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While several papers dealing with the kinematic of mechanisms that approximate the well
known Ackermann steering are available, apparently there are no contributions related to
the effect of Ackermann steering on vehicle performance. The current work focuses on the
effect of Ackermann steering and parallel steering on the performance of a racing car, after a
discussion on the different definitions of Ackermann steering ratio available in the literature.
Three scenarios are considered: steady turning, slalom and a circuit lap. Nonlinear optimal
control techniques are employed to assess the maximum performance. A Formula SAE car
model is used and validated against experimental data in acceleration, steady turning and
slalom. Then the same model is employed to investigate the effect of different steering layouts.

Keywords: Ackermann steering; parallel steering; minimum time; race car; optimisation;
optimal control; car dynamics.

1. Introduction

In 1759 Erasmus Darwin proposed a novel carriage steering mechanism based on steering
each wheel rather than the entire front axle – the common practice at the time. This novel
system improves comfort and safety and, due to the larger steering angle of the inner tyre,
promotes a lower tyre scuffing [1, 2]. A few years later, the same idea was proposed in G.
Lankensperger and patented by R. Ackermann in 1818. In 1878 C. Jeantaud proposed a
four-bar linkage mechanism that approximates the Darwin’s (or Ackermann’s) steering
geometry [2–4]. Nowadays different linkages are usually employed, whose characteristics
are often compared against the Ackermann in terms of angle differences, angle ratios,
etc. The Ackermann steering system is discussed in most vehicle dynamics books, see
e.g. [2, 5–8]. It is also well known that the exact Ackermann steering may not be the
ideal steering in many scenarios – indeed it was developed under the assumption of zero
tyre slippage, which is not the case realised unless very low speeds are considered.

There are several contributions in the literature related to mechanisms capable of
approximating the Ackermann steering geometry. In [9] the first analytical design of a
planar Ackermann linkage is devised. The synthesis equations of a four-bar linkage are
combined with the desired steering characteristics of the vehicle through an approxi-
mated relationship. In [10] the effect of the error related to the Ackermann steering
approximation is investigated in relation to the tire wear measured in trucks. More re-
cently, in [11] the optimisation of an Ackermann linkage is carried out, together with the
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Figure 1.: a) Comparison between the different steering kinematic characteristics selected.
FSAE current configuration (solid), Ackermann (dashed) and parallel (dash-dot). b)
Comparison between different Ackermann-ratio definitions.

analysis of different target functions and the related parametric analysis. In [12] a novel
Ackermann steering definition is proposed, with the aim of enhancing the Jeantaud ap-
proximation by including the effect of the steering tie-rod. The cornering performance of
a four-wheel-steering vehicle model with independent front steering system is evaluated
in [13]. At low lateral accelerations an Ackermann steering is deemed optimal, while at
high lateral accelerations the outer wheel steering may need to be increased to enhance
the cornering performance.

The aim of the current work is i) to summarise and compare the most widespread def-
initions of Ackermann steering ratio reported in the literature and ii) to assess the effect
of such ratios on the performance of a race car. An FSAE car model is employed. Such
model is validated against the road tests and then used to asses the performance of the
Ackermann steering, parallel steering and baseline steering configurations. A nonlinear
optimal control approach is employed to assess the maximum performance. Under this
framework, the driver has perfect knowledge of the vehicle, tyre and road characteris-
tics and is thus capable of reaching the physical limits. The nonlinear optimal control
approach to the maximum performance of vehicles has been extensively discussed in the
literature [2, 14–30].

The current work is organised as follows. In Section 2 the different definitions of Acker-
mann steering ratio reported in the literature are summarised and compared. In Section 3
the numerical vehicle and tyre models employed in this study are described and the re-
lated equations are reported. In Section 4 the nonlinear optimal control problem is built.
In Section 5 the validation of the model against the road tests is shown. In Section 6 the
effect of steering on the performance of the race car is investigated.

2. Steering geometry definitions

The terms ‘Ackermann steering’ or ‘Ackermann geometry’ refer to the
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steering system kinematics where the wheel-spin axes of the steerable wheels intersect the
centre of rotation, for non-zero steering-wheel angles at negligible lateral accelerations [...]
A steering system with Ackermann geometry is said to be 100 % Ackermann, and one with
equal steer angles (parallel steer) on the steerable axle is said to be 0 % Ackermann. [31]

A standard and well-known derivation give the following relationship between the inner
δi and outer δo wheel angles in the case of Ackermann steering

1

tan δo
− 1

tan δi
=
T

w
, (1)

where δo is the steering angle of the outer wheel, δi is the steering angle of the inner
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Figure 2.: a) Approximation of the Ackermann steering geometry using a four-bar link-
ages. b) Steering linkage of the FSAE vehicle under investigation.
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Figure 3.: Actual steering vs. Ackermann steering.
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wheel, T is the track width and w is the wheelbase.
The comparison between the steering geometry used in the FSAE simulated car (base-

line steering configuration), the Ackermann steering and the parallel steering is shown
in Fig. 1a. The difference between the inner and outer wheel steering angles δi − δo is
shown at different internal wheel steering angles δi. When δi−δo is negative (which never
happens with the current setup), the geometry is said reverse-Ackermann [5, 7]. There
are a number of different definitions in the literature when it comes to comparing the
actual steering against the Ackermann steering. The most common definitions will now
be concisely reviewed.

In 1878 C. Jeantaud proposed to approximate the Ackermann steering with a four-bar
linkage mechanism that has two rockers pointing towards the middle of the rear axle; see
Fig 2a. Such layout could thus be considered 100 % Ackermann. If the two rockers point
below the middle of the rear axle, the steering is less then 100 % Ackermann, parallel
steering is obtained when the two rockers are parallel, while if the two rockers point
above the middle of the rear axle the steering is more than 100 % Ackermann. Finally,
if the intersection of the two rockers moves in front of the front axle, reverse-Ackermann
steering is obtained, i.e. the steer of the inner wheel is smaller that the steer of the outer
wheel. The distance between the connecting rod and the line between the steering pivots
does not affect the steering geometry for small steer rotations, as long as the inclination
of the two rockers remains constant. Indeed, basic kinematic considerations dictate that
the position of the velocity center of the connecting rod is at the intersection of the
rockers’ axes. The Ackermann steering ratio is sometimes computed as

ντ =
τ

T/2
, (2)

where τ is the distance between the intersection of the rocker axis and the rear axle,
while T is the track width, see Fig. 2a.

In the current industrial practice, the Jeantaud layout is modified by replacing the
connecting rod with two tie rods (CB and EF) that connect the wheel hub to the steer-
ing rack (CDE); see Fig. 2b. As in the case of the four-bar linkage, when the two rods
AB and FG point towards the middle of the rear axle the layout could be considered
100 % Ackermann. The conditions of different Ackermann ratios follow the considerations
reported for the Jeantaud linkage.

A different method for defining the steering geometry relates to the position of the
projection of the velocity centre of the front wheels on the vehicle wheelbase [12]. In this
case the Ackermann ratio is given by

νw =
w

L
, (3)

where L is shown in Fig. 3. If the projection is on the rear axle, the steering system is
100 % Ackermann. If the projection is below the rear axle (L > w) the layout is less
than 100 % Ackermann, if the projection lies at infinity (L =∞) the parallel steering is
obtained (0 % Ackermann).

A net-steer ratio definition is often employed. This is the ratio of the difference between
the inner and outer wheel-steering angles to the difference between the inner and outer
wheel-steering angles of the corresponding Ackermann geometry

νn =
δi − δo
δi,a − δo,a

, (4)
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where δi and δo are the inner and outer wheel-steering angles of the current layout, while
δi,a and δo,a are the inner and outer wheel-steering angles in the corresponding Ackermann
geometry. There are two main widespread options to identify the Ackermann geometry
associated to the current steering geometry. In the first option, the inner wheel-steering
angle is kept fixed and equal to the inner-wheel steering angle of the current layout,
i.e. δi,a = δi, while the outer wheel-steering angle of the Ackermann geometry is readily
computed from (1) as

δo,a = arctan

(
w tan δi,a

w + T tan δi,a

)
. (5)

In the second option, both the inner-wheel and outer-wheel steering angles are changed
by the same quantity t in order to give the Ackermann steering geometry, i.e.

δi,a = δi + t, δo,a = δo − t. (6)

In other words, in this case the Ackermann steering is obtained by applying a toe cor-
rection to the current steering layout. Such correction can be either positive (toe-out) or
negative (toe-in) and is not constant. The latter option is employed e.g. in [32, 33].

Finally, a linearised version of the net-steer ratio (4) is sometime used [12]. In this case
the denominator of (4) is approximated with the following expression which is obtained
from (1)

δi,a − δo,a ≈ δoδi
T

w
≈ δ2

o

T

w
. (7)

Alternatively, the term δ2
o in (7) can be replaced by δ2

i

δi,a − δo,a ≈ δ2
i

T

w
. (8)

or by δ2
m [8]

δi,a − δo,a ≈ δ2
m

T

w
, (9)

where δm = τsδs is the mean steer angle at wheels, with τs the steering ratio and δs the
steering wheel angle. Clearly, δm is nearly identical to δiδo.

The different definitions are compared in Fig. 1b using the current FSAE steering
layout. Application of (2) gives a (constant) Ackermann ratio of 47 % (green solid line
with crosses). All the other definitions are almost coincident and equal to 32 % at very
small wheel-steer angles. Definitions νw (3) and νn (4) with (6) remain very close in the
whole steer range, raising from 32 % to 34 % (dashed violet and solid blue respectively).
Definition νn (4) with (7) increases slightly more, and reaches a final value of 36 %
(dotted yellow). Definition νn (4) with (5) is more sensitive to steer changes and raises
to 40 % at the maximum steering considered (thick solid red). Definition νn (4) with (8)
is decreasing to 29 % at the maximum steering angle, while definition νn (4) with (9) is
almost constant. Finally, when applying a four-bar linkage with the two rockers pointing
towards the middle of the rear axle, ratios in the range 24-33 % are obtained, depending
on the definition selected.
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Summarising, the net-steer definitions should be preferred over the practical ones, such
as those related to the intersection of the rocker axes. The definition (4) with (6) is the
one preferred by the authors.

3. Numerical model

A standard double-track model has been employed for the optimal control problem
(OCP) with the different steering layouts. The roll, pitch and bounce degrees of free-
dom are neglected, together with the suspension travels. Similar models have been used
in [2, 5, 6, 19, 20]. In this formulation different left and right steering angles can be
employed at the front wheels. The main model quantities are depicted in Fig. 4, while
the model parameters are reported in Tab. 1. The dynamic equations are:

max = Fxfl cos δfl + Fxfr cos δfr − Fyfl sin δfl − Fyfr sin δfr +

Fxrl cos δrl + Fxrr cos δrr − Fyrl sin δrl − Fyrr sin δrr − FD, (10)

may = Fxfl sin δfl + Fxfr sin δfr + Fyfl cos δfl + Fyfr cos δfr +

Fxrl sin δrl + Fxrr sin δrr + Fyrl cos δrl + Fyrr cos δrr, (11)

0 = mg + FLf + FLr −Nfl −Nfr −Nrl −Nrr, (12)

mayh =
T

2
(Nfl −Nfr +Nrl −Nrr), (13)

max h = aFLf − bFLr − a(Nfl +Nfr) + b(Nrl +Nrr), (14)

IzΩ̇ =
T

2
(Fxfl cos δfl − Fxfr cos δfr − Fyfl sin δfl + Fyfr sin δfr)−

T

2
(Fxrl cos δrl + Fxrr cos δrr − Fyrl sin δrl − Fyrr sin δrr) +

a (Fxfl sin δfl + Fxfr sin δfr + Fyfl cos δfl + Fyfr cos δfr)−

b (Fxrl sin δrl + Fxrr sin δrr + Fyrl cos δrl + Fyrr cos δrr) , (15)

where the first three equations represent the force balance along the longitudinal, lateral
and vertical direction respectively, while the latter three equations represent the moment
balance around the roll, pitch and yaw axes through the projection of the center of mass
on the ground. In (10) and (14), the longitudinal acceleration is ax = u̇ − Ωv, where u
and v are the longitudinal and lateral velocity of the vehicle respectively (V =

√
u2 + v2

is the total velocity), while Ω is the yaw rate. In (11) and (13), the lateral acceleration
is ay = v̇ + Ωu. The aerodynamic forces consist of the drag force FD and the front FLf
and rear FLr downforces. They are applied on the road plane (see Fig. 4), and are given
by

FD =
1

2
ρaCDAu

2, FLf =
1

2
ρaCLfAu

2, FLr =
1

2
ρaCLrAu

2. (16)

The tyre longitudinal and lateral forces are given by Fxij and Fyij respectively, where
i = f, r (front, rear) and j = l, r (left, right). The tyre forces are computed employing
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Figure 4.: Car model.

the Magic Formula with theoretical slips [34]:

Fx = N
σx
σ
Dx sin{Cx arctan [Bx σ − Ex (Bx σ − arctan(Bx σ))]}, (17)

Fy = N
σy
σ
Dy sin{Cy arctan[By σ − Ey (By σ − arctan(By σ))]}+ SVy, (18)

with

σx =
κ

1 + κ
, σy =

tan(λ)

1 + κ
, σ =

√
σ2
x + σ2

y , (19)

where the theoretical slips σx, σy and σ are computed from the longitudinal and lateral
(practical) slips κ and λ [34]:

λfl = δfl −
v + Ωa

u+ T
2 Ω

, λfr = δfr −
v + Ωa

u− T
2 Ω

, (20)

λrl = δrl −
v − Ωb

u+ T
2 Ω

, λrr = δrr −
v − Ωb

u− T
2 Ω

. (21)
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The steering angles on each wheel δij , where i = f, r (front, rear) and j = l, r (left, right),
can be computed as

δfl = δl − τf , δfr = δr + τf , (22)

δrl = −τr, δrr = τr, (23)

where δl and δr are the left and right wheel-steering angles in a zero-toe configuration,
while τf and τr are the toe angles at the front and rear tyres respectively (positive for
toe-out). The longitudinal slip will be an input to the model. Finally, B, C, D and E are
the Pacejka’s coefficients, which are herein expressed in the simplified form introduced in
[16, 18]. The purpose is to avoid the full Magic Formula formulation, while retaining some
of its key features, namely load dependent friction coefficients, load-dependent position
of the peak of the force vs. slip curves, and load dependent cornering stiffness per unit
load. The coefficients are

Kx = BxCxDx = N pKx1 exp(pKx3 dfz), (24)

Ex = pEx1, (25)

Dx = (pDx1 + pDx2 dfz)λµ,x, (26)

Cx = pCx1, (27)

Bx =
Kx

CxDxN
, (28)

Ky = N0 pKy1 sin

(
2 arctan

N

pKy2N0

)
, (29)

Ey = pEy1, (30)

Dy = (pDy1 + pDy2 dfz)λµ,y, (31)

Cy = pCy1, (32)

By =
Ky

CyDyN
, (33)

SVy = N(pVy3 + pVy4dfz)φλµ,y, (34)

where dfz = (N − N0)/N0, N0 is a reference load and φ is the wheel-camber angle. A
positive camber angle produces negative forces on the right tyres and positive forces on
the left tyres, i.e. the top of the tyres are farther from the vehicle. The dataset of tyre
parameters is given in Tab. 1 and the related characteristics are plotted in Fig. 12. The
tyre normal forces are given by Nij , where again i = f, r and j = l, r (see Fig. 4), and
are computed from the system consisting of (12), (13) and (14), with the roll stiffness
balance

may
h

T
ξ =

Nfl −Nfr

2
, (35)

where ξ = Kφf/(Kφf +Kφr) is the roll stiffness ratio, Kφf is the front-axle roll stiffness,
and Kφr is the rear-axle roll stiffness. The total driving force Fx is split between the
rear and front axle according to the distribution factor kt, under the open-differential
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Figure 5.: Curvilinear coordinates.

assumption:

Fxfl =
(1− kt)Fx

2
, Fxfr =

(1− kt)Fx
2

, (36)

Fxrl =
ktFx

2
, Fxrr =

ktFx
2

. (37)

During acceleration kt = 1 for rear-wheel-drive (RWD) vehicles, kt = 0 for front-wheel-
drive (FWD) vehicles, and 0 < kt < 1 for all-wheel-drive (AWD) vehicles. During braking
the distribution factor is given by

kt =
1

1 + γ
, γ =

Fxfl + Fxfr
Fxrl + Fxrr

, (38)

where γ is the brake ratio, which is here defined as the ratio between the front and rear
longitudinal tyre forces – the switch between the value of kt in acceleration and the value
of kt in braking is implemented through an approximation of a piecewise function, in
order to avoid numerical issues.

The position of the vehicle on the road is described by the absolute motion of the
road-centre-line frame, given by

ṡ =
u cosχ− v sinχ

1− nΘ
, (39)

ṅ = u sinχ+ v cosχ, (40)

χ̇ = Ω−Θ
u cosχ− v sinχ

1− nΘ
, (41)

where s is the curvilinear coordinate of the road centre-line, n is the lateral position of
the vehicle and χ is the angle between the tangent to the centre-line and the vehicle
absolute speed (see Fig. 5).

4. Nonlinear optimal control

A nonlinear optimal control method is employed for simulating the dynamics of the
nonlinear car model and assessing the performance with the different steering layout.
The optimal control problem (OCP) aims to minimise a target function, while satisfying
the state-space equations of the model ẋ = f(x,u), together with a certain number of

9
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equality and inequality constraints. The state and control vectors are defied as:

x = [u, v,Ω, n, χ]T , (42)

u = [δl, δr, Nfl, Nfr, Nrl, Nrr, κfl, κfr, κrl, κrr]
T , (43)

where δl is the steering angle of the left wheel, δr is the steering angle of the right
wheel, Nij and κij are the loads and slips of the four tyres. The state-space equations
of the dynamic system are (10), (11), (15), (39)-(41), while (12), (13) and (14) represent
the problem constraints, together with (35) and (36)-(37). Additional constraints are
included to account for the limited steering angle and steering angle rate

|δ| ≤ δmax, |δ̇| ≤ δ̇max, (44)

for the limited longitudinal slip rate

|κ̇| ≤ κ̇max, (45)

and for the limited engine power

Fxu ≤ Pmax, (46)

where Fx is the total driving force. It is assumed that there is no limit on the maximum
braking force, i.e. the brake system can always provide the necessary braking power.
An additional constraint for the steering angle is included to simulate the fixed steering
geometry:

δl = δl(δr), (47)

i.e. the left steer angle is a function of the right steering angle, e.g. according to the
Ackermann steering, the parallel steering, etc. Finally, the vehicle is constrained to move
within the road borders

−rwl ≤ n ≤ rwr, (48)

where rwl and rwr represent the left and right road limits.
It is well known [2] that the model can be conveniently rewritten in the space domain

x′ =
dx

ds
=

ẋ

ṡ
, (49)

where ṡ is computed from (39).
The target J of the OCP is the manoeuvre time, which can be computed from the

speed along the centre-line as follows

J =

∫
dt =

∫
1

ṡ
ds. (50)

A direct collocation method is employed for the numerical solution of the OCP [14,
35], while automatic differentiation is used to speed-up the computation [36]. The error

10
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Figure 6.: Acceleration: experimental and simulated speed (top) and longitudinal accel-
eration (bottom).

tolerance for the mesh refinement is 10−4, with respect to the scaled state variables; the
error tolerance for the NLP solver is 10−7.

5. Validation

The numerical simulations have been compared against the experimental data in three
manoeuvres: acceleration, skidpad and slalom. The first two tests have been performed
within the 2018 Italian FSAE competition in Varano de’ Melegari (PR), while the slalom
manoeuvre is a benchmark for the autocross and endurance tests. The vehicle is provided
with a Plex VMU-900 IMU for measuring chassis accelerations and angular velocities,
two rotary potentiometers Avio Race Hall AR 006-10 for measuring the steering angle
and the throttle pedal position, four linear potentiometers DIA 9,5-75 mounted on each
spring-damper assembly for measuring the suspension travel and rate, and four wheel-
speed sensors (Texsense M10).

5.1. Acceleration

The acceleration test is performed on a 75 m straight road, where the target is obviously
to reach the finish line in the minimum time. The simulation starts at a speed of 10 km/h,
and reaches the speed of 100 km/h in 64 m. In the experimental data the same speed is
reached in 66 m (Fig. 6). The speed profiles are almost identical, although the gear change
(see acceleration drops at 18 m and 37 m) is not included in the numerical model.

5.2. Skidpad

The skidpad test consists in performing steady turning manoeuvres of given radius, at
the maximum speed. The actual track geometry has an eight-shaped pattern, with an
average curvature radius of 9.1 m and a width of 3.0 m. The driver has to perform two
clockwise turns on the first circle of the eight and two counter-clockwise turns on the
second circle. Since the vehicle numerical model is symmetric with respect to its vertical
plane, only the clockwise turns can be considered – results on the counter-clockwise turns
are clearly identical. In the OCP simulation the car enters the skidpad course and keeps
turning for three turns. Steady-state conditions are reached after one turn. In steady
state conditions the numerical driver has no oscillations on the steer and throttle inputs,
differently from the real driver who is always adjusting the control inputs while trying to
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Figure 7.: Skidpad: experimental and simulated speed (top), lateral acceleration (centre),
steering wheel angle (bottom).

keep the car close to its physical limit. In the road tests the mean speed is 39 km/h, with
a mean lateral acceleration of 1.34 g, a mean steering wheel angle of 62 deg (mean wheel
angle of 10.7 deg); see Figure 7. In the OCP simulation the speed is limited to 39 km/h
(same as the real road test) and the vehicle turns with a lateral acceleration of 1.31 g
and a steering wheel angle of 60 deg (mean wheel angle of 10.3 deg).

The skidpad test is then repeated at speeds between 10 and 15 km/h and the steer-
ing angle vs. lateral acceleration profile is obtained. The slope of this profile (i.e. the
understeer gradient) for lateral accelerations between 0.1 and 0.2 g is 0.943 deg/g.

5.3. Slalom

The slalom course consists of four cones, at a distance of 12.4 m: the target is turning
around the cones in the minimum time. This path emulates sections of the autocross
and endurance FSAE tracks, and represents an important benchmark for assessing the
handling of the car. The experimental manoeuvre is obtained using the speed limiter at
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Figure 8.: Slalom. a) Experimental and simulated speed (top), lateral acceleration (cen-
tre), steering wheel angle (bottom). b) Slalom course.
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49 km/h: the same speed is set as upper bound for the speed in the OCP simulation.
In order to perform a slalom manoeuvre within the minimum time OCP framework, a
S-shaped track is built, in which the corner apexes mimic the position of the cones, see
Figure 8b. Since the OCP aims at moving the vehicle close to the apexes for the best
performance, the width of the track has no effect on the results. A cosine function is
employed to build the S-shaped track. Initial and final straights of 12.5 m are included.
In the measured data, the vehicle travels at 49 km/h, while the lateral acceleration is in
the range ±0.8 g and the steering wheel angle in the range ±28 deg (±4.6 deg at wheels)
see Figure 8. The OCP simulation results are consistent with the experimental data: the
lateral acceleration is in the range ±0.7 g, the steering wheel angle is in the range ±28 deg
(±4.6 deg at wheels).

6. Effect of steering

In this section, the effect of the steering geometry will be analysed employing the ve-
hicle model validated in the previous section. Three different steering strategies will be
considered (baseline, Ackermann and parallel) together with three different manoeuvres
(skidpad, slalom and racetrack). Before starting the analysis, the understeer gradient will
be calculated for each steering configuration through a series of steady-turning manoeu-
vres at different speeds. Toe and camber angles are set to zero, in order to isolate the
effect of steering geometry.

6.1. Steering characteristics

The understeer gradient is obtained from steady-state tests at different speeds. The OCP
simulation is run with the same procedure described for the skidpad, Section 5.2. The
vehicle travels a constant-radius corner (R = 50 m), while the speed spans from 15 km/h
to 100 km/h. The manoeuvre is consistent with the international standard [37].

The understeer gradient, computed as the slope of the steering angle vs. lateral accel-
eration between 0.1 and 0.2 g [38], is 0.021 deg/g for the baseline vehicle, 0.026 deg/g in
case of Ackermann steering geometry and 0.019 deg/g for parallel steering.

The Ackermann steering vehicle is the most understeering, followed by the baseline and
the parallel. However, it can be verified that, as expected, the Ackermann configuration
requires the minimum steering angle at very low speeds.

The understeer gradients may seem quite small. This is because toe and camber angles
are neglected. In the case the toe angle is included, the values raise significantly. With
the baseline vehicle and a 2 deg toe-out at the front, the understeer gradient raises to
2.761 deg/g, while with a 2 deg toe-in at the front, the understeer gradient raises to 0.458
deg/g. Therefore, with the selected dataset, (front) toe-out gives more understeering than
(front) toe-in. In the current model toe angles are not dependent on lateral load transfer
and suspension structural compliance. With 2 deg camber-in at the front wheels the
understeer gradient reduces to -0.047 deg/g, while with 2 deg camber-out the understeer
gradient (slightly) increases to 0.089 deg/g. Therefore, the camber-in configuration is less
understeering than the camber-out. These figures need be compared with 0.021 deg/g,
which is computed in the case of zero toe and zero camber and shows that the effect of toe
is the most significant on the steering characteristic. Finally, in the case toe and camber
of the skidpad configuration are included, the understeer gradients are 1.144 deg/g for
baseline, 1.157 deg/g for Ackermann and 1.138 deg/g for parallel; again, the values get
larger but the ranking of configurations remains the same.
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Figure 9.: Skidpad. a) Speed, lateral acceleration and average steering angle during
steady-turning. b) Track and trajectory.

6.2. Skidpad

The skidpad manoeuvre is now examined to assess the maximum performance of the
different steering configurations. The same course used in Sec. 5.2 is considered.

In Fig. 9a the speed, lateral acceleration and average steer angle at the wheels are
shown during the steady-turning part of the skidpad manoeuvre (for travelled distance
from 120 m, i.e. after one turn of the circle, to 170 m, i.e. before exiting the circle; see
Fig. 9b). The speed is 39.88 km/h for the baseline, 39.89 km/h for Ackermann (fastest)
and 39.87 km/h for parallel (slowest). The corresponding lateral accelerations are 1.317 g,
1.317 g and 1.316 g respectively, while the average steering angles at wheels are 11.68 deg,
12.03 deg and 11.50 deg.

Overall, the effect of the steering geometry is very small on the maximum speed achiev-
able (0.05 %). However, the related steering gradients (R = 9.1 m) are quite different:
-0.117 deg/g for the baseline, -0.041 deg/g for Ackermann and -0.136 deg/g for paral-
lel – all oversteering. It is worth noting that the understeer gradients are all positive
(i.e. understeering behaviour) when computed on a turn with R = 50 m. However, the
understeer ranking of configuration is the same: Ackermann, baseline and parallel.

In conclusion, a slightly larger steady-turning lateral acceleration (in the case of zero
toe and zero camber) is achieved with the Ackermann configuration, which is also the
least oversteering.

However, when toe and camber are included (as for validation), the speed raises to
44.36 km/h in the case of the baseline configuration, to 44.33 km/h in the case of Ack-
ermann and to 44.40 km/h (fastest, by 0.16 %) in the case of parallel steering. The cor-
responding lateral acceleration are 1.662 g, 1.661 g and 1.667 g respectively, while the
average wheel steering angles are 10.6 deg, 11.01 deg and 10.4 deg. Therefore the most
performing configuration is the parallel one.

The different steering configurations are also associated to different tyre drag forces,
because different sideslips are engaged. In the case no toe and no camber are included,
the induced drag forces amount to 88 % of the total longitudinal (propulsive) force, while
differences in the induced drag forces are within 0.15 %. In the case camber and toe are
included, the induced forces raise to 91 % of the total longitudinal force, and differences
in the induced forces are up to 1.5 %. Differences in the total longitudinal forces are
below 1 % when no toe and camber are considered, while they raise to 2-4 % in the case
toe and camber are included.
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Figure 10.: Slalom. a) Speed, lateral acceleration and average steering angle. b) Vehicle
trajectory.

6.3. Slalom

The slalom manoeuvre is performed on the same course used in Sec. 5.3 for the model
validation, see Fig. 10b. The speed is constrained to assume the same values at the
beginning and at the end of the slalom course (cyclic condition). No constraints are
employed for limiting the speed to a constant value.

The maximum lateral acceleration is 1.658 g for the baseline, 1.663 g for Ackermann
(highest) and 1.658 g for the parallel steering configuration. The maximum average wheel-
steering-angle is 4.73 deg for baseline (lowest), 4.74 deg for Ackermann and 4.82 deg for
parallel (highest), see Fig. 10a.

The manoeuvre time is 2.468 s for the baseline (slowest), 2.457 s for Ackermann (fastest)
and 2.461 s for parallel. The maximum difference among the different configurations is
11 ms (0.4%). The Ackermann configuration is again the best, in the case of zero toe and
zero camber.

When including toe and camber (as for validation) the manoeuvre times reduces to
2.130 s for the baseline, 2.130 s for Ackermann and 2.129 s (fastest, although almost iden-
tical to the previous configurations) for the parallel.

Similarly to the skidpad scenario, also in the slalom the different steering configurations
are associated to different tyre drag forces. The maximum induced forces amount to 7 %
when toe and camber are neglected, while they raise to 13 % when toe and camber are
included. These figures are much smaller than those of the skidpad, where much larger
steering angles are involved. The differences in the induced drag forces are in the range
2-4 %.

6.4. Racetrack

The different steering geometries are simulated also on a lap of the Adria Interna-
tional Raceway (Italy), characterised by a total length of 2702 m, and eight turns mainly
paced at speeds below 80 km/h, see Fig. 11. The vehicle travels the track anticlockwise
and reaches a maximum speed of ∼154 km/h at the pit-straight, while the minimum
speed is ∼58 km/h at turn 3. The maximum lateral acceleration is ∼2.1 g at turn 4.
More precisely, the maximum speed (pit-straight) is 154.55 km/h for baseline (fastest),
154.54 km/h for Ackermann, 154.51 km/h for parallel (slowest). The minimum speed
(turn 3) is 58.69 km/h for baseline (fastest), 58.65 km/h for Ackermann, 58.62 km/h
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Figure 11.: Racetrack. a) Speed, lateral acceleration and average steering angle. b) Race-
track and trajectory.

for parallel (slowest). The maximum lateral acceleration (turn 4) is 2.147 g for baseline
(highest), 2.146 g for Ackermann, 2.124 g for parallel (lowest). The lap-time is 82.853 s for
baseline (slowest), 82.827 s for Ackermann, 82.827 s for parallel. The maximum difference
among the different configurations is 26 ms (0.03%). The mean difference of the lateral
positions on the road (variable n in Fig. 5) of the Ackermann and parallel configurations
with respect to the baseline are 0.040 m and 0.070 m respectively.

When the toe and camber are included (as for the slalom validation). the lap time
reduces to 79.173 s (slowest) for the baseline, 78.844 s (fastest) for Ackermann and 78.891 s
for parallel. The lap time difference in this case raises to 329 ms (0.4 %), which is much
larger than the difference obtained in the case the sole steering configuration is changed.
The mean difference of the lateral positions on the road (variable n in Fig. 5) of the
Ackermann and parallel configurations with respect to the baseline configuration are
around 0.5 m in both cases, again an order of magnitude larger than the differences
observed when varying the steering configuration only.

Finally, the maximum induced forces amount to 4 % of the total longitudinal propulsive
force when toe and camber are neglected, while they raise to 10 % when toe and camber
are included. Again, these figures are much smaller than those of the skidpad, where
much larger steering angles are involved. The differences in the maximum induced drag
forces are in the range 1-3 %.

7. Remarks

The analysis in sections 6 showed that the effect of the steering configuration is signifi-
cantly smaller than the effect of toe and camber. The toe is the most influential parameter
when it comes to performance of the vehicle under investigation. Indeed the magnitude
of the toe angle employed (around 2 deg) is comparable with the typical average wheel
steering angle during a lap of the selected racetrack, more than one-half of the wheel
steering angle employed during the slalom and about one-fourth of the steering angle
employed during the skidpad.
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8. Conclusions

The work reviewed the different definitions of Ackermann steering ratio and investigated
the effect of the steering geometry on the performance of a race car. The model of a
Formula SAE car has been built and validated against experimental data. The effect of
the baseline geometry, a pure Ackermann geometry and a parallel steering geometry has
been assessed in skidpad, slalom and a lap of the Adria International Raceway, employing
nonlinear optimal control techniques. It has been found that the effect of the Ackermann
ratio on the maximum performance is small, at least when compared with the effect of
toe, whose magnitude can be comparable with the wheel steering angle on a racetrack.
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Figure 12.: Longitudinal force Fx and lateral force Fy as a function of longitudinal slip
κ and sideslip λ at zero camber: pure slip condition at different normal loads (a) and
combined slip condition at 500 N (b). Tyre parameters are given in Tab. 1.
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Table 1.: Baseline car parameters and tyre coefficient.

Symbol Description Value

g gravity 9.81 m/s2

ρa air density 1.20 kg/m3

m mass 280 kg
h height of CoM 0.315 m
w wheelbase 1.535 m
a CoM from front axle 0.767 m
b CoM from rear axle 0.768 m
ξ roll stiffness ratio 0.489
Iz yaw inertia 109 kgm2

Tf front track 1.220 m
Tr rear track 1.190 m
T (Tf + Tr)/2 1.205 m
CDA drag area coefficient 1.38 m2

CLfA front lift area coefficient 0.89 m2

CLrA rear lift area coefficient 1.33 m2

Pmax maximum power 66.3 kW

pCx1 Longitudinal shape factor 2.31
pDx1 Max longitudinal friction coefficient -1.20
pDx2 Max longitudinal friction coefficient 0.71
pEx1 Longitudinal curvature factor 1.00
pKx1 Max longitudinal stiffness coefficient 39.06
pKx2 Max longitudinal stiffness coefficient -0.32
pKx3 Max longitudinal stiffness coefficient -0.23
λµ,x Longitudinal friction scaling factor 1.00
pCy1 Lateral shape facto 1.86
pDy1 Max lateral friction coefficient -2.48
pDy2 Max lateral friction coefficient 0.06
pEy1 Lateral curvature factor 0.93
pKy1 Max cornering stiffness coefficient 53.91
pKy2 Max cornering stiffness coefficient 2.57
pKy3 Max cornering stiffness coefficient 3.95
pVy3 Variation of shift with camber -3.01
pVy4 Variation of shift with camber and load -1.51
λµ,y Lateral friction scaling factor 0.61
N0 reference normal load (for df = 0 N) 809 N

Acceleration
τf toe angle at the front wheels (toe-in) -0.5 deg
τr toe angle at the rear wheels (toe-in) -0.5 deg
φf camber angle at the front wheels (camber-in) -3.0 deg
φr camber angle at the rear wheels (camber-out) 0.5 deg

Skidpad
τf toe angle at the front wheels (toe-out) 2.0 deg
τr toe angle at the rear wheels (toe-in) -0.5 deg
φf camber angle at the front wheels (camber-in) -3.0 deg
φr camber angle at the rear wheels (camber-in) -1.5 deg

Slalom
τf toe angle at the front wheels (toe-out) 2.8 deg
τr toe angle at the rear wheels (toe-in) -0.5 deg
φf camber angle at the front wheels (camber-in) -1.5 deg
φr camber angle at the rear wheels 0.0 deg
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