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1. Introduction

Small sample sizes are rather common to researchers in fields such as biology, genetics,
medical sciences and psychology. Inference based on the classical first order Normal
and χ2 approximations may then be unreliable. The last four decades have seen the
development of so-called higher order likelihood approximations, which require little more
effort than is needed for their first order counterparts while providing highly accurate
inferences in small samples. We refer the reader to [1] for a rich collection of realistic
examples and case studies, which show how to use the new theory. The aim of this paper
is to encourage the use of these modern likelihood-based solutions for the analysis of
bivariate normally distributed continuous data when interest focuses on the maximum (or
minimum) value of correlated observations. Indeed, a great variety of studies, especially
in the medical area, are based on the analysis of extreme observations. For instance,
the extremes coming from the left and right sides of the body are commonplace in
comparative studies; see [2] for an illustration about the visual acuity of fellow eyes, or
[3], [4] and reference therein, for other typical cases.

We set off from a theoretical result — due to [5] and later re-discovered by [6] —
which states that the maximum, or minimum, of two random variables, whose joint dis-
tribution is bivariate exchangeable normal with correlation coefficient ρ, is skew-normally
distributed with skewness parameter γ, or −γ, where γ =

√
(1− ρ)/(1 + ρ). Recently,

[7], borrowing from Loperfido (2002) and Fisher’s z transform for ρ, obtained an asymp-
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totic confidence interval for the skewness parameter of the distribution of the max-
imum/minimum under this framework. Their simulations revealed that the proposed
asymptotic confidence interval has similar actual and nominal coverages, though its ex-
pected length increases for decreasing sample size and correlation coefficient close to −1.
In this paper we explore the performance of confidence intervals for γ obtained from the
small-sample solutions recently proposed in [8], and this in terms of both actual coverage
and expected length.

The paper organizes as follows. Section 2 reviews modern likelihood-based inference.
The skew-Normal distribution and Loperfido’s results will be introduced in Section 3.
Inference on γ will be discussed in Section 4. Section 5 analyzes the twin data collected
by [9] and the data set presented by [10] using the large- and small-sample solutions
of Section 4. The finite-sample properties of confidence intervals will be investigated in
Section 6 through simulation. Some concluding remarks are given in Section 7.

2. Likelihood-based inference

2.1. First order theory

Let y = (y1, . . . , yn) be a sample of size n with joint log-likelihood function l(θ) = l(θ; y),
where θ = (ψ, λ) is a k -dimensional parameter, ψ is the scalar parameter of interest, and
λ a vector of nuisance parameters of dimension k−1. Under broad regularity conditions,
the maximum likelihood estimate of θ, denoted by θ̂, may be obtained by solving the score
equation lθ(θ̂; y) = 0, with lθ(θ; y) = ∂l(θ; y)/∂θ. Let j(θ) = ∂2l(θ; y)/∂θ∂θ> represent

the observed information function for θ and j(θ̂) the observed Fisher information. Here >
denotes matrix transposition. The decomposition of the parameter θ into ψ and λ leads
to an analogous decomposition of the score vector lθ(θ; y) and of the observed information
function j(θ).

The recommended likelihood pivot for making inference on ψ is the signed likelihood
root

r(ψ) = sign(ψ̂ − ψ)

√
2{lp(ψ̂)− lp(ψ)}. (1)

Here lp(ψ) = l(θ̂ψ), with θ̂ψ = (ψ, λ̂ψ), is the profile log-likelihood, while λ̂ψ represents
the constrained maximum likelihood estimate obtained by maximizing the log-likelihood
l(ψ, λ) with respect to λ holding ψ fixed. The signed likelihood root (1) is asymptotically
standard Normal up to the order n−1/2, which leads to the first order (1 − α)100%
confidence interval for ψ

{
ψ : |r(ψ)| ≤ z1−α/2

}
, (2)

where zp, with p ∈ (0, 1), is the pth quantile of the standard normal distribution. The
standard normal approximation provides a satisfactory approximation for large sample
sizes, but can be highly unreliable for small values of n. The value of ψ which satisfies
equation (2) can be found numerically by calculating the function r(ψ) on a grid of points
ψ, which are then interpolated using a suitable smoothing function. The numerical issues,
which may arise in the interpolation step, can be avoided by excluding the values of ψ
close to the maximum likelihood estimate ψ̂. The details are given in [1, Section 9.3].
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2.2. Higher order theory

A nowadays broadly known improvement to the signed likelihood root (1), which was
originally introduced by Barndorff-Nielsen (1983), is the modified likelihood ratio

r∗ = r +
1

r
log
(q
r

)
, (3)

whose finite-sample distribution may be approximated by the standard Normal up to the
order n−3/2. The higher order (1− α)100% confidence interval for ψ is hence given by

{
ψ : |r∗(ψ)| ≤ z1−α/2

}
. (4)

Again, pivot profiling [1, Section 9.3] can be used to identify the upper and lower bounds
of the confidence interval. Furthermore, the r∗ pivot — like its first order counterpart r
— is invariant under interest-respecting re-parametrizations, that is re-parametrizations
of the form τ(θ) = τ(ψ, λ) = (ζ, η) with ζ = ζ(ψ) and η = η(ψ, λ).

Several expressions for the correction term q have been proposed, both from the fre-
quentist and the Bayesian perspective. Here, we will focus on the developments by [12].
Their formula for q is based upon the notion of “tangent exponential model” which, at a
fixed value of y, denoted y0, approximates the true model by a local exponential model
with canonical parameter ϕ = ϕ(θ), defined as

ϕ>(θ) = l;V (θ; y0) =
n∑
i=1

∂l(θ; y)

∂yi

∣∣∣∣∣
y=y0

Vi. (5)

Here, l;V indicates differentiation of the log-likelihood function in the directions given
by the n columns V1, . . . , Vn of the n × k matrix V . The matrix V can be constructed
using a vector of pivotal quantities z = {z1(y1, θ), . . . , zn(yn, θ)}, where each component
zi(yi, θ) has a fixed distribution under the model. The matrix V is defined through z by

V = −
(
∂z

∂y>

)−1( ∂z

∂θ>

) ∣∣∣∣∣
(y0,θ̂0)

,

where θ̂0 is the maximum likelihood estimate at y0. The expression of the correction term
q is then

q =
|ϕ(θ̂)− ϕ(θ̂ψ) ϕλ(θ̂ψ)|

|ϕθ(θ̂)|

{
|j(θ̂)|
|jλλ(θ̂ψ)|

} 1

2

, (6)

where ϕθ(θ) = ∂ϕ(θ)/∂θ> represents the matrix of partial derivatives of ϕ(θ) with respect
to θ, while ϕλ(θ) = ∂ϕ(θ)/∂λ> identifies the k − 1 columns of this matrix which corre-
spond to the nuisance parameter λ. Analogously, the matrix jλλ(θ) is the (k−1)×(k−1)
sub-matrix of the observed information function j(θ) with respect to the nuisance pa-
rameter λ.

The expression of q for the case in which no explicit nuisance parametrization is given
can be found in [8].
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2.3. Approximations for Bayesian inference

In the Bayesian setting with a prior density π(θ) for θ, the analogue of the first order
results of Section 2.1 is the asymptotic normality of the posterior density π(θ|y) for θ.
The Bayesian counterpart of the correction term q in (3), which we will denote by qB,
was obtained by [13] under the assumption that the nuisance parametrization is given
explicitly, and results to

qB = l′p(ψ)jp(ψ̂)−
1

2

{
|jλλ(θ̂ψ)|
|jλλ(θ̂)|

} 1

2 π(θ̂)

π(θ̂ψ)
, (7)

where l′p(ψ) = dlp(ψ)/dψ is the profile score function and jp(ψ) = d2lp(ψ)/dψ2 the profile
observed information function. Posterior quantiles for the parameter ψ can then be found
exploiting the fact that the posterior distribution function

Π(ψ0 | y) = Pr(ψ ≤ ψ0 | y)
.
= 1− Φ(r∗B)

may be approximated to the order n−3/2 by the standard Normal distribution function
Φ(r∗B), evaluated at

r∗B = r +
1

r
log
(qB
r

)
. (8)

Again, pivot profiling provides the upper and lower bounds of the (1− α)100% credible
interval for ψ given by {

ψ : |r∗B(ψ)| ≤ z1−α/2
}
. (9)

Like for q, [8] provide the expression of the correction term qB for the case in which
the nuisance parametrization is not given explicitly.

2.3.1. Matching priors

Given the prior π(θ) for θ, let θπ1−α denote the (1− α)th approximate posterior quantile
of θ of order n−r, that is, the value of θ for which

Prθ|y
(
θ ≤ θπ1−α | y

)
= 1− α+Op(n

−r), (10)

with r > 0 and 0 < α < 1. If we also have that

PrY |θ
(
θπ1−α ≥ θ | θ

)
= 1− α+Op(n

−r), (11)

with θπ1−α the upper bound of a frequentist one-sided (1−α)100% confidence interval, the
prior π is called a probability matching prior to the rth order of approximation. For such
priors, Bayesian and frequentist inference for the parameter θ are in perfect agreement
up to the order r.

If r = 1, π(θ) is called a first order probability matching prior, while for r = 3/2 we
have a second order probability matching prior. Welch and Peers (1963) showed that the
unique first order probability matching prior, when no nuisance parameter is present, is
Jeffrey’s prior.
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The same result does not necessarily hold when θ includes a nuisance component λ.
For an orthogonal parametrization, [15] proposed to use the following prior for θ in (7),

π(ψ, λ) ∝ i1/2ψψ (ψ, λ), (12)

where iψψ(ψ, λ) represents the value of the expected Fisher information function corre-
sponding to ψ. The authors call this prior the “unique prior”, as it leads to an approxi-
mation of the marginal posterior distribution of ψ accurate to the order n−3/2. When the
parametrization θ = (ψ, λ) is not orthogonal, their suggestion is to find an orthogonal
parametrization (ψ, η) of the original model for which the prior can be expressed as (12),
and then to re-express the prior in the original parametrization (ψ, λ), leading to

π(ψ, λ) ∝ i1/2ψψ.λ(ψ, λ)

∣∣∣∣∣∂η∂λ
∣∣∣∣∣, (13)

with iψψ.λ(ψ, λ) = iψψ(ψ, λ)−iψλ(ψ, λ)i−1
λλ (ψ, λ)iλψ(ψ, λ). Here, the indices ψ and λ indi-

cate which sub-blocks of the expected Fisher information function to take. Furthermore,∣∣∂η/∂λ∣∣ represents the Jacobian of the transformation from (ψ, η) to (ψ, λ).

3. The skew-Normal model

The skew-Normal distribution was introduced by [16] to define a class of asymmetric
parametric models which includes the standard Normal as a special case. We say that
a continuous random variable Z ∼ SN(γ), distributes as a skew-Normal indexed by the
real parameter γ, if it has density function

p(z; γ) = 2φ(z)Φ(γz) with z ∈ R.

Here φ(·) and Φ(·) denote, respectively, the density and the distribution functions of the
standard normal distribution. The class of skew-Normal distributions can be widened by
including a location parameter µ ∈ R and a scale parameter σ > 0. Thus, if X ∼ SN(γ),
then Y = µ + σX is a skew-Normal random variable with parameters µ, σ, γ, or, Y ∼
SN(µ, σ, γ) for short. Making inference on the skewness parameter is quite challenging,
as the expected Fisher information becomes singular as γ → 0; see the solutions proposed
by [17] and [18]. Functions for manipulating the skew-Normal probability distribution
and for fitting it to data are given in the R package sn [19]. We refer the reader to [20]
and [21] for a general treatment of the skew-Normal distribution and its extensions.

The focus of this paper is on the distribution of the maximum (or minimum) of an
exchangeable bivariate Normal random vector. The first contribution to this regard is, to
our knowledge, [22] who discusses inference for the minimum value with special emphasis
on twin studies. We derive our reference model from the below result, as cited in [6],
although a first version was already derived by [5] in the special case of the bivariate
Normal model with zero means, unit variances and correlation coefficient ρ.

Theorem 3.1 Let X1 and X2 be two random variables whose joint distribution is bi-
variate normal with common mean µ ∈ R, common variance σ2 > 0 and correlation
coefficient ρ ∈ (−1, 1). Then for any two real constants h and k 6= −h, the distribution
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of hmin(X1, X2) + kmax(X1, X2) is

SN

(
µ(h+ k), σ

√
h2 + k2 + 2ρhk, γ =

k − h
|k + h|

√
1− ρ
1 + ρ

)
.

It follows that the distribution of max(X1, X2) is SN(µ, σ, γ) with γ =√
(1− ρ)/(1 + ρ) ≥ 0, whereas the distribution of min(X1, X2) is SN(µ, σ, γ) with

γ = −
√

(1− ρ)/(1 + ρ) ≤ 0. The special case of ρ = 0 translates into γ = 1 and
γ = −1, respectively. Theorem 3.1 was subsequently generalized by [3] to the case where
X1 and X2 are exchangeable, elliptical and continuous random variables.

4. Inference on the skewness parameter γ

This section outlines known exact and large-sample results for making inference on the
skewness parameter γ =

√
(1− ρ)/(1 + ρ) which characterizes the distribution of the

maximum between two correlated normal variables, as well as our newly derived small-
sample solutions. In particular, we will consider the following three instances: 1) the
no-nuisance parameter case, 2) the complete bivariate Normal model, and 3) the equi-
correlated bivariate Normal model. All methods straightforwardly extend to the case
−γ = −

√
(1− ρ)/(1 + ρ) with the suitable changes.

4.1. The bivariate Normal model without nuisance parameter

Let Y = (X1, X2) be a bivariate Normal random vector with common mean 0,
common variance 1 and correlation coefficient ρ ∈ (−1, 1). Given an i.i.d. sample
{(x11, x21), . . . , (x1n, x2n)} of size n from Y , [23] proposed a range-based exact confidence
interval for ρ. The construction of the confidence interval makes use of the two random
variables D+ =

∑n
i=1(X1i+X2i)

2 and D− =
∑n

i=1(X1i−X2i)
2. Taking advantage of the

independence ofX1i+X2i andX1i−X2i along with the fact thatX1i+X2i ∼ N(0, 2(1+ρ))
and X1i −X2i ∼ N(0, 2(1− ρ)), the authors derive the following pivotal quantity

D+

D−

(1− ρ)

(1 + ρ)
∼ Fn,n, (14)

where Fn,n is Fisher’s F distribution with (n, n) degrees of freedom. This gives an exact
(1− α)100% confidence interval for the parameter γ of the form{

γ ∈ [0,∞) :

√
D−
D+

Fn,n(α/2) < γ <

√
D−
D+

Fn,n(1− α/2)

}
, (15)

where Fn,n(p), with p ∈ (0, 1), represents the pth quantile.

4.1.1. Small-sample confidence intervals

[24] provides the expression of the canonical parameter ϕ when interest relies on θ = ρ,
the correlation coefficient of the bivariate Normal vector Y = (X1, X2). The reference
model in this case is a (2, 1) curved exponential family. Confidence intervals for the
parameter γ are derived from the r(ρ), and r∗(ρ) pivots thanks to their invariance under
interest-respecting re-parametrizations. Credible intervals for γ are obtained from r∗B(ρ)
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by exploiting that γ =
√

(1− ρ)/(1 + ρ) is a one-to-one transformation of the random
variable ρ.

A key quantity for the determination of the canonical parameter (5) of the approximat-

ing tangent full exponential model is the vector V = (1− θ̂)−1(t− θ̂s, s− θ̂t)>, obtained
from the two independent pivots Z1 = (T + S)/(1 + θ) and Z2 = (T − S)/(1− θ), with
S = n−1

∑n
i=1X1iX2i and T = (2n)−1

∑n
i=1(X2

1i+X
2
2i), whose distribution is χ2

n/n . The

canonical parameter takes the form ϕ(θ) = n{(1− θ2)(1− θ̂2)}−1{θ(t− θ̂s)− (s− θ̂t)}.
Later, [25] proposed an alternative formulation, ϕ̄(θ) = nθ/(1 − θ2), of the canonical
parameter. As shown there, both formulations lead to almost the same numerical results
as far as the approximation of tail areas is concerned. Turning to the Bayesian world, we
may adopt Jeffreys’ prior for ρ, given by

π(ρ) ∝
√

(1 + ρ2)

(1− ρ2)
. (16)

As stated in Section 2.3.1, this prior provides a first order probability matching prior for
a scalar parameter in the absence of nuisance parameters.

4.2. The complete bivariate Normal model

Let Y = (X1, X2) be again a bivariate Normal random vector, this time with parameters
(µ1, µ2, σ1, σ2, ρ) where (µ1, σ1) ∈ R × R+ and (µ2, σ2) ∈ R × R+ are, respectively,
the means and variances of X1 and X2, and ρ ∈ (−1, 1) their correlation. Instructions
of how to construct a, yet approximate, confidence interval for ρ given an i.i.d. sample
{(x11, x21), . . . , (x1n, x2n)} of size n from Y , can once more be found in [23]. The first step
is to standardize the two components X1i and X2i into X∗1i and X∗2i. An approximate
confidence interval for the parameter ρ is obtained by using the fact that X∗1i − X∗2i
and X∗1i + X∗2i are nearly independent, X∗1i + X∗2i ∼ N(0, 2(1 + ρ)) and X∗1i − X∗2i ∼
N(0, 2(1− ρ)). The pivot

D∗+
D∗−

(1− ρ)

(1 + ρ)
=

(
1 +R

1−R

)
(1− ρ)

(1 + ρ)
, (17)

where D∗+ =
∑n

i=1(X∗1i + X∗2i)
2 and D∗− =

∑n
i=1(X∗1i − X∗2i)

2 and R is the sample
correlation coefficient defined as

R =

∑n
i=1

(
X1i − X̄1

) (
X2i − X̄2

)√∑n
i=1

(
X1i − X̄1

)2√∑n
i=1

(
X2i − X̄2

)2 ,
follows approximately an Fn−1,n−1 distribution. The corresponding (1 − α)100% confi-
dence interval for γ becomes

{
γ ∈ [0,∞) :

√(
1−R
1 +R

)
Fn−1,n−1(α/2) < γ <

√(
1−R
1 +R

)
Fn−1,n−1(1− α/2)

}
. (18)

A second approximate solution to the inferential problem we are interested in
can be found in [7]. Because of the difficulties of obtaining the finite sample dis-
tribution of R, inference for ρ is commonly based on the monotonic transformation
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1/2 ln ((1 +R)/(1−R)), called Fisher’s z-transform. In particular, the distribution of

Z =

1
2 ln

(
1+R
1−R

)
− 1

2 ln
(

1+ρ
1−ρ

)
1√
n−3

(19)

for n > 50 is approximately standard Normal. This turns into an
(1− α)100% confidence interval for γ, which we will call ACI5, of the form{

γ ∈ [0,∞) : exp

(−z1−α
2√

n− 3

)√(
1−R
1 +R

)
< γ < exp

(
z1−α

2√
n− 3

)√(
1−R
1 +R

)}
. (20)

Note that the upper and lower bounds of both, the confidence interval (20) proposed
by [7] and solution (18) derived from the confidence interval for ρ of [23], include the
multiplying factor

√
(1−R)/(1 +R).

4.2.1. Small-sample confidence intervals

The computation of small-sample confidence intervals for the parameter ρ from the
frequentist point of view is addressed in [26]. Let {(x11, x21), . . . , (x1n, x2n)} be an i.i.d.
sample from the bivariate Normal random vector Y = (X1, X2). The log-likelihood
function

l(θ) = −n
(

log (σ1σ2) +
1

2
log (1− ρ2) +

µ21
2(1− ρ2)σ2

1

+
µ22

2(1− ρ2)σ2
2

−
µ1µ2ρ

(1− ρ2)σ1σ2

)
+

−
1

2(1− ρ2)σ2
1

n∑
i=1

x21i −
1

2(1− ρ2)σ2
2

n∑
i=1

x22i +
µ1σ2 − µ2σ1ρ
(1− ρ2)σ2

1σ2

n∑
i=1

x1i+

+
µ2σ1 − µ1σ2ρ
(1− ρ2)σ1σ2

2

n∑
i=1

x2i +
ρ

(1− ρ2)σ1σ2

n∑
i=1

x1ix2i,

with θ = (ρ, µ1, µ2, σ1, σ2), characterizes an exponential family with canonical parameter

ϕ(θ) =

(
− 1

(1− ρ2)σ2
1

,− 1

(1− ρ2)σ2
2

,
µ1σ2 − µ2σ1ρ

(1− ρ2)σ2
1σ2

,
µ2σ1 − µ1σ2ρ

(1− ρ2)σ1σ2
2

,
ρ

(1− ρ2)σ1σ2

)
.

Setting ψ = ρ and λ = (µ1, µ2, σ1, σ2), q and r∗ can readily be obtained from equations
(6) and (3), respectively. The computation of the Bayesian credible interval of Section 2.3
requires that we specify a prior for the parameter θ. The “unique prior” defined by [15]
may be calculated by referring to the orthogonal re-parametrization

p(x1, x2 | ψ, η) ∝
1

η4
exp

{
−

1

2(1− ψ2)1/2η4

[
(x1 − η1)2

η3
+ η3(x2 − η2)2 − 2ψ(x1 − η1)(x2 − η2)

]}
,

with ψ = ρ and η1 = µ1, η2 = µ2, η3 = σ1/σ2 and η4 = σ1σ2(1 − ρ2)1/2. The matching
prior for θ = (ρ, λ), with λ = (µ, σ), will then be

π(θ) ∝ i1/2ρρ.λ(θ)

∣∣∣∣∂η∂λ
∣∣∣∣, (21)

with iρρ.λ(θ) = iρρ(θ) − iρλ(θ)i−1
λλ (θ)iλρ(θ). In expression (21) the quantity i(θ) denotes

the expected Fisher information function, while |∂η/∂λ| represents the Jacobian of the
transformation from the orthogonal parametrization (ρ, η) to the original parametrization
(ρ, λ). Note that [27, 28] used the same parametrization but with µ1 = µ2 = 0, which
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implies that Fisher’s expected information function only includes the parameters ψ, η3

and η4.
As in the previous section, confidence intervals for the parameter γ are readily derived

from the r(ρ) and r∗(ρ) pivots thanks to their invariance under interest-respecting re-
parametrizations, while credible intervals for γ are obtained from r∗B(ρ) by using the

biunivocal transformation,
√

(1− ρ)/(1 + ρ), of the random variable ρ.

4.3. The equi-correlated bivariate Normal model

Let (x11, x21), . . . , (x1n, x2n) be an i.i.d. sample from an equi-correlated bivariate Normal
vector Y = (X1, X2), where X1 and X2 have common mean µ ∈ R, common variance
σ2 > 0 and correlation coefficient ρ ∈ (−1, 1). Maximum likelihood estimation for θ =
(ρ, µ, σ) yields

µ̂ =
1

2n

n∑
i=1

(x1i + x2i) , σ̂ =

√√√√ 1

2n

n∑
i=1

[
(x1i − µ̂)2 + (x2i − µ̂)2

]
,

and ρ̂ =
1

nσ̂2

n∑
i=1

(x1i − µ̂) (x2i − µ̂) .

[29] called ρ the intraclass correlation coefficient and its maximum likelihood estimate ρ̂
the intraclass correlation.

4.3.1. Small-sample confidence intervals

A first confidence interval for γ, which is accurate up to the second order, can be derived
by using an argument equivalent to the one adopted by [7] for the complete bivariate
Normal model, and exploits the fact that Fisher’s transformation of ρ̂ is again a nor-
malizing and variance stabilizing transformation as it is the case for the well known
transformation of the sample correlation. That is, the pivot

√
n

[
1

2
log

(
1 + ρ̂

1− ρ̂

)
− 1

2
log

(
1 + ρ

1− ρ

)
+

1

2n

]
, (22)

is asymptotically standard normal up to the order n−1; see [30]. Expression (22) leads
straightforwardly to the following asymptotic confidence interval for γ:{

γ ∈ [0,∞) : exp

(−z1−α
2√

n
−

1

2n

)√(
1− ρ̂
1 + ρ̂

)
< γ < exp

( z1−α
2√
n
−

1

2n

)√(
1− ρ̂
1 + ρ̂

)}
, (23)

which we will indicate by ACI3.
Further small-sample confidence intervals may be derived by setting, as in Section 4.2,

ψ = ρ and λ = (µ, σ) and using the r∗ pivot from equations (6) and (3), respectively.
The log-likelihood function

l(θ) = −n
(

2 log σ +
1

2
log (1− ρ2) +

µ2

(1 + ρ)σ2

)
+

∑n
i=1 (x1i + x2i)

(1 + ρ)σ2

+
2ρ
∑n

i=1 x1ix2i −
∑n

i=1

(
x21i + x22i

)
2(1− ρ2)σ2

,
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now characterizes an exponential family with canonical parameter

ϕ(θ) =

(
µ

σ2(1 + ρ)
,

ρ

σ2(1− ρ2)
,− 1

2(1− ρ2)σ2

)
. (24)

In order to obtain credible confidence intervals from (8) with frequentist coverage, we
assume as matching prior π(θ), the “unique prior” defined in [15]. This requires an
orthogonal re-parametrization of the model of the form

p(x1, x2 | ρ, η) ∝
1

η2
exp

{
−

1

2(1− ρ2)1/2η2

[
(x1 − η1)2 + (x2 − η1)2 − 2ρ(x1 − η1)(x2 − η1)

]}
,

with η1 = µ and η2 = σ2(1− ρ2)1/2. The matching prior for θ = (ρ, λ), with λ = (µ, σ),
will then be

π(θ) ∝ i1/2ρρ.λ(θ)

∣∣∣∣∂η∂λ
∣∣∣∣, (25)

with iρρ.λ(θ) = iρρ(θ) − iρλ(θ)i−1
λλ (θ)iλρ(θ). As before, the quantity i(θ) indicates the

expected Fisher information function, while |∂η/∂λ| denotes the Jacobian of the trans-
formation from (ρ, η) to (ρ, λ).

Once more, confidence and credible intervals for γ are obtained via pivot profiling (see
Brazzale et al., 2007) from the pivots r(ρ), r∗(ρ), and r∗B(ρ).

5. Two real-data examples

5.1. Corpus callosum surface area in mono-zygotic twins

Since Sir Francis Galton’s (1876) seminal paper, twin studies have extensively been used
for the quantitative ascertainment of genetic and environmental influences. Twin reg-
istries worldwide represent nowadays a valuable resource for the investigation of the
similarities and dissimilarities between twins. The very large twin studies carried out
during the past two decades led to much novel work, especially in genetic research [32].
Classical twin designs remain, nonetheless, a valuable tool in fields such as biomedicine,
psychiatry and behavioral sciences, where the number of available observations is far
smaller than those typical in modern twin studies. There are several views of how the
degree of concordance between twins should be assessed [33, 34]. Here, we promote the
use of Azzalini’s (1985) skew-Normal distribution.

The twin study conducted by Tramo et al. (1998) focuses on similarities of the brains
of mono-zygotic twin pairs such as in forebrain volume, cortical surface area, and callosal
area. The data, as available on StatLib, include the measurements on the brains of ten
pairs of mono-zygotic twins, five male and five female. Our variable of interest is the
corpus callosum surface area. In particular, we focus on the maximum between the area
in the first twin and in the second twin. The order of twins is determined by birth, though
this does not affect the method since the two variables are supposed to be exchangeable.
The paired measurements exhibit a strong positive linear relationship with correlation
coefficient amounting to R = 0.90. To assure that all conditions of Theorem 3.1 hold,
we first standardize the pairs of observations {(x11, x21), . . . , (x1n, x2n)} as on page 7.
The bivariate Shapiro-Wilk normality test (W = 0.97, p-value = 0.86) supports the
hypothesis of bivariate normality of the standardized data. Maximum likelihood yields
γ̂ = 0.229.
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The five 95% confidence intervals for γ, computed using the methods outlined in
Section 4.2, are given in Table 1. The interval based on the third order Bayesian solution
r∗B is wider than the confidence intervals obtained from the first order pivot r, the higher
order frequentist pivot r∗, the large sample (HP ) confidence interval by [23] and the
ACI5 confidence interval by [7]. Figure 1 shows how to compute the lower and upper
bounds numerically. The intervals based on r (1st), r∗ (3rd), r∗B (Bayes) and ACI5

can be read off from the intersections of the corresponding pivots with the horizontal
black lines, which represent the 2.5% and the 97.5% quantiles of the standard Normal
distribution. The lower and upper bounds of the HP confidence interval are computed
similarly, but this time by referring to the horizontal grey lines, which represent the
2.5%, and the 97.5% quantiles of the F distribution with (9, 9) degrees of freedom.

Figure 1 and Table 1 about here.

5.2. Mineral content measurements in the ulna of elderly women

A number of situations, especially in clinical comparative studies, foresee that the data
are collected on the left and right sides of the body of each individual. In this framework,
it can be relevant to estimate the distribution of the extremes (maximum or minimum)
of these contra-lateral observations; see for example [3] and [4] and reference therein for
details.

Here, we consider the analysis presented in [4] on data by [10]. The observations consist
of mineral content measurements of three bones, among these the ulna, in the dominant
and non dominant arm for twenty five elderly women. We focus our attention on the
minimum between the contra-lateral measurements of the ulna. To take account of the
bilateral symmetries in the human body, we constrain the model parameters to µ1 = µ2 =
µ and σ1 = σ2 = σ. The bivariate Shapiro-Wilk normality test confirms the hypothesis of
bivariate normality (W = 0.9708, p-value = 0.6645). Furthermore, as expected, the two
contra-lateral measurements present a strong positive linear relationship with intraclass
correlation ρ̂ = 0.724. The maximum likelihood estimate of −γ is −γ̂ = −0.4004.

Table 2 shows the four 95% confidence intervals for the parameter −γ obtained by
using the methods outlined in Section 4.3. The ACI3 confidence interval of equation
(23) is smaller than the confidence intervals obtained from the first order pivot r and
the higher order frequentist and Bayesian pivots r∗ and r∗B, respectively. Figure 2 plots
the pivot functions r (1st), r∗ (3rd), r∗B (Bayes) and ACI3 for the ulna data. As
before, intervals can be read off from the intersections of the corresponding pivots with
the horizontal lines which represent the 2.5% and the 97.5% quantiles of the standard
Normal distribution.

Figure 2 and Table 2 about here.

6. Numerical assessment

We designed three simulations studies to assess and compare the finite-sample properties
of the methods discussed in this paper. The summary statistics used are: empirical cov-
erage (CP ), upper error probability (UE), that is, the percentage of the true parameter
values falling above the upper bound, lower error probability (LE), that is, the percent-
age of the true parameter values falling below the lower bound, and average length (AL)
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of the confidence intervals considered in Section 4. All simulations were run using the
numerical computing environment R [35]. For every occurrence, 10, 000 replicates were
generated for the four sample sizes n = 5, 10, 15, 20. The simulation error amounts to
±0.004. We only report the summary statistics for the two samples sizes n = 5, 10; the
omitted results are available as supplementary material.

6.1. Considered scenarios

6.1.0.1. Simulation 1. Considers a bivariate Normal model with zero means, unit vari-
ances and unknown correlation ρ, which takes values from −0.9 to +0.9, with step size
0.1. The purpose is to compare the behavior of the higher order pivot r∗ with its first
order counterpart r, the Bayesian small-sample solution r∗B and the exact method (14),
which apply when no nuisance parameter is present, and this for small sample sizes.

6.1.0.2. Simulation 2. Wants to investigate the finite-sample performance of the confi-
dence intervals obtained when nuisance parameters are present, again while emphasizing
small sample sizes. The pivots used are the higher order solution r∗, its first order coun-
terpart r, the Bayesian competitor r∗B, and the large-sample solutions (18) and (20). We
used µ1 = µ2 = 7, σ1 = σ2 = 0.9, while again ρ ∈ {−0.9,−0.8, . . . , 0.8, 0.9}. Note that
the simulation set-up borrows from the twin data example of Section 5.1, for which the
maximum likelihood estimate is θ̂ = (0.900, 7.061, 6.924, 0.905, 0.872).

6.1.0.3. Simulation 3. Explores the finite-sample performance of the different confi-
dence intervals which are available for the equi-correlated bivariate Normal model, again
while emphasizing on small sample sizes. The pivots used are the higher order solution
r∗, its first order counterpart r, the Bayesian competitor r∗B, and the approximate solu-
tion (22). We set µ = 0.7, σ = 0.1, while again ρ ∈ {−0.9,−0.8, . . . , 0.8, 0.9}. Note that
the simulation set-up borrows from the real data example of Section 5.2, for which the
maximum likelihood estimate is θ̂ = (0.724, 0.699, 0.103).

6.2. Discussion

6.2.1. Simulation 1

Figure 3 shows the actual coverage of the nominal 95% confidence intervals for γ derived
from equation (15) (exact), and by using the pivots r (1st), r∗ (3rd), and r∗B (Bayes)
for the no-nuisance parameter case. The higher order likelihood pivots r∗ and, to a
somewhat lesser extent, r∗B outperform their first order counterpart r, even for the very
limited sample sizes considered in the four scenarios of Simulation 1. The differences
among the four pivots fade out as the sample size increases.

Figure 3 and Tables 3 and 4 about here.

Tables 3 and 4 summarize the performance of the nominal 95% confidence intervals
for γ derived from the four pivots considered in Simulation 1. Being there no nuisance
parameter present, the corresponding true coverage probabilities are very close to the
nominal level, as we may have expected. Inspection of the upper and lower error proba-
bilities reveals that the r∗ and r∗B pivots also improve in terms of symmetry over r. The
exact method produces confidence intervals for γ which are, on average, wider than the
confidence intervals obtained from the first order solution r and the higher order pivots
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r∗ and r∗B. The average length of all four confidence intervals is larger for negative values
of ρ, and increases when the correlation tends to −1.

6.2.2. Simulation 2

Figure 4 reports the actual coverage of the nominal 95% confidence intervals for γ
obtained from expressions (17) (HP ) and (19) (ACI5), and by using the pivots r (1st),
r∗ (3rd) and r∗B (Bayes). In terms of real coverage, r∗ again outperforms its first
order counterpart r. It also outperforms the large-sample (HP ) proposal by [23] and,
surprisingly, the Bayesian solution r∗B. The most accurate method is the large-sample
confidence interval developed by [7], although the differences fade out for increasing
sample size.

Figure 4 and Tables 5 and 6 about here.

Tables 5 and 6 summarize the performance of the nominal 95% confidence intervals
for γ derived from the five methods considered in Simulation 2. The results reveal that
r∗ is more accurate than r, especially when the sample size is small, because of both an,
on average, larger width and its capability of correctly centering the confidence intervals.
The r∗B pivot consistently over-estimates the real coverage, while guaranteeing symmetry
on the tails, because of the, on average, longer confidence intervals it produces. The ACI5

and HP methods lead to confidence intervals for γ which are remarkably asymmetric.
Their better performance with respect to, respectively, r∗ and r may be explained by the,
on average, larger widths of the corresponding confidence intervals. For all five methods
considered, the expected length becomes larger for negative values of ρ, especially when
ρ is close to −1. This is in agreement with [7], who noted the same behavior for their
ACI5 confidence interval.

6.2.3. Simulation 3

Figure 5 shows the actual coverage of the nominal 95% confidence intervals for γ by
using the pivots r (1st), r∗ (3rd), r∗B (Bayes) and (22) (ACI3) in the equi-correlated
bivariate Normal model. In terms of real coverage, r∗ again outperforms its first order
counterpart r, the Bayesian solution r∗B and the approximate solution (23).

Figure 5 and Tables 7 and 8 about here.

Tables 7 and 8 reveal that the small-sample pivots r∗ and r∗B exhibit more reliable
coverage than the confidence intervals obtained from their large-sample counterpart r and
the pivot (22), although the Bayesian solution r∗B somewhat overestimates the nominal
level. Moreover, r and, to a somewhat lesser extent (22), exhibit, for small sample sizes, an
unsatisfactory behavior as far as the symmetry of errors is concerned, although the ACI3

confidence intervals seem to improve as soon as n ≥ 10. In addition, r∗B and (22) produce
confidence intervals with, respectively, larger and shorter expected widths as compared
with the intervals obtained from r∗ and r. The finite-sample differences among the four
pivots vanish as the sample size increases. For all four methods, the expected length
becomes wider for negative values of ρ, especially when ρ approaches −1.
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7. Concluding remarks

In this paper we investigate the behavior of modern likelihood-based small-sample proce-
dures to compute confidence intervals for the parameter of skewness which characterizes
the distribution of the maximum/minimum of a bivariate Normal and exchangeable ran-
dom vector. This distribution may, for example, be used for assessing the degree of
concordance of a continuous mono-zygotic twin trait when interest focuses on the pair-
wise maximum or minimum, as in Section 5.1. Or, it may represent the reference model
for making inference on contra-lateral measurements, as in Section 5.2.

Extensive numerical investigation revealed that the higher order frequentist pivot r∗ is
highly accurate, especially for the rather small sample sizes which may be encountered,
and for the challenging situation where ρ is close to −1. This is in agreement with
the findings by [26], though their contribution focuses on ρ and does not consider the
custom-tailored statistics of Section 4.2. When no nuisance parameter is present, r∗

yields confidence intervals which, for practical purposes, may be considered exact. Among
the four alternatives available in the presence of nuisance parameters, the only real
competitor to r∗, in terms of both real coverage and required computational efforts, is
the ACI5 confidence interval, though it leads to, on average, longer confidence intervals
which counterbalance the lack of symmetry on the tails. The potential applicability of
the ACI5 method to studies on twins was already put forward in [7]. The construction of
confidence sets for γ in the three-parameter bivariate Normal model shows that the small-
sample frequentist confidence interval based on r∗ outperforms its three alternatives with
respect to both average length and symmetry of errors. The ACI3 confidence interval
requires a minor computational effort than the likelihood-based. However, despite the
fact that its construction borrows from [7], it performs poorly in terms of both coverage
probability and symmetry of error rates. This is especially true for small sample sizes.

The straightforward extension of our proposal is to the skew-Normal model. For in-
stance, Loperfido’s Theorem provides the reference models for mono-zygotic twin studies
for which information on the pair (X1, X2) is missing, and only their maximum (or min-
imum) value is recorded. This may happen because of practical reasons; see [22] for a
rather early treatment. As pointed out there, because healthy mono-zygotic twins share
an identical genetic mark-up, time of onset for a particular event in the first twin —
such as getting a cold or developing leukaemia — is likely to closely follow in the second
twin, so that only the smaller or larger record may be kept. The same holds true for
clinical comparative studies. Furthermore, working with the maximum (or minimum)
of two correlated measurements can be, at times, more reliable than the study of the
original values, especially if the measurements of the smaller (or larger) values are more
accurate.
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Figure 1. [9] corpus callosum surface area data. Pivot functions for the parameter γ obtained from: likelihood root

r (solid), modified likelihood root r∗ (bold); Bayesian modified likelihood root r∗B (long-dashes); expression (17)
by [23] (dotted); approximate pivot used in (19) by [7] (dashed). Black horizontal lines: 2.5% and 97.5% Normal

quantiles; grey horizontal lines: 2.5% and 97.5% quantiles of the F (9, 9) distribution.

Table 1. [9] corpus callosum surface area data. Lower (LB) and upper (UB) bounds of 95% confidence intervals for

the parameter γ. Pivots used, with corresponding confidence intervals: 1st – likelihood root r (2); 3rd – modified

likelihood root r∗ (4); Bayes – Bayesian modified likelihood root r∗B (9); HP – [23] (18); ACI5 – [7] (20).

Method LB UB Length
1st 0.121 0.435 0.314
3rd 0.119 0.493 0.374
Bayes 0.114 0.518 0.404
HP 0.114 0.460 0.346
ACI5 0.109 0.481 0.372
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Figure 2. [10] mineral content measurements of the ulna data. Pivot functions for the parameter γ obtained from:

likelihood root r (solid), modified likelihood root r∗ (bold); Bayesian modified likelihood root r∗B (long-dashes);
approximate pivot (23) (dashed). Horizontal lines: 2.5% and 97.5% Normal quantiles.

Table 2. [10] mineral content measurements of the ulna data. Lower (LB) and upper (UB) bounds of 95%
confidence intervals for the parameter γ. Pivots used, with corresponding confidence intervals: 1st – likelihood

root r (2); 3rd – modified likelihood root r∗ (4); Bayes – Bayesian modified likelihood root r∗B (9); ACI3 –

approximate pivot (22).

Method LB UB Length
1st −0.596 −0.269 0.327
3rd −0.588 −0.261 0.327
Bayes −0.573 −0.253 0.320
ACI3 −0.581 −0.265 0.316
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Figure 3. Simulation 1: bivariate Normal with means 0 and variances 1. Empirical coverage of nominal two-sided

95% confidence intervals for γ for varying values of ρ and sample sizes n = 5, 10, 15, 20. Pivots used: likelihood
root r (1st), modified likelihood root r∗ (3rd); Bayesian modified likelihood root r∗B (Bayes); expression (14) by

[23] (exact). Based on 10,000 replicates.
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Figure 4. Simulation 2: bivariate Normal with means 7 and variances 0.9. Empirical coverage of nominal equi-

tailed 95% confidence intervals for γ for varying values of ρ and sample sizes n = 5, 10, 15, 20. Pivots used: likelihood
root r (1st), modified likelihood root r∗ (3rd); Bayesian modified likelihood root r∗B (Bayes); expression (17) by

[23] (HP ) and expression (19) by [7] (ACI5). Based on 10,000 replicates.
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Figure 5. Simulation 3: bivariate Normal with means 0.7 and variances 0.1. Empirical coverage of nominal equi-

tailed 95% confidence intervals for γ for varying values of ρ and sample sizes n = 5, 10, 15, 20. Pivots used: likelihood
root r (1st), modified likelihood root r∗ (3rd); Bayesian modified likelihood root r∗B (Bayes); and expression (23)

(ACI3). Based on 10,000 replicates.
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Table 3. Summary statistics for Simulation 1: bivariate Normal with means 0 and variances 1. Empirical coverage

(CP ), upper (UE) and lower (LE) error probability and average length (AL) of nominal two-sided 95% confidence
intervals for γ, for varying values of ρ and sample size n = 5. Pivots used: likelihood root r (1st), modified

likelihood root r∗ (3rd); Bayesian modified likelihood root r∗B (Bayes); expression (15) by [23] (exact). Based on

10,000 replicates; simulation error: ±0.004.
(a)

ρ Method CP UE LE AL
−0.9 1st 0.924 0.039 0.037 6.714

3rd 0.954 0.024 0.022 6.556
Bayes 0.953 0.024 0.022 6.604
exact 0.950 0.024 0.026 11.329

−0.8 1st 0.938 0.038 0.024 4.753
3rd 0.952 0.023 0.026 4.600
Bayes 0.947 0.024 0.029 4.587
exact 0.951 0.023 0.026 7.803

−0.7 1st 0.939 0.038 0.023 3.861
3rd 0.948 0.024 0.029 3.702
Bayes 0.940 0.024 0.036 3.648
exact 0.949 0.025 0.026 6.144

−0.6 1st 0.934 0.040 0.026 3.345
3rd 0.948 0.024 0.028 3.198
Bayes 0.943 0.023 0.034 3.130
exact 0.952 0.025 0.024 5.244

−0.5 1st 0.930 0.038 0.033 2.946
3rd 0.945 0.024 0.031 2.807
Bayes 0.942 0.025 0.033 2.727
exact 0.947 0.025 0.028 4.483

−0.4 1st 0.932 0.037 0.031 2.659
3rd 0.950 0.022 0.027 2.531
Bayes 0.945 0.024 0.030 2.441
exact 0.953 0.024 0.023 3.948

−0.3 1st 0.922 0.042 0.035 2.426
3rd 0.942 0.027 0.031 2.314
Bayes 0.934 0.032 0.033 2.234
exact 0.948 0.026 0.027 3.552

−0.2 1st 0.926 0.039 0.034 2.241
3rd 0.949 0.026 0.025 2.141
Bayes 0.940 0.030 0.030 2.055
exact 0.952 0.025 0.023 3.189

−0.1 1st 0.927 0.037 0.036 2.087
3rd 0.951 0.023 0.026 1.995
Bayes 0.937 0.031 0.032 1.911
exact 0.953 0.023 0.024 2.854

0 1st 0.925 0.037 0.038 1.927
3rd 0.949 0.024 0.027 1.842

(b)

ρ Method CP UE LE AL
Bayes 0.937 0.031 0.032 1.758
exact 0.952 0.023 0.025 2.579

0.1 1st 0.927 0.038 0.035 1.806
3rd 0.951 0.025 0.024 1.732
Bayes 0.941 0.031 0.029 1.647
exact 0.953 0.024 0.022 2.346

0.2 1st 0.925 0.033 0.042 1.695
3rd 0.948 0.025 0.026 1.636
Bayes 0.936 0.030 0.034 1.550
exact 0.949 0.024 0.028 2.110

0.3 1st 0.925 0.036 0.040 1.577
3rd 0.948 0.027 0.024 1.526
Bayes 0.938 0.031 0.030 1.439
exact 0.950 0.026 0.024 1.903

0.4 1st 0.929 0.032 0.039 1.460
3rd 0.948 0.028 0.024 1.421
Bayes 0.942 0.032 0.026 1.347
exact 0.952 0.025 0.024 1.701

0.5 1st 0.927 0.032 0.040 1.350
3rd 0.943 0.031 0.026 1.324
Bayes 0.940 0.033 0.027 1.257
exact 0.947 0.026 0.026 1.499

0.6 1st 0.928 0.031 0.041 1.236
3rd 0.940 0.035 0.025 1.209
Bayes 0.937 0.037 0.025 1.157
exact 0.948 0.027 0.025 1.313

0.7 1st 0.935 0.023 0.042 1.061
3rd 0.945 0.029 0.026 1.054
Bayes 0.935 0.038 0.026 1.039
exact 0.950 0.026 0.024 1.097

0.8 1st 0.936 0.025 0.038 0.865
3rd 0.948 0.027 0.024 0.864
Bayes 0.946 0.029 0.024 0.905
exact 0.951 0.026 0.023 0.874

0.9 1st 0.925 0.035 0.040 0.554
3rd 0.954 0.022 0.024 0.563
Bayes 0.953 0.023 0.024 0.652
exact 0.952 0.026 0.023 0.598
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Table 4. Summary statistics for Simulation 1: bivariate Normal with means 0 and variances 1. Empirical coverage

(CP ), upper (UE) and lower (LE) error probability and average length (AL) of nominal two-sided 95% confidence
intervals for γ, for varying values of ρ and sample size n = 10. Pivots used: likelihood root r (1st), modified

likelihood root r∗ (3rd); Bayesian modified likelihood root r∗B (Bayes); expression (15) by [23] (exact). Based on

10,000 replicates; simulation error: ±0.004.
(a)

ρ Method CP UE LE AL
−0.9 1st 0.942 0.037 0.021 4.907

3rd 0.951 0.024 0.025 4.826
Bayes 0.951 0.024 0.025 4.834
exact 0.952 0.022 0.025 6.496

−0.8 1st 0.945 0.034 0.020 3.174
3rd 0.950 0.025 0.025 3.144
Bayes 0.949 0.025 0.026 3.154
exact 0.949 0.024 0.027 4.484

−0.7 1st 0.946 0.035 0.019 2.588
3rd 0.953 0.025 0.023 2.556
Bayes 0.949 0.025 0.026 2.551
exact 0.953 0.025 0.022 3.545

−0.6 1st 0.943 0.033 0.024 2.242
3rd 0.948 0.023 0.029 2.205
Bayes 0.944 0.023 0.034 2.185
exact 0.952 0.024 0.024 2.968

−0.5 1st 0.944 0.034 0.022 1.999
3rd 0.951 0.023 0.026 1.961
Bayes 0.947 0.025 0.028 1.931
exact 0.954 0.025 0.021 2.583

−0.4 1st 0.937 0.036 0.027 1.801
3rd 0.946 0.026 0.028 1.766
Bayes 0.943 0.028 0.030 1.730
exact 0.949 0.025 0.026 2.275

−0.3 1st 0.937 0.034 0.029 1.649
3rd 0.947 0.025 0.028 1.615
Bayes 0.944 0.027 0.029 1.577
exact 0.952 0.023 0.024 2.034

−0.2 1st 0.933 0.036 0.031 1.503
3rd 0.945 0.027 0.028 1.472
Bayes 0.940 0.029 0.031 1.433
exact 0.947 0.027 0.026 1.825

−0.1 1st 0.936 0.034 0.030 1.395
3rd 0.948 0.027 0.025 1.368
Bayes 0.947 0.028 0.025 1.328
exact 0.951 0.026 0.024 1.648

0 1st 0.937 0.032 0.031 1.290
3rd 0.949 0.026 0.025 1.268

(b)

ρ Method CP UE LE AL
0 Bayes 0.945 0.029 0.026 1.227

exact 0.951 0.025 0.024 1.485
0.1 1st 0.936 0.031 0.034 1.192

3rd 0.949 0.026 0.025 1.177
Bayes 0.945 0.027 0.028 1.138
exact 0.951 0.024 0.025 1.345

0.2 1st 0.935 0.033 0.032 1.106
3rd 0.948 0.029 0.023 1.098
Bayes 0.946 0.030 0.024 1.060
exact 0.952 0.027 0.021 1.223

0.3 1st 0.937 0.028 0.036 1.011
3rd 0.947 0.026 0.027 1.008
Bayes 0.945 0.026 0.029 0.974
exact 0.949 0.024 0.027 1.091

0.4 1st 0.938 0.027 0.035 0.920
3rd 0.948 0.028 0.025 0.922
Bayes 0.948 0.027 0.025 0.896
exact 0.951 0.024 0.025 0.974

0.5 1st 0.941 0.023 0.035 0.817
3rd 0.947 0.026 0.027 0.827
Bayes 0.945 0.027 0.027 0.807
exact 0.950 0.024 0.026 0.860

0.6 1st 0.942 0.022 0.036 0.704
3rd 0.948 0.027 0.025 0.719
Bayes 0.943 0.031 0.026 0.716
exact 0.954 0.023 0.023 0.743

0.7 1st 0.945 0.020 0.036 0.574
3rd 0.950 0.023 0.026 0.594
Bayes 0.946 0.028 0.026 0.606
exact 0.949 0.025 0.026 0.627

0.8 1st 0.943 0.020 0.037 0.415
3rd 0.954 0.022 0.024 0.438
Bayes 0.952 0.023 0.025 0.459
exact 0.952 0.023 0.026 0.496

0.9 1st 0.943 0.022 0.034 0.259
3rd 0.949 0.029 0.023 0.275
Bayes 0.949 0.028 0.023 0.283
exact 0.949 0.026 0.025 0.343
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Table 5. Summary statistics for Simulation 2: bivariate Normal with means 7 and variances 0.9. Empirical coverage

(CP ), upper (UE) and lower (LE) error probability and average length (AL) of nominal two-sided 95% confidence
intervals for γ, for varying values of ρ and sample size n = 5. Pivots used: likelihood root r (1st), modified likelihood

root r∗ (3rd); Bayesian modified likelihood root r∗B (Bayes); expression (18) by [23] (HP ); expression (20) by [7]

(ACI5). Based on 10,000 replicates; simulation error: ±0.004.
(a)

ρ Method CP UE LE AL
−0.9 1st 0.842 0.118 0.041 11.313

3rd 0.938 0.035 0.026 12.490
Bayes 0.970 0.016 0.014 14.316
HP 0.904 0.072 0.024 18.031
ACI5 0.956 0.034 0.010 24.343

−0.8 1st 0.849 0.107 0.044 8.565
3rd 0.940 0.035 0.025 9.071
Bayes 0.968 0.017 0.015 10.617
HP 0.909 0.066 0.025 12.216
ACI5 0.953 0.034 0.013 16.492

−0.7 1st 0.847 0.102 0.051 7.001
3rd 0.938 0.034 0.028 7.743
Bayes 0.968 0.018 0.014 9.189
HP 0.906 0.064 0.030 9.559
ACI5 0.955 0.031 0.014 12.906

−0.6 1st 0.843 0.101 0.056 5.865
3rd 0.939 0.034 0.027 6.644
Bayes 0.969 0.017 0.014 7.967
HP 0.906 0.062 0.031 7.785
ACI5 0.954 0.031 0.015 10.510

−0.5 1st 0.839 0.100 0.061 5.078
3rd 0.940 0.033 0.028 5.883
Bayes 0.969 0.017 0.014 7.096
HP 0.906 0.059 0.035 6.647
ACI5 0.954 0.029 0.016 8.974

−0.4 1st 0.840 0.096 0.064 4.439
3rd 0.937 0.034 0.029 5.206
Bayes 0.967 0.017 0.015 6.317
HP 0.905 0.058 0.038 5.807
ACI5 0.950 0.031 0.020 7.840

−0.3 1st 0.845 0.089 0.067 3.892
3rd 0.939 0.032 0.030 4.637
Bayes 0.969 0.016 0.015 5.650
HP 0.906 0.053 0.040 5.044
ACI5 0.954 0.027 0.020 6.810

−0.2 1st 0.835 0.088 0.077 3.426
3rd 0.938 0.030 0.032 4.143
Bayes 0.969 0.013 0.018 5.066
HP 0.903 0.050 0.047 4.417
ACI5 0.951 0.024 0.025 5.963

−0.1 1st 0.842 0.082 0.076 3.055
3rd 0.937 0.032 0.031 3.726
Bayes 0.969 0.014 0.017 4.569
HP 0.905 0.048 0.047 3.956
ACI5 0.951 0.025 0.024 5.341

0 1st 0.833 0.083 0.084 2.762
3rd 0.937 0.031 0.032 3.405
Bayes 0.969 0.015 0.015 4.186

(b)

ρ Method CP UE LE AL
0 HP 0.901 0.049 0.050 3.561

ACI5 0.953 0.023 0.024 4.808
0.1 1st 0.839 0.081 0.080 2.473

3rd 0.938 0.034 0.028 3.073
Bayes 0.969 0.016 0.015 3.784
HP 0.905 0.048 0.047 3.197
ACI5 0.953 0.024 0.023 4.316

0.2 1st 0.843 0.070 0.087 2.149
3rd 0.941 0.028 0.031 2.721
Bayes 0.970 0.014 0.016 3.360
HP 0.906 0.041 0.053 2.766
ACI5 0.954 0.020 0.026 3.735

0.3 1st 0.843 0.068 0.089 1.898
3rd 0.940 0.029 0.030 2.433
Bayes 0.969 0.016 0.016 3.010
HP 0.906 0.041 0.053 2.444
ACI5 0.953 0.021 0.026 3.300

0.4 1st 0.845 0.062 0.094 1.657
3rd 0.944 0.027 0.029 2.156
Bayes 0.972 0.014 0.014 2.674
HP 0.908 0.037 0.055 2.133
ACI5 0.956 0.019 0.026 2.880

0.5 1st 0.838 0.058 0.104 1.412
3rd 0.936 0.026 0.038 1.879
Bayes 0.970 0.012 0.018 2.337
HP 0.905 0.033 0.062 1.813
ACI5 0.953 0.015 0.033 2.448

0.6 1st 0.841 0.056 0.104 1.217
3rd 0.942 0.026 0.033 1.652
Bayes 0.971 0.013 0.016 2.061
HP 0.909 0.031 0.060 1.559
ACI5 0.956 0.014 0.030 2.105

0.7 1st 0.850 0.052 0.098 1.012
3rd 0.939 0.029 0.032 1.415
Bayes 0.968 0.016 0.016 1.772
HP 0.909 0.031 0.060 1.290
ACI5 0.955 0.015 0.030 1.741

0.8 1st 0.849 0.045 0.105 0.794
3rd 0.939 0.027 0.034 1.160
Bayes 0.968 0.014 0.018 1.459
HP 0.911 0.026 0.063 0.995
ACI5 0.955 0.012 0.033 1.344

0.9 1st 0.852 0.041 0.106 0.569
3rd 0.939 0.029 0.032 0.894
Bayes 0.968 0.017 0.016 1.125
HP 0.913 0.024 0.064 0.675
ACI5 0.956 0.012 0.032 0.912
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Table 6. Summary statistics for Simulation 2: bivariate Normal with means 7 and variances 0.9. Empirical coverage

(CP ), upper (UE) and lower (LE) error probability and average length (AL) of nominal two-sided 95% confidence
intervals for γ, for varying values of ρ and sample size n = 10. Pivots used: likelihood root r (1st), modified

likelihood root r∗ (3rd); Bayesian modified likelihood root r∗B (Bayes); expression (18) by [23] (HP ); expression

(20) by [7] (ACI5). Based on 10,000 replicates; simulation error: ±0.004.
(a)

ρ Method CP UE LE AL
−0.9 1st 0.914 0.055 0.031 7.005

3rd 0.948 0.026 0.026 7.427
Bayes 0.960 0.020 0.020 7.903
HP 0.938 0.041 0.021 7.477
ACI5 0.952 0.032 0.016 8.037

−0.8 1st 0.911 0.059 0.031 4.830
3rd 0.949 0.027 0.025 5.128
Bayes 0.962 0.020 0.018 5.487
HP 0.934 0.044 0.022 5.137
ACI5 0.951 0.033 0.016 5.521

−0.7 1st 0.917 0.053 0.031 3.749
3rd 0.948 0.029 0.023 4.015
Bayes 0.959 0.022 0.019 4.304
HP 0.939 0.040 0.021 4.049
ACI5 0.949 0.033 0.018 4.352

−0.6 1st 0.911 0.053 0.035 3.091
3rd 0.948 0.026 0.026 3.318
Bayes 0.961 0.020 0.019 3.557
HP 0.936 0.038 0.026 3.371
ACI5 0.951 0.030 0.019 3.623

−0.5 1st 0.910 0.051 0.038 2.647
3rd 0.949 0.026 0.026 2.846
Bayes 0.963 0.018 0.019 3.050
HP 0.934 0.039 0.027 2.903
ACI5 0.951 0.029 0.020 3.121

−0.4 1st 0.910 0.050 0.040 2.305
3rd 0.948 0.026 0.026 2.487
Bayes 0.961 0.019 0.020 2.664
HP 0.935 0.036 0.029 2.534
ACI5 0.951 0.028 0.021 2.723
1st 0.917 0.049 0.034 2.059

−0.3 3rd 0.952 0.026 0.022 2.227
Bayes 0.962 0.020 0.018 2.386
HP 0.939 0.037 0.024 2.266
ACI5 0.951 0.028 0.020 2.435

−0.2 1st 0.910 0.046 0.043 1.816
3rd 0.947 0.025 0.028 1.972
Bayes 0.960 0.019 0.021 2.113
HP 0.933 0.034 0.033 2.000
ACI5 0.948 0.026 0.026 2.150

−0.1 1st 0.912 0.047 0.041 1.637
3rd 0.946 0.027 0.026 1.785
Bayes 0.958 0.021 0.021 1.913
HP 0.934 0.035 0.031 1.804
ACI5 0.947 0.028 0.025 1.938

0 1st 0.914 0.044 0.042 1.466
3rd 0.946 0.027 0.026 1.605
Bayes 0.959 0.021 0.020 1.720

(b)

ρ Method CP UE LE AL
0 HP 0.935 0.033 0.033 1.615

ACI5 0.947 0.027 0.026 1.736
0.1 1st 0.909 0.046 0.045 1.330

3rd 0.949 0.026 0.026 1.463
Bayes 0.963 0.018 0.018 1.569
HP 0.934 0.033 0.033 1.465
ACI5 0.950 0.024 0.026 1.575

0.2 1st 0.912 0.040 0.048 1.178
3rd 0.950 0.025 0.025 1.304
Bayes 0.960 0.020 0.020 1.398
HP 0.935 0.029 0.036 1.298
ACI5 0.950 0.023 0.027 1.395

0.3 1st 0.913 0.040 0.047 1.060
3rd 0.951 0.024 0.025 1.180
Bayes 0.962 0.019 0.019 1.266
HP 0.936 0.029 0.036 1.168
ACI5 0.952 0.021 0.027 1.255

0.4 1st 0.914 0.042 0.044 0.941
3rd 0.947 0.030 0.024 1.055
Bayes 0.961 0.022 0.016 1.132
HP 0.936 0.031 0.033 1.037
ACI5 0.949 0.025 0.026 1.114

0.5 1st 0.914 0.037 0.050 0.821
3rd 0.951 0.025 0.024 0.928
Bayes 0.961 0.020 0.019 0.997
HP 0.937 0.026 0.037 0.905
ACI5 0.952 0.021 0.028 0.972

0.6 1st 0.915 0.032 0.053 0.703
3rd 0.950 0.024 0.026 0.803
Bayes 0.963 0.018 0.020 0.863
HP 0.938 0.023 0.038 0.774
ACI5 0.952 0.018 0.031 0.832

0.7 1st 0.912 0.034 0.054 0.590
3rd 0.948 0.027 0.025 0.682
Bayes 0.962 0.019 0.018 0.734
HP 0.933 0.025 0.042 0.649
ACI5 0.951 0.018 0.031 0.698

0.8 1st 0.918 0.029 0.054 0.465
3rd 0.952 0.023 0.025 0.551
Bayes 0.962 0.019 0.019 0.593
HP 0.940 0.021 0.039 0.510
ACI5 0.954 0.016 0.030 0.548

0.9 1st 0.914 0.027 0.059 0.328
3rd 0.946 0.024 0.030 0.420
Bayes 0.960 0.018 0.021 0.453
HP 0.935 0.019 0.046 0.347
ACI5 0.948 0.015 0.037 0.373
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Table 7. Summary statistics for Simulation 3: bivariate Normal with means 0.7 and variances 0.1. Empirical

coverage (CP ), upper (UE) and lower (LE) error probability and average length (AL) of nominal two-sided 95%
confidence intervals for γ, for varying values of ρ and sample size n = 5. Pivots used: likelihood root r (1st),

modified likelihood root r∗ (3rd); Bayesian modified likelihood root r∗B (Bayes); expression (23) (ACI3). Based

on 10,000 replicates; simulation error: ±0.004.
(a)

ρ Method CP UE LE AL
−0.9 1st 0.916 0.066 0.018 10.378

3rd 0.951 0.028 0.021 10.671
Bayes 0.972 0.015 0.013 12.069
ACI3 0.904 0.058 0.038 10.431

−0.8 1st 0.913 0.067 0.020 8.075
3rd 0.951 0.026 0.023 8.208
Bayes 0.972 0.014 0.014 9.445
ACI3 0.904 0.056 0.040 7.105

−0.7 1st 0.911 0.066 0.023 6.641
3rd 0.949 0.026 0.025 6.722
Bayes 0.972 0.013 0.015 7.809
ACI3 0.901 0.058 0.041 5.620

−0.6 1st 0.912 0.068 0.020 5.717
3rd 0.949 0.028 0.023 5.776
Bayes 0.973 0.014 0.013 6.748
ACI3 0.903 0.058 0.039 4.794

−0.5 1st 0.913 0.066 0.021 4.996
3rd 0.952 0.025 0.024 5.041
Bayes 0.973 0.013 0.014 5.912
ACI3 0.906 0.056 0.038 4.142

−0.4 1st 0.905 0.074 0.021 4.485
3rd 0.944 0.031 0.024 4.528
Bayes 0.970 0.017 0.013 5.314
ACI3 0.895 0.064 0.040 3.731

−0.3 1st 0.909 0.070 0.021 3.927
3rd 0.947 0.028 0.024 3.962
Bayes 0.973 0.014 0.012 4.656
ACI3 0.899 0.060 0.041 3.264

−0.2 1st 0.913 0.066 0.021 3.532
3rd 0.950 0.028 0.022 3.566
Bayes 0.971 0.015 0.014 4.194
ACI3 0.904 0.057 0.038 2.942

−0.1 1st 0.912 0.068 0.020 3.216
3rd 0.950 0.028 0.022 3.247
Bayes 0.974 0.014 0.012 3.819
ACI3 0.903 0.060 0.037 2.675

0 1st 0.910 0.070 0.021 2.870
3rd 0.949 0.028 0.022 2.898

(b)

ρ Method CP UE LE AL
0 Bayes 0.971 0.015 0.014 3.409

ACI3 0.900 0.061 0.039 2.381
0.1 1st 0.909 0.069 0.021 2.615

3rd 0.945 0.030 0.025 2.640
Bayes 0.971 0.014 0.014 3.106
ACI3 0.900 0.060 0.040 2.175

0.2 1st 0.910 0.067 0.023 2.330
3rd 0.947 0.028 0.025 2.353
Bayes 0.972 0.013 0.016 2.769
ACI3 0.900 0.059 0.041 1.939

0.3 1st 0.912 0.066 0.021 2.097
3rd 0.949 0.026 0.024 2.118
Bayes 0.973 0.013 0.014 2.493
ACI3 0.902 0.058 0.040 1.746

0.4 1st 0.914 0.066 0.020 1.884
3rd 0.951 0.027 0.022 1.904
Bayes 0.974 0.014 0.012 2.240
ACI3 0.906 0.058 0.036 1.571

0.5 1st 0.907 0.073 0.020 1.684
3rd 0.944 0.033 0.023 1.702
Bayes 0.970 0.017 0.013 2.003
ACI3 0.895 0.065 0.040 1.405

0.6 1st 0.909 0.069 0.022 1.436
3rd 0.947 0.027 0.026 1.453
Bayes 0.972 0.014 0.014 1.710
ACI3 0.897 0.061 0.042 1.198

0.7 1st 0.909 0.070 0.021 1.212
3rd 0.945 0.031 0.024 1.228
Bayes 0.973 0.014 0.013 1.446
ACI3 0.898 0.063 0.039 1.008

0.8 1st 0.908 0.073 0.019 0.969
3rd 0.947 0.030 0.022 0.986
Bayes 0.971 0.016 0.013 1.162
ACI3 0.897 0.064 0.040 0.801

0.9 1st 0.914 0.066 0.020 0.686
3rd 0.949 0.028 0.023 0.705
Bayes 0.973 0.014 0.013 0.831
ACI3 0.905 0.057 0.038 0.548
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Table 8. Summary statistics for Simulation 3: bivariate Normal with means 0.7 and variances 0.1. Empirical

coverage (CP ), upper (UE) and lower (LE) error probability and average length (AL) of nominal two-sided 95%
confidence intervals for γ, for varying values of ρ and sample size n = 10. Pivots used: likelihood root r (1st),

modified likelihood root r∗ (3rd); Bayesian modified likelihood root r∗B (Bayes); expression (23) (ACI3). Based

on 10,000 replicates; simulation error: ±0.004.
(a)

ρ Method CP UE LE AL
−0.9 1st 0.935 0.045 0.020 6.952

3rd 0.953 0.024 0.023 6.971
Bayes 0.963 0.019 0.018 7.391
ACI3 0.930 0.038 0.032 6.154

−0.8 1st 0.935 0.043 0.022 4.772
3rd 0.951 0.024 0.025 4.768
Bayes 0.962 0.018 0.020 5.084
ACI3 0.931 0.036 0.033 4.215

−0.7 1st 0.933 0.046 0.020 3.766
3rd 0.950 0.026 0.024 3.766
Bayes 0.962 0.020 0.019 4.018
ACI3 0.929 0.039 0.032 3.387

−0.6 1st 0.931 0.047 0.021 3.101
3rd 0.947 0.028 0.025 3.104
Bayes 0.960 0.020 0.020 3.310
ACI3 0.926 0.040 0.034 2.820

−0.5 1st 0.934 0.048 0.018 2.693
3rd 0.950 0.028 0.022 2.697
Bayes 0.963 0.020 0.017 2.874
ACI3 0.930 0.040 0.030 2.460

−0.4 1st 0.932 0.046 0.022 2.347
3rd 0.950 0.025 0.026 2.352
Bayes 0.961 0.018 0.020 2.505
ACI3 0.928 0.038 0.033 2.150

−0.3 1st 0.931 0.047 0.022 2.100
3rd 0.948 0.027 0.026 2.104
Bayes 0.959 0.021 0.020 2.241
ACI3 0.927 0.040 0.033 1.925

−0.2 1st 0.933 0.047 0.020 1.894
3rd 0.950 0.026 0.025 1.898
Bayes 0.962 0.020 0.019 2.021
ACI3 0.927 0.039 0.034 1.737

−0.1 1st 0.938 0.044 0.018 1.699
3rd 0.954 0.024 0.022 1.703
Bayes 0.966 0.017 0.017 1.814
ACI3 0.933 0.038 0.030 1.559

0 1st 0.930 0.048 0.022 1.540
3rd 0.948 0.028 0.025 1.544

(b)

ρ Method CP UE LE AL
0 Bayes 0.959 0.021 0.021 1.644

ACI3 0.927 0.039 0.034 1.413
0.1 1st 0.932 0.046 0.022 1.392

3rd 0.948 0.026 0.026 1.395
Bayes 0.959 0.020 0.021 1.486
ACI3 0.926 0.039 0.035 1.278

0.2 1st 0.934 0.045 0.021 1.259
3rd 0.949 0.027 0.024 1.262
Bayes 0.960 0.021 0.019 1.344
ACI3 0.928 0.038 0.034 1.155

0.3 1st 0.935 0.046 0.019 1.131
3rd 0.951 0.027 0.022 1.133
Bayes 0.963 0.020 0.018 1.207
ACI3 0.930 0.038 0.031 1.038

0.4 1st 0.930 0.049 0.021 1.011
3rd 0.947 0.029 0.024 1.013
Bayes 0.958 0.022 0.020 1.079
ACI3 0.927 0.042 0.031 0.928

0.5 1st 0.935 0.047 0.018 0.895
3rd 0.952 0.026 0.022 0.897
Bayes 0.963 0.020 0.017 0.955
ACI3 0.929 0.041 0.030 0.821

0.6 1st 0.937 0.046 0.018 0.772
3rd 0.954 0.025 0.021 0.774
Bayes 0.964 0.019 0.017 0.824
ACI3 0.933 0.039 0.028 0.709

0.7 1st 0.933 0.044 0.023 0.646
3rd 0.946 0.027 0.026 0.648
Bayes 0.959 0.020 0.020 0.690
ACI3 0.927 0.038 0.035 0.593

0.8 1st 0.934 0.046 0.020 0.516
3rd 0.949 0.027 0.024 0.518
Bayes 0.961 0.020 0.019 0.552
ACI3 0.930 0.039 0.030 0.472

0.9 1st 0.932 0.045 0.022 0.368
3rd 0.947 0.027 0.026 0.372
Bayes 0.959 0.021 0.020 0.396
ACI3 0.929 0.038 0.033 0.324
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