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Abstract

In this paper, we prove a set of sufficient optimality conditions with a
current-value Hamiltonian for a family of age-structured optimal control
problems with a discount factor in the objective functional.
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1 Introduction

Many dynamic economic models require a discount factor in the objective
functional, especially when performing a long term analysis. In this context,
the current-value Hamiltonian approach has been introduced to analyze the
optimality sufficient conditions for a classic optimal control problem, see e.g.[3,
p. 47] and [13, p.99].

Recently, age-structured optimal control problems have been used to for-
malize and solve many problems. Without any claim to completeness, we can
cite some applications to drug initiation [2], vintage capital [5], dynamic ad-
vertising [7], differential games [8], and immigration policy [14]. Necessary
conditions for age-structured optimal control problems have been introduced
in the seminal paper [4]. This work represents the point of reference for a huge
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number of papers in which such necessary conditions are applied to analyze dif-
ferent models. A new approach to optimality conditions for an infinite-horizon
age-structured optimal control problem is introduced in [15]. For what suffi-
ciency is concerned, Mangasarian-type sufficient conditions for age-structured
optimal control problems are presented in [11], and Arrow-type sufficient con-
ditions are described in [10], where the author deals with infinite-horizon too.

Nevertheless, none of the cited papers use current-value Hamiltonian in
their analysis. Even if this technique is standard for infinite-horizon optimal
control problems (see e.g. [1, p. 285]), to the best of our knowledge, an explicit
definition of current-value Hamiltonian for the age-structured optimal control
problem has not been formalized yet.

In this paper, we fill this gap by introducing the current-value Hamiltonian
into sufficient conditions for a simple age-structured optimal control problem.
In our personal opinion, this approach can be useful for scientists dealing with
age-structured optimal control problems, in particular to the ones devoted
to Economics and Social Sciences, where problems may require non-trivial
formulations. In such contexts, simplified sufficient conditions turn out to be
essential to find the optimal solution.

The rest of the paper is organized as follows: In Section 2 we introduce the
simple age-structured optimal control problem we want to analyze. In Section
3 we introduce the sufficient conditions which are based on the current-value
Hamiltonian. Section 4 concludes with some suggestions for further research.

2 An age-structured optimal control problem

In this section, we present the age-structured optimal control problem we want
to deal with. Perhaps, this is the simplest form for an age-structured optimal
control problem. Its analysis is formally similar to the study of a standard
infinite-horizon optimal control problem; hence this approach can be useful
also for scientists coming from Economics or Social Sciences who manage very
well this theory. The evolution of the state variable y(t, a) is described by the
following partial differential equation, where (t, a) ∈ [0,∞)× [0, ω],

∂ty(t, a) + ∂ay(t, a) = f (a, u(t, a), y(t, a)) . (1)

The initial condition for all a ∈ [0, ω], is

y(0, a) = α (a) , (2)

and the boundary condition for all t ∈ (0,+∞) is

y (t, 0) = β(t). (3)
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Remark 2.1. We assume that f ∈ C1([0, ω] × R2;R), α ∈ C0([0, ω];R), and
β ∈ C0([0,+∞);R), therefore, for any control u ∈ C1([0,+∞) × [0, ω];R),
there exists a unique almost everywhere differentiable† state function y(t, a)
defined in [0,+∞)× [0, ω] that satisfies (1), (2), and (3).

In the partial differential equation (1) the lines a = a0 + t are inflow charac-
teristics for all a0 ∈ R, hence we can use the information α(a) on the segment
{0} × [0, ω] and the information β(t) on the semi-axis [0,+∞) × {0} to find
the solution of (1) using the method of characteristics (see e.g. [12]).

We choose the control in order to maximize, considering the overtaking crite-
rion, the objective functional

J (u) =

∫ +∞

0

∫ ω

0

e−ρtg(a, u(t, a), y(t, a))da dt, (4)

where g ∈ C1([0, ω]× R2;R). To characterize an optimal solution of this age-
structured optimal control problem, we introduce the optimality conditions for
age-structured control systems proved in [4]. This problem can be solved also
by a direct computation along the characteristics lines, as explained in [16] and
in [9]; however, we prefer to use the optimality conditions for age-structured
control systems because we want to keep in mind the analogy of this problem
with the standard infinite-horizon optimal control problem. Moreover, this
approach can be the starting point for more complicated models where the use
of the optimality conditions for age-structured control systems is essential.

3 Standard sufficient conditions

In this section, we introduce the standard sufficient conditions for age-structured
control systems. We refer to the Arrow-type sufficient conditions introduced
in [10]. Once again, we emphasize that we aim to present a simple approach
to a simple version of the infinite-horizon age-structured optimal control prob-
lem. The sufficient conditions described in the following can be extended to
a more general problem formulation, nevertheless, we prefer to present the
basic version just to stress the main features of this issue (see [10] and [11]
for a complete discussion about sufficient conditions in age-structured control
systems).

Let us introduce the Hamiltonian function

H(t, a, u, y, p)
.
= e−ρtg (a, u, y) + pf (a, u, y) (5)

†Except at the points of the line a = t where the function y may be discontinuous
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associated to the age-structured optimal control problem characterized by the
objective functional (4), the motion equation (1), and the boundary conditions
(2) , (3). This is the standard Hamiltonian function for this kind of problems:
see e.g. [5], [6], and [10]. As usual, p is the adjoint function associated with
the state variable y.

Theorem 3.1. Let us assume that:

i) the following equation defines a continuously differentiable function

u#[t, a, y, p]
.
= arg max

w∈R
H(t, a, w, y, p)

ii) we can find a solution (y∗(t, a) , p∗(t, a)) of the following system of PDEs
∂ty(t, a) + ∂ay(t, a) = f

(
a, u#[t, a, y(t, a), p(t, a)], y(t, a)

)
∂tp (t, a) + ∂ap (t, a) = −∂yH

(
t, a, u#[t, a, y(t, a), p(t, a)], y(t, a), p (t, a)

)
y (0, a) = α (a) , y (t, 0) = β(t)
p(t, ω) = 0, limt7→+∞ p(t, a) = 0 ∀a ∈ [0, ω]

(6)

iii) for all state functions y(t, a) there exists a time τ > 0 such that for all
t > τ and for almost all a ∈ [0, ω]

p∗(t, a)(y(t, a)− y∗(t, a)) ≥ 0

iv) the following inequality is satisfied for all t ∈ [0,+∞), a ∈ [0, ω]

∂2yyH(t, a, u#[t, a, y, p∗(t, a)], y, p∗(t, a)) ≤ 0

then the function
u∗(t, a)

.
= u#[t, a, y∗(t, a), p∗(t, a)]

is an optimal control for the age-structured optimal control problem character-
ized by the objective functional (4), the motion equation (1), and the boundary
conditions (2), (3).

Proof. This proposition is an instance of the more general result proved in [10].

Now we want to rewrite these sufficient conditions in an equivalent way, as
done in [1] in order to obtain an autonomous system. For standard optimal
control problems this approach is well-known and can be found in a lot of
textbooks (see e.g.[6]); however, this result is not explicitly described anywhere
for age-structured optimal control problems.
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Let us introduce the current-value Hamiltonian function

Hc(a, u, y, q)
.
= g (a, u, y) + qf (a, u, y) (7)

associated with the age-structured optimal control problem formulated above,
where q is the adjoint function associated with the state variable y.

Theorem 3.2. Let us assume that:

i) the following equation defines a continuously differentiable function

u#c [a, y, q]
.
= arg max

w∈R
Hc(a, w, y, q)

ii) we can find a solution (y∗(t, a), q∗(t, a)) of the system of PDEs
∂ty(t, a) + ∂ay(t, a) = f

(
a, u#c [a, y(t, a), q(t, a)], y(t, a)

)
∂tq (t, a) + ∂aq (t, a) = −∂yHc

(
a, u#c [a, y(t, a), q(t, a)], y(t, a), q (t, a)

)
+

+ρq(t, a)
y (0, a) = α (a) , y (t, 0) = β(t)
q(t, ω) = 0, limt7→+∞ e

−ρtq(t, a) = 0, ∀a ∈ [0, ω]
(8)

iii) for all state functions y(t, a) there exists a time τ > 0 such that for all
t > τ and for almost all a ∈ [0, ω]

q∗(t, a)(y(t, a)− y∗(t, a)) ≥ 0

iv) the following inequality is satisfied for all a, t

∂2yyHc(a, u
#
c [a, y, q∗(t, a)], y, q∗(t, a)) ≤ 0

then the function
u∗(t, a)

.
= u#c [a, y∗(t, a), q∗(t, a)]

is an optimal control for the age-structured optimal control problem character-
ized by the objective functional (4), the motion equation (1), and the boundary
conditions (2), (3).

Proof. Let us assume that functions q∗(t, a) and y(t, a) satisfy the assumptions
of Theorem 3.2; we want to prove that the functions p∗(t, a) = e−ρtq∗(t, a)
and y(t, a) satisfy the hypotheses of Theorem 3.1. This position suggests the
following change of variable

p
.
= e−ρtq.

Now we want to analyse how this change of variable modifies the Hamiltonian
functions. We notice that (5) and (7) are connected by the following equality
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e−ρtHc(a, u, y, q) = H(t, a, u, y, e−ρtq) = H(t, a, u, y, p).

Being e−ρt > 0 and not depending on u, a maximum point of Hc(a, u, y, q)
w.r.t. u is a maximum point w.r.t. u of e−ρtHc(a, u, y, q) too, so that

u#c [a, y, q] = arg maxu∈RHc(a, u, y, q) = u#[t, a, y, e−ρtq] . (9)

Now let us assume that (y∗(t, a),q∗(t, a)) is a solution of the system of PDEs
(8). The boundary conditions in (6) are trivially satisfied because, from the
condition |q(t, a)| < M for all t ∈ [0,+∞) and for all a ∈ [0, ω], it follows that

lim
t7→+∞

e−ρtq(t, a) = 0.

Using (9), the solution of the motion equation

∂ty
∗ (t, a) + ∂ay

∗ (t, a) = f
(
a, u#c [a, y∗(t, a), q∗(t, a)], y∗ (t, a)

)
becomes

∂ty
∗ (t, a) + ∂ay

∗ (t, a) = f
(
a, u#[a, y∗(t, a), q∗(t, a)e−ρt], y∗ (t, a)

)
,

hence if y∗(t, a) and p∗(t, a) = q∗(t, a)e−ρt satisfy (6), then we can conclude.
Moreover, if we consider the adjoint equation in (8); we have that

(∂t + ∂a) (q∗(t, a)e−ρt) =
= ∂t (q∗(t, a)) e−ρt − ρq∗(t, a)e−ρt + ∂a (q∗(t, a)) e−ρt

= e−ρt ((∂t + ∂a) (q∗(t, a)))− ρq∗(t, a)e−ρt

= −∂y
(
e−ρtHc

(
a, u#c [a, y∗(t, a), q∗(t, a)], y∗(t, a), q∗ (t, a)

))
= −∂y

(
H
(
t, a, u#c [a, y∗(t, a), q∗(t, a)], y∗(t, a), q∗ (t, a) e−ρt

))
= −∂y

(
H
(
t, a, u#[a, y∗(t, a), q∗(t, a)e−ρt], y∗(t, a), q∗ (t, a) e−ρt

))
hence y∗(t, a) and p∗(t, a) = q∗(t, a)e−ρt satisfy (6).
Finally, if the function Hc(a, u

#
c [a, y, q∗(t, a)], y, q∗(t, a)) is concave in y, then

the function H(a, u#[a, y, q∗(t, a)e−ρt], y, q∗(t, a)e−ρt) is concave in y too. In
detail we have:

∂2yyHc(a, u
#
c [a, y, q∗(t, a)], y, q∗(t, a)) ≤ 0

∂2yy
(
e−ρtHc(a, u

#
c [a, y, q∗(t, a)], y, q∗(t, a))

)
≤ 0

∂2yy
(
H(a, u#c [a, y, q∗(t, a)], y, q∗(t, a)e−ρt)

)
≤ 0

∂2yy
(
H(a, u#[a, y, q∗(t, a)e−ρt], y, q∗(t, a)e−ρt)

)
≤ 0

The result we have just proved is useful because it allows one to move from
the non-autonomous system of PDEs (6), to the autonomous one (8). Now,
under suitable hypotheses, we can find an equilibrium point for the system (8)
and we can prove its stability.

A similar result can be shown for the catching up criterion and the sporad-
ically catching up criterion too.
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Conclusions

In this paper, we have introduced the current-value Hamiltonian for a simple
age-structured optimal control problem. Using the standard technique de-
scribed for infinite-horizon optimal control, we defined the discount adjoint
function and found sufficient conditions for this kind of problem as an au-
tonomous system of PDEs. We restrict our analysis to a particular family
of age-dependent optimal control problems, that turns out to be commonly
used in Economics or Social Sciences applications. This approach permits to
solve these types of problems without handling differential calculus in infinite-
dimensional spaces. The approach described in this paper can be the starting
point for further applications. A promising research area in which this result
can be applied is the theory of differential games, especially with applica-
tions to Economics and Social Sciences, where the equilibrium points play an
essential role and many problems can be formulated with an age-dependent
structure.
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