>0, zcRY, (1)

where u = u(t, z), Vot = (Ugy, - - -, Uzy ), and H : RY — R is a smooth Hamiltonian. It is well-
known that, because of the nonlinear dependence of the characteristic speeds on the gradient
of the solution, in general classical solutions u(t,z) of the Cauchy problem for (1) develop
singularities of Vyu(t,z) in finite time, no matter how smooth the initial data

u(0,-) = ug (2)

are assumed to be. To cope with this difficulty, M.G. Crandall and P.-L. Lions introduced
in [10] the notion of viscosity solution, a generalized solution of (1), which allows to establish
global existence, uniqueness and stability results for the Cauchy problem (1)-(2), under suitable
assumption on H. We refer to [7] for a review of the concept of viscosity solution and the related
theory for equation of type (1) that has been developed in the last thirty years.
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The Hamiltonian H is required here to satisfy the Standing Assumption:

(H1) H € C*(RY) and is uniformly convex, i.e.

D?’H(p) > a-In  VpeRY,

where « is a positive constant, Iy is the N x N identity matrix, and the inequality is
understood in the sense that D?H (p) — « - Iy is a positive semidefinite matrix.

The assumption (H1) guarantees that, if the initial data ug : RN — R is Lipschitz continuous
and bounded, the Cauchy problem (1)-(2) admits a unique viscosity solution u(t,z) which is
Lipschitz continuous and semiconcave in z with semiconcavity constant 1/(at). This means
that @ — u(t,r) — 1/(2at)|z|? is a concave function. In turn, this fact implies that wu(t,-) is
almost everywhere twice differentiable and that V,u(t, -) has locally bounded variation, i.e. that
the distributional Hessian D2u(t,-) is a symmetric matrix of Radon measures.

Furthermore, one can define a semigroup of viscosity solutions of (1)

{S; : Lip(R") — Lip(RV)},_

that associates to every initial data uy € Lip(RY) the unique viscosity solution Syug := u(t,-)
of the corresponding Cauchy problem (1)-(2). It is not difficult to see that the semigroup
map S; is continuous when it is restricted to subsets of Lip(R") bounded in W taking the
Wllg’i—topology on Lip(R™) (cfr. Proposition 5 in Section 2). Moreover, thanks to the uniform
semiconcavity constant of Sug, for ug € Lip(R”), applying Helly’s compactness theorem and a
Poincaré inequality for BV-functions, one can show that the restriction of S;, t > 0, to such sets
is compact with respect to the Wll(;i—topology. This property reflects the irreversibility feature
of the equation (1) when the Hamiltonian H satisfies the convexity assumption (H1).

The aim of this paper is to provide a quantitative estimate of this regularizing effect of the
semigroup map. Namely, having in mind a question posed by P.D. Lax [18] within the context of
conservation laws, we wish to estimate the Kolmogorov e-entropy in W ! of the image through
the map S; of sets of bounded, compactly supported initial data C C Lip(RY) of the form

Clom) = {uo € Lip(R") | supp(uo) C [~L, L], Lip[ug] < M} (3)

Actually, since the solution of the Cauchy problem for (1) with zero initial data is the function
u(t,z) = —t - H(0), it will be convenient to analyze the Kolmogorov e-entropy in Wh! of the
translated set S¢(C) +t- H(0), with C as in (3). We recall the notion of e-entropy introduced
by A. Kolmogorov [16]:

Definition 1. Let (X,d) be a metric space and let K be a totally bounded subset of X. For
e > 0, let No(K|X) be the minimal number of sets in a cover of K by subsets of X having
diameter no larger than 2. Then the e-entropy of K is defined as

Ho(K|X) = logy N2 (K| X).

Throughout the paper, we will call e-cover a cover of K by subsets of X having diameter no
larger than 2¢.

Entropy numbers play a central role in various areas of information theory and statistics
as well as of ergodic and learning theory. In the present setting, this concept could provide a
measure of the order of “resolution” and of the “complexity” of a numerical scheme, as suggested
in [17]. Roughly speaking, the order of magnitude of the e-entropy should indicate the minimum



number of operations that one should perform in order to obtain an approximate solution with a
precision of order € with respect to the considered topology. In particular, we are concerned here
with the e-entropy of image sets S;(C) endowed with the Wll(;i—topology7 rather than the classical
L°°-topology, having in mind the L!-stability theory and the L'-error estimates established for
approximate solutions of Hamilton-Jacobi equations [19], which turn out to be sharper than the
L ones.

In this paper we provide both upper and lower bounds of order 1/¢¥ on the e-entropy
in Wbt of S,(C) +t- H(0), for sets C as in (3), thus showing that such an e-entropy is of size
~ 1/eN. Without loss of generality, we will assume that the Hamiltonian satisfies further

(H2) VH(0) =0,

otherwise the transformations x — x + tVH(0) and H(p) — H(p) — (VH(0),p) reduce the
general case to this one. Specifically, we prove the following

Theorem 1. Let H : RN — R be a function satisfying the assumptions (H1)-(H2) and {S;}i>0
be the semigroup of viscosity solutions generated by (1) on the domain Lip(RN). Then, given
L, M, T >0, for every € > 0 sufficiently small the following estimates hold:

1
He(St(Cruan) +T - H(O) | WHERN)) STy v oy (4)
with
4N?
FEE,M,N,T} = Wi - <4N- (1 + M+ (1/(aT)+1)- Z[L7M7T])) (5)
lp,mr == L+T- sup |[VH(p)l, (6)

Ip|<M

a being the constant appearing in (H1) and wy denoting the Lebesque measure of the unit ball
of RN, and

_ 1
He (ST(C[L,M]) +T-H(0) | WI’I(RN)) z T N N (7)
with
S o (T ®)
(LNT] 8. 1n2\ 192(N + 1) - |D2H(0)|| - T 4 '

In the one dimensional case (N = 1) the above estimates can be easily obtained recalling
the well-known fact (e.g. see [15]) that u(t,z) is a viscosity solution of (1) if and only if its
space derivative v(t,z) := uy(t,x) is an entropy weak solution of the conservation law

v+ H(v), =0, (9)

and relying on the same type of estimates established in [4, 12] for scalar conservation laws. In
fact, denoting with S, the semigroup map generated by (9), observe that any e-cover in W! for
a translated set S;(C)+t-H (0) of solutions to (1) at time ¢, with initial data in C, provides also an
e-cover in L' for the set S;(C’) of solutions to (9) at time ¢, with initial data in €’ := {u/|u € C}.
Thus, applying [4, Thorem 1.3] one derives the lower bound H.(S;(C) + t - H(0) | Wh) >
He(Si(C) L) > % -2, which is of the same size as the one provided by L1 1in (7). On
the other hand,Ninvoking a Poincaré inequality, one can easily adapt the construction performed
in [12] of an e-cover in L' of S;(C’) to produce an e-cover in W1 of Sy(C)+t- H(0) with the same
number of elements. As a consequence, we derive an upper bound on H(S;(C)+t- H(0) | W)



of the same order as the one established in [12, Thorem 2.2] (cfr. also [4, Remark 1.4]) which,
in turn, is of the same size as the one provided by F[JZ,M,M} : é in (4).

When the space dimension is greater than one we can no more rely on the equivalence be-
tween the theory of Hamilton-Jacobi equations and that of hyperbolic conservation laws. Indeed,
in this case, the gradient of a viscosity solution turns out to be (at least formally) a solution
of a non-strictly hyperbolic system in several space variables, while the available compactness
estimates for systems of conservation laws concern only the class of strictly hyperbolic systems
in one space variable [5, 6]. Neverthless, we shall implement some of the ideas originated in the
works [4, 12] to prove Theorem 1. However, in order to handle the higher dimensional case, one
needs new ideas which exploit specific properties of the viscosity solutions of (1) as well as the
geometrical theory of monotone functions of several variables.

Towards the derivation of the upper bound stated in (i), we observe that for any given
viscosity solution u(t, z), letting D} u denote a generalized space gradient of u (cfr. Definition 3),
the semiconcavity property of u ensures that the map z — Dju(t,z) — -7 is a monotone
decreasing multifunction on RY. Next, relying on a Poincaré inequality, we provide an upper
bound on the e-entropy in L! for a class of monotone decreasing multifunctions with uniformly
bounded total variation, defined on a bounded domain of RV. In turn, such a bound yields
estimate (4) on the e-entropy in Wh! of St(Cira) + T - H(0), again by Poincaré’s inequality.

The lower bounds on H.(S7(Cz,a) +7T - H(0)) are obtained in two steps adopting a similar
strategy as the one pursued in [4].

1. We consider a class SC[gj of semiconcave functions with semiconcavity constant K, defined
on a bounded domain, and we establish a controllability type result for the elements of
such a class, up to a translation by a fixed map. Namely, employing the Hopf-Lax formula
for the viscosity solutions to (1) we prove that, at any given time T > 0, every element of
SCig) — T - H(0) can be obtained as the value u(T),-) of a classical solution of (1), with
initial data in C(y, s}, provided that the semiconcavity constant K is sufficient small. Since
a classical solution must coincide with the unique viscosity solution of the corresponding
Cauchy problem, this proves that SCix) — T - H(0) C S7(Ciznm)-

2. We introduce a one-parameter class of semiconcave functions U, C SCg) defined as
combinations of suitable bump functions and, by a combinatorial argument, we provide
an optimal estimate (w.r.t. parameter n) of the maximum number of functions in U, at
distance < ¢ w.r.t. the Whl-metric. This estimate yields a lower bound on the e-entropy
of U, from which we recover (7) relying on the result of point 1.

The paper is organized as follows. In Section 2, we collect preliminary results and definitions
concerning semiconcave functions and Hamilton-Jacobi equations. In Section 3, after deriving
further properties of the viscosity solutions of Hamilton-Jacobi equations, we provide an upper
bound on the e-entropy in L' for a class of monotone multifunctions. Relying on this result, we
next establish an upper bound on the e-entropy in Wh! for a class of semiconcave functions,
which yields the upper bound stated in Theorem 1-(7). In Section 4, we carry out the analysis
described in the above two steps to obtain the lower bound stated in Theorem 1-(i7).

2 Notation and preliminaries
Let N > 1 be an integer. Throughout the paper we shall denote by:
e |- | the Euclidean norm in RV,

e (-,-) the Euclidean inner product in RV,



[z,y] the segment joining two points x,y € RY,

e B(xzg,r) the open ball of RY with radius 7 > 0 and centered at x(,
e #(S) the number of elements of any finite set S,

e Vol(D) the Lebesgue measure of a measurable set D C R,

aN/2

e wy :=Vol(B(0,1)) = rv7asn) the Lebesgue measure of the unit ball of RN,
e ||A| the usual operator norm of the N x N matrix A,

e Lip(RY) the space of all Lipschitz continuous functions f : RN — R, and by Lip[f] the
Lipschitz seminorm of f,

e supp(u) the support of u € Lip(RY), that is, the closure of {z € RN | u(z) # 0},

e LY(D), with D ¢ R a measurable set, the Lebesgue space of all (equivalence classes of)
summable functions on D, equipped with the usual norm || - HL1( D)

e L>®(D), with D C R" a measurable set, the space of all essentially bounded functions
on D, and by |u[|ge(p) the essential supremum of a function u € L*°(D) (we shall use
the same symbol in case u is vector-valued),

o Wh! (€2), with © a convex domain in RY, the Sobolev space of functions with summable
first order distributional derivatives, and by || - [lw1.1(q) its norm,

) Wé’l(Q), with Q a convex domain in RY, the Sobolev space of functions F € Wh1(Q)
with zero trace on the boundary 052,

e BV(,RY), with Q a domain in RY, the space of all vector-valued functions F : Q — RV
of bounded variation (that is, all ' € L'(Q, RY) such that the first partial derivatives of
F' in the sense of distributions are measures with finite total variation in ).

Moreover |a| := max{z € Z |z < a} denotes the integer part of a.

2.1 Semiconcave and monotone functions in RY and Poincaré inequalities

We collect here some basic definitions and properties of semiconcave and monotone functions
in RY that will be used in the paper. We refer to [9] and [2] for a general introduction to the
respective theories.

Definition 2. A continuous function u : Q — R, with Q C RY, is called semiconcave if there
exists K > 0 such that
u(z + h) +u(z — h) — 2u(x) < K|hl?, (10)

for all z,h € RN such that [x — h,z + h] C Q. When this property holds true, we also say that
u 1s semiconcave in ) with constant K, and call K a semiconcavity constant for u.

- We say that u is semiconvex (with constant —K ) if —u is semiconcave (with constant K ).

- We say that u : Q — R, with Q C RN open, is locally semiconcave (or locally semiconvex)
if u is semiconcave (semiconvex) in every compact set A CC ).



Remark 1. The notion of semiconcavity introduced here is the most commonly used in the
literature. A more general definition of semiconcavity can be found in [9]. It is easy to see that
a function w is semiconcave in € with constant K if any only if the function

K

- Sl @e9)

u(z) = u(x)

is concave. Moreover, any continuously differentiable map u :  — R that has a Lipschitz
continuous gradient Vu with Lipschitz constant K is semiconcave with constant 2K.

Semiconcave functions share some well-know properties of concave functions (see [9, Theo-
rem 2.1.7, Theorem 2.3.1] and [2, Proposition 7.11]) stated in the following

Theorem 2. Let Q C RY open and u : Q — R be locally semiconcave. Then, the following
properties hold true:

(i) w is locally Lipschitz continuous.
(ii) (Alexzandroff’s Theorem) u is almost everywhere twice differentiable.

(iii) The gradient of u, defined almost everywhere in €, belongs to BViee(, RY). Moreover, if
u 18 semiconcave in ) with constant K, then

D*u < K -TyCN (11)
in the sense of symmetric matriz-valued measures.

We shall adopt the notation Du for the distributional gradient of a semiconcave function
u. A notion of generalized gradient that is specially fit to viscosity solutions is recalled in the
following

Definition 3. Let u: Q — R, with Q C RN open. For every x € 0, the sets

D+u(1:) — {p c RN | limsup u(y) — u(ac) — <p7y - $> < 0}’

Yy—T |y - l’|
(12)
D u(z) = {p eRY | limint YY) ZUD ~ Py —2) 0},
e ly — x|
are called, respectively, the superdifferential and the subdifferential of u at x. Moreover,
D*u(x) := {p = klim Vu(zg) | u is differentiable at xj and xp — ;U}, (13)
— 00
is called the set of reachable gradients of u at x.
From definition (12) it follows that there holds
D™ u(x) = —D"(—u)(z) Ve (14)

The superdifferential of a semiconcave function enjoys the properties stated in the following
(see [9, Proposition 3.3.4, Theorem 3.3.6])

Theorem 3. Let Q@ C RY open and u : Q — R be locally semiconcave. Then, the following
properties hold true.

(i) The superdifferential DV u(z) is a compact, convex, nonempty set for all x € Q.



(i) D u is an upper semicontinuous set-valued map, that is, if {x} is a sequence in
converging to x, and if pr, € DY u(xy) converges to a vector p € RN, then p € Dt u(x).

(iii) DT u(z) = co D*u(z) for all x € Q, where co stands for the convexr hull.
(iv) DY u(x) is a singleton if and only if u is differentiable at x.
(v) If DY u(x) is a singleton for every x € Q, then u € C*(Q, R).

Remark 2. Relying on the properties of the generalized gradients one can show that if a
function u : © — R ( Q2 C RY open and convex) is both semiconcave and semiconvex in  then
u € CHL(Q,R) (see [9, Corollary 3.3.8]).

In dealing with the map x — D% u(x) it will be useful to recall the following notions for
set-valued maps.

Definition 4. Let F : RY — 2" pe g multifunction, that is a map that associates with every
point x € RN some set F(z) C RN. We say that F is monotone decreasing if

<’UQ—’U1,.’L'2—$1> <0, Vz ERN,UZ‘ EF(wi),i:1,2. (15)

The set
dom(F) := {z e RN | F(x) # @}

is called the domain of F'. We say that F is univalued on some set A if F(x) consists of at
most one point for every x € A.

As observed in [2] (see Corollary 1.3(3) and Remark 2.3), any monotone decreasing multi-
function F is bounded and almost everywhere univalued in every open set Q@ C RY, which is
relatively compact in the interior of dom(F'). Therefore, we may regard the restriction of F' to
any such open set {2 as an element of L>(2,RY). Actually, in [2, Proposition 5.1], F is shown
to be a function of bounded variation on 2 and the following upper bound on the total variation
of its distributional derivative is provided.

Proposition 1. Let F : RY — 28" be @ monotone decreasing multifunction and Q C RY be an
open set, relatively compact in the interior of dom(F'). Then, the restriction of F to Q (viewed
as an element of L>(,RY)) belongs to BV (Q,RY). Moreover, setting F() := UzeqF (),
there holds Y

IDF|(Q) < 22 N?wy [diam(Q) + diam(F(€))]" (16)

where |DF| is the total variation of the (matriz-valued) Radon measure DF, and
diam(A) := sup {|xe — 21| | z; € A} (ACRY).

We next recall further properties of semiconcave functions and of their superdifferentials
(see [9, Proposition 3.3.10], [2, Corollary 1.4]).

Proposition 2. Let Q C RY be open convex and u : Q — R be semiconcave with constant K .
Then, the following properties hold.

(i) For every x,y € Q, and for any p, € DY u(z), py € DT u(y), there holds
(py = Pory — ) < K|y — 2.

(i) The map x — DVu(z) — K x is a monotone decreasing multifunction.



We conclude this paragraph recalling two Poincaré-type inequalities that will be used in
the paper. The first one is valid for trace-zero W' functions (e.g. see [13, Theorem 3 in
Section 5.6]), while the second one, based on [1, Theorem 3.2] and on [3, Proposition 3.2.1,
Theorem 3.44], is satisfied by BV functions on convex domain.

Theorem 4. (Poincaré inequalities) Let Q C RN be an open, bounded and convex set with
Lipschitz boundary.

(i) Ifue W' (Q), then
/|u|dw< (Vol(Q /|Vu|dx (17)

(i) If u € BV(Q,RYN), then, letting

1
uQ = Vol @) /Qu(:c)dm,

denote the mean value of u over 2, there holds

/ |u — UQ|d{1} <

where |Du| is the total variation of the Radon measure Du.

dlam(

D@ (18)

2.2 Hamilton-Jacobi equation

Consider the Hamilton-Jacobi equation (1) under the assumptions (H1)-(H2). Observe that
the lower bound on the Hessian matrix D?H given in (H1) in particular implies the condition:

(H1) H € C*(R¥) and is a uniformly convex and coercive map, i.e.,

H
m ﬁ = +00
lpl=o0  |p|
Moreover, relying on (H1), we have that
Fmy >0 s.t. sup ||D*H(p)| < 2||D*H(0)]|. (19)
[p|<mo

As we mentioned in the introduction, classical smooth solutions of (1) in general break down
and Lipschitz continuous functions that satisfy (1) almost everywhere together with an initial
condition (2) are not unique. To handle this problem, the following concept of solution was
introduced in [10] (see also [11]) so to guarantee global existence and uniqueness results.

Definition 5. (Viscosity solution) We say that a continuous function u : [0,T] x RN is a
viscosity solution of (1) if:

(1) w is a wviscosity subsolution of (1), i.e., for every point (tg,xzo) €]0,T[ xRN and test
function v € C1((0,+00) x RY) such that u — v has a local mazimum at (ty, ), it holds

ve(to, o) + H (Vyv(to, z0)) <0,



(2) w is a viscosity supersolution of (1), i.c., for every point (tg,xz0) €0, T[xRY and test
function v € C1((0,+00) x RY) such that u — v has a local minimum at (to, ), it holds

ve(to, z0) + H(Vyv(to, z0)) = 0.

In addition, we say that u is a viscosity solution of the Cauchy problem (1)-(2) if condition (2)
1s satisfied in the classical sense.

Remark 3. By the alternative equivalent definition of viscosity solution expressed in terms
of the sub- and superdifferential of the function (see [11]), and because of Theorem 3-(iv),
one immediately see that every C! solution of (1) is also a viscosity solution of (1). On the
other hand, if u is a viscosity solution of (1), then u satisfies the equation at every point of
differentiability. Moreover, by the definition of reachable gradient, it follows that there holds

pr+ H(py) =0 Y (pt,pz) € D*u(t,x), (20)
at any (¢,2) € [0, +oo[xRY.

It is well-known that a viscosity solution u of (1) is locally semiconcave (see, for instance, [9,
Theorem 5.3.8]). Relying on the properties of the semiconcave functions recalled in the previous
section, one can prove further regularity for viscosity solutions which will be useful in the paper.

Proposition 3. Let u : [0,T] x RY be a viscosity solution of (1) and assume that u(t,-) is both
semiconcave and semiconver in RN for all t €]0,T]. Then u is a continuously differentiable
classical solution of (1) on]0,T] x RV,

In other words, smoothness in the pair (¢, z) follows from smoothness in the second variable.
We give a proof for the reader’s convenience.

Proof. Since a viscosity solution is locally semiconcave, relying on property (i) of Theorem 2
and properties (ii), (iv) of Theorem 3 it follows that, in order to show that w is everywhere
continuously differentiable, it is sufficient to prove that the superdifferential DT u(t,z) is a
singleton for all (t,x) €]0, T]xR". In turn, the differentiability of u implies that the equation (1)
is pointwise satisfied in the classical sense by Remark 3. Then, fix (to,z0) €]0,7] x RY and
observe that, by Remark 2, u(tp,-) is differentiable at x( since it is both semiconcave and
semiconvex in RY. Therefore, by property (iv) of Theorem 3, the superdifferential D u(to, zo)
of u(tp, -) at xg is the singleton {V,u(to, z¢)}. On the other hand, invoking a well-known property
of the superdifferential (see, for instance, [9, Lemma 3.3.16]) we deduce that I, D u(tg, xg) =
Diu(tg, zo), where II, denotes the projection of R x RY onto RY defined by II,(t,7) = .
Hence, recalling property (i) of Theorem 3, we get DV u(tg,zo) = [7—,7+] x {Veu(to, o)} for
some 74 € R, with 7 < 74. This implies that (74, Vyu(to, x0)) € D*u(to, zo) by property (iii)
of Theorem 3. So, applying (20), we find 7— + H (Vyu(to, z0))) = 0 = 74 + (Veu(to, o))), which
in turn yields 7_ = 7., showing that DT u(tg, o) is a singleton as desired. O

Further analysis shows that, with the same hypotheses of Proposition 3, the viscosity solutions
of (1) have a locally Lipschitz gradient in (¢, z).

Under assumption (H1)’, the viscosity solution of the Hamilton-Jacobi equation (1) with
initial data u(0,-) = ug € Lip(RY) can be represented as the value function of a classical
problem in calculus of variation, which admits the Hopf-Lax representation formula

U(t,x)—yrgﬂlélv{t H <T )+UO(y)}, t>0, zeRY, (21)



where H* denotes the Legendre transform of H, defined by
H*(q) :== max {p-q— H(p)} g RV, (22)
peRN

The Legendre transform inherits the properties of H (cfr. [9, Appendix A.2]). In particular,
assumption (H1)" implies that H* € C?(RY) and H* is a uniformly convex coercive map, i.e.,

H*
lim (p)
pl=oo [P

= +o0. (23)

Moreover, VH* is a C! diffeomorphisms on RV as VH, and one has

(VH")'(p) = VH(p),  D*H"(p) = (D*H(VH"(p))) vpeRY. (24)

On the other hand, the lower bound bound on the Hessian matrix D?H given in (H1) implies

1
D?’H* < — -1y, (25)
6]

while, by virtue of (H2), we have
H*(0) = —H(0). (26)

The main properties of viscosity solutions defined by the Hopf-Lax formula of interest to
this paper are recalled below (cfr. [9, Section 1.2, Section 6.4}, [13, Section 3.3]).

Proposition 4. Let u be the viscosity solution of (1) on [0, 4o00[ xRN, with initial data ug €
Lip(RY), defined by (21). Then the following holds true.

(i) Punctional identity: for all v € RY and 0 < s < t, it holds

u(t, ) :yrg&, {u(s,y)—i—(t—s)-H*(f:Z)}.

(ii) Differentiability of u and uniqueness: for all x € RN and t > 0, any minimizer
yz of (21) satisfies y» € {x —t-VH(p)|p € D} (u(t,z)}, where Df(u(t,z) denotes the
reachable gradient of u(t,-) at x. Moreover, (21) admits a unique minimizer y, if and
only if u(t,-) is differentiable at x. In this case we have that y, = x —t- VH (Vy(u(t, z)).

(tit) Dynamic programming principle: let t > s > 0, z € RN, assume that y is a
minimizer for (21), and define z = jx + (1 — §)y. Then y is the unique minimizer

over RN of
Z—w

wb—>s-H*<7)+ug(w) (weR"™).

s

By the above observations and because of Proposition 4-(i), the family of nonlinear operators
Sy : Lip(RY) — Lip(RY), ug — Spug, t =0,

defined by
Syuo(x) 1= min,epn {t CH*(5E) + uo(y)} t>0, xRV,
Soup(z) = u(x) r € RN,

enjoy the following properties:

10



(i) for every ug € Lip(RY™), u(t,x) := Spuo(z) provides the unique viscosity solution of the
Cauchy problem (1)-(2);

(ii) (semigroup property)
Stesto = Sy Ssug, V5 >0, Yug € Lip(RY);

(iii) for every constant ¢ € R we have that

St(ug + ¢) = Spup + ¢, Yug € Lip(RY), vt > 0. (28)

It’s a well-known fact that, for every fixed ¢ > 0, the map .S; is continuous with respect to the
topology of uniform convergence on compact sets. We next provide a proof of the continuity of
such a map also in the case where the space Lip(RY) is endowed with the Wllo’i-topology and
Sy is restricted to sets of functions with uniform Lipschitz constant.

Proposition 5. Let u,u” € Lip(RY) (v € N) be such that

Lip[u”] < M Vv, for some M >0, (29)
v . L1/ mpN
uo— in W, .(RY). (30)

Then, for every fixed t > 0, one has

. 1,1
Siu” pavd Siu mn W,

(RN). (31)

Proof. In order to establish the proposition it will be sufficient to show that, for every given
bounded domain Q € RY, and for any fixed ¢ > 0, there holds

S’ — S in WHY(Q). (32)

v—00

Observe that, because of (29), and relying on the a-priori bound on the gradient of the solution
to (1) provided by Lemma 1 in the next section, we have Lip[S;u”] < M for all v. In turn, this
implies |p| < M for all p € D% Sy (), z € RV, and for any v. Thus, invoking Proposition 4-(i1)
we deduce that, for all z € 2 and for any minimizer y” of (21), with «” in place of ug, one has

v e ={z eRY|d(z,Q) <t- sup [VH(p)|} V. (33)
lpl<M
Next, notice that because of (29), (30), letting T € Q be a point such that u(Z) = lim, o u”(Z),

we have L
[u”(z)] <sup|u”’(Z)| + M - diam(Q') < +oo Vae,
v V. (34)

Ju”(x) —u”(y)| < M - |z —y| Va,ye,

Therefore, by a standard argument based on (30) and the Ascoli-Arzela compactness theorem,
we deduce that
14

v/ — w  uniformly on Q. (35)
V—00

Repeating the same reasoning for every bounded domain of RY it follows that u” converges to u
(uniformly on compact sets) on the whole space RV and that Lip[u] < M. Hence, for all 2 €
and for any minimizer y, of (21), with u in place of ug, one has y, € '. In turn, together
with (33) and (35), this fact implies that

y%ig% {t CHY(5Y) + u”(y)} Pavd yrgﬂigv {t CHY () + u(y)} uniformly on €,
(36)

11



which, by virtue of definition (27), yields

Siu”(z) —  Spu(z) uniformly on 2. (37)

vV—r00

As a consequence, we deduce that

S’ — S in L'(Q). (38)
V—00

On the other hand, observe that by Proposition 4-(i7) it follows that Syu”, Syu are differentiable
almost everywhere in 2, and there holds

yy =x—t-VH(VSwu”(z)) Vv,

for a.e. z€Q, (39)
Yz =x —t- VH(VSwu(x)),
where y¥, y, denotes the unique minimizer of (21), with v and w in place of ug, respectively.
Moreover, because of the uniqueness of such minimizers of (21), and by virtue of the conver-
gence (36), (37), we deduce that {y%}, converges to y, for almost every =z € Q. Thus, relying
on (39), and recalling that VH is a diffeomorphism on RY, we infer that

VSiu” (x) Pavd VSu(z) for a.e. z€Q. (40)

On the other hand, these unique minimizers satisfy y% € Q' for all v and for almost every x € ,

so that one has
x —

t

v
T

< sup |VH(p)| Vv, for a.e. €. (41)
lp|<M

Thus, because of (39), (41), we derive a uniform L* bound on VSu”, v € N, over 2, which,
together with (40), implies

VSw” — VSu  in L'Y(Q). (42)
Then, from (38), (42) we recover (32), concluding the proof of the proposition. O

3 Upper estimates

3.1 A-priori bounds on the Hopf-Lax semigroup

Let H : RV — R be a function satisfying the assumptions (H1)-(H2). We collect here some
a-priori bounds on the semiconcavity costant and on the gradient of the solutions to (1) and we
establish an a-priori bound on the size of their support. Namely, given L, M > 0, consider the
set of initial data introduced in (3):

Ciz.an = {uo € Lip(RY) | supp(uo) C [~ L, LN, Liplug] < M}.

The image of C|y, 3s) through the Hopf-Lax semigroup map St defined in (27) enjoy the properties
stated in the following

Lemma 1. For any L, M,T > 0 and for every ug € Ciy, pg), the following properties hold true:

(i) Stug is semiconcave in RN with constant —=;

12



(ii) Lip[Stuo] < M;
]N

(ii) supp(Stuo+T-H(0)) C [~lip 1), lip,mary] » where I vy s the constant defined in (6).

Proof. Under the assumption (H1) and recalling (25), property (i) is well-known (see [9, Corol-
lary 1.6.2]), while Lip[ug] < M and an application of [9, Theorem 1.3.2] implies

|STUO(y)—STu0(CL')| < M|y—l’|, \V/.I,yGRN,

which yields (i7).

Concerning a proof of (iii), by the Lipschitz continuity of Srug it will be sufficient to show
that at every point € RY \=liza1)s Ui, M’T]]N where Stug is differentiable there holds

Srug(x) = —T - H(0). (43)

Indeed, recalling (27) and invoking Proposition 4-(ii), we find that at every such point z one
has
STUO(:L') =T H* (VH(VSTMU(JL'))) + uo(yx) y (44)

where

yy = — T - VH(VSrug(z)) . (45)

Observe now that, relying on the property (ii) above established and recalling (6), we deduce
that y, € RV\[~L, L]V for all z € ]RN\[—Z[L’M,T}, Z[L’M,T]]N. This, in turn, implies

uo(yz) = 0, Vuy(yz) =0, (46)

because supp(ug) C [~L, L] by the definition (3) of the set Cir,m]- Moreover, since by Propo-
sition 4-(i7) y, is a minimum of

(LY
yo T (E22) 2ty
over RV it follows that —VH*(*7#) = Vug(y,). Hence, relying on (45), (46), we deduce that
VH*(VH(VSrug(x))) = VH* (%) —0. (47)
Thus, by virtue of (44), (46), (47), we conclude that VSr(u)(z) = 0 at every point = €

RN N\~ Ui, M7T]]N where Spug is differentiable. This, in turn, by the assumption (H2)
and because of (44), (46), implies that at every such point x there holds

Srug(z) = T - H*(VH(0)) = T - H*(0). (48)

Finally, recalling (26), we recover (43) from (48), thus completing the proof of (7ii). O

Remark 4. Property (iii) of Lemma 1 implies that, for every ug € Ciz s, the domain
supp(Stuo +t-H (0)) where S;ug differs from the constant in space solution with zero initial
data propagates at a finite speed as illustrated in Figure 1 below.
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Stug

TN
4 0 N

—T - H(0)

Figure 1 : evolution of the support of the gradient under St.

Having in mind the a-priori bound established in [12] for the support of solutions to scalar
conservation laws with convex flux, one may wonder whether is it possible to derive a sharper
estimate on the size of such a domain. In fact, if we consider a class of initial data

ClLm,M] = {UO € Lip(RY) | supp(uo) C [~L, L, |Vuo|[1 ey < m, Lip[ug] < M}, (49)

one may look for establishing an estimate as

N
supp(Sruo + T HO))| < (204 sup [D*H )] -4/ " ) (50)

Ip|<M

relying on property (i) of Lemma 1 and property (iii) of Theorem 2. However, a key point in
the proof of an estimate of this type for the support of solutions to scalar conservation laws
is the fact that, for such equations, the L'-norm of the solution is non increasing in time as a
consequence of the L' contractivity of the semigroup map S;. This property continues to hold
for the gradient of solutions to Hamilton-Jacobi equations in one space dimension, but it is no
more true in general when the space dimension is greater than one. In fact in this case, as
observed in the introduction, the gradient of a solution of an Hamilton-Jacobi equation turns
out to be a solution of an hyperbolic system of conservation laws and it is well-known that for
general hyperbolic systems of conservation laws no metric is contractive [20]. As a consequence,
one can easily convince himself that a bound as (50) doesn’t hold for Hamilton-Jacobi equations
in several space variables. This is the main reason for which we limit ourself to analyze in this
paper the image through the Hopf-Lax semigroup S; of sets of initial data of the form (3) and
we don’t consider sets of the form (49).

Given any L, M, K > 0, consider now the class of functions
SCip v K] = {u € Ciz,m |u is semiconcave with semiconcavity constant K }, (51)

where Cjp, 5y denotes the set in (3). Then, applying Lemma 1, we immediately obtain the
following.

Proposition 6. Let H : RN — R be a function satisfying the assumptions (H1)-(H2) and
{S; : Lip(RY) — Lip(R™)}i=0 be the semigroup of viscosity solutions generated by (1). Then,
given any L, M,T > 0, there holds

ST(C[L,M}) +1T- H(O) c SC [l s (52)

1
woanr) M, 2]

where ljz, v s given by (6) and « is the constant in (H1).
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3.2 An upper bound on the c-entropy for semiconcave functions

Towards a derivation of an upper bound on the e-entropy in W for the class of semiconcave
functions introduced in (51), in view of Proposition 2-(i7) we shall first establish an upper bound
on the e-entropy in L' for a class of monotone multifunctions with uniformly bounded total
variation defined on a cube of RY. As observed in Section 2.1, any monotone multifunction is
almost everywhere univalued in the interior of its domain, and can be regarded as a function
of bounded variation on this set. Hence, set Iy, :=] — L, L[, Ip; :=] — M, M|, and consider the
class of monotone multifunction

Fiomc) = {F 1N — 2/ | dom(F) = IY, F is decreasing, |DF|(IV) < 0}, (53)

where |DF| denotes the total variation of the matrix-valued Radon measure DF. With a slight
abuse of notation, we shall regard F7, y7,c] as a subset of L! (I iv i ]\]\/}) consisting of all functions
in LY(IY, I})) that coincide almost everywhere with an element of the set defined in (53).

Proposition 7. Given L, M > 0, for any € > 0 sufficiently small there holds

1
He (J:[L,M,C] | Ll(]f’,lﬁ)) <warem ¥ -
where
N
Yoo = 28O NG (LN 4 peyY, (55)
Proof.

1. Towards a proof of (54), we shall associate to any function F' € Fi1, ), a piecewise constant

function F' € L*® (I i\f I ]\]\/7[) that takes values in a discrete subset of 1 ]\]\f[ and has the property that
every i-th component is (almost everywhere) monotone decreasing in the i-th variable. Namely,
given any fixed n € N, we divide |—L, L[V into n" cubes with sides of length % as follows. For

every multiindex ¢ = (11, ..., tn) € {0, ...,n — 1} we define the cube

1 1
O, = |—L+%op —p+ 27 QL[ X oo X ]L+”V2L, sy
n n n n
so that one has N -
TL = 0, (56)
1€{0,...,n—1}~

where I, = [~L, L], and O, denotes the closure of O,. Then, given any F' € Fiy, ys,¢), for every
ve{0,...,n— 11V, let

— 1

F,i=—-:: F(z)dx (57)

L VO](DL) O,

be the average of F over O,. Observe that F, = (Fbl, ,Ffv) € I since F takes values in 1.

Next, consider the subdivision of [—M, M] into the n intervals
[~M,M] = [-M,-M + 22|y u [-M + 202 ag, 04 20D [0 |- M 4 2, v,

and define the vector F, = (F!,....FN) e I by setting, for each i € {1,..., N},

—M+ (k +

N |—

B )2 Ffe[—M+2k-%,—M+2(k+1)-%[, k<n—2,
F! .= .
M+ (n—-3)-2 it Fe|-M+n-1)-2 M.

n ?

D=
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Then, let FeL® (I iv i ]\]\/;) be the function defined almost everywhere by

F(z):=F if zeO,.€{0,...,n—1}", (59)
with F, = (F!, ..., FN) as in (58). By construction, we have
F(z) € Jarn = {—M+ <k+é)% ’ kzO,...,n—l} VxELLJ 0O, . (60)
We claim that F' enjoys the following two properties:
(i) For every ¢ = (11, ...,tn) € {0,...,n — 1}* there holds
u<n—-1 = F>F.,, (61)

where e; denotes the i-th element of the canonical basis of RYV.

(44)
~ 1
1
||F - FHLl(IJLV,]Z]\\/;) < FY[L,M,C,N] : E (62)
where
1 L N
Yo o = \/N(M(zL) + LC). (63)

In fact, given any ¢ = (t1,...,tn5) € {0,...,n — 1}N and ¢; < n — 1, by definition (57) and since
F' is monotone decreasing we find

Fi—i—ei ~F, = <Fb+ei -

L

By definition (58), (64) implies, in turn, F7 te; S F', thus proving (61). Concerning (62), observe
first that, by definition (57) and relying on the Poincaré inequality for BV functions stated in
Theorem 4, for any ¢ = (1, ...,en) € {0, ...,n — 1} we derive

= LVN
||F — FLHLl(DL,I]\A/D S 7’[’1 . |DF|(DL) (65)
On the other hand, since (58) implies
~ NM
’FL - FL| < \/7 ’
n

it follows that
_ VNM - (2L)N

1 - FLHLl(DL,IAf}’) = nN+1
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Combining the estimates (65), (66), and observing that, by definition (53), F' € Fiz, us,¢) implies
|IDF|(IN) < C, we obtain

1F = Pl iy iy < 32 (1F =Pl g,y + 17 = Fillaa, i)

L

- |DF|(IM) (67)

< VNM - (2L)N N L\T/LN

n

< ‘/va (M(2L)N + Lc),

proving (62).

2. We introduce now a set of piecewise constant functions sharing the properties (60), (61)
of F. Namely, letting Jyr,, be the set in (60), we define

Gn = {G € Lm(liv,Jﬁn) ‘ G is constant on every O, ¢ = (¢1,...,tn) € {0,...,n — 1}V

and L<n—1 — Gf}Gf+ei},

(68)
where G, stands for the value of G on the cube [J,. Observe that for every F' € F, y1,c, letting
F be the map defined in (59), one has F' € G,. Moreover, setting for any given G € G,

1
U(@) = {F e LY. 1) [ 17 = Gllus 4% ey 3 - (69)

(L,M,C,N]  n

with ’y[lL’M’C,N] as in (63), because of (62) we have that F' € Fr p ¢ implies F' € U(F). Hence,
the set
U:={U(G) | Geg,)

provides an L' covering of Firm,c) with sets of diameter 27[1L o % Thus, taking
1
Y
n= {WZCMJ +1, (70)

we deduce that
Ne(Fizarey | LHIY IR ) < Card(Gy). (71)

Observe that, given any fixed 7 € {1, ..., N}, the set of piecewise constant scalar functions

Q,’; = {g e LI, Jarn) ‘ g is constant on every O,, ¢ = (¢1,...,tn) € {0,....,n — 1}
(72)
and zF<n—-1 = g 29*"61}’

defined with the same notations as in (68), is independent of the choice of 7. Thus, we deduce
from (71) that there holds

N (fw o | THIY, JJ{})) < (Card(G1))". (73)
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Next, we define the set
J = {L e {0,..,n—1}"| G;=— },

which collects all the labels of squares O, with boundary intersecting the hyperplane z; = —M.
Consider the set of decreasing n-tuples of elements of the set Jy,, in (60)

n

K= {(ao,al,-..,anl) € ()" | =M+ (n=3) B > a0 > a0 =M+ f}f}
By the definition (72) we deduce that

Card(G!) < (Card(K)) “ ). (74)

Observe that K has the same cardinality as the set of decreasing n-tuples of nonnegative integers
smaller than n—1. By elementary combinatorial arguments it thus follows that, if n > 6, one has
Card(K) < (27?) < 22" (e.g. see [12, proof of Lemma 3.1]). Therefore, since Card(J) = n’V =1,
we derive from (73), (74) the upper bound

Ns (F[L7M,C’} ’ Ll (Ii\f’[]]\\é)) < (22n)(NnN*1) _ 22NnN. (75)

1

Then, for every 0 < € < % "Viz .o

from (75) the estimate

, with ’y[lL,]\/I,C,N] as in (63), taking n as in (70) we recover

7[L,M,C,N]

Ne(Firane | LHIR ) <270, (76)

N . :
where 7y, oy = 2N(2 /Y[IL,]M,C,N]) . In turn, (76) yields (54), completing the proof of the
proposition. O

Relying on Proposition 7 we now establish an upper bound on the e-entropy in Wh! for the
class of semiconcave functions introduced in (51).

Proposition 8. Given L, M, K > 0, let SC|;, p k) be the set defined in (51). Then, for e >0
sufficiently small, there holds

1
1,1 N sc
He (SC[L,M,K] | WHH(R )) < Vpoank N (77)
where
sc N AN
Y3 e =N (AN (14 M+ (K +1)L)) (78)
Proof. Given L, K > 0, let us define the map T : L'(IY) — LYRY), I, :=]—L, L[, that
associates to any f € LY(IY) the function
f(z) + &jz? if  xell,
ﬁd@%z{ ’ o (79)
otherwise,
and then consider the class of concave functions
Clo,mK] = {f e WD) | T f € SC[L,M,K]}- (80)

The definition (80) must be understood in the sense that a function f € Wl’l(l N is an element
of Cp,a,k if there exists f almost everywhere equal to f such that Tk f € SCz a k). Notice
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that, for any g € SCi 1 a), letting g := (f - %] : |2)“£V denote the restriction of f — % .

to I, recalling definitions (3), (51) one has g € WHL(IN) and Txg = g. Thus, Tk is a
surjective isometry from Ciz, ys k] into SCk 1, a1, and hence every given e-covering B = {Ba }a
of Ciie.p ) in WH(IYY) yields an e-covering {7k (Ba)}a of SCii 0 in WH(RY) with the
same cardinality. This implies that

’ 2

He (SC[L,M,K] | Wl’l(RN)) < He (C[L,M,K] | Wl’l(Ig)) : (81)
Therefore, in order to establish (77), it will be sufficient to show

1
He (C[L,M,K] | WMU?)) <7e TN (82)

[L,M,K,N] EN
1. Towards a proof of (82) observe that, for any given f € Ciz k), by definitions (3), (51),
(80), and applying Proposition 2, there is a representative of f, that we still denote f, so that

(i) the map = — f(z) + %|z| is semiconcave in I} with constant K and has zero trace
on 8]2’;

(i3) the superdifferential DT f is a monotone decreasing multifunction in I%;

(7i7) there holds

9 e ayy < M, (53)
where
M, :=M + KVNL. (84)
By Theorem 3-(7i7), in turn (83) yields
diam (DT f(I})) < 2M; . (85)

Then, relying on (i7) and on (85), and invoking Proposition 1, we obtain
|D2F|(I}) < C, (86)

with
: N
Cy = 2%.N(?+2) cwy - (M + (K +1)L)N, (87)

where |D?f| denotes the total variation of the (matrix-valued) distributional derivative D2f.
Therefore, if we consider the class of monotone multifunctions

DCip m.K] = {D+f ‘ S C[L,M,K]}a (88)
recalling definition (53), by (83), (86) we have
DCip,m,x) € FlLam o) (89)
and hence there holds
He (DC[L,M,K] ’ Ll(Iiv,Iﬁl)) < He (]:[L,Ml,(]l] ’ Ll(IivaI%)) ) (90)
with Ips, :=]— My, My[. Thus, relying on Proposition 7, we find
He (DC[L,M,K] | Ll(Iiv,I%)) < Vizan,oq ) ELN (91)
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where 7, is a constant defined as in (55) with M;, Cy given in (84), (87).

L,M{,Cq,N]
2. Relying on (91) and invoking the Poincaré inequality for trace-zero W! functions stated
in Section 2.1, we shall produce now an e-covering of Cz, y k] in WU with a cardinality of or-

N
CLADT YL My 0N

der < 2 N . In fact, observe that by property (i) above, for every fi, fo € Clr,m,K]

one has f1 — fo € W(l)’l(I N). Hence, applying the Poincaré inequality for Wé’l functions stated
in Theorem 4, we get

| fo — f1||W1,1(1£v) < (2L +1)-[|Vfa— vfl"Ll(IiV’Iﬁl) V f1, f2 € Clp K75

so that, for any f1, f2 € C| k], there holds

3

HVf2_Vf1HL1(I£V’II]&1) < m = Hf2_f1||w(1)’1(1£\7) <e. (92)

Next, by virtue of the estimate (91) on the H./ entropy of DC|y, ys k] with g = 3757 there exist
p functions f1, fo,... fp € Ciz, m k], With

p < {Q(W[LaMvalJ\’]'(QL:I)N)J, (93)

so that

p
DCpax € | B(DT iy
[L,M,K] lL:Jl ( (2L—|—1))

where B(D™ f}, ) denotes the L' (I, T ]\1\471 )-ball centered at DT f; = V f; (regarded as an element
of LY(I{Y, I} )). Therefore, by definition (88) and because of (92), we deduce that

p
Cuak) € U B(fie) (94)
=1

where B(f},¢) denotes the WH1(I¥)-ball centered at f;. Hence, observing that by (55), (84),
(87), one has

(2L + 1)V = L4+ )N 20 NG g N ey

’ fY[L,le,C’l,N
< (L4 )N oWHD* U NNV LGN (M 4+ KL)LN + L(M + (K +1)L)N)
N(N+2)

N

< oWHDT NN (14 M+ (K +2)L)

N 4N?
<SwN-(AN-(+ M+ (K+1)L))

(95)
it follows from (93), (94) that there holds (82) with yi?M’K’N] as in (78), thus completing the

proof. O

3.3 Conclusion of the proof of Theorem 1-(i)

Given, L, M, T > 0, combining Proposition 6 and Proposition 8 we find that, for ¢ sufficiently
small, there holds

He(Sr(Crran) + T+ H(©O) | WHRN)) <45

1
Z[LJVI,T]’M’TT’N]

1
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where

4N?
~45¢ = Wi - <4N~ (1—|—M—i—(1/(aT)+1) -l[L,Mﬂ)) : (97)
[Z[L,M,T]vaﬁvN]
with I[z, a1 as in (6). This establishes the upper bound (4). O

4 Lower estimates

4.1 Part 1: Controllability

Towards a proof of Theorem 1-(i7), we shall first show that, at every given time T' > 0, one
can represent the semiconcave functions of the set (51) as the values at time 7" of the Hopf-Lax
solutions to (1) with initial data varying in a set of the form (3) translated by T'- H(0), provided
that the semiconcavity constant is sufficiently small.

Proposition 9. Let H : RN — R be a function satisfying the assumptions (H1)-(H2) and
{S; : Lip(RY) — Lip(R™)}i=0 be the semigroup of viscosity solutions generated by (1). Then,
given any L, M, T > 0, for every m, K > 0 such that

L 1
< mi M K<

where myg is the constant in (19), there holds
SCirs2,m, k) C S(Cp ) + T - H(0), (99)
where SC1/2,m, k], Clr,m) denote sets defined as in (51), (3), respectively.

The proof of Proposition 9 is based on the lemma below, which shows that a solution
of (1) with a semiconvex initial condition preserves the semiconvexity on a given time interval,
provided the semiconvexity constant of the initial data is sufficiently small in absolute value.

Lemma 2. In the same setting of Proposition 9, given M, T > 0, let ug be a semiconver
function with semiconvexity constant —K. Assume that K > 0 satisfies

1
where ay = sup ||D?*H , 100
<o wi= s D) (100)

and Lip[ug] < M. Then, the following hold true.
(1) x> Spug(z) is semiconver for all t € [0,T].
(i1) (t,x) = Spug(x) is a C classical solution of (1) on ]0,T] x RV,
Proof of Proposition 9. We will show that any element 1 of the set on the left-hand side of (99)

can be obtained as the value at time T of a classical solution to (1) by reversing the direction of
time, and constructing a backward solution to (1) that starts at time 7" from . Namely, given

Y € SC1/2,m, K] » (101)

set
wo(x) := —(—x) Ve € RY, (102)
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and consider the viscosity solution S;wp(x) of (1). Because of (101), (102), and by defini-
tions (3), (51), we have wg € Cjy /2,1, Moreover, recalling (6), (19), thanks to (98), (100), and
to the assumption (H2), one has

lpj2mr) < L/2+T- sup |[D*H(p)||-m < L. (103)

Ipl<mo
Hence, applying Lemma 1, we find
Srwo € Lip(RY), Lip[Stwo] < m, (104)
Srwo(z) = -T-H(0) VzeRY¥\[-L LN, (105)

On the other hand, notice that by (19), (51), (98), (101) ¢ is a semiconcave function with
semiconcavity constant K satisfying (100), with m in place of M. Then, it follows from (102)
that wg is semiconvex with semiconvexity constant —K. Thus, applying Lemma 2, we deduce
that Sywo(z) is a C! classical solution of (1) on ]0,7] x RY, continuous on [0,7] x RY, and
with initial data wg. In turn, this implies that the function

w(t, ) := Spwo(z) + T - H(0) (t,z) €[0,T] x RN, (106)
is also a C' classical solution of (1) on ]0,7] x RY continuous on [0, 7] x RY, and that satisfies
w(T,-) € Lip(RY),  Lip[w(T,")] <m, (107)
w(T,z)=0 VazecRV\[-L,LIV. (108)

Next, notice that, by the above observations, the function
u(t,x) == —w(T —t,—x) (109)

is a C' classical solution of (1) on ]0,T[xR¥, continuous on [0,7] x RY. Thus, recalling
Remark 3, we deduce that u(t,z) is a viscosity solution of (1) on [0,7] x R¥, so that, by the
uniqueness property (i) of the semigroup map S;, one has

u(t, z) = Syuo, up == u(0, -) V (t,z) € [0,T] x RY. (110)
Moreover, by virtue of (98), (107), (108), and by definition (3) it follows that
ug = —w(T, —) € Cip - (111)
On the other hand, because of (102), (106), (109), there holds
Stup(x) = —wo(—z) =T - H(0) =¢(z) — T - H(0) VazeRN. (112)
Hence, (111)-(112) together yield
¢ € Sr(Cirm) + T - H(0), (113)
which completes the proof of the proposition, being 1) an arbitrary element satisfying (101). O

Remark 5. The above proof shows that, for any given ¢ € SC(/2 m, K], one actually finds
ug € C|rm) Which is semiconvex with constant —ﬁ so that ¥ = Spug + T - H(0). Indeed,
by (106), (109), (110), one has —ug = Srwo(—-) + T - H(0), which is semiconcave in RY with
constant ﬁ thanks to Lemma 1.
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Proof of Lemma 2. Observe first that, by Lemma 1, the map x — Spup(x) is semiconcave
for any fixed ¢ €]0,7]. Therefore, once we establish the property (i) of Lemma 2, invoking
Proposition 3 we immediately deduce that also the property (i) holds. On the other hand, by
the semiconcavity of Syug, we know that Syug is a continuous map. Hence, in oder to prove the
lemma, we only have to show that, for any fixed t €0, T, the map u(t,z) := Siup(x) satisfies
the lower bound

u(t,z 4+ h) +u(t,z —h) —2u(t,z) > =Ky - |h|> Vo, h e RV, (114)

for some constant Kj; > 0, depending on K and M.

1. Towards a proof of (114), fix 2,h € RV, and let y,jf be a minimizer of the function

“h‘y) tuoly)  (yeRY), (115)

y—t-H* (
where H* denotes the Legendre transform of H. Then, recalling the Hopf-Lax formula (21),
one has
r+h— y}f

u(t,xih)zt-H*( ;

) + uo(y). (116)

Moreover, since yi is a minimizer of (115), by the definition of the subdifferential in (12) it
follows that there will be some

Py € D uo(y;), (117)
such that N
+h-—
VH*<xtyh> = pt. (118)
Since Lip[ug] < M, applying Theorem 3-(ii7) it follows that
pi| < M. (119)
On the other hand, the Hopf-Lax formula implies that
+ —
_ Yntyp + —
u(t,z) < t- H* <:15t2> + U()(yh;yh> (120)

Hence, combining (116), (120), we find

+ j—
_ +
u(t,z + h) +u(t,z — h) — 2u(t,z) > uo(yf{) +uo(y, ) — 2uo <yh2yh>+

_ y +y,
() () ()

(121)
Since H* is convex and ug is semiconvex with constant — K, we obtain from (121) the inequality

+t-

K
u(t,x +h) +u(t,x —h) — 2u(t,x) > —— - ]y,;r —yﬂ2

. (122)

2. In order to recover the estimate (114) from (122) we need to provide an upper bound
on |y;" — y; |?. To this end, observe first that, in view of (118), one has

o I - +_ -
<VH*<x+ht yh)—VH*(x ht y"),—yh tyh>=<p2—p;7, —In = tyh>. (123)
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On the other hand, owing to the semiconvexity of ug and by virtue of (14), (117), we can apply
Proposition 2-(i) to get

_l’_ —
— Y Y K 2
<—P;+Ph7hth><t'|y;—yh| )
which, together with (123), yields
h— vy —h—vy, -y K
<VH*<:E+ t yh>_w{*($ t yh)’_yh tyh><t'|y;_y’;‘2' (124)

Next, observe that there holds

<VH*<w+ht—ylf) _VH*(x—ht—yh>,_y;f;yh> _

N N (125)
1 2h — -y, -y,
:/ <D2H*(ZT)< (yh yh)))_yh Y, >d7',
0 t t
where N
h— —h—vy,
ZT:T-H%—F(I—T)-%, (126)
Now, relying on (24), (118), (119), and assumption (H2), we get
|zr] < sup |(VH*)_1(p)] < sup ||D2H(p)|| M=oy -M Vrelo,1],
lpl<M lp|<M
where s denotes a constant defined as in (100). Hence, one has
! 2\ Y — Y -y — v |
2y Y _Ih h _ . h h
/0 <D H* (2) ( g ) ; >dT > —28y 5 : (127)
where
By = sup ||DEH*(p)]|. (128)

|p|<ans-M

On the other hand, notice that the definition of ays in (100) implies DH?(p) < ayps - Iy for
Ip| < M. Thus, recalling (24), we deduce that, for every ¢ = (VH*)"!(p), with |p| < M, one

has 1
N 1
D*H*(q) = (D*H(p)) > — -1,
an

which, by (118), (119), and because of the definition (126) of z,, implies
1
D*H*(2,) > — Iy v relo1].
oM
Therefore, we find

| 2

1 + - - +_ -
2 rr* Yy YR Y T Y L_|yh_yh
/0 <D H* (2) ; ) ; >d7' > (129)
Combining (125) with the lower bounds (127), (129), one obtains
(28 () )
(130)
Ly — | 1l -y — v |
> . — 28 - .
an 2 P 2



3. The upper bound (124) together with the lower bound (130) yields
_ 1 _
28w - 0] - lyy =y, | > ( —Kt>|yff —y, >
Qapnp
In turn, recalling (100), from the above inequality it follows that

ik =y | <4Bmans - ||

Finally, using this last estimate, it is immediate to deduce (114) from (122), with Ky =
4K 32,02, where oy, Ba are defined in (100) and (128), respectively. This completes the proof
of the lemma. O

4.2 Part 2: Lower compactness estimates on a class of bump functions

We provide here a lower bound on the e-entropy for the class of semiconcave functions SCy, 1/ x|
introduced in (51).

Proposition 10. Given any L, M, K > 0, for every

(KA wy LY 131
0<e<min{K, M} - W ’ (131)
there holds 1
1,1 N SC
He(SC k) | WHRN)) = 85, - N (132)
where
o1 ( Kwy LN )N (133)
[L,K.NT T 8.1n 2 48(N + 1) 2N+1

Proof. The proof is given in three steps. We shall first define a prototype C' bump function
with Lipschitz continuous gradient. Next, we shall consider a class of semiconcave functions
U,, defined as superpositions of such a bump function, localized on the N-dimensional cubes
of a partition of the domain [—L, L]". Finally, we shall derive an optimal lower bound on the
covering number N (U, | WLL(RY)) for a suitable choice of n, which then yields (132).

Step 1: construction of a bump function.
Consider the continuously differentiable function ¢ : [0,1] — R defined by

(D~ G-li—shds it refo.g],
c(r) = (134)
0 if  reli1].

Then, we compute
pr-t i el

0 if  reli1].
Thus, ¢ is Lipschitz continuous with Lipschitz constant 1 and there holds

|d(r)] <r Vrelo,1]. (135)
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Moeover, one has

1 ) 1
llellLee jo,1)) < 6 1 Lo oy < 7 - (136)
We now proceed to construct our bump function b : [~L, L}V — R as follows:

o) — KGLQ c(%) if zeB(0,%) 157
0 if 2zel[-L,LN\B(0,%).

One can check that

_ KL , ‘$| x N —
Vb(r) = =~ ¢ (f) o vee [—L,L)N\0 and  Vb(0)=0. (138)
Thus, because of (136), there holds
KIL? KL
IOl Loe 2.7y = —5¢ IVBllpoe - rovy < <5 (139)

Furthermore, since ¢’ is 1-Lipschitz, observing that

y x| _2ly—a

lyl - J|

Vaz,y#0,

]

and relying on (135), (138), it follows that Vb is Lipschitz continuous with constant K/2 in
[~L, L]N. On the other hand, observing that

Vb(z) =0 Ve |-L, LN\ B(05%), (140)

a straightforward computation shows that

_ KL (1l
IV ras) = 5 fyom (2l
KIN+L NKLN+1U.)N 1 B
= T Lo (e = SR [
KLV Tlwy 2V -1
B 6 2(N 4+ 1)4NV "
Thus, setting
KINtuy 2V -1
B[LvaN] = ’ N (141)
12 (N +1)4
we have
HVbHLl([_L,L}N) = /B[L,K,N]‘ (142)

Now, given any positive integer n € N, let us consider the continuously differentiable function
b [—L L]N — R defined as

n’>n
_ b(nx) AR
bu(a) = =57, Vae -£,£]". (143)
Thus, by (137) one has
ba(z) =0  if  we[-L LN\ B(0,£). (144)



Noting that Vb, (z) = 1 - Vb(nz) for z € [-£, L]V and relying on (139), (142), one can easily
check that

KL 1 /B[LKN]

||vbn||L1([,£7%]N) N+1 HVbHLl[ L,L}N) = nN+1 . (145)

||Vbn||Loo([,%7%}N) S %)

Moreover, since Vb is Lipschitz continuous with constant K /2, we have that Vb, is also Lipschitz
continuous with constant K/2. By Remark 1 this implies that b, and —b, are semiconcave
functions with constant K.

Step 2: a class of semiconcave functions defined as superpositions of bump functions.
For any integer n > 1 let us divide [~L, L]V into n" cubes of side % as in the proof of
Proposition 7. More precisely, we shall use the notation

L.V = |J O, (146)
ve{1,...n} N

where v = (11, ..., tn) € {1,...,n}" is a multiindex and

is an N-dimensional cube centered at z, := (—L,...,—L) + %L. Let us now adapt our bump
function b, in (143) to the cube O, defining

@) bp(z — x,) if x e,
b, (z) =
0 it 2zeRN\O,.

One can easily verify that the continuously differentiable function &% : R™ — R shares the same
properties of b,. In particular, by (144), (145), there holds:

(i) v, (z) =0 for all z € RN\ B(z,, %),

. B
(i) V0 lloomny < 5= and [ VB [lpi@ay = =5,
(iii) b%, and —b, are semiconcave with constant K.

Next, we proceed to construct a class of semiconcave functions in the set SC(z, 1/ 1, defined as
combinations of the bump functions b%,. Namely, consider the set of n™-tuples

A, = {5 = (5L)Le{1,...,n}N | 0, € {_1’ 1}}7

and, for every § = (4,) v € A,,, define the function u; : RV — R by setting

e{l,....n

ug = Z 9,0y, . (147)

Observe that, by properties (i)-(iii) above, every function us has support contained in [~ L, L]V
is semiconcave with semiconcavity constant K, and satisfies ||Vu/|yc@ny < M provided that

KL
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Therefore, recalling definition (51), one has
U, = {u5 |6 € An} C SCix.L.u) (149)
for all such n. Hence, in order to establish (132), it will be sufficient to show that there holds

He (U | WHLRN)) > 85, (150)

for every e sufficiently small and for a suitable choice of n satisfying (148).

Step 3: estimate of the e-entropy for superpositions of bump functions by a combinatorial argu-
ment.

Towards an estimate of the covering number N (U, | WH(RY)), fix § € A, and let us define
the set of n™N-tuples

T;,.() = {0 € An | |V = Vus|pa gy < £} -

Notice that, by construction, the cardinality of the set Igm(s) is independent of the choice
of 6 € A,,. Let us denote it by
Ch(e) = #(Ig’n(s)).

Moreover, any element of an e-cover in Wl of U, contains at most Cp(2¢) functions of U,,.
Hence, since the cardinality of U, is the same as the cardinality of A, which is #(A,) = 2"N,
it follows that the number of sets in an e-cover in Wh1! of U, is at least

on™
L1NYY) > '
N (U | WHLRY)) > 6. (151)
Aiming at an upper bound on C,,(2¢), observe that for any given pair 6,5 € A, one has
95 — Vol oy = A(5-8) 2 Tl (152)
where B -
d(s, ) ;:#({Le (.., n}" | 5L7A5L}). (153)
Thus, relying on (145), (152), we deduce that
~ N+
d(4,6) < € = |Vuz — VU5|}L1(RN) < 2. (154)
B[L,K,N]

Hence, performing a standard combinatorial computation of the number of nV-tuples that differ
for a given number of entries, we find

Ervad
e )N
C < .
W(20) < > ( l ) (155)
=0
Next, observe that if Xi,..., X, ~ are independent random variables with uniform Bernoulli
distribution P(X; = 1) = P(X; = 0) = £, then, for any k < n®, one has
P N
Z( l ):2" -IP’(X1+...+XHN<I<:>. (156)
1=0
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Now, set S, = Xj + ... + X,,~, and recall Hoeffding’s inequality ([14, Theorem 2]) which
guarantees that, for any u > 0,

202
P(S,v —E[S,~] < —p) < exp -~ (157)

where E[S, ~] denotes the expectation of S, ~. Since E[S, ~] = %, taking p = % - { T -€J

PlL.x.
and assuming

B
g DN 158
n 5e (158)

from (155), (156) and (157) it follows that

2
) ( U7l )
C(2¢) <2 exp L’KvNJ
L
2

(159)
2ne >2>
Y exp .
[L,K,N]
In turn, (159) together with (151), yields
LRV nN ne \?
N (thy | WHHRY)) > exp (1— ) (160)
2 /B[L,K,N]
for all n satisfying (158). Now, if we take
6M
0<e< min{ﬁ[L’g’N] : ﬁK[LLvKM } (161)
choosing
B[L K,N]
— X, 1 162
Te { A J + 1, ( )

one easily check that n. satisfies both bounds (148), (158). Hence, relying on (149), (160), we
find the lower bound

A@<SCU£LJH |VVLIGRN))25A@(U% ’URN))

N BgN
son () 5o Sh)

for all e satisfying (161). In turn, this estimate yields (132) for all ¢ satisfying (131), taking
log, of both sides of (163) and observing that, by (133), (141), one has

(163)

N
ﬂ S K(JJNLN+1 1 ﬁ[L,K,N] >IBSC
[LKNL 7 94(N + 1) 2N 8 In2 4 (£, KN
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4.3 Conclusion of the proof of Theorem 1-(ii)

Given, L, M,T > 0, combining Proposition 9 and Proposition 10 we find that, for every

0 <& < mi {M ! L } wy LY (164)
min .
- " 4|[D2H(0)||- T 4|[D2H(0)||-T S (N +1)2N+8°
there holds
1
He(Sr(Crag) +T - H(0) | WH(RY)) > g5 % (165)
’ L 1 N] €
24 DTHOIT
where Vel N
1 LN+
gse _ . ( (;‘jvfi —— ) . (166)
(% ] 82 SN+ 1)2 DHQO)-T
This establishes the lower bound (7). O
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