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HARNACK INEQUALITY FOR A CLASS OF KOLMOGOROV-FOKKER-PLANCK
EQUATIONS IN NON-DIVERGENCE FORM

FARHAN ABEDIN AND GIULIO TRALLI"

ABSTRACT. We prove invariant Harnack inequalities for certain classes of non-divergence form equations of
Kolmogorov type. The operators we consider exhibit invariance properties with respect to a homogeneous
Lie group structure. The coefficient matrix is assumed either to satisfy a Cordes-Landis condition on the
eigenvalues, or to admit a uniform modulus of continuity.
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1. INTRODUCTION

The purpose of this article is to study regularity properties of solutions to degenerate-parabolic equations
in non-divergence form, whose prototypical example is given by

(1.1) K :=tr (A(v,y,t)D) + (v,V,) — 0, for (v,y,t) € RY x R? x R,

where the d x d matrix A(v,y, t) is uniformly positive definite. The case A = I; corresponds to the well-known
Kolmogorov equation [16], which governs the probability density of a system with 2d degrees of freedom.
The Kolmogorov operator is one of the key examples of hypoelliptic operators studied by Hormander in
his seminal work [14]. Operators like (LI]) also appear naturally in mathematical finance and various other
stochastic models [3 B, 22]. Most notably perhaps, the operator K (and its divergence form counterpart)
arises in the kinetic theory of gases as the leading order term in the spatially inhomogeneous Landau
equation, which can be interpreted as the limit of the Boltzmann equation when only grazing collisions are
taken into account [2], 27]. For more on recent progress in the regularity theory of kinetic equations, we refer
the reader to the works [4], 11 12| 19] and references therein.

In the Landau equation, the coefficients of the principal part depend on the solution itself in a nonlocal
manner. This motivates the study of regularity properties of I with minimal assumptions on the smoothness
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of A. For the divergence-form version of I,
div, (A(U7 Y, t)vv) + <U7 vy> - ata

with bounded measurable coefficients A, a Moser-type L?-to-L> iteration was obtained in [29], a Holder
regularity result for the solutions was shown in [33], and the Harnack inequality has been proved recently in
[11]. Related regularity estimates for a more general class of divergence-form operators with rough coefficients
can be found in [6, 20, 2I]. For the non-divergence form operator (LI]) with A assumed to be merely
bounded and measurable, the analogue of the Krylov-Safonov Harnack inequality [I7] is still unknown. This
is primarily due to the lack of a suitable version of the Aleksandrov-Bakelman-Pucci maximum principle;
we refer to [26], Chapter VII] for the uniformly parabolic case. On the other hand, with A assumed to
be Holder continuous, the regularity theory is well-settled and several results have been obtained, even for
operators with more general drift terms: we mention, among others, the results concerning the existence of
the fundamental solution via Levi-parametrix methods, two-sided Gaussian-type bounds, and also Harnack
inequalities [7, [8, [30].

In this work, we prove Harnack’s inequality for non-negative solutions to Ku = 0 under either a Cordes-
Landis condition or a continuity assumption on the coefficient matrix A (see subSection [T hypotheses [HIl
and[H2)). Similar results have been obtained for other Hormander type operators, namely for non-divergence
form operators structured on Heisenberg vector fields [I], 13| 32]. The techniques we employ in the present
work are inspired by the insightful contributions of Landis from the ’60s [24], where he obtained what
is nowadays referred to as the growth lemma for nonnegative subsolutions of uniformly elliptic equations,
assuming that the eigenvalue ratio is close to 1. Glagoleva [10] established analogous results for uniformly
parabolic equations. We refer the reader to the book [25] for an exposition of these ideas. In accordance with
the literature on ultraparabolic equations, we present our results for operators more general than K which
enjoy invariance properties with respect to a homogeneous Lie group structure. We proceed to describe
these operators in more detail and state our main results.

1.1. Main Results. Fix N € N. Throughout the paper we denote by z = (z,t) € RY xR a generic point in
RN+ The spatial differential operators will be denoted V = V,, D? = D2. Fix pg,n € N, with 1 <py < N
and n > 1. Let [, denote the pg x pg identity matrix. For some open set €2 C RN*1 we consider the class
of operators

(1.2) La=tr (A(z)Dz) + (z,BV) — 0, z €€,
where A(z) € RVXY is a symmetric nonnegative definite matrix which takes the block form
(1.3) A(z) = [A(()Z) 8} with  A(z) € RPOXP0,
and
0 B, 0 0]
0 0 By 0
(1.4) B - : : . .., : S RNXN
o o0 o0 ... B,
0 0 ... 0 0

where, for j = 1,...,n, B;is a pj_1 x p; block of rank pj, po > p1 > ... > p, > 1land po+p1+...+p, = N.
The matrix A(z) is assumed to be uniformly positive definite; that is, there exist constants A\, A > 0 such
that

(1.5) 0 < AL, < A(z) <AL, for all z € Q.
Notice that the class of operators (ILI]) corresponds to the choices N = 2d,pg = d,n =1,B; =1 .
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The conditions on A(-) and B endow the operators £4 with rich algebraic properties. As a matter of
fact, in the case of a constant matrix A, the operator is of Hormander type and the fundamental solution
can be written explicitly [I4] [I8]. Moreover, it has been shown in [23] that this operator is invariant under
the action of a homogeneous Lie group, with homogeneous dimension

(1.6) Q+2:=py+3p1+..+2n+1)p, +2.

We remark that the presence of homogeneity is tied to the upper triangular form (I4]) of the matrix B. The
group structure allows one to define a homogeneous norm and corresponding cylinder-like sets

Qlr'2(zq),  for 29 € RV ¢t € R, 7 > 0.

We refer to Section 2 for a precise description of all these notions.
To establish Harnack’s inequality for the aforementioned operators (L2), we will assume that the matrix
coefficients A(-) satisfy either one of the following hypotheses:

(H1) Cordes-Landis assumption: The coefficients A(-) satisfy the condition (L5l with

A<1+z
A Q

(H2) Uniform continuity in Q: The coefficients A(-) admit a uniform modulus of continuity w in
(see Definition F3)).

We can now state our main results. Any constant that depends solely on B, Q,n, A, A will henceforth be
referred to as a structural constant.

Theorem 1.1. (Harnack Inequality under[HI) Suppose L 4 satisfies the Cordes-Landis condition[H1. There

exist structural constants bp, K,0¢,C > 0 with K > oy such that, for all QKTBTQ’O(ZO) € Q and u € C?*(Q)
satisfying

u>0 and Lau=0 in Q;(bBTZ’O(zO),

T
we have

(1.7) supu < C'infu,
or of

(20)-

Theorem 1.2. (Harnack Inequality under[H3) Suppose L 4 satisfies the uniform continuity assumption [H2

i 2, with modulus of continuity w. There exist positive constants bp, K,o,C > 0 depending on w and on

structural constants such that, for all QI_(I;BTZ’O(ZO) € Q with 0 <r <1 and u € C%(Q) satisfying

3bp,2 _bp.

—22B 2 2 —b—Brz,O
where Q" := Qo * > (20) and QF := Qoy?
2 2

_ 2
uw>0 and Lau=0 in QKI;,BT ’O(zo),
we have

(1.8) supu < C'infu,

oy ot
3bp o 5bp o

—=—By2 B, _bB 2
where Q7 = Q¥ 3 (20) and Q) := Qpr® 7 (20).

We point out that Theorem [[] is, to the best of our knowledge, the first regularity result for non-
divergence form operators like I that is independent of the smoothness of the coefficients. Theorem
also generalizes, in the case of the homogeneous operators ([L2]), the Harnack’s inequality obtained in [§]
assuming Holder continuity of the coefficients.

,0
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The essential ingredients in the proof of Theorems [Tl and [[.2] are, respectively, Theorem [5.1]and Theorem
0.2l These are the analogues of the classical growth lemma of Landis, and they establish pointwise-to-
measure estimates for nonnegative subsolutions to £4 in a quantitative manner. In order to establish these
key estimates, we construct barriers using the potentials generated by kernels resembling the fundamental
solution for constant coefficient operators. This involves a careful estimate of the aforementioned kernels
in terms of the length scale of the cylinders. It is only in the construction of these barriers where we use
the hypotheses [H1] and Once the required pointwise-to-measure estimates are established, there are, by
now, standard ways in the literature to proceed with the proof of Harnack’s inequality. In this work, we
have chosen to follow the general approach outlined by Landis in [25]. For this strategy to succeed, we must
deal with the non-standard nature of the cylinder-like sets Q" ().

The outline of this paper is as follows. In Section 2l we set up our notation and recall some properties
of the relevant geometric objects. In Section Bl we establish upper and lower bounds for the kernels ([B.1I).
We then use these kernels in Section M to construct barriers for £4 under the hypotheses [HI] and (see
respectively subSections ] and [£2]). In Section [, we prove the growth lemmas (Theorems [5.1] and B.2I),
and provide as application the oscillation decay and the Holder continuity of solutions to Lau = 0. Finally,
in Section [l we complete the proofs of Theorems [[L1] and

2. PRELIMINARIES

The assumptions (4] on the matrix B imply (see [23] Section 2]) that the following Hérmander’s rank
condition [I4] is satisfied;
rank Lie {0;,,...,0s, ,(2,BV) = 0;} (2) = N +1 VzeRNtL

s Ypg

In particular, for any constant matrix Ag € R¥*V with the block structure
(21) Ay = |: 0 O:| with 0 < )‘Hpo <A< A]Ipo,
the operator

Lo = tr (A49D?) + (z, BV) — 0,

is hypoelliptic. The operator Lg is the infinitesimal generator of a Gaussian process with covariance matrix
given by

Co(t) = / ' B(0)AE" (0) do
where i
(2.2) E(0) :=exp (—oBT), o€eR.
The Hormander rank condition is actually equivalent (see [14, 23]) to the following Kalman-type condition
Co(t) >0 Vit > 0.
Throughout the paper we will use the notation

(2.3) Iy = FSO 8} e RN and  C(t) :/0 E(0)IoET (o) do.

Then, the assumption (L3]) for the coefficient matrix A(z) of the operators L4 in (L2)-(L3) is clearly
equivalent to assuming

(2.4) 0 <My <A(z) <Al for all z € Q.
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Let us now describe the group structure mentioned in the Introduction. We refer the reader to [23] Section

1] for a complete exposition. Recalling ([22]), the group law is given by

zo(=(E4+ E(n)z,t+71), forz=(x1t),(=(£7)eRVTL
Moreover, recalling the p;’s coming from the structure of B in (I4)), we can denote any = € RV as

xr = <x(p°),x(”1),...,x(p")> € RPO x RP! x ... x RP» = RV,
and we can define the family of group automorphisms (4,),, as
5r . RN-l—l SN RN-l—l
op(x,t) = <7‘x(p0),r3x(p1), . ,7‘2"+1:1:(p”),r2t) .

These will play the role of homogeneous dilations. For convenience, we also denote the spatial dilations by

Dy RY 5 RY, Dy(w) = (ral),rg0), L p2 )

The fact that J, are automorphisms with respect to o is encoded in the following commutation property
(see [23, equation (2.20)], see also [1§])

(2.5) E(r’c) = DyE(o)D:  for any r >0 and o € R.

From this, one can deduce that the covariance matrix Cy(t) satisfies the commutation relation

(2.6) Co(t) = D ;zCo(1)D .

If  is the number defined in (L8] and |- | denotes Lebesgue measure (both in R¥+! and RY), then we have
(2.7) 16:(E)| = r9*2|El, |Do(F)| =r9|F|, |20 E| = |E|

for all zyg € RV*! r > 0, and for any Lebesgue measurable sets £ ¢ RV*1 F c RV, In [23] it is shown that
the vector fields {aml, covs Ogy s (2, BV) — 8t} are left-translation invariant and J,-homogeneous (respectively

of degree 1 and 2). Consequently, the operators L are left-translation invariant and d,-homogenous of degree
2.

One can associate to this homogeneous structure a family of cylinder-like sets. Denoting also the Euclidean
norms in RY, RP» or R by |-|, we can define the norms || : RY — R* and |-|| 5 : R¥Y*1 — R* by

n 1
lz|p = Z ‘x(pi) Zit1 , for = — <$(p0), o ,x(pn)> ERP x ... x RP» =RV,
=0
|2l 5 = MB—FWUQ, for z = (x,t) c RN+,
The subscript B is used to distinguish the homogeneous norm ||-|| 5 from the matrix norm ||-||. Note that |-| 5

and ||-||; are respectively D,-homogeneous and d,-homogeneous functions of degree 1. The homogeneous
ball of radius r > 0 centered at 0 is the set

B.(0):={z eRY : |z|p <r} =D, (B:(0)).
The cylinder-like sets centered at 0 are defined as
Q" = B,(0) x (t1,12)
where 7 > 0 and t; < t5 € R. Cylinder-like sets centered at an arbitrary point zg € RN*L are defined as
Q2 (50) i= 29 0 Q112
It is clear from (2.7)) and the composition and dilation laws that, for any b > 0,

Qf}vtﬁb’“z(zo)‘ _ pQ+2 ‘Qﬁ“" for all zo € RN*L ¢, € R,7 > 0.
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The notion of parabolic boundary of a cylinder can be naturally extended to this setting, and is defined as

ainl’tQ = (B,(0) x {t1}) U (0B,(0) x [t1,t2]) and 8pr,1’t2(zo) =290 ainl’tQ.

It is easy to check that 9,05 " (20) = 0O/ (20) N {t < ta +to}. We can now state the analogue of the
parabolic weak maximum principle for the operators £4 in (2], whose proof is, by now, classical for
degenerate-parabolic equations.

Let T € R and let D C RV*! be a bounded open set; if v € C*(D) N C (D) satisfies

then v<0 in DNn{t<T}.

(2.8) Lav>0 in DN{t<T},
' v<0 on ODN{t < T},

We recall a number of essential relations between the homogeneous norm |- | and the Euclidean norm that
will be used throughout the paper. Some of these can already be found in [I5] 28] [30]; we collect and prove
them in the following lemma for the reader’s convenience.

Lemma 2.1. The following properties hold:
(i) The triangle inequality holds in the norm |- |p

(2.9) lz+ € <|zlp+1¢lp VYV, €RY.
(ii) Denoting o9 = minjg—; [z|p and & = max,— |z|p we have
(2.10) 00 min {|;L~| , |;L~|Tl+1} < |zlp < 5max{|:17| , |:c|Tl+1} vz eRY.
(iii) There exists a structural constant c(n,B) > 0 such that
211)  |[(BE(t) —Iy) 2y < c(n, B) max{|:g|%, |x|ﬁ}max {|t|T1+1, |t|ﬁ} vz eRY, VteR.

Proof. (i) This follows from the subadditivity of |- [P for 0 < p < 1.
(ii) For = 0 is trivial. For any = # 0, we have

|z| 5 Z ‘x 2z+1 E": ( o >(Pi) brEay T .
— =|—| <&
max{\a:\ \x\2n+1} 0 \a:\2z+1 e |z =] |
while on the other side,
1
|z| 5 Z|$(Pz St Z": < >(Pz‘) 2041
=|—| 2>o0yp.
min {|a| 2|77 } S JamE S\ 2115

(iii) Fix any 2z € RY, ¢t € R. By the upper triangular form of B, we have (E(t)x)(po) = 2(P0) and for any

ie{l,...,n}

. L (—p)k
(B(t)n)™ = ) 13 % (BTBL B ,.,) alri-v).
k=1 ’
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Hence, by denoting Mp = max; HIBS;*FH, we get

n % (—t)k 2zlﬁ
(E(t) —In)alp = ZZ k! (Bz’TBiT—l"'BiT—kJrl)x(pi*k)
i=1 k=1
n k k 1
< 3 g e[
i=1 k=1
n(n+1)

1 ~n 1 1
max{Mé"“,Mé"“}max{|x|%, |$|m}max{|t|m7 |t|ﬁ}

It is known [I4] [I8] that the fundamental solution of £y with pole at the origin is given by
0 for t <0,

(2.12) Tg(z,t) =

N
4m) 2 — ¢ —
e (4G 00) = S e (-4 DD o)) fort>0,

where ¢y = (477)_% (det(Co(l)))_%. By the translation invariance of Ly, one can relocate the pole to any
desired point. Note also that 'y is §,.-homogeneous of degree —(). The fundamental solution I'y and its

level sets play an essential role in the proof of Harnack’s inequality for the operator £ established in [9 23].
In the sequel, it will be necessary for us to have good estimates on the quadratic form (Cj Yt)x, z). We

begin by defining a relevant structural constant bp. Since E(0) = e~oB" Iny as 0 — 0, we can define the
constant bg such that
2
(2.13) 0<bp < (@) and  |B(0)| <2 for all o] < bp.
a

Here the constants oy < & are the ones from (210I).

Lemma 2.2. There exist structural constants A1, \1 such that
1
At
Proof. Fix an arbitrary v € RV with |v| = 1. If 0 < ¢ < bp, then it follows from (ZI0) and (ZI3)

min{‘Dﬁv

(2.14) Iy < Cy t(t) Iy forall0 <t <bg.

< )\1t2"+1

)

1 —
T 1 Vit o
2n-+1
< —|D ‘ = — <vt— <1.
}_00‘ \/EUB ol |U|B_\/_00_

D\/Z’U

2n-+1
, and so

This says in particular that ‘D ﬁv‘ < ‘D Vil

o
2.15 D] < Vi
( ) Vil = Vi -
On the other side, we can use (2I0]) again to obtain

= max{‘D\/zv

We can now employ the commutation relation (2.6]) and the hypothesis (2.1]) on Ay to uniformly bound from
above and below the quadratic form (Cy(t)v,v). Denote by A; and A; respectively the maximum and the

(2.16) (D o7 e >1(D v‘ :ﬁ|v|3>\/5@.
Vi “s VT G =7

,‘D\ﬂv
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minimum eigenvalue of C'(1). Then by (ZI5)) and ([2.14]), we get
_\2
o
(Caltyons) < A (CD o Dy < Ao < s () ¢ =5 At

4An+2
(Cot)v,v) > A <C(1)Dﬁfu,Dﬁfu> > M |D o> > A (?) §2n4L o\ g2t

for every v € RY with |v| = 1. In other words, we have just shown that
Mty < Co(t) < Aty for all 0 <t < bp
for some structural constants A1, A;. This implies
R
At

1

-1
In<Cy(t) < W

Iy forall 0 <t <bg.

3. POINTWISE ESTIMATES FOR (GAUSSIAN KERNELS

In this section, we initiate the construction of explicit barriers which will be used to prove the growth
lemma. These barriers are modeled after the fundamental solution T'y (ZI2]). To this end, for s,5 > 0, we
consider the function

0 for t <0,

(3.1) Iy p(z) = ) L/ f
i —12(c')D 4 a, D t>0.
g exp( o < o (1) 1% \}Eaz>> or

Note that I'y g is d,-homogeneous of degree —s@). We devote the rest of this section to establishing the
necessary pointwise estimates for I'y 3.

Lemma 3.1. (Upper Bound for I's g) Let s,3 be positive numbers. There exist ¢; > 0 and K; > o9
depending just on s, 3, and structural constants such that, for every r > 0 and K > K1, if we consider the
cylinders
—b 2,0 _b 27_lb 2
Q= Q""" 8= 0Bk (0) x [<bpr? 0], QY= Quyl 2T,
then we have

_ 1
(3.2) [o3(¢( " oz) < m exp (

—61K2
bp

) Ve= () e QY 2= (a,0) € S,

Proof. Recall that T's (("1 o 2) = 0 if t < 7. Therefore, it suffices to assume z € S! and ¢ € Q3 with t > 7.
In this case, we have

Loalé ™ o2) = —gem (~35 (0 ¢ =D o= Bl =1)0) (@ - Bl - 16))).

Let us deal with the term inside the exponential. By (2.6]), we have
(Col(t =) (z = E(t = 7)), (x — E(t —7)¢))
g ({t—-7
= <CO 1 < . > D% (x — E(t—71)¢) ,D% (x — E(t — T)§)> for all » > 0.
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By definition we have 0 < t;—; < ;—27 < bp. Therefore,

<Co_l (t >D1 (2 — B(t— 7)), D

r2

(=B -7))

S =

v
5

L@ B9 P by @
= (ID2a? — 2(Dy2, DL E(t - 7)¢) + D, E(t — 7))

> 7”7<|D%x|2 2<D% D%E(t—7)5>)

w)ps)) v

r2 t—T1
> Diz]?—2 Diz||D
i (o (52) )
7‘2
o T (IDsal - 4psgl) by @I,
Summing up, we have just proved
2
1 r
. — — E(t — — E(t — > — .
33 (G- = B =) (@~ B =€) 2 =Pyl 1Dyl - 4D1¢])

We now need a bound from below for |D1 x| and a bound from above for |D1£|. By (ZI0) and the definition
of S}, we have
ey }

2n1+1 2 5
g

On the other hand, by (ZI0) and the definition of Q2, we have
ey }

K <K= ‘DlJE‘B < 5max{‘Dlx

,‘Dlx

If we choose Ky > &, this yields

,‘Dlzn

(3.4) |D1x| :max{‘Dlx

oo > ‘Dlﬁ

> aomin{‘Dlﬁ
B r

,‘D%£

which says in particular that

(3.5) D1 ¢| = min{‘D1§ ,(D;g “1} <1
Using [34) and B3] in (33]), and choosing K; > 87, we get
2 2
-1 T K
— _ — _ _ > -
(3t =) o = Bl = 1) (o = Bt = 7)6) 2 7
Hence
1 —r2 K?
it g ()
ol ) (t —7)*% TP\ 8M ()78
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The function f(y) =y~ 3 exp (‘y—c) (for C' > 0) is monotone increasing for y € (0, %] If we finally fix

K1 = max {86, 26\/bBA153Q} ,

then 0 <t —7 < bpr? < % by construction and we get

1 1 —K*
Lo (¢ 02) < 2yl T (W) '

Lemma 3.2. (Lower Bound for I's g) Let s, 3, be positive numbers. Consider the cylinders

1 2
—5bB7r%,0

—bpr?,—Lppr?
Q= Qut 7T, Q=0
There exists cog > 0 depending on B and structural constants such that
_ 1 —c
(3.6) Iop((loz) > ———Fexp Tfl V(=(,m) € Q) 2= (a,t) € Q.
(bpr?)®2 b

Proof. Fix z € Q% and ¢ € Q3. Then
1
(3.7 bpri>t—71> ZbBrz.

We argue similarly to the proof of Lemma [B1] to estimate the quadratic form from below:

Col b~ 1) (w — Bt~ 7)6). (o — E(t - 7)) =
G (S5) Dy ta = B-19) DL - Ble-7)9)) by €T

r2

T~

I
T

1 T2 2n+1
< /\_1<t—7> Di@—E(t-19f by @)
1 4 2n+1 9
< 5 (5) WE-Be-n0P  wED
9 4 2n+1
< ™ <£> (]D%azﬁ +[D1E(t - 7)5\2)
9 / 4\ 2! +_ 2
= = (E) <|D%:U|2 - ‘E < T27> D.§ ) by (@3)
2n+1 - 2
< /\% ( > <|D%:13|2 + HE (t T27—> H |D;f|2>

9 2n+1
< = (b ) (D22 +4D1g?) by @D and @I3).
B T T
Since x, ¢ € Byyr(0), we can argue as in ([B.3]) to conclude
Daal, |D1€ <1.
Hence

2n+1
(C3Mt —7) (x — B(t - 1)6) , (x — Bt — 7))} < (i) |
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Recalling once more ([B.1]), we finally obtain

1 —5 4 2n+1
Iy loz)>—— ¢ — .
B oz) 2 oo E T <2A1ﬂ <bB> )

4. CONSTRUCTION OF BARRIERS

Our aim in this section is to construct potentials using the kernels I's g (8.1]). The eventual goal is to
use these potentials as barriers for the operators £ under the the hypotheses [HI] and The pointwise
bounds from Section [B will then allow us to successfully use comparison principle arguments in the proof of
the growth lemma given in Section [l

For a fixed Lebesgue-measurable set £ C RV*! consider the function

(4.1) Ug(z) == /Ers,ﬁ(g—l 0 z)d(, z € RVFL,

In order for U to be well-defined, we must impose a bound on the parameter s, as shown in the following
lemma.

2
Lemma 4.1. Fiz s, > 0 and assume s < 1+ é Then, for any Ty < T, there exists a constant

C=0C(T1,Ty,s,8) >0 such that

(4.2) o(z) = / T3¢ toz)d¢<C for all z € RV*L,
RNX[Tl,TQ]
Moreover, for all Lebesque-measurable sets E C RNTL and for all r > 0, we have
(4.3) sup Ui, p) = r@T2=5Q qup Up.
RN+1 RN+1

Proof. We first prove [@2). Fix z = (x,t) € RV Suppose t > Ty, since the other possibility is trivial.
Note that ¢(z) can be written as

1

/ T .a XP <_i <C()_1(1)D; (z—E{t—-7)),D_1_ (z—E(t— T)£)>> dedr.
RN x[Ty,min {t,T2}) (t — 7)%2 45 i—7 T

By performing the change of variables ¢’ = £ — E(7 — t)z and using the commutation property (2.3)), we get

1 1
= — ~—(Cy')D_L_E(t—7)¢,D_1_E(t— ’>>d’d
o) /RNX[Tl,min{t,n}) (t—7)°% eXp< 4ﬁ< o (DD BE=mE Do Bl - S

7 exp <—$ <ET(1)CO—1(1)E(1)D » €D . §’>> d¢’dr.

/RNX[Tl,miH {t,T2}) (t —7)°%2 Vi-t t—

We can now change £ = D 1 £ and get that the last integral is equal to

Vi

(/RN exp <—£<ET(1)CO_1(1)E(1)§7§>> d§> </[T1’minw2}) %m),

The second integral is finite if s < 1 + % The first integral can be easily bounded, and it can even be
computed explicitly. Indeed, one can see that fRN I'o(¢"t o 2)d€ =1 for every z with ¢ > 7. By choosing

ol W
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x=0andt =7+ 1, we infer that [py coexp (—% <ET(1)C’0_1(1)E(1)£,£>) d¢ = 1. This implies, by 21,

/RN exp (—i <ET(1)C‘0_1(1)E(1)§,§>> d¢ = 1% < <%>g N

48 0

This proves ([@.2]). The proof of ([£3)) follows by homogeneity and the properties of the group automorphisms
§,. In fact, for z € RV and r > 0, we have

U(JTE)(&“Z) - TQ+2 /E Ps,ﬁ((érC)_l © (57’2)) d¢ = TQ+2_8Q /E‘ Ps,ﬁ(C_1 o Z) d¢ = TQ+2_8QUE(Z)’
O

We will assume from here onward that the set E in the definition of Ug is contained in some fixed strip
RN x (Ty,T»). In the remainder of this section, we will determine conditions on the parameters s, 3 that
are necessary for Ug to be a subsolution for the class of variable coefficient operators (I2]). To this end,
we compute LI 3. Recalling the definition of I'; 3 (1), for fixed 5,3 > 0 and for all 2 > z # 0, we can
compute

(4.4) Va(e) = —5aTesl2)Ci (O

(4.5) DT p5(z) = %Ps,ﬁ('z) (—Co‘l<t>+%(Co‘l<t>w)®(00‘1<t>w))~

To compute the t-derivative, we use the following identities for invertible matrices M (t):

(M) = MM ()M (1);
- (det(M (1)) = tr(M'(t)M~1(t)) det(M (t)).

This yields

s (det(Co(t)))" | 1

+ L iesmes @, 00—1<t>x>) _

OiTsp(2) = Tsp(2) <—§W 4B

= L) (-5 (CHOCT 0) + 45 (oG (0. C 1) ).

We have by definition C}(t) = E(t)AgET (t). On the other hand, the following identity also holds
Et)AgET (t) = Ay — BTCy(t) — Co(t)B Vit > 0.
To see this, note that the r.h.s. and the Lh.s. agree at £ = 0 and they have the same derivative. Consequently,
(4.6) Ch(t) = Ag — BTCy(t) — Co(t)B Vit > 0.
Multiplying by Cy ' (t) and taking the trace (recall tr(B) = 0), we get
tr (CHOCT (1) = tr (A5 (1)
which says

(4.7) AT 5(2) = %rs,m) (—smr (4005 () + 5 <cs<t>cal<t>x,cal<t>x>) .
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Recalling the definition of £4 and gathering the information in (£4]), (£5) and (1), we obtain

Lalsplz) = %%(z) <—tr (A()Cy (1) + %

+sptr (AOC’O_I(t)) —

(A(2)Cy M)z, Cyt (t)x) — (BCy )z, x) +

(Cy(t)Cy 1(t>x,00—1(t)x>> _

| =

(4.8) = %Fs,g(z) <sﬁ tr (AgCy (1)) — tr (A(2)Co(¢)) +

1/1 _ _ _ _
+5 (5 (A(2)Cy ' )z, Cy ' () — (AoCy ! (), O 1(t)a;>>>
where in the last equality we exploited again the expression for C{)(t) in (Z0]).

Using (48], we now show that the parameters s, 5 can be chosen appropriately under each of the hy-
potheses (H1) and (H2) so that Ug is a subsolution for £4 outside E.

4.1. Cordes-Landis Condition [HIl Consider the kernel I'y g with the choice
Ag = o,

where I is defined in ([2:2). Note that with this choice of Ay we have Cy = C, where C' is defined in ([2.3)).
Fix also

(4.9) B=2A and s = %

Having fixed these quantities, we can prove the following

Lemma 4.2. The function Ug is continuous in RNT1, C? outside E, and for all A satisfying [HL, we have
LAUg(2) >0 forz€ QN E.

Proof. The choice of s and the hypothesis [HI] allow us to invoke Lemma 1] and conclude that U < +o0.
Moreover, with such choices, Ug is continuous by the dominated convergence theorem and smooth away
from the poles in E. Let us now prove the L 4-subsolution property. By (4.9), and using (24) in (@8], we
have

Lals5(z) = %Fsﬂ(z) (.Sﬁtr (IOC’_l(t)) —tr (A(Z)C_l(t)) +

= <l (AR)C (t)z, 7L (b)) — (IC (B, c—1<t>w>>>

2\p
1 _1 1 /A _1 _1
> ﬁfsﬁ(z) <(36 —AN)tr (LC™H(t)) + 5 <B - 1> (I,C™'(t)z,C (t)a:>> = 0.
To complete the proof, we have only to remember that the vector fields 0,,,...,0;, and (z, BV) — 0, are
left-invariant with respect to the group law o. Thus, the function I's 5((™* o ) is £4-subharmonic for any
¢ € RV and the lemma follows. O

4.2. Uniform Continuity Assumption [H2. We make precise here the notion of uniform continuity of
the coefficients as stipulated in condition [H2l
Definition 4.3. Let w : [0,1) — [0,1) be a non-decreasing function satisfying lim w(s) = w(0) = 0. We

s—0F
say the matriz A(-) admits a uniform modulus of continuity w if

sup {HA(z) —A(z)|l : z€ QN Q;Ez’ez(zo)} <w(e) forall0<e<1 and for all zy € .
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Assume now that A(-) admits a uniform modulus of continuity w. Fix any zp €  and choose

A(] = A(Z()).
Define .
Chy(t) := Co(t) = / E(0)A(2)ET (0) do.
0
Let
1 2 .
(4.10) s=1+4sy, = for some sy > 0 to be determined.

143 :2—1—80

Let I's g be the kernel corresponding to the above choices. We want the associated potential Ug to be a
subsolution in a neighborhood of zy for 0 < 59 < % To do this, we exploit the continuity of A(-).

Lemma 4.4. For every 0 < sp < % there exists 0 < €9 < 1 depending on sy and w(-) such that
_e2.e2 _
LAUg(z) >0 forall z € QN Q¢ " %(20) N E.
Proof. 1t suffices to show that for all ( € F/, we have
2.2
(ﬁAFS,B(C_l 0))(z) >0 for all 2z € QN Q¢ °(20) \ {C}.
Fix 0 < 59 < % By Definition B3] there exists ¢y > 0 such that

|A(2) — A(20)]] < w(ep) < 5 j_o A for all z € QN QE_OG‘Z)’E%(ZO).
S0

In particular, this implies

(4.11) - 82—0)\10 < A(z) — A(zo) < 5 —T-Oso A for all z € QN Q;fg’eg(zo).
Let us now fix ¢ € RV*1, Arguing as in (&), we have for any z # ¢
(ﬁAFSﬂ(C_l o) (2) = %FS,B(C_ZL 0 z) (sﬁ tr (A(zO)C’Z_Ol(t — 7)) —tr (A(z)C’Z_Ol(t - 7))+
—I-% <% <A(z)C’Z_01(t —7)(z — E(t —T1)§), C’Z_Ol(t —7)(zr— Bt - T)£)> +

— <A(20)C;01(t —7)(x — E(t — 1)§), C’Z_Ol(t —7)(x — E(t — T)§)>>> .

Let us bound from below separately the trace-terms and the quadratic-terms. Consider any z € QN
2 2
Qe U (20). With our choice of 3 in ({@I0) we have % =1+ %. Thus, using [2.4) and {II]), we get

Mi(2) = %A(z) ~ Afz0) = A(2) — Alzo) + PA() 2 A(2) = Alzo) + 2\ > 0

which implies
(My(2)C (t—T)(x — E(t = 7)8),C. (t —T)(x — E(t — 7)€)) > 0.

On the other hand, by (£I0) we have s = 1+ 7% Again, by ([24) and (LII)), we get

Ma(2) := sB8A(z0) — A(2) = A(z0) — A(2) + %OSOA(ZQ) > A(zo) — A(2) + %OSO)\IO >0

which implies
tr (Mg(z)C'_l(t — 7)) > 0.

Z
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Hence
(EAF&B((_I 04)(2) = %Fs,g(g_l 0 z) <tr (Mg(z)C'z_Ol(t -7)) +
+% (M (2)C t—7)(x — E(t —71)€),C5,' (t — 7)(z — E(t — T)§)>> >0
for every z € QN Qe_(fg’eg(zo) ~ {¢}. O

Remark 4.5. In lieu of the hypothesis [HIl, we could have assumed the existence of a fized matriz Ay of the
form 1) such that

- . A 2
(4.12) Ay < A(Z) < AAp with X <1+ é
The proof of Lemmal[{.3 can then be carried out in exactly the same way. This is in contrast with operators
in groups of Heisenberg type considered in [1] and [32], where it is not clear how to establish the analogue
of Lemma[]-4 under the more general condition [AI2]) without making additional structural assumptions on

the coefficient matriz. A similar obstruction arises when attempting to prove the analogue of Lemma
(see [1l Section 3]).

5. GROWTH LEMMA AND APPLICATIONS

In this section, we establish the Landis growth lemma for the operators £4 under the hypotheses [HIl and
[H2l It is well known that such growth lemmas are the starting point for proving oscillation decay, Holder
continuity and Harnack’s inequality for solutions.

Let us recall the definitions of the cylinder-like sets considered in Lemma [3.1] and

—bnr2 —lppr20 —bpr2,—Lbgr?
Q=) = Q" (20) Qi) = Qb 7 () QHz0) = Qa2 (20)-
In Lemma [3I] it was shown that there exists a constant K; > og depending only on the structure such
that for all K > K;, we have the upper bound on I'; 5 given in ([B2]). We can choose the constant K large
enough so that the bound in ([B.0) is greater than the bound in ([B:2]). To this end, we fix K > 0 satisfying

2 €2 2

Theorem 5.1. (“Growth Lemma” under 1) Let zy € 2, and consider an open set D C Q(z9) C Q such
that D N Q2(z9) # 0. Suppose u € C*(D) N C (D) is nonnegative in D, vanishes on 0D N Q}(z9), and
satisfies Lau > 0 in D. Assume, moreover, that the Cordes-Landis condition [HIl holds for the operator L 4.
Then there exists a structural constant n > 0 such that

IQ?(zo)\D|>
Q7 (20)]

Proof. By translation invariance of the class of operators under consideration, we may assume zy = 0 € €.
We may also assume u is non-trivial, and so D has limit points on S} U (Bg,(0) x {—bpr?}) by the weak
maximum principle [Z38]). Recall from Section Bl that S} = 0Bg,(0) x [~bpr?,0]. Let E = Q3\D and
consider the function Ug defined in (@Il with the choice of T'y 5 as in subSection @1 (recall (£9)). If we
call C' the positive structural constant given in ([4.2]) such that sup Ugs < C, then we have by @3)

sup .

supu > (1 +n
D DﬂQ%(zo)

(5.2) supUg < supUgs < Crl@+2—s5Q,
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Moreover, by the bounds ([3.2]) and (3.6]), we have

(5.3) supUg < ¢ |E| ith p “
. ES ——— w 9= o,
! (bB,r,g)s% b2Bn+1
and
—1 K2
(5.4) infUgp > eiQ|E| with p = an
Q7 (bBrz)S? bB

Consider the auxiliary function

Ug(z) |E| e H2
v(z) =supu|1-— + .
=) Dp ( Cr@+2-sQ = CrQ+2 (bB)s%

Then v is non-negative everywhere by (5.2)). Since £LAUg(z) > 0 for all z € Q \ E by Lemma Z2], we have
Lav <0< Lyuin D. We now want to compare v and u on the portion of 9D required to apply the weak
maximum principle. For this purpose, we define the sets v := dD N QL, 1 := DN (B, (0) x {—bBrz}), and

y2 := DN S! Since u =0 on 7, v > u on 7. Recall also that Ug is a continuous function. Since Ug(z) = 0
for 2 € Bg,(0) x {—bpr?}, we then have v(z) > supp u > u(z) for all z € 1. Finally, for z € 72, we have

by ([B.3])
supg:1 Ug |E| e H2
v(z) >supu | 1— - + > sup u.
( ) D < CrQ+2—sQ CrQ@+2 (bB)S% D

Thus v > u on 72. By the weak maximum principle, it follows that v > u in D. Hence, for z € DN Q2% # (),
we have by (5.4

u(z) < supu [1— iang Ug . |E| e H2 <supu (1 |E| e M N |E| e M2
= s Or@+2=sQ " 0pQ+2 (bB)s% =75 CrQ+2 (bB)S% CrQ+2 (bB)sg

) e M —e 2 |E)|
=supu — .
D C(bp)*s T

e H — eTH2

By (B1)), we have py < po. Hence, we can define 7 := —— o > 0 and we can write
Cby
GIEL _IGADL o0 1O0D]_ [GAD)
ré+2 ret e T Qi
This completes the proof. O

The proof of Theorem [5.] also allows us to obtain the following version of the growth lemma under the
condition [H2l More specifically, we assume the continuity assumption [H2l holds for the operator £ 4 and we
let €g be the constant from Lemma [£.4] corresponding to the choice sg := %, which we fix from here onwards.
Theorem 5.2. (“Growth Lemma” under[H2) Let zy € 2, and suppose 0 < r < %. Consider an open set
D C Q}(z0) C Q such that D N Q%(zy) # 0. Suppose u € C*(D) N C (D) is nonnegative in D, vanishes on
0D N QL (20), and satisfies Lau > 0 in D. Assume, moreover, that the continuity condition [HZ holds for the
operator L. Then there exists a constant n > 0 such that

\Qi(zo)\D\>
|93 (20)]

sup .

sup u > (1 +n
D DﬂQ%(zo)
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Proof. The proof is essentially that of Theorem 5.1l The only modification is that the function Ug is now
constructed with the choice of I's 5 as in subSection {2}, see (£.10]). By Lemmad4] Ug is a subsolution only

92 2

inside a cylinder Q. C(2) of size € depending on the modulus of continuity w for the coefficients A(-).
_e2.2

The assumption 0 < r < % (recall that K > 1 > v/bg) yields D C Q}(z9) C QN Qe " (20). O

We provide an immediate application of Theorem (.l and Theorem by showing oscillation decay and
Hoélder continuity of solutions to £ 4u = 0. Recall that the oscillation of a function u over a set E is defined
to be oscgu := supp u — infg u.

Corollary 5.3. (Oscillation Decay and Local Holder Continuity under[H1]) Suppose the operator L 4 satisfies
the hypothesis [HIl. There exists a structural constant 0 > 1 such that if u is a classical solution of Lau =0
in an open set D C Q and QL(z9) € D, then

n
(5.5) 0SCQL(zg)U > <1 + Z) 0CQ1  (20)U-
Consequently, there exists a structural constant o and, for any p > 0, a positive constant C, such that
(5.6) lu(z) —u(Q)| < C,||¢ o zH(; lull oo (py ~ for all z,¢ such that Q})(z), Q})(C) € D.

Proof. We first prove (G0). Let 6 := U—Ig Recalling that 6 > 2, we have Q}n/g(zo) C Q%(z) and then
0sCg1 yu. Consider the function

T/Q(ZO)
v=2u— | sup u+ inf u],
Q2(z0) Q2 (20)

and let DT be the set of points in Ql(z) where v > 0. We may assume, without loss of generality, that
|Q3(20)\D*| > 3|Q3(20)|; otherwise, consider —v instead of v. Applying Theorem 51 with D = DT, we
obtain

U < 05CQ2(z,

\Q?(Zo)\Dﬂ)

n
sup v > (1+—) sup v
Q3 (20)]

208CQ1(zy)U — 0SCQ2(;)U =  Sup v > <1 +n
D+NQ%(20) Q2 (20)

Q1 (20)
= <1 + Q) 0SC Q2 (5,) U-
2 T(ZO)

which implies

(5.7) 0SCQ1 (z)U = Poscge(,gyu > POSCQi/G(ZO)u with P:=1+ T

To prove the estimate (5.6), fix p > 0 and let z,{ be arbitrary points in D such that Q;(z), Q;(C ) € D.
With no loss of generality, we may assume ¢t < 7. We have two cases: either z € Q};({ )or z¢ Q}}(C ).
If z € Q}(¢), choose mg € NU {0} such that z € Q', (¢) and z ¢ Q' , (¢). Hence, HC‘lozHB >
60 omo+1
min { K, v/bp} grnsT = Vbp gaarr- Applying (1) recursively, we obtain
1 2P [Jul| ooy
05CQ!, OV = Prg QU S T pmort

Writing P+l = (gloge Pymot+l — (gmot+1ylogs P anq letting « := logy P, we get

o 2P |ull

p L

u(2) w0l S oseqr ou < — g2 (Vi) < —
90 bea bea

2P [[ull oo () (D) o1

a
oz
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On the other hand, if z ¢ Q}(¢) we simply have ||(™ o z|| , > V/bpp and then

2 u ||Loo<D

167 o 25 -

lu(z) = w(Q)] < 2{[ull oo (py <

Combining the two possibilities, we obtain the desired estimate (G.6]) with the choice C, = 2Pbg?p~. [

In order to establish the corresponding version of Corollary 5.3l under the hypothesis [H2] we notice that
the proof can be carried out in the same manner simply by considering Q(z9) C D with 0 < r < %. The
constant C), will now depend additionally on €g; however, the constant o remains independent of €.

Remark 5.4. The regularity estimate (5.0) is equivalent to local Hélder continuity in the standard sense.
One can see this by comparing the | - |g-norm with the Euclidean norm as in (2Z9)-@2II) (see also [30
Definition 1.2 and Proposition 2.1]).

6. HARNACK INEQUALITY

In this final section, we prove the Harnack inequality for non-negative solutions to L4u = 0 using the
growth lemma. We follow closely the approach outlined by Landis in [25, Lemma 9.1 and Theorem 9.1] and
make a number of necessary modifications to adapt his proof to our setting.

Lemma 6.1. There exist structural constants C1,Co > 0 such that:

(i) for any R> 0 and any 0 < 6; < §y < L 5, if p < CLR(02 — 51)”+% then

—bpR?(3+02),0
R(%—i—&)

—bBR ( +(51),0

VZOEQ(_H;) 5

Q70 (z) C Q
(ii) for any R >0 and any 0 < 01 < 9y < 1, if p < CyR(02 — 51)”+% then

bg po 2 bp p2 bB p2 2 bp p2 e
—bpp2,0 —“BR?(3462),— "B R —°BR?(3462),— "B R
2 (20) € QR%°(1+62) h QR%O(1+51) e 8PQR%O

We postpone the proof of this lemma to the end of the section. For now, we use it to prove the following
important consequence of the growth lemma.

LppR2,0
) #
0. Suppose u € C*(D)NC (E), nonnegative in D, vanishes on 0D N Q_bBR 0( ), and satisfies Lau = 0
in D. Assume, moreover, that the Cordes-Landis condition [H1l holds for the operator L. Then, for any
M > 1, there exists 6 > 0 (depending on M and on structural constants) such that, if |D| < IR9*2, we have

supu > M supu > Mu(z).
D D+

Lemma 6.2. Let z € 2, and consider an open set D C Qp bpR?, 0( ) C Q such that DV := DﬂQlR

Proof. By translation invariance we can assume zZ = 0 € ). Let n be the constant in Theorem Bl For any
M > 1, let m be the smallest natural number such that (1 + ﬂ)m > M. For i € {0,...,m}, denote

—1bpR?(14+:L4).0

Q(Z QlR( _,’_7n)

For any i € {0,...,m — 1} we consider the point 2" = (2%, ") in the parabolic boundary of Q) such that
u(2") = supproe u. Let us now denote

Q;’(l Q—bBP 0( z)
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By recalling that K > 1 and by exploiting Lemma [6.1] (item (¢), with §; = ﬁ, 09 = %) we know that
pe— S R yields QL) ¢ Qi+,
(2m)"+3

We are going to prove the statement of the lemma with the choice

—bp,—3bs
Qoo
21 (2m)(n+%)(Q+2)'

In fact, defining Qp @) QUO 10577, 0( ) and Q3 (@) Qo’be7 30807 (2), the assumption |D| < SROT2
implies

i i i 7 1 i
DN QM| < §RIT? = |Q§’()| and hence |Q§’()\D|:|Q§’()|—|DHQ%()|2§|Q§’()|.

Applying Theorem B.1lin the cylinder Qb (@) , and using the inclusion Q,’ L,G) c QUi+l

sup w > sup u > <1—|—Q) sup  u > <1+Q>u(zi): <1—|—Q) sup u.
DNQGH)  prgh® 2/ prgz® 2 2/ prg

, we get

1bpR2,0

This holds true for every ¢ € {0,...,m — 1}. Therefore, since 000) — QlR and Q™) Q_bBR 0 we

finally obtain

m
supu > (1 + Q) supu > M supu > Mu(z).
D 2 D+ D+
O

We are finally ready to show the proof of the Harnack inequality. We begin with the proof of Theorem
L1

Proof of Theorem [11. Assume, without loss of generality, that zg = 0 and Supg- u = 2. The aim is to find
a structural lower bound for u on QTJF . Let us recall the definitions of the cylinders

——bBr ,0 —bpr? ——bBr

Q2 = Qut Q} = Quyr
Notice that Q;7 C Q2 and Q;” C Q2. Consider the set G := {z € Q2 : u(z) > 1}. Let § > 0 be the number
from Lemma [6.2] corresponding to the choice of M = 21+("+%)(Q+2), and define the structural constant

C Q42
€y = < 21> é,
PAE

where Cy is the constant appearing in Lemma [6.1], item (i7). We are faced with two possibilities:

- Case 1: |G| > eor?*2, or

- Case 2: |G| < egr@*2.
For Case 1, we consider the function w = 1 — u. With the intent of applying Theorem Bl we define the
set D :={z € Q) :w(z) >0}. We may assume D N Q2 # ), for otherwise u > 1 in Q2 D Q;f. Since u is
non-negative, we have w < 1 in Q!. Furthermore, G C Q3\D, and so |Q3\D| > eyr@*2. It follows from
Theorem [B5.1] applied to w that

128upw2<1—|—77 > sup w > <1+77 )Supw
ol 1931 ) g2np 193]
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Thus,

C €0
3
1

infu > _ where €' 1= n—-—.
of ~14+C g3

Consequently, (7)) follows when Case 1 holds.
For Case 2, we carry out an iteration procedure, which we describe in the following steps:
Step 1: Set

b b
_TBT2(3+82)7_7BT,2 . 0
7“%0(1—1—3) ’ '

Q¥ =0
Notice that Q©) = Q. , while o) = in. Consider the family of sets
GO =an @ N\Q), o0<s<1.

Observe that

1 ntl Q+2
(6.1) \cg%\ < |G| < eqrt? = (02r <§> ) 5.
We claim
(6.2) ‘Ggo) >s2 ass—0F

To see this, consider the point ¢ = (¢,7) € 9,9 such that u(¢) = 2 = supg( u. By continuity of u, there
exists a small neighborhood Ug x (7 — 62,7 + 02) of ¢ in which u > 1. We face two possibilities: either ( is
on the “base” of the cylinder Q). in which case £ € m and 7 = —%bBTQ, or ( is on the “lateral side”
of Q) in which case |€|p = r% and T € (—%bBT2, —%1)37’2]. In the first case, it suffices to notice that, up
to restricting Ug and for s small enough with respect to d and r, we have Ug X (T — %bBrzsz, T) C Ggo) and
thus ‘G@
Cy € Byoay1(0) ~ B,an (0) such that Cy x (7 — 62,7) € G, Since |B,au(y)(0) \ B,z (0)] ~ 5 by the
dilation properties, we deduce that (G@( > s > s2. This completes the proof of the claim (6.2).
By (61)) and (6.2)), there exists s; € (0,1/2) such that

1\ @+2
= <Cg'r-s?+2> 0.

Let (y € OPQ(51/2) be such that u({p) > 2. Using Lemma [6.1] item (i7) with 6; = 0, d2 = s1, we obtain the
existence of a cylinder Q;bBP2’0(<0) C QN QO | where

> 52, In the second case, up to restricting ¢ and for s small enough, we have instead a sector

G

1
n+3

p=Co-1-5;
Define Q) := Q;bBPz’O(ﬁo) and D g) := G'N Q). Notice that {y € D) and

1Dy < ‘Gg?) Q+2

Consider the function v := u — 1. The measure estimate for D gy above allows us to apply Lemma to v.
Noticing that v({y) > 1, we thus conclude

supu > supv > M.
D(o) Do)
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This implies, by the weak maximum principle (2.8]), that

sup u > M.
apg(51)

Step 2: For any index N > ¢ > 1, define Gy := {z € Q2 u(z) > (%)Z} Let Q¢ be the cylinder

satisfying
MY
sup u > 2 <—> .
apQ(Sz) 2

If s, > 1/2, we proceed directly to step 3. Otherwise, we have 1 > 1 — sy > 1/2. For any s > 0, define the
family of sets

GO =GN <Q<S+Sf>\g<se>) . 0<s<1-—s,.

Since Gy C G, we have
Q+2

© 1 n+%
G| <6l < <C’2r <§> ) 5.

Arguing as in (6.2), we also have ‘Gg)

> s% as s — 0T. Hence, there exists py € (0, 3) such that

1\ @+2
= (C’g-r-p?+2> 0.

Let (4 € 8PQ(8‘3+%Z) be such that u({y) > 2 (%)Z. Defining sy11 := s¢ + pe and using Lemma [6.1] item (i4)
with §; = sy, 02 = sp11, we obtain the existence of a cylinder Qp_bBPQ’O(Cg) C Q(s“l)\Q(sf), where

1
n+3

Define Q(y) := Q;bBPZ’O(Q) and Dy := G N Q. Notice that (; € Dy and

. Q+2
:<C’2-r'pz 2) 6 =6p%t2.

o

Dl <|6Y

. . )4 .
Consider the function v := u — (%) . The measure estimate for Dy above allows us to apply Lemma

to v. Noticing that v((s) > (%)Z, we thus conclude

M\ ¢ A GE
supu >supv>M - | — | =2 — .
Dy Dy 2

This implies, by the weak maximum principle, that

sup u > 2 <—> .
6PQ(SZ+1) 2

Step 3: There must exist a smallest integer £ > 1 such s;.1 > 1/2, for otherwise the function u would be
unbounded on Q3. This implies Step 2 must terminate after finitely many iterations. By denoting pg := s1
and recalling the definition of sx.q, we have pg + p1 + -+ + px > % and po + - + pp_1 < % For each

€ {0,...,k}, we know that the corresponding set G%) satisfies

1 Q+2
o] - (o t7)"s
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l . . . .
and that v > (%) on G%) by definition. Since pg + -+ + pr > %, there must exist at least one index

i9 € {0,...,k} such that
1 i0+2
ez (3)
Q+2

> <02 o 2—(i0+2)("+%)> 6,

M\™ :
- (i0)
u><2> onGpl%.

We now make one final use of Theorem 5.1l Consider the function v := (%)ZO —u. Then L4v = 0 and
v < (%)20 since u is non-negative on Q;. Define D := {z € Q} : v(z) > 0}. Then G;, C Q}\D. Since

Gg%) C Gj,, we have from the measure estimate above that

Therefore, we have

[

and

) Q+2
\Q?’\D\ <02 . 2—(20+2)(n+%)) 5 C§2+25
Q3 ~ Q3 r@+2 Q)]

9—(n+3)(Q+2)(i0+2)

Finally, we may assume that {v > 0} N Q2 # (); for otherwise, we would have u > (%)io >1on Q%D Qf,
and (7)) would automatically follow. Thus, we may apply Theorem [5.1] to v and obtain

Q+25

M\ c9*25 . C .
<_> > supv > 14505 Lo @262 | gup v > (14 5Z2 Lot H@4202) | ypo,
2 ol |Q1| o2nD |Q1| o

— 9l+(n+3)(Q+2)

Inserting the definition of v and recalling that M , we have

M o CQ+25 1 MO\ T M\™
o (140 C2 0 2t b <_> <_> ~infu .
< 2 > < "] 2 2 o

Cé2762—2(n+%)(62+2)
1

Denoting ¢ :=1n , we get

M\
<1+é<—> >infu2(§.
2 ha

~

Since (%)_ZO < 1, we conclude that

infu > —.
oF 1+4+¢

This establishes (7)) when Case 2 holds, and finishes the proof of the theorem. O

We next show the proof of Theorem

Proof of Theorem[1.2. For small radii we can follow the proof of Theorem [T In fact, if

€0 . 1 1
r<79:=-—minA 1, 4”+2},
{ C1Cy

K
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then we can invoke Theorem [5.2] and argue exactly as in the proofs of Lemma 2] and Theorem [I.1l This

gives the existence of a structural constant Cy such that, for all Q! = Q" br? (2) € Q and any u € C2(Q)
which is a nonnegative solution to £au = 0 in Q}, we have

(6.3) sup u<Cpy \ inf u, for any 0 < r <.
3bp,2 _bp,2 —2Er20
Q%Q‘;r T (2 Q%O? (20)

For 79 < r < 1, one can use (63]) along with the existence of Harnack chains established in this context
by Polidoro [31, Section 3]. This proves (L8) with some constants o < Z* and C' > Cp depending on the
modulus of continuity of the coefficients w (i.e. on €p). O

Finally, we provide the proof of Lemma [6.1] as promised.

Proof of LemmalG 1. We first prove (i). Fix zo = (zo,to) in the closure of the cylinder Q ?Bis() +61)’0,
1

and fix any point ¢ = (£,7) € Q_be (2). This means that there exists ¢ = (£,7) € QI_(I;B” Y such that
C=20(=(£+ E(T)x0,T + tg). By definition we have
1 1
0> 714ty > —bpp® — bpR> (5 + 51> > —bpR? (5 + 52> ,

where the last inequality holds provided that

(6.4) p < R\/5y — 1.

We have also to find conditions ensuring that |{ + E(7)xglp < R (% +02). This is trivial if 29 = 0. So,
suppose zg # 0. We start by noticing that

1
prny 1
maX{ D g ‘TO 5 g ‘TO ? +1} 2 - D T xo‘ = 17
TzolB lzol B g ENE) B
which yields
2n1+1 Tlﬂ 1 o
(6.5) D_s_xg —mln{‘D 5 xo‘,‘D 5T } S—‘D 5 azo‘ = —.
20l B TzolB 20l B (o1 lzolB B oo
By 2.5), @II), and (€3]), we get
—2
To|B To|B o°T
(E(T) —In)xolp = lrols 1p (E(7) _HN)xO‘ _ | ,’ E 5| —In)D s
o lzolB B |:E0|B =l |
< ¢(n B)‘xOIB ‘D 5 T g D x e max —527- me —627- .
B ’ o Tzol of lzol B 0 ‘xo‘zB ’ ‘$0’2B
2n+1 2 1 2n n
< RC(H,B) o 3 |:E0|B R It | 527 | 2ntt R 041 | 527 | 2ntt
— | — max — — —
- o o0 R [Zo|B R? "\ |zolB R?
2n+1 1 1 n
< pib) (n B) 3 ‘LE()’B 2n+1 G2 | | 52|t
= max — —_—
- o a0 R R? T R? ’

where we have used |zg|p < R (since §; < %) and n > 1. If in addition

(6.6) p <
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then we also have ‘_’—;} < 02%5;” <1, and so
2n+1 _1
e, B) (3 \ 5 [ 2\ F
(67) ‘(E(T) —I[N)IIZ'O‘B < R p <O'_0> <O’ bBﬁ .
Hence, by the definition of &, 2, and by [2.9)), (61), we get
2n+1 1
1 ,B) (7 = 2\ 2t
6+ Bl < lelo-+ ol +1(B) ~ W) aoly < Ko+ R (540 ) + R (2) 7 (P ) ™
Finally, if we have
(6.8) <p2—% and
‘ P=""9K
o o\
1 9 — 01 oq -
(6.9) p < R— e ;
bp 2 ¢(n,B)g s
then

€+ E(T)zolB <17"€(52—<51)+R<1 +51> :RGJH;Q)

as desired. The conditions which p has to satisfy are (6.4]), ([€.0]), (6.8]), and (69]). Since d3 — 1 < 1, these
conditions are satisfied if
P S ClR(52 — 51)n+%
for a suitable C depending on bp, 0¢, 7, K, c(n, B).
Let us now prove (i7). Proceeding verbatim as in the first part, we can prove the existence of a structural
bB R2( 3+ (51+52) ,—bTBRQ

constant Cy such that, for any p < CoR (62 — 01) nty and any zg in the closure of Q (1+ 5t 52) ,

we have
Y5 R2(3+463),~ B R? b0
ZOOCGQ001+5) for every fixed ¢ € Q77"

In particular, for such p and using 61,92 < 1, we also have (61). If we assume, in addition, that zy €
_b_BR2 34 (<51+<52)2 ’_bTBRQ

0pQ

first possibility occurs, we have

, then either to = —bTBR2 (3+ W) or |zg|p = R% (1 + @). If the

Ro'o 1+51+52
bp o °B R2(3+52),— B R?
T+t <ty < _ZR2 (3 + 5%) which implies z2p0( ¢ Q 00(1+(51) )
On the other hand, if the second possibility occurs, then by ([2.9) and (6.7)) we get
§+ E(T)zols = |wol — €l — [(E(T) = In) 2ol
2n-+1

1
a9 o140\ cmB) (a3 [, p_2 Intl
> R 5 <1 + 5 ) P Ri& 70 obp R2 .

<R@52 01 and 1 @52—51 o

<R )
[ 5 4 P = 5_\/@ 9 4 (n B)027L32

If p also satisfies
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then
o o — B R2(34.62),~ B R?
|€ 4+ E(T)xo|5 > R;O (14+61) which implies 290 ¢ QR%(H(&) P

Therefore, up to modifying the constant Cy to a suitable structural constant Cy, we have the desired
conclusion. O
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