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Abstract

About half of the mitochondrial DNA (mtDNA) mutations causing diseases in humans occur in tRNA genes. Particularly
intriguing are those pathogenic tRNA mutations than can reach homoplasmy and yet show very different penetrance
among patients. These mutations are scarce and, in addition to their obvious interest for understanding human pathology,
they can be excellent experimental examples to model evolution and fixation of mitochondrial tRNA mutations. To date, the
only source of this type of mutations is human patients. We report here the generation and characterization of the first
mitochondrial tRNA pathological mutation in mouse cells, an m.3739G.A transition in the mitochondrial mt-Ti gene. This
mutation recapitulates the molecular hallmarks of a disease-causing mutation described in humans, an m.4290T.C
transition affecting also the human mt-Ti gene. We could determine that the pathogenic molecular mechanism, induced by
both the mouse and the human mutations, is a high frequency of abnormal folding of the tRNAIle that cannot be charged
with isoleucine. We demonstrate that the cells harboring the mouse or human mutant tRNA have exacerbated
mitochondrial biogenesis triggered by an increase in mitochondrial ROS production as a compensatory response. We
propose that both the nature of the pathogenic mechanism combined with the existence of a compensatory mechanism
can explain the penetrance pattern of this mutation. This particular behavior can allow a scenario for the evolution of
mitochondrial tRNAs in which the fixation of two alleles that are individually deleterious can proceed in two steps and not
require the simultaneous mutation of both.
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Introduction

Mammalian mitochondrial DNA is a double-stranded circular

molecule that codes for 13 of the 87 proteins that constitute the

OXPHOS system, as well as two rRNAs and the 22 tRNAs

required for mitochondrial protein synthesis. Mutations in

mitochondrial DNA are known to be responsible for a wide

variety of diseases in humans whose common characteristic is the

impairment of the OXPHOS system. Almost half of the <250

mutations described so far are located within tRNA genes [1]. All

tRNA genes are affected in at least one position, being mt-Tl1 the

most represented with 23 different reported mutations followed by

mt-Tk and mt-Ti with 15 and 14 mutated positions respectively.

Cells carrying pathological mutations in mt-tRNAs usually

exhibit impaired respiration and reduced growth rates in medium

with galactose instead of glucose. This is due to the fact that

mutations in tRNA genes may affect the synthesis of critical

subunits of Complexes I, III and IV and two subunits of complex

V. Different mutations produce a variety of defects [2] including

impaired aminoacylation [3–5], reduced tRNA half-life [6],

impairment of pre-tRNA processing [7–10], decrease in the

steady-state levels of tRNA [11] and others, promoting, therefore,

protein synthesis deficiency. Very often, however, when mito-

chondrial protein synthesis activity is directly estimated by

metabolic labeling in cultured cell models, no decrease in overall

protein synthesis rate can be detected [12–23]. This is particularly

problematic when studying homoplasmic pathological tRNA

mutations with an unexplained partial penetrance of the disease

[23].

Mutations in mt-tRNAs tend to promote different disease

patterns. Thus, while different mutations in mt-Tk cause MERRF

or MERRF-like syndromes [2,24–26], mutations in mt-Ti, usually

have cardiomyopathy as the main or one of the cardinal features

[2,27,28]. On the other hand, deafness is one of the prominent

symptoms associated with tRNA mutations [2]. However, the

picture is more complex since it is now clear that different
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mutations can raise similar disease phenotypes while in other cases

the same mutation, such as m.3243G.A, can promote very

different diseases.

In mice, there is no description of mitochondrial tRNA

pathological mutations. However, it has been reported the

existence of four different alleles in a highly polymorphic loci at

the mt-Tr [29]. Interestingly, although none of these alleles is

pathological by itself, they modulate the expression of the age-

associated hearing loss due to a Cadherin 23 mutation [30].

Moreover, these alleles are associated with variable ROS

production by mitochondria and with a different performance of

the mitochondrial respiratory chain. We described also a ROS-

mediated mitochondrial biogenesis compensatory response asso-

ciated with non-pathological variants of mouse mtDNA that serve

for the fine-tuning of the OXPHOS capacity of the cells [31]. This

mechanism was also triggered by pathological mutations affecting

protein coding genes, but without significant benefit since

enhancing biogenesis of a deleterious mtDNA would be

detrimental rather than compensatory [31].

We describe here the first pathological mutation in a mouse

mitochondrial tRNA, an m.3739G.A transition in the mitochon-

drial mt-Ti gene. The mutation is located in the anticodon loop of

this tRNA, two bases downstream from the anticodon, and

generates a new potential Watson and Crick pair between the first

and last base of the loop. Interestingly, we previously described an

analogous mutation in humans, a homoplasmic T to C transition

two bases upstream the mt-tRNAIle anticodon triplet, responsible

for a progressive necrotizing encephalopathy with variable

penetrance [16]. We found that both, the human and the mouse

mutations, promote a similar structural deficiency in the mt-

tRNAIle that causes a reduction in the effective amount of

functional isoleucyl-tRNAIle. As a consequence, mitochondrial

protein synthesis and the activity of complexes I, III and IV are

impaired, causing a mild but significant OXPHOS deficiency. We

describe also that cells harboring the mutant mtDNA show a

higher ROS production that leads to a compensatory response to

this respiration deficiency by enhancing mitochondrial biogenesis.

This response is able to partially compensate the deficiency.

Therefore we demonstrate the positive implication of the ROS-

mediated mitochondrial biogenesis also in the expression of

mitochondrial tRNA pathological mutations found in human

patients. These observations highlight the different nature of the

mutations affecting protein-coding genes vs. tRNA genes with

consequences to our understanding of pathology and evolution of

mitochondrial tRNAs. Thus, this mechanism may generate an

epistatic-like effect (‘‘functional epistasis’’) by which a partial

suppression of deleterious mutations in mitochondrial tRNAs is

exerted. This increased mitochondrial biogenesis may allow the

survival and reproduction of some individuals despite of harboring

a deleterious allele, facilitating the appearance of a true

compensatory mutation, the bona-fide epistatic mutation.

Results

Isolation of a mitochondrial tRNA defective mouse cell
line

In our laboratory, we systematically induce and isolate mtDNA

mutations by random mutagenesis using different mitochondrial

backgrounds [32,33]. In this case, mutagenesis was performed in the

cell line TmBalb/cJ, obtained by transfer of mitochondria from

Balb/cJ mouse platelets to mtDNA-depleted cells ruL929neo [34]

and hence carrying the mtDNA of Balb/cJ. In this way, we isolated

a potential OXPHOS defective clone, mB77. In order to securely

assess the mtDNA responsibility of the phenotype observed, we

performed mitochondrial transfer from mB77 to a different cell line

lacking mtDNA, ruL929puro (the transmitochondrial cell line thus

generated was called mB77p). Then, we fully sequenced the

mtDNA of these cell lines and we found a unique mutation,

consisting in an m.3739G.A transition affecting the mt-Ti gene

(Figure 1A). This nucleotide, 100% conserved in 150 species of

mammals (Figure 1B), is located at the tRNA anticodon loop, two

bases downstream from the anticodon (Figure 1B and 1C). An

identical mutation (m.4296G.A) has been found in humans

associated with a degenerative encephalopathy (Rossmanith, W,

personal communication) and in oncocytic tumors [35]. Interest-

ingly, a homoplasmic T to C mutation two bases upstream the mt-

tRNAIle anticodon triplet (m.4290T.C), has been described in

humans and it could also promote a new potential Watson and

Crick pair between the first and last base of the anticodon loop

(Figure 1D). The latter mutation was also associated with a

degenerative encephalopathy [16]. Homoplasmic or near homo-

plasmic mutant cell lines were obtained by long-term culturing of

mB77 heteroplasmic cells, or by subcloning of mB77p (mB77p18).

This was confirmed by RFLP analysis (Figure 1E). Finally,

TmBalb/cJ mitochondria were also transferred to ruL929puro cells

(Balbp1) in order to generate a proper control for mB77p18 cells.

m.3739G.A mutation promotes defective respiration
rates and impaired growth in galactose

As shown in Figure 2A, cell respiration was significantly

decreased in the mutant cell lines (an average reduction of 24%

in mB77 and 46% in mB77p18, relative to the respective control

cell line). Compatible with a tRNA mutation, Figure 2B illustrates

that the reduction in respiration is maintained at any entry point of

the electrons, suggesting an affectation of the whole respiratory

chain (see below).

Cells with impaired OXPHOS capacity show difficulties to grow

in medium where glucose is substituted by galactose as carbon

source, and this depends very much on the extent of the OXPHOS

impairment [36,37]. Figure 2C shows how cells carrying the Balb/

cJ mtDNA display a similar doubling-time (DT) in glucose and in

Author Summary

Mitochondrial DNA (mtDNA) encodes for 13 proteins that
are subunits of the Oxidative Phosphorylation system.
These proteins are synthesized within the mitochondria by
its own set of ribosomes. In mammals the rRNAs and all
the tRNAs required for the mitoribosomes to work are also
encoded by the mtDNA. Surprisingly, half of mtDNA
mutations causing diseases occur in tRNA genes while they
represent only 10% of the total sequence. Moreover, these
pathological tRNA mutations can occur in homoplasmic
form (all the copies of the mtDNA are mutant). It is
puzzling that, with these homoplasmic mutations, some
individuals suffer a severe disease while others are healthy.
Recently we have described that common variants of
mtDNA in mouse induce differences in the performance of
the Oxidative Phosphorylation capacity but that the cell is
capable to sense these differences and adapt the
biogenesis of the OXPHOS system to compensate for
them. We also showed that this mechanism was triggered
by differences in the basal level of ROS. It was considered
that this adaptation mechanism was of no relevance in
pathological mutations. The implication of the ROS-
mediated mitochondrial biogenesis in modulating the
consequences of mild pathogenic mutations and its
significance for disease penetrance and mitochondrial
tRNA evolution are underscored.

Evolution Meets Disease in Mitochondrial tRNAs

PLoS Genetics | www.plosgenetics.org 2 April 2011 | Volume 7 | Issue 4 | e1001379



galactose (ratio DT Gal/Glu for TmBalb/cJ, 1.018 and for Balbp1,

1.044). On the contrary, cells harboring mutant mtDNAs present a

significant delayed growth in galactose with respect to glucose (ratio

DT Gal/Glu for mB77, 1.201 and for mB77p18, 1.304).

The m.3739G.A mutation reduces the activity of all
respiratory complexes with mtDNA-encoded subunits

A hallmark of pathological mt-tRNA mutations is that usually

all respiratory complexes with mtDNA encoded subunits are

affected [2]. Here, while mitochondrial enzymes with no mtDNA

encoded subunits (citrate synthase and complex II) showed a small

but significant increase in activity in mutant cells (Figure 2D), all

the respiratory complexes harboring subunits encoded by mtDNA

showed a significant activity reduction (Figure 2E).

To independently assess the OXPHOS performance at the

different enzymatic steps, we estimated the sensitivity of cell

survival to drugs that affect the function of specific respiratory

complexes (Figure 2F), the ATPase and the coupling between

respiration and ATP synthesis (Figure 2G). Thus, the lethal dose

50 (LD50) was significantly smaller for mutant versus wild type

tRNAIle cells for complex I, III and IV inhibitors while the only

respiratory complex without mtDNA encoded subunits, complex

Figure 1. Characterization of the mt-Ti mutation. A) Chromatogram showing the m.3739G.A mutation within the mt-Ti gene in mB77 cells. B)
Conservation of mt-tRNAIle primary sequence in 150 studied mammals (http://mamit-trna.u-strasbg.fr, 2007). Percentage indicates the degree of
conservation, Y (pyrimidines) R (purines). C, D) Proposed secondary structure of the tRNAIle in mouse (C) and human cells (D). The mutant nucleotides
replace the wild-type ones in the anticodon loop (arrows). Wild-type and mutant nucleotides are represented in magenta and the GAU anticodon
sequence is in red. Other mutations previously reported within the anticodon loop, are shown (D). E) RFLP analysis of the m.3739G.A mutation in
both mB77 and the transmitochondrial clone mB77p18. The presence of the mutation creates an extra recognition site for Tru9I.
doi:10.1371/journal.pgen.1001379.g001

Evolution Meets Disease in Mitochondrial tRNAs
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Figure 2. Functional analysis of OXPHOS performance. A) Oxygen consumption rate in intact cells (n = 11, 9, 13 and 12 for TmBalb/cJ, mB77,
Balbp1 and mB77p18 respectively). B) Oxygen consumption of permeabilized cells in the presence of electron donors for complex I (Glutamate +
Malate), complex III (Succinate + G3P) and complex IV (TMPD) (n = 8 in all cases except for mB77p18 where n = 9). C) Growth ratio (doubling time in
hours, DT) for each cell line, in a medium containing galactose and in a medium containing glucose (see Materials and Methods for details; n = 7, 5, 5
and 3 for TmBalb/cJ, mB77, Balbp1 and mB77p18 respectively). D) Spectroscopic measurement of mtDNA independent activities: citrate synthase (CS)
and Complex II, in mutant and wild type cells lines (n = 3 in all cases). E) Spectroscopic measurement of isolated mitochondrial complexes I, III and IV
activities in mutant and control cell lines (n$3 in all cases). F) Estimation of the LD50 for the indicated inhibitors of the different respiratory complexes
in control (TmBalb/cJ) and mutant (mB77) cells (n = 3 in both control and mutant for all inhibitors but antimycin A where n = 2; p = 0.0426 for
rotenone, p = 0.3022 for 3-Nitropropionic Acid, p = 0.0181 for Antimycin A and p = 0.0460 for sodium azide). G) Evaluation of the LD50 for the
indicated inhibitors of OXPHOS performance in control (TmBalb/cJ) and mutant (mB77) cells (DNP: n = 4 for control cells and n = 3 for mutants,
p = 0.0278 and oligomycin: n = 3 and p = 0.0201). All values are given as mean 6 SD of the mean. Asterisks indicate significant differences respect to
each control, tested by ANOVA post-hoc Fisher PLSD (p,0.05).
doi:10.1371/journal.pgen.1001379.g002
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II, was equally affected by its inhibitor in control and mutant cells

(Figure 2F). In addition, mutant cells were also more sensitive to

uncouplers (Figure 2G). On the contrary, mutant cells were more

resistant to ATP synthase inhibition by oligomycin (Figure 2G),

suggesting that they have an excess of ATP synthesis capacity with

respect to proton gradient generation capacity.

Mitochondrial biogenesis is enhanced in mt-tRNAIle

mutant cells
Both, the increase in citrate synthase and Complex II activities,

suggested that mitochondrial mass and, therefore, mitochondrial

biogenesis could be increased in mutant cells. This was confirmed

by determining the amount of mtDNA per cell as a robust index of

mitochondrial biogenesis. Thus, mutant cells almost double the

amount of mtDNA with respect to control cells and have

significantly higher citrate synthase (CS) specific activities

(Figure 3 and Figure S1A). Recently, we have demonstrated that

elevated production of H2O2 by mitochondria triggers the

signaling cascade that adapts mitochondrial biogenesis to cell

demands [31]. In agreement with this, we also found that cells

carrying the m.3739G.A mutation produce more H2O2 (Figure

S1B) and that ROS scavengers such as N-Acetyl-Cysteine (NAC)

or Tiron added to the culture medium, abolish the signal that

triggers mitochondrial biogenesis and equalizes the level of

mtDNA and CS activity between mutant and wild type cells

(Figure 3 and Figure S1C). As a consequence of this, cell

respiration decreased significantly more in mutant than in control

cells after the NAC treatment indicating an effective compensation

of the defect by the biogenesis activation (Figure S1D).

Mitochondrial protein synthesis is impaired in cells
carrying m.3739G.A mutation

The fact that the m.3739G.A mutation affects a tRNA gene

strongly suggests that the observed OXPHOS phenotype could be

explained by an impairment in mitochondrial protein synthesis. To

investigate this, in vivo protein synthesis experiments were

performed. Analysis of mitochondrial DNA translation products

did not reveal significant quantitative differences or abnormal

migration of any polypeptide in the mutant cells (Figure 4A). This

puzzling observation is, however, very commonly reported in other

pathological tRNA mutations and suggests that the drop of

mitochondrial protein synthesis should be very severe to be revealed

by this methodology. Nevertheless, one has to be aware that the

experiment shown in Figure 4A reflects the rate of mitochondrial

protein synthesis on a ‘‘per cell’’ basis. Then, if the amount of

mtDNA per cell is taken into consideration, a less efficient use of the

mitochondrial genome would be revealed in mutant cells. In order

to get a more sensitive approach, we reasoned that if mitochondrial

protein synthesis was in fact impaired in the mutant cells they would

become more sensitive to specific inhibitors of mitochondrial

protein synthesis such as chloramphenicol (CAP). When we

analyzed this possibility, we found that, the LD50 for CAP was

significantly lower for cells carrying m.3739G.A mutation when

compared with wild type cells (Figure 4B, upper panel). This does

not reflect a general weakness of the cell since the LD50 for

cycloheximide, a specific inhibitor of the cytoplasmic ribosomes,

remains similar in both cell types (Figure 4B, lower panel).

Mitochondrial respiratory complexes assembly is reduced
in cells with m.3739G.A mutation

In an attempt to further investigate the consequences of the protein

synthesis impairment induced by the m.3739G.A mutation, we

performed in vivo metabolic labeling of the mitochondrial-encoded

proteins followed by a chase period of 48 hours. Blue Native gel

electrophoresis (BNGE) analysis (Figure 5A) revealed that the amount

of the assembled complexes is affected in mutant cells where

complexes I, IV, and likely complex III, seemed to be reduced. On

the contrary, and in agreement with the lower sensitivity to

oligomycin, complex V seems to be increased in mutant cells. Thus,

complex I/V ratio was decreased in both mutants to a similar level,

being 21% in mB77 and 38% in mB77p18, relative to each control,

while the other two complexes were diminished in a very different

proportion (mB77: III/V = 23%; IV/V = 19%; mB77p18: III/V =

84.5%; IV/V = 81.7%).

Very interestingly, when BNGE was followed by SDS-

polyacrylamide gel electrophoresis of the labeled products we

could observe the accumulation of subcomplexes affecting mainly

complexes III and IV, both in the m.3739G.A original and

transmitochondrial mutants. These did not appear in the control

samples (Figure 5B).

To confirm the relevance of this observation, BNGE followed

by western blot was performed (Figure 6). Thus, we could detect in

mutant cells the presence of subcomplexes of complexes I and III

that did not appear in controls (Figure 6). Therefore, the deficiency

in mitochondrial protein synthesis induced by the m.3739G.A

mutation causes a disturbance in the assembly of the respiratory

complexes or a reduction in their stability.

The mt-tRNAIle amount is slightly decreased in mutant
cells

To investigate whether the mt-tRNAIle amount was diminished

in our mutant cell lines, high-resolution northern blot analysis was

performed. As shown in Figure 7A, the steady-state level of the mt-

tRNAIle in mutant cells was almost normal, with a value of 80% of

the amount in controls when normalized by tRNAGly signal. Such

a small reduction would likely be of no functional significance.

m.3739G.A mutation and mt-tRNAIle precursor
processing

It has been reported that some pathogenic mutations in mt-

tRNAIle affect steps in tRNA maturation including 39-end

processing and CCA addition [8,10]. To analyze the possible effect

of m.3739G.A mutation on mt-tRNAIle precursor processing,

several cDNA clones derived from circularized mt-tRNAIle from

wild type and mutant cell lines were sequenced [11]. Thus, 14 out of

17 sequences from control cells and 11 out of 18 from mutant cells

showed the expected 39CCA and 59 ends. Some of the remaining

sequences are likely due to artifacts where the oligodeoxynucleotide

used for cDNA synthesis was ligated to the 59-end of the tRNA. The

gene encoding the mt-tRNAIle overlaps two nucleotides with the 39

end of the mt-Nd1 gene and three nucleotides with the 59 end of the

gene encoding for the tRNAGln. We believe that RNAs derived

from the processing of tRNAGln and ND1 mRNA explain the

finding of this proportion of circularized products with the lack of 39

and 59 portions of the tRNAIle. In summary, since the major

proportion of molecules showed a proper maturation of the 39 and

59 and CCA addition, we conclude that no major defect in the

processing of the mt-tRNAIle can be attributed to the mutation

(Figure S2). We also confirmed the proper 39 CCA addition in

mutant mt-tRNAIle by performing allele specific termination of

primer extension (Figure 7B).

Cells harboring m.3739G.A mutation show an abnormal
folding of the mt-tRNAIle

In order to investigate the aminoacylation status of the mutant

mt-tRNAIle, mitochondrial nucleic acids were purified under acid

Evolution Meets Disease in Mitochondrial tRNAs
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conditions, electrophoresed through an acid (pH = 5) 10%

polyacrilamide/4M urea gel and electroblotted onto a zeta-probe

membrane. Then, the blots were sequentially hybridized with

specific probes for different mitochondrial tRNAs. Under these

conditions the acylated and deacylated forms of most of the tRNAs

may migrate differently due to the induction of a conformational

change in the tRNA upon aminoacylation, while an increase in

urea concentration decreases the tRNA folding and minimizes the

migration differences [38]. In that way we detected for tRNAArg,

tRNATrp and tRNALeu, two bands, the slower moving corre-

sponding to aminoacylated tRNA species (Figure 7C). The

identification of the faster moving band as the uncharged tRNA

was made by running in parallel a sample of deacylated tRNA

[38]. Unfortunately, in the case of mt-tRNAIle, the two forms,

acylated and deacylated, do not separate enough to allow

estimation of the aminoacylation level (Figure 7C). Interestingly,

a second slower migrating band appeared only in the mutant mt-

tRNAIle. This second band was present even after the deacylation

treatment suggesting, therefore, a second structural conformation

of the uncharged tRNA. To confirm that the second band reveals,

in fact, a different conformation of the tRNA, we analyzed them

again either in fully native conditions (no urea) or in higher (8 M)

Figure 3. Analysis of the biogenetic response induced by the mutation and effect of ROS scavengers. A) mtDNA copy number variation
between wild type and mutant cells without drugs (left) or in the presence of NAC (center) or Tiron (right) (n = 25, 22, 14 and 12 for TmBalb/cJ, mB77,
Balbp1 and mB77p18 respectively and p,0.0001 between each mutant and its control in the absence of scavengers; n = 3 in all cases but mB77
(n = 4) and p = 0.0376 between Balbp1 and mB77p18 in the presence of NAC and n = 7, 3, 5 and 4 for TmBalb/cJ, mB77, Balbp1 and mB77p18
respectively after treatment with Tiron; p = 0.0406 between TmBalb/cJ and mB77). B) Spectroscopic measurement of specific citrate synthase
activities without drugs (left) and after treatment with NAC (center) or Tiron (right) (n = 8 in all cell lines but mB77 (n = 6); p,0.0001 between TmBalb/
cJ and mB77 and p = 0.0081 between Balbp1 and mB77p18 in the absence of scavengers, n = 4 in all cases in the presence of NAC and n = 3 for all cell
lines after treatment with Tiron). N = NAC and T = Tiron.
doi:10.1371/journal.pgen.1001379.g003

Figure 4. Analysis of mitochondrial protein synthesis and protein synthesis sensitivity to inhibitors. A) Fluorogram, after
electrophoresis through an SDS-polyacrylamide gradient gel, of the mitochondrial translation products of the mutant and wild-type cells, labeled
with [35S]-methionine for 1 hr in the presence of emetine (ND1 to 6: NADH dehydrogenase subunit 1 to 6; Cytb: Cytochrome b; COI, II and III:
Cytochrome C Oxidase subunits I to III; A6 and A8: ATP synthase subunits 6 and 8). B) Differential influence of CAP and cycloheximide in wild-type
(TmBalb/cJ) versus mutant (mB77) cells viability (n = 7 for control and n = 3 for mutant cells in the case of CAP (p = 0.0009) and n = 4 and 5 for control
and mutant respectively in the case of cycloheximide (p = 0.5948). All values are given as mean 6 SD of the mean. Asterisks indicate significant
differences respect to each control, tested by ANOVA post-hoc Fisher PLSD (p,0.05).
doi:10.1371/journal.pgen.1001379.g004

Evolution Meets Disease in Mitochondrial tRNAs
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Figure 5. Metabolic labeling of the assembled OXPHOS complexes. A) Fluorogram, after BNGE, of the mitochondrial translation products of
mutant and control cells, pulse-labeled with [35S]-methionine for 2 hr in the presence of cycloheximide (P) and chased (C) for 48 hours; CI-CV,
complexes I to V. B) Fluorograms of two-dimensional electrophoresis (BNGE followed by SDS-PAGE), of the mitochondrial translation products
obtained in b (48h chase). I-V, indicate the position of complexes I to V. Asterisks show the presence of low molecular weight subcomplexes
containing CYTB and COI in mutant cell lines.
doi:10.1371/journal.pgen.1001379.g005

Evolution Meets Disease in Mitochondrial tRNAs
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urea concentration (Figure 7D). We confirmed that the separation

between the two bands of mt-tRNAIle was almost abolished when

the tRNA was closer to full denaturation (Figure 7D).

To understand whether the slower-migrating extra band in the

mt-tRNAIle of mutant cells could be charged with its cognate

amino acid, in organello aminoacylation experiments using L-3H-

aminoacids were performed [38,39]. Thus, we incubated isolated

mitochondria in the presence of either L-[4,5-3H]-Isoleucine or L-

[3,4(n)-3H]-Valine as a control. As shown in Figure 7E, when in

organello-aminoacylated tRNAs were isolated and electrophoresed

under acidic conditions, only one band was observed. These

results confirm that the slower moving extra band present in

mutant cell lines was not isoleucyl-tRNAIle, and therefore, that it

corresponds to a non-chargeable form of the tRNAIle. As a

consequence, the ratio of isoleucyl-tRNAIle /tRNAIle seemed to be

abnormally low in the mutant cells.

In addition, since we propose the missfolding of the tRNAIle as

the primary cause of the protein synthesis defect observed in

mutant cells, we also tested the influence of a drug (pentamidine),

that specifically targets mitochondrial tRNAs preventing their

proper folding [40], on the survival of the cells. As shown in

Figure 7F, cells carrying m.3739G.A mutation are significantly

more sensitive to pentamidine than wild type cells.

The human m.4290T.C and the murine m.3739G.A
mutations in mtDNA cause similar molecular effects

To determine whether the observed changes in the tRNAIle

secondary structure were also present in human cell lines carrying

mutations in tRNAIle anticodon loop, we took advantage of

human transmitochondrial cell lines harboring the m.4290T.C

pathological mutation [16]. This mutation is located two bases

upstream the tRNA anticodon triplet and creates a new potential

Watson and Crick pair between the first and last base of the loop

(Figure 1D). As a control, we used a pool of transmitochondrial cell

lines obtained by transferring mitochondria from platelets of

different healthy individuals belonging to different mtDNA

haplogroups.

In agreement with the results obtained in mouse cells, the

human tRNAIle mutant caused reduced levels of respiration when

compared to control (Figure 8A). More interesting, as shown in

Figure 8B, both mtDNA copy number and H2O2 production were

increased in human mutant cells as observed in mouse mutants.

When human mitochondrial tRNAs isolated under acidic

conditions were electrophoresed through acid gels and hybridized

with mt-tRNAIle specific probes, a slower migrating band

appeared in mutant samples (Figure 8C). This second band,

which was not present in controls, remained even after strong

deacylation treatment (pH = 8.5 and heating for 15 minutes at

95uC) and is identical to the slower moving band described above

for the mouse mutant tRNA. In addition, as in mouse cells, we

confirmed that the human tRNAIle mutation promotes a higher

sensitivity of cell growth to complex I, III and IV inhibitors, as well

as to uncouplers, without modification of the sensitivity to complex

II inhibition (Figure 8D). Again, human mutant cells were more

resistant than wild type to inhibition of ATPase by oligomycin

(Figure 8D). Finally, human mutant cells were more sensitive to

CAP but not to cycloheximide compared to wild type, as was

observed in mouse cells (Figure 8E).

Discussion

We describe here the generation and characterization of the first

pathological mutation in a mitochondrial tRNA gene in mouse cells,

a G to A transition at position 3739 within the mt-tRNAIle anticodon

loop. We have carefully analyzed the phenotype induced by this

mutation and established its deleterious and potentially pathogenic

character. Our conclusion is supported by the following results:

(a) The m.3739G.A mutation in the mt-Ti is the only one

found in the entire mtDNA of the mutant cell line.

Figure 6. Steady-state level of respiratory complexes. Western blot of the different assembled complexes after two-dimensional
electrophoresis (BNGE followed by SDS-PAGE) probed with monoclonal antibodies specific for complexes I (anti NDUFB6 and NDUFB8), III (anti
Core2), IV (anti COI) and II (anti SDHA (FP70)). The presence of subcomplexes containing complex III and complex I subunits (arrowheads) is also
observed in the steady state in mutant cells.
doi:10.1371/journal.pgen.1001379.g006
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(b) The mutation alters the secondary and/or the tertiary

structure of the tRNA.

(c) The mutation impairs mitochondrial protein synthesis

producing an alteration in the proportion of respiratory

complexes and the accumulation of subcomplexes.

(d) Cells harboring the mutation show OXPHOS impairment

and defective growth in galactose.

Thirteen mutations affecting mt-Ti gene have been reported to

date in humans. Most of them seem to affect primarily tRNA

biosynthesis, leading to a drop in its steady-state levels [41]. Four

different mutations, which are placed in different regions of the

cloverleaf structure of this tRNA, exert their effect on mutant

tRNA biosynthesis by impairing the efficiency of its 39-end

maturation [8] and at least one, m.4269A.G, located within the

tRNA acceptor stem, promotes tRNA instability both in vivo and in

vitro [6] because of a reduction in binding affinity of this tRNA for

elongation factor Tu [42]. Other mutations reduce the efficiency

of aminoacylation [8]. Three of them, m.4290T.C, m.4291T.C

and m.4295A.G, are located in the anticodon loop. The

m.4295A.G causes hypertrophic cardiomyopathy [43], seems

to affect 39-end maturation [8], and promotes a 50% reduction in

tRNA steady-state level [41]. The m.4291T.C transition has

been associated with hypertension, hypercholesterolemia, and

hypomagnesemia [44], but nothing is known about the molecular

effects induced by this mutation. Finally, we report here that the

human m.4290T.C, associated with progressive necrotizing

encephalopathy [16], promotes an alternative folding of the tRNA

with similar probability to the canonical folding. Two of these

anticodon-loop mutations in human tRNAIle have been reported

Figure 7. mt-tRNA analysis in mt-Ti mouse mutants. A) Relative tRNAIle levels in mutant and control cell lines. The radioactive signal (upper
panel) obtained after hybridization of total mitochondrial RNA with the specific tRNAIle probe was normalized by the signal of the tRNAGly probe
obtained from the same blot. The lower panel represents the quantification of the ratio in each cell line. B) Analysis of mt-tRNAIle precursor
processing. The CCA addition to mutant and control tRNA-Ile was analyzed by allele-specific termination of primer extension. For control purposes
we used synthetic mt-tRNAIle (S). The electrophoretic profiles were analyzed with the 1-D Analysis Software Quantity One. C) Analysis of the
aminoacylation capacity of mutant mt-tRNAIle. The identification of the lower band as the uncharged tRNA was made by running in parallel a sample
of deacylated tRNA and the quality of the samples was tested by sequential hybridization with different probes specific for mt-tRNAArg, mt-tRNATrp

and mt-tRNALeu1. D) Analysis of the electrophoretic mobility of the indicated tRNAs as in C) with no urea or with 8M urea. E) Fluorogram after
electrophoresis under acidic conditions of total mt-RNA samples obtained from in organello aminoacylation experiments. The assays were performed
in isolated mitochondria from control and mutant cell lines using either L-[4,5-3H]-Isoleucine or L-[3,4(n)-3H]-Valine. F) LD50 of pentamidine in control
(TmBalb/cJ) vs. mutant (mB77) cells (n = 3 in both cases and p = 0.0064, ANOVA post-hoc Fisher PLSD test).
doi:10.1371/journal.pgen.1001379.g007
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Figure 8. The human m.4290T.C mutation promotes the same molecular and phenotypic effects as the mouse mutation. A) Oxygen
consumption rate in intact cells (n = 25 and 7, in controls and mutants, respectively p,0.0001). B) mtDNA copy number variation (n = 8 and 23 for
control and mutants, respectively p = 0.0179) and H2O2 production between wild type and mutant cells n = 16 and 18 for control and mutants
respectively, p,0.0001). C) Analysis of the aminoacylation capacity of mt-tRNAIle in human cells carrying the m.4290T.C mutation. The identification
of the lower band as the uncharged tRNA was made by running in parallel a sample of deacylated tRNA and the quality of the samples was tested by
hybridization with a different probe specific for mt-tRNAArg. D) Relative ratio of LD50 for the indicated inhibitors of the different respiratory complexes
and the uncoupling or the inhibition of mitochondrial ATP synthase, (Human cells: n$3 in all cases but sodium azide (n = 2 for control cells). Mouse
cells: see Figure 2F and 2G) E) Differential influence of CAP or cycloheximide in wild-type versus mutant cells viability (CAP n = 3 in both cases and
Cycloheximide: n = 4 and 8 for control and mutant cells; p = 0.0109 in the case of CAP and p = 0.5536 for cycloheximide.). Data are given as the mean
6 standard deviation of the mean. Asterisks indicate significant differences respect to each control, tested by ANOVA post-hoc Fisher PLSD (p,0.05).
The control group is composed by transmitochondrial cybrids belonging to different mtDNA haplogroups whereas the mutant group is formed by
two independent clones (VS and KS6) belonging to haplogroup U6 and harboring the m.4290T.C mutation in homoplasmic form.
doi:10.1371/journal.pgen.1001379.g008
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as homoplasmic (m.4290T.C and m.4291T.C) showing a

variable penetrance that remains unexplained at the molecular

level. In addition, a new mutation (m.4296G.A) corresponding to

the one described here, has been found in humans associated with

a degenerative encephalopathy (Rossmanith, W., personal com-

munication).

The mouse mutation described here (m.3739G.A) is also

located at the anticodon loop of the tRNAIle, at the same position

that the human m.4296G.A, and also induces a similar

alternative folding of the tRNA to that promoted by the human

m.4290T.C. This may be possible despite being in a different

relative position of the tRNA because both may generate the same

new base pairing in the anticodon-loop of the tRNAIle [16]. This

alternative folded tRNAIle is not aminoacylated, representing a

defective tRNA secondary/tertiary structure that cannot partici-

pate in protein synthesis and, therefore, reduces the amount of

functional tRNA. Together with that, we have established that

both mutations, in humans and in mouse cells, cause only a

moderate defect in OXPHOS that is accompanied by accumu-

lation of subcomplexes of the respiratory chain. Therefore, the

mouse mutation seems to fully reproduce the molecular hallmarks

of a described human mtDNA mutation affecting a tRNA. We

would like to stress that both the human and the mouse mutations

could reach homoplasmy because the OXPHOS deficiency they

promote is moderate. Therefore, they represent an intriguing set of

mitochondrial tRNA mutations with very variable penetrance

than can cause no symptoms or, as it is the case of the tRNAIle

mutation, a devastating neurological disease in members of the

same family [16]. In particular, the mother was homoplasmic for

the m.4290T.C mutation without showing any symptoms while

her daughters suffered the diseases at different stages [16].

Understanding this phenomenon is critical in our attempt to

develop therapeutic strategies for these diseases.

Here we are proposing a model aimed to explain this behavior

that we would like to call ‘‘functional epistasis model’’ (Figure 9).

The concept of epistasis refers to the suppression of the effect of

one gene by another or of one mutation by another. This is very

relevant in evolutionary studies to understand the changes in gene

sequences that may affect function. In particular, this has been

studied in mammalian mitochondrial tRNAs [45-47]. One

fundamental conclusion of these studies is that in numerous cases

mammalian mitochondrial tRNAs has crossed low-fitness geno-

types to reach isolated fitness peaks [47]. This has lead to the

conclusion that simultaneous fixation of two alleles that are

individually deleterious may be a common phenomenon at the

molecular level in the evolution of mitochondrial tRNAs. But it

still remains to be clarified if this compensatory evolution does

proceed through rare intermediate variants that never reach

fixation or not.

We believe that it may be possible to assimilate the

homoplasmic tRNA mutations causing diseases together with

their variable penetrance in humans with the rare intermediate

variants required to cross the low fitness- valleys in tRNA

evolution as follows (Figure 9):

First, a mitochondrial tRNA (mt-tRNA) mutation occurs that

destabilizes the functional structure of the tRNA making a second

but non-functional folding similarly feasible. If the mutation

reaches homoplasmy, it substantially reduces the availability of

functional tRNA and can compromise mitochondrial protein

synthesis fidelity. As a consequence, an unbalance in the assembly

of respiratory complexes induces a compensatory response by

increasing mitochondrial biogenesis through a rise in the basal

production of ROS (H2O2). As has been described for mouse mt-

tRNA non-pathological variants [31], this response can be in some

cases sufficient to compensate the deleterious effect of the

mutation. In other cases, differences in the amplitude of this

response modulated by gene context or environmental factors can

render this compensatory response insufficient to prevent the

expression of the disease phenotype (Figure 9). For example, the

excess of ROS can also trigger the expression of ROS defenses and

if this response is very efficient the activation of mitochondrial

biogenesis would be blocked, the effect of the mutation would not

be compensated and the disease would manifest. Conversely, if

ROS defenses are less efficient, mitochondrial biogenesis would be

activated and the amount of functionally folded tRNA can grow to

a level that can substantially compensate the mitochondrial

protein synthesis defect. In this case, the disease would be

prevented or substantially ameliorated. The woman harboring this

Figure 9. Modeling of the potential consequences of the ‘‘functional epistasis’’ on disease penetrance and sequence evolution of
mitochondrial tRNAs. First, a mitochondrial tRNA (mt-tRNA) mutation occurs that disestablished the functional structure of the tRNA making a
second but non-functional folding similarly feasible. If the mutation reaches homoplasmy substantially reduces the availability of functional tRNA and
can compromise mitochondrial protein synthesis fidelity. As a consequence mitochondria biogenesis is triggered by a ROS-induced mechanism that
is modulated by genetic and environmental factors. Depending of the amplitude of the compensatory mechanism, the disease would either be
prevented (or substantially ameliorated) or declared. If prevented, the mutant mtDNA could be transmitted by the female germ-line to the
descendants. Within the next generation and for each new individual the same options are open again, and therefore the mutation effectively
reduces the fitness of their carriers by reducing the likelihood of reproduction and would be lost in a few generations. However, this scenario
substantially increases the likelihood for the emergence of a second mutation in the same molecule, a true epistatic mutation, that can render the
tRNA fully functional again and that would be definitively fixed.
doi:10.1371/journal.pgen.1001379.g009
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mutation would be able to reproduce and, in that way, transmit

the homoplasmic mutation in the mtDNA to the descendants.

Within the next generation and for each new individual the same

options would be open and some carriers could develop a fatal

early disease while others could be asymptomatic; therefore the

mutation effectively reduces the likelihood of reproduction of the

carrier woman and would be likely lost in a few generations.

However, this scenario substantially increases the likelihood for the

emergence of a second mutation in the same molecule, a true

epistatic mutation that can render the tRNA fully functional again,

and the new variant would behave as a neutral allele within the

population. This would be a plausible mechanism to cross low-

fitness valleys in the evolution of mt-tRNAs [47].

Materials and Methods

Cell lines and media
All the cell lines were grown in DMEM (GibcoBRL)

supplemented with 5% FBS (fetal bovine serum, Gibco BRL).

MtDNA-less mouse cells (r0L929neo and r0L929puro) were

generated by long-term growth of L929 mouse cell line in the

presence of high concentrations of Ethidium Bromide and

transfection with the neocassette-containing plasmid pcDNA3.1

(Invitrogen) as previously described [34] or the purocassette-

containing plasmid pBABE puro. TmBalb/cJ cells were generated

by transference of mitochondria from platelets to r0L929neo cells

as described elsewhere [34,48]. mB77 cells were derived by

random mutagenesis of TmBalb/cJ cells using TMP (4,59,8-

trimethylpsoralen) and UV light as previously described [33] and

harbor an A to G transition at position 3739 at mt-Ti gene. Balb/

cJp1 and mB77p18 cells were generated by TmBalb/cJ or mB77

cytoplasts transference to r0L929puro cells. Transmitochondrial

cell lines were isolated by growing the cell population in DMEM

supplemented with 5% dFBS and 10 mg/ml of puromycin

(SIGMA). When indicated, cells were cultured in the presence of

5 mM NAC for a week or 1mM Tiron for 72 hours.

DNA analysis
Total DNA from cell lines was extracted using standard

procedures. The complete mtDNA was amplified in 24 overlap-

ping 800-1,000 bp-long PCR fragments using a multifunctional

robot (Genesis 150 TECAN, Crailsheim) as previously described

[49]. Primers were designed using the reference sequence

(NC_005089) [29].

RFLP analysis
To confirm the presence of the mutation, RFLP analysis was

achieved. See Table S1 for primer sequences. The primer-

generated mutation together with the A3739 mutant version

creates two recognition sites for Tru9I and produces three bands

of 63, 51 and 41 bp upon digestion with this enzyme. The

restriction site that produces the 63 and 41 bp bands is disrupted

when the WT version G3739 is present and a new band of 104 bp

appears. Therefore, an internal control for full digestion with

Tru9I is present in the analysis. Fragments were analyzed by

electophoresis in a 10% polyacrylamide gel.

Growth measurements
Growth capacity was determined by plating 5*104 cells on 12

wells test plates in 2 ml of the appropriate medium (DMEM,

which contains 4.5 mg of glucose/ml supplemented with 5% FBS,

or DMEM lacking glucose and containing 0.9 mg of galactose/ml,

supplemented with 5% dFBS), incubating them at 37uC for 5 days

and performing cell counts at daily intervals.

Oxygen consumption measurements
O2 consumption determinations in intact or in digitonine-

permeabilized cells were carried out in an oxytherm Clark-type

electrode (Hansatech) as previously described [50] with small

modifications [34].

Enzymatic activity measurements
Mitochondria were isolated as described previously [51] and the

different enzymatic activities were assessed by spectrophotometry.

Citrate synthase and complexes I, II, III and IV activities were

measured in isolated mitochondria as described before [32,52].

Cell viability assays
Effect of different inhibitors on the viability of control and

mutant cells was evaluated using the MTT reduction assay

according to Mosmann et al [53]. This is an indirect way of

measuring cell viability in which mitochondrial dehydrogenases of

viable cells reduce the yellowish water-soluble MTT to water-

insoluble formazan crystals. These crystals are solubilized with

dimethyl sulfoxide (DMSO) and optical density (OD) is read on an

ELISA reader (TECAN) at 570 nm.

Briefly, cells were plated into 96-well microtiter plates at a

density of 2.5*103 cells per ml, in the case of human cells, and

5*103 cells per ml when analyzing mouse cells. Then, cells were

cultured for 3 days to be allowed to reach exponential growth rate

before drug addition. Afterward, cells were cultured in galactose

containing medium with inhibitors for 48 hours (for inhibitory

concentration ranges see Table S2). After drug exposition, cells

were fed with fresh galactose-containing medium and allowed to

grow for 2 population doubling times. At the end of the recovery

period, plates were incubated with fresh medium and MTT for

4 hours in a humidified atmosphere at 37uC, formazan crystals

solubilized and OD at 570 nm read. The results obtained were

given as relative values to the untreated control in percent and

lethal dose 50 was determined as the drug concentration required

to reduce the absorbance to half that of the control. All

experiments were performed at least in triplicate.

Mitochondrial DNA copy number quantification
MtDNA quantification was performed by real-time PCR using

an ABI PRISM 7000 Sequence Detector System (AB Applied

Biosystems) and Platinum SYBR Green qPCR SuperMix-UDG

(Invitrogen). Total cellular DNA was used as template and was

amplified with specific oligodeoxynucleotides for mtCo2 (from

position 7037 to 7253 in mouse (NC_005089) and from 7859 to

7927 in human samples (NC_012920)) and SdhA (from position

1026 to 1219 in mouse (AK049441) and from position 224 to 295

(AF171018) in human DNA). mtDNA copy number per cell was

calculated using SdhA amplification as a reference for nuclear

DNA content as previously reported [31]. See Table S1 for primer

sequences.

Determination of hydrogen peroxide production
Production of hydrogen peroxide was measured in cultured cells

grown in the absence or in the presence of NAC for 1 week as

previously described [31]. Briefly, 100,000 cells were incubated at

37uC for 30 minutes in the presence of 100 mM 29,7-Dichlor-

odihydrofluorescein diacetate (2,7-DCFH2-DA, Fluka). Then, cells

were collected and the reaction was stopped in an ice-bath for 5

minutes. After that, cells were disrupted by treatment with Triton

X-100 (2%) and centrifuged at 2,500 g for 20 minutes at 4uC. The

supernatant was used to measure fluorescence emission (excitation

at 485 nm and emission at 535 nm) in a TECAN Spectrafluor
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plus. The amount of hydrogen peroxide produced was then

calculated using a standard curve of 2,7-DCF in which 1 mM of

2,7-DCF represented 1 mM of hydrogen peroxide.

Mitochondrial protein synthesis analysis
Labeling of mtDNA-encoded proteins was performed with

[35S]-methionine in intact cells as described elsewhere for 1 hour

[54]. In the pulse-chase experiments, labeling was carried out in

the presence of cycloheximide to inhibit cytoplasmic protein

synthesis for 2 hours. Then the drug and the label were removed

and the incorporation of the labeled proteins in fully assembled

complexes was followed after 48 hours of chase.

Assembled protein detection by western blot
Estimation of the relative level of the assembled respiratory

complexes in cell lines was performed by Blue-Native electropho-

resis (BNGE) followed by western blot as described before [32].

Confirmation of the presence of subcomplexes in mutant cells

was carried out using two-dimensional BNGE/SDS-PAGE. These

filters were sequentially probed with specific antibodies: anti-

NDUFB6 (complex I) anti-SDHB (ISP30) or anti-SDHA (Fp70)

(complex II), anti-Core 2 (complex III), and anti-CO I (complex

IV) from Molecular Probes.

Mitochondrial RNA isolation
The mitochondrial fraction, isolated from cell cultures as

described previously [51], was suspended in 10 mM Tris-HCl

(pH = 7.4), 0.15 M NaCl, 1 mM EDTA, and incubated for 15

minutes at 37uC in the presence of proteinase k (200 mg/ml), SDS

(2%) and RNAse-free DNAse (Roche). Then, total mitochondrial

RNAs were extracted with an equal volume of phenol-chloroform-

isoamyl alcohol (25:25:1), and then precipitated with ethanol

[38,39]. In the experiments in which aminoacyl-tRNA complexes

had to be preserved, isolation of mitochondrial fraction was

followed by extraction of RNAs under acid conditions as

previously described [38,39].

Quantification of the mitochondrial mt-tRNAIle

The relative content of mt-tRNAIle was determined as described

elsewhere [4]. Briefly, total mitochondrial RNA preparations were

electrophoresed through a 10% polyacrylamide-7 M urea gel in

Tris-borate-EDTA buffer (after heating the sample at 70uC for 10

minutes) and then electroblotted onto a Zeta-probe membrane

(Bio-Rad) for hybridization analysis with specific oligodeoxynu-

cleotides probes. These probes were 59-end labelled through T4

polynucleotide kinase (Promega) reaction using [c32P]-dATP

(Amersham). For the detection of mt-tRNAIle and mt-tRNAGly,

oligodeoxynucleotides specific for each tRNA were used (Table

S1).

The hybridization reactions were carried out in a mixture of 6x

SSC, 0.1% sodium pyrophosphate, 5x Denhardt’s solution, 0.1%

SDS and 250 mg of salmon sperm DNA per ml, for 4 h at 37uC.

After hybridization, the membranes were washed twice for 10 min

in 2x SSC-0.1% SDS at 37uC.

Sequencing of 59- and 39- ends mt-tRNAIle

The 59 and 39 ends of the mt-tRNAIle from TmBalb/cJ and

from the mutant cell line mB77 were sequenced after cDNA

synthesis, PCR amplification and cloning as described elsewhere

[11]. Briefly, mt-tRNA fractions were obtained by polyacrylamide

gel electrophoresis as previously detailed [39] and circularized by

incubation in the presence of T4-RNA ligase (Promega). Then, a

complementary DNA chain of mt-tRNAIle was synthesized by

reverse transcriptase using 1st Strand cDNA Synthesis Kit for RT-

PCR (AMV) from Roche with the specific oligodeoxynucleotide

tIle1: TATCAAAGTAATTCTTTTATC. The mt-tRNAIle frag-

ment was then synthesized by PCR using the primers tIle1 and

tIle2 (AGTAAATTATAGAGGTTCAAG) and cloned in the TA

Cloning vector (Invitrogen).

Radiolabeled primer extension of mt-tRNAIle 59- and
39- ends

To confirm the proper 39-end processing and CCA addition in

the mutant tRNAIle, radiolabeled primer extension was per-

formed. Thus, the mt-tRNAIle fragment synthesized as described

above was used as template and the 59 end 32P-labeled tIle-PE

oligodeoxynucleotide was used as a primer: tIle-PE: TTCAAG-

CCCTCTTATTTCTA. Nucleotide concentrations were: 50 mM

dCTP and 500 mM ddATP. For control purposes we used a

synthetic mt-tRNAIle (Dharmacon). The radioactive signal was

developed using the Personal Molecular Imager system from BIO-

RAD and analyzed with 1-D Analysis software Quantity One

(BIO-RAD).

Identification of mt-tRNAs charged and uncharged forms
The mtRNA fraction isolated under acid conditions was

electrophoresed at 4uC through a 10% polyacrylamide-0 to 8 M

urea gel in 0.1 M sodium acetate (pH = 5) at 100–200 V and then

electroblotted and the mt-tRNAs charged and uncharged forms

were identified by sequential hybridization with specific probes as

described above. (Primer sequences in Table S1).

In organello aminoacylation assays
For in organello aminoacylation, mitochondria were purified as

described before [51] and the mitochondrial pellets were

incubated in the appropriated medium as previously detailed

[39]. Briefly, the isolated organelles (,1 mg of protein) were

incubated in 0.5 ml buffer containing 10 mM Tris-HCl, pH = 7.4,

100 mM KCl, 5 mM MgCl2, 10 mM K2HPO4, 50 mM EDTA,

1 mM ADP, 10 mM glutamate, 2.5 mM malate, 25 mM sucrose,

75 mM sorbitol, 1 mg/ml BSA, a mixture of all aminoacids

(except the labeled one) to a concentration of 10 mM each and

75 mCi of a 3H-labeled aminoacid (Amersham). Incubation was

carried out at 37uC for 15 minutes in a rotary shaker (12 rpm) and

analysis of aminoacylation was performed as described above.

Statistical analysis
The differences between control and mutant cell lines for the

various parameters analyzed were assessed by analysis of variance

(ANOVA). Paired haplotype differences were assessed by the post

hoc Fisher’s protected least significant difference test (PLSD). All

tests and calculations were done with the statistical package

StatView 5.0 for Macintosh (SAS Institute, Inc.).

Supporting Information

Figure S1 Analysis of the biogenetic response induced by the

mutation. A) mtDNA copy number variation between wild type

and mutant cells (n = 23, 21, 13 and 11 for TmBalb/cJ, mB77,

Balp1 and mB77p18 respectively and p,0.0001 between each

mutant and its control) B) H2O2 production by wild type and

mutant cells (n = 17, 13, 8 and 6 for TmBalb/cJ, mB77, Balbp1

and mB77p18 respectively and p,0.005 between each mutant cell

line and its control). C) Influence of N-acetyl cysteine (NAC) on

the H2O2 production and mtDNA copy number in wild type and

mutant cells (n = 3 in all cases for H2O2 production (left) and n = 3

in all cell lines except in mB77 where n = 4 in mB77 for mtDNA
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copy number (right)). D) Influence of NAC on the respiration

activity of permeabilized cells with different substrates (n = 5, 4, 3

and 5 fo5 TmBalb/cJ, mB77, Balbp1 and mB77p18 respectively).

All values are given as mean 6 SD of the mean. Asterisks indicate

significant differences respect to each control, tested by ANOVA

post-hoc Fisher PLSD (p,0.05).

Found at: doi:10.1371/journal.pgen.1001379.s001 (0.15 MB

DOC)

Figure S2 m.3739G.A mutation and mt-tRNAIle precursor

processing. It has been reported that some pathogenic mutations

in mt-tRNAIle affect steps in tRNA maturation including 39-end

processing and CCA addition [1,2]. To analyze the possible effect

of m.3739G.A mutation on mt-tRNAIle precursor processing,

several cDNA clones derived from circularized mt-tRNAIle from

wild type and mutant cell lines were sequenced [3]. Thus, 14 out

of 17 sequences from control cells and 11 out of 18 from mutant

cells showed the expected 39CCA and 59 ends (See alignments and

table below). Some of the remaining sequences are likely due to

artifacts where the oligodeoxynucleotide used for cDNA synthesis

was ligated to the 59-end of the tRNA. The gene encoding the mt-

tRNAIle overlaps two nucleotides with the 39 end of the mt-Nd1

gene and three nucleotides with the 59 end of the gene encoding

for the tRNAGln. We believe that RNAs derived from the

processing of tRNAGln and ND1 mRNA explain the finding of this

proportion of circularized products with the lack of 39 and 59

portions of the tRNAIle. In summary, since the major proportion

of molecules showed a proper maturation of the 39 and 59 and

CCA addition, we conclude that no major defect in the processing

of the mt-tRNAIle can be attributed to the mutation.

Found at: doi:10.1371/journal.pgen.1001379.s002 (0.20 MB

DOC)

Table S1 Primer sequences.

Found at: doi:10.1371/journal.pgen.1001379.s003 (0.05 MB

DOC)

Table S2 Inhibitor concentration ranges.

Found at: doi:10.1371/journal.pgen.1001379.s004 (0.05 MB

DOC)
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