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We prove that viscosity solutions of geometric equations in step two Carnot groups can be equivalently reformulated by restricting
the set of test functions at the singular points. +ese are characteristic points for the level sets of the solutions and are usually
difficult to deal with. A similar property is known in the Euclidian space, and in Carnot groups, it is based on appropriate
properties of a suitable homogeneous norm. We also use this idea to extend to Carnot groups the definition of generalised flow,
and it works similarly to the Euclidian setting.+ese results simplify the handling of the singularities of the equation, for instance,
to study the asymptotic behaviour of singular limits of reaction diffusion equations. We provide examples of using the simplified
definition, showing, for instance, that boundaries of strictly convex subsets in the Carnot group structure become extinct in finite
time when subject to the horizontal mean curvature flow even if characteristic points are present.

1. Introduction

In this paper, we want to discuss the notion of viscosity
solution for geometric equations, describing weak front
propagation in step two Carnot groups, of the form

ut(x, t) + F x, t, Xu(x, t), X
2
u(x, t)􏼐 􏼑 � 0,

(x, t) ∈ Rn
×(0, +∞).

(1)

Here, the operator F � F(x, t, q, A), F: Rn × (0, +∞) ×

Rm\ 0{ } × Sm⟶ R is elliptic and geometric, meaning that
it is positively homogeneous in the pair (q, A) ∈ Rm\ 0{ } ×

Sm and invariant in the last argument with respect to
matrices of the form μ q⊗ q, μ ∈ R, as we make it more
precise later. +e notation Sm indicates the set of sym-
metric m × m matrices, n, m≥ 2. +erefore, it is possible
that F has a singularity at q � 0, and we assume that it
behaves nicely, namely,

F∗(x, t, 0,O) � F
∗
(x, t, 0,O) � 0, (2)

where the stars above indicate the lower and upper semi-
continuous envelopes, respectively. +e notation Xu

indicates the horizontal gradient with respect to a family of
vector fields X1, . . . , Xm􏼈 􏼉, seen as differential operators:

Xj � 􏽘

n

i�1
σi,j(x)zi, j ∈ 1, . . . , m{ }, (3)

generators of a step two Carnot group. In particular, for a
smooth function u, Xu � ∇uσ(x), σ � (σi,j)i,j, and if m< n,
equation (1) has singularities when Xu � 0, i.e., at charac-
teristic points of the level set of u and therefore on a subspace
of positive dimension. Notation X2u indicates instead the
horizontal hessian, namely, X2u � (XiXju)∗

i,j�1,...,m
, the

symmetrised matrix of second derivatives. +is compares to
the usual Euclidian case when σ ≡ In is the identity matrix,
where Xu ≡ ∇u is the standard gradient and the singularity
is just at the origin. In the special case when the operator
F: Rm\ 0{ } × Sm⟶ R is defined as

F(q, A) � − tr I −
q

|q|
⊗

q

|q|
􏼠 􏼡A􏼢 􏼣, (4)

and moreover m � n and σ ≡ In, (1) reads as the well-known
mean curvature flow equation:
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ut(x, t) − tr I −
∇u

|∇u|
⊗
∇u

|∇u|
􏼠 􏼡D

2
u􏼢 􏼣 � 0. (5)

In a group setting instead, (5) becomes

ut(x, t) − 􏽘
m

i,j�1
δij −

Xiu(x, t)Xju(x, t)

􏽐
m
i�1 Xiu(x, t)( 􏼁

2
⎛⎝ ⎞⎠XiXju(x, t) � 0,

(6)

which is the horizontal mean curvature flow equation in the
Carnot group.

Due to the presence of singularities and the fact that we
do not expect classical solutions in general in (1), we will use
as usual the notion of viscosity solution, as given by Crandall
et al. [1] and Chen et al. [2]. In our main result, we prove an
equivalent notion of solution where we use a restricted class
of test functions at singular points, with the property that if
the horizontal gradient vanishes, then the horizontal hessian
vanishes as well.+is equivalent notion of solution simplifies
the dealing with singularities and was first proved in the
Euclidian setting for the mean curvature flow equation by
Barles and Georgelin [3] to study the convergence of nu-
merical schemes. We also use this approach to extend to our
setting the notion of generalised flow, introduced as a
general and flexible method to study singular limits in partial
differential equations giving rise to propagating fronts by
Barles and Souganidis [4] and applied in several situations in
the Euclidian setting (see also Barles and Lio [5]). As a
matter of fact, we will use this notion of solution in a
forthcoming paper, when we discuss the singular limit of
reaction diffusion equations for anisotropic and degenerate
diffusions [6], while we develop here the preliminary needed
tools on weak front propagation. +is simplified approach,
which is particularly helpful when studying approximations
of (1) of different nature, therefore extends to the Carnot
group setting with similar properties. Hopefully, it could also
prove useful to tackle the comparison principle for viscosity
solutions of (1), which is still missing in the literature in full
generality. To achieve our goal, we need to modify the usual
approach with the doubling of variables in viscosity solu-
tions, by changing the test function, since the Euclidian
norm does not work for singular anisotropic equations as
(1), and replace it instead with a homogeneous norm,
adapted to the Carnot group structure. As an application, we
show how one can more easily check that functions are
supersolutions or subsolutions of (1) especially at singular
points, by providing explicit examples of supersolutions or
subsolutions to be used as barriers. If in particular we
consider the recent notion of v-convex functions with re-
spect to the family of vector fields, we can prove, coupling
our result with a comparison principle, that their level sets
become extinct in finite time under the horizontal mean
curvature flow equation, by constructing suitable super-
solutions of (1).

Equation (1) appears in the level set approach of the weak
propagation of hypersurfaces, where we want to discuss the
propagation of interfaces and boundaries of open sets, with
prescribed normal velocity. In the Euclidian space, usually
the velocity V � V(x, n, Dn), where n is the exterior normal.

Indeed, if Ωt ⊂ Rn is a family of open sets, Γt � zΩt is the
propagating front, and there exists a smooth function
u: Rn × [0, +∞) such that

Γt � x ∈ Rn
: u(x, t) � 0􏼈 􏼉,

Ωt � x ∈ Rn
: u(x, t)> 0􏼈 􏼉,

∇u ≠ 0 on Γt,

(7)

one computes

V �
ut

|∇u|
,

n � −
∇u

|∇u|
,

Dn � −
1

|∇u|
I −
∇u⊗∇u

|∇u|2
􏼠 􏼡D

2
u.

(8)

+erefore, u formally satisfies

ut � G x, t,∇u, D
2
u􏼐 􏼑, (9)

where G is related to V by

G(x, t, p, A) � |p|V x, t, −
p

|p|
, −

1
|p|

I −
p⊗p

|p|2
􏼠 􏼡A􏼠 􏼡,

(x, p, A) ∈ Rn
× R

n
\ 0{ } × S

n
.

(10)

In our case, the anisotropy of the velocity will be for
instance exploited by the fact that

G(x, t, p, A) � F pσ(x),
tσ(x)Aσ(x)􏼐 􏼑, (11)

so that as an operator G(x, t,∇u, D2u) � F(Xu, X2u). +e
novelty here with respect to the classical cases is that while in
the Euclidian case σ � I and its square is a nondegenerate
matrix, here the diffusion matrix σ(x)tσ(x) is not only
anisotropic but also degenerate. When the family of vector
fields does not span the wholeRn at each point, this fact adds
metric singularities to the usual one of geometric equations.

+e geometric property of the level set approach is based
on the fact that if u solves (1) and ψ: R⟶ R is smooth and
increasing, then ψ(u) also solves the same equation. As a
consequence, when a comparison principle holds true, it is
easy to see that if u1

o and u2
o are two initial conditions such that

Γo � x: u
1
o(x) � 0􏽮 􏽯 � x: u

2
o(x) � 0􏽮 􏽯, (12)

and u1 and u2 are the corresponding solutions in (1), then
one has

x: u
1
(x, t) � 0􏽮 􏽯 � Γt � x: u

2
(x, t) � 0􏽮 􏽯, for all t> 0.

(13)

One can therefore define the family of closed sets (Γt)t to
be the geometric flow of the front or interface Γo with the
prescribed normal velocity.

+e notion of horizontal normal and horizontal mean
curvature is due to Danielli et al. [7]. Recently, equation (1) has
been studied by several authors. Existence results are available
in the work of Capogna and Citti [8], who proved existence in
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Carnot groups by vanishing viscosity riemannian approxima-
tions. Dirr et al. [9] used stochastic approximations to show
existence for more general Hörmander structures. Capogna
et al. [10] prove uniform regularity estimates on the riemannian
vanishing viscosity approximations for the flow of graphs,
which also apply to prove existence for (1) in that case. On
uniqueness results, the literature is far less complete. Capogna
and Citti [8] proved a comparison principle if either one of the
functions compared is uniformly continuous or their initial
condition does not depend on the vertical coordinate, thus
avoiding characteristic points in the initial front. A very recent
paper by Baspinar and Citti [11] finds a comparison principle in
Carnot groups of step two as a consequence of the fact that all
solutions are limits of suitable families of riemannian regu-
larisations. We remark the fact that in [8, 9], the authors use a
notion of solution that differs from standard viscosity solutions
at singular points. However, their notion of solution turns out to
be equivalent to viscosity solutions as a consequence of our
result. One of the referees pointed out to us the work of Ferrari
et al. [12] where the authors use an approach similar to ours in
the case of the horizontal mean curvature flow equation in the
Heisenberg group, and they show a comparison principle for
axisymmetric viscosity solutions.

We recall that the level set method for geometric flows
was proposed by Osher and Sethian [13] for numerical
computations of geometric flows. +e rigorous theory of
weak front evolution started with the work by Evans and
Spruck [14] for the mean curvature flow and by Chen et al.
[2] for more general geometric flows. For the mathematical
analysis of the level set method via viscosity solutions, the
reader is referred to the book by Giga [15], where the ap-
proach is discussed in detail (see also Souganidis [16] and the
references therein for the main applications of the theory,
and [17] for equations with discontinuous coefficients).

2. Step Two Carnot Groups and Level Set
Equations on the Group

In this paper, we consider in Rn a family of vector fields
X � X1, . . . , Xm􏼈 􏼉 written as differential operators as in (3)
and consider σ: Rn⟶ Rn×m which is the matrix valued
family of the coefficients. We will indicate σj the j− th
column of σ so that

XjI(x) � σj(x), j ∈ 1, . . . , m{ }, (14)

where I(x) is the identity map in Rn and in general Xj

applied to a vector valued smooth function φ means the
vector whose entries are given by Xj applied to the com-
ponents of φ. +e vector fields of the family are throughout
the paper assumed to be generators of a step two Carnot
group. To be more precise, we rely on the following defi-
nition (see the book by Bonfiglioli et al. [18], which we refer
the reader to, for an introduction to the subject).

Definition 1. We say that G � (Rn) is a Lie group if ∘ is a
group operation on Rn and the map (x, y)⟼x− 1 ∘y is
smooth.

We then say that (G, ∘ , δλ) is a step two Carnot group if
we can splitRn � Rm × Rn− m, x � (xh, xv), m< n, and for all

λ> 0, the family of dilations δλ(x) � (λxh, λ2xv) are auto-
morphisms of the group (the group is homogeneous).
Moreover, the family of vector fieldsX is left invariant on G
with respect to the group operation, that is, for all
φ ∈ C∞(Rn) and all α ∈ Rn, we have that

Xj(φ(α ∘ x)) � Xjφ􏼐 􏼑 τα(x)( 􏼁, j ∈ 1, . . . , m{ }, (15)

where τα(x) � α ∘ x is the left translation, and the following
Hörmander property is satisfied:

span Xi(x), Xj, Xk􏽨 􏽩(x): i, j, k ∈ 1, . . . , m{ }􏽮 􏽯 � R
n
,

for all x ∈ Rn
,

(16)

so that the family of vector fieldsX, together with their first
order Lie brackets, generates Rn at every point (the Carnot
group is step two).

+e vector fields of the familyX are said to be generators
of the Carnot group.

Following [18], it is then well known that ifX generates a
step two Carnot group, then, by a suitable change of vari-
ables, we can suppose that

σ(x) �
Im

t Bxh( 􏼁
􏼠 􏼡, (17)

where Im is the m × m identity matrix, Bxh �

(B(1)xh, . . . , B(n− m)xh), and B(j), j ∈ 1, . . . , n − m{ }, are skew
symmetric, linearly independent, m × m matrices. In addi-
tion, Rn has the group structure with the following
operation:

x ∘y � xh + yh, xv + yv +〈Bxh, yh〉( 􏼁, (18)

with the notation 〈Bxh, yh〉 � (B(1)xh · yh, . . . , B(n− m)xh·

yh). With this group operation, it is clear that x− 1 � − x and
0 is the identity element of the group.

Moreover, we notice that the Jacobian of the left
translation has the following structure:

Dτα(x) �
Im Om×(n− m)

t Bxh( 􏼁 In− m

􏼠 􏼡, (19)

so the firstm columns of the Jacobian give thematrix σ(x). It
is also good to remember that for λ> 0, the family X is
homogeneous of degree one with respect to the dilations,
namely,

Xj φ δλ(x)( 􏼁( 􏼁 � λ(Xφ) δλ(x)( 􏼁, j ∈ 1, . . . , n − m{ },

(20)

for all φ ∈ C∞(Rn).

Example 1. +e well-known example of the Heisenberg
group comes from R3 � R2 × R and the single matrix

B �
0 1

− 1 0
􏼠 􏼡. (21)

Abstract and Applied Analysis 3



For our purposes, given a smooth function u ∈ C2(Rn),
we indicate the horizontal gradient (here, gradients are row
vectors) as

Xu(x) � ∇u(x)σ(x) (22)

and the horizontal hessian as

X
2
u(x) � XjXku(x)􏼐 􏼑

∗
j,k�1,...,n− m

�
tσ(x)D

2
u(x)σ(x).

(23)

We just observe that A∗ � (A + tA)/2 indicates the
symmetrisation and that the first-order terms in the second
derivatives of X2 cancel out by direct computation since σ
only depends on the first m variables.

In Rn, taking advantage of the group structure of the
family of vector fields, we want to study the problem of weak
front propagation by extending the now classical-level set
idea. Let F: Rn × (0, +∞) × Rm\ 0{ } × Sm⟶ R be a con-
tinuous function, locally bounded at points of the form
(x, t, 0, A), where Sm denotes the space of the m × m

symmetric matrices. We assume on F the following structure
conditions:

(F1) F satisfies

F
∗
(x, t, 0,O) � F∗(x, t, 0,O), for all(x, t) ∈ Rn

×(0, +∞);

(24)

(F2) F is elliptic, i.e., for any (x, t) ∈ Rn ×

(0, +∞), p ∈ Rm\ 0{ } and A, B ∈ Sm:

F(x, t, p, A)≤F(x, t, p, B), if A≥B; (25)

(F3) F is geometric, i.e.,

F(x, t, λp, λA + μ(p⊗p)) � λF(x, t, p, A), for all λ> 0 , μ ∈ R,

(26)

for every (x, t) ∈ Rn × (0, +∞), p ∈ Rm\ 0{ } and
A ∈ Sm.

In the above equations, we are using the following
notation for the lower semicontinuous extension of F at the
singular points:

F∗(x, t, 0, A) � lim
r⟶0+

inf F(y, t, q, B): q≠ 0, |(y, q, B)􏼈

− (x, 0, A)|≤ r},

(27)

and similarly for the upper semicontinuous extension F*.
Note in particular that the geometric property of F implies
F∗(x, t, 0,O) � 0 for all (x, t) ∈ Rn × (0, +∞).

We want to discuss the notion of solution for the
equation

ut(x, t) + F x, t, Xu, X
2
u􏼐 􏼑, (x, t) ∈ Rn

×(0, +∞),

(28)

where now only the horizontal first and second derivatives of
the unknown function appear in the equation. Note that in
our group setting, the operator F in (28), written in the usual
coordinates of Rn, becomes

G(x, t, p, A) � F x, t, pσ(x),
tσ(x)Aσ(x)􏼐 􏼑,

G: R
n

×(0, +∞) × R
n

( 􏼁\ (x, t, p): pσ(x) � 0􏼈 􏼉( 􏼁

× S
m⟶ R.

(29)

Remark 1. We easily show in a moment that G preserves the
assumptions (F1), (F2), and (F3); however, the singularities
of G are not just at the origin but in the whole of the subset:

S � (x, t, p, A) ∈ Rn
×(0, +∞) × R

m
× S

m
: pσ(x) � 0􏼈 􏼉,

(30)

where now for all (x, t, A) ∈ Rn × (0, +∞) × Sm, the set
p: (x, t, p, A) ∈ S􏼈 􏼉 is a varying subspace, not necessarily
trivial if the family of vector fields X does not span Rn at x.
In this sense, the operator G is not covered by the standard
theory of the anisotropic operators.

Operator G is elliptic since if A≥B, then
tσ(x)Aσ(x)≥ tσ(x)Bσ(x) and thus G(x, t, p, A)≤
G(x, t, p, B).

Operator G is also geometric since

G(x, t, λp, λA + μ(p⊗p)) � F x, t, λpσ(x), λ tσ(x)Aσ(x) + μ(pσ(x)⊗pσ(x))􏼐 􏼑

� λF x, t, pσ(x),
tσ(x)Aσ(x)􏼐 􏼑 � λG(x, t, p, A).

(31)

+us, (F2) and (F3) hold true.
We now recall the usual definition of viscosity solution

for level set equation (28).

Definition 2. An upper (respectively, lower) semicontinuous
function u: Rn × (0, +∞)⟶ R is a viscosity subsolution
(respectively, supersolution) of (28) if and only if for any

ϕ ∈ C2(Rn × (0, +∞)), if (x, t) ∈ Rn × (0, +∞) is a local
maximum (respectively, minimum) point for u − ϕ, we have

ϕt(x, t) + G∗ x, t,∇ϕ(x, t), D
2ϕ(x, t)􏼐 􏼑≤ 0, (32)

where G is given in (29). A viscosity solution of (28) is a
continuous function u: Rn × (0, +∞)⟶ R which is either
a subsolution or a supersolution.
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Remark 2. In the previous definition, the lower semi-
continuous extension of G at the singular points where
pσ(x) � 0 is

G*(x, t, p, A)

� lim
r⟶0+

inf G(y, s, q, B): (y, s, q, B) ∈ dom(G), |(x − y, t − s, p − q, A − B)|≤ r􏼈 􏼉

� lim
r⟶0+

inf F y, s, qσ(y),
tσ(y)Bσ(y)􏼐 􏼑: qσ(y)≠ 0, |(x − y, t − s, p − q, A − B)|≤ r􏽮 􏽯.

(33)

In particular, from pσ(x) � 0, we have

F∗ x, t, 0,
tσ(x)Aσ(x)􏼐 􏼑≤G∗(x, t, p, A)≤G

∗
(x, t, p, A)

≤F
∗

x, t, 0,
tσ(x)Aσ(x)􏼐 􏼑.

(34)

+us, if pσ(x) � 0 and tσ(x)Aσ(x) � O, then
G∗(x, t, p, A) � G∗(x, t, p, A) � 0, so a counterpart of (F1)
holds for G.

In Definition 2, if Xϕ(x, t)≠ 0, then (32) is equivalently
written as

ϕt(x, t) + F x, t, Xϕ(x, t), X
2ϕ(x, t)􏼐 􏼑≤ 0, (35)

and the extended operator G* only appears when
Xϕ(x, t) � 0. +erefore, at singular points, the notion of
viscosity subsolution is stronger than one would require:

ϕt(x, t) + F∗ x, t, Xϕ(x, t), X
2ϕ(x, t)􏼐 􏼑≤ 0 (36)

instead of (32). Note that in the special case (4), if pσ(x) � 0,

F*(x, t, 0, A) � min
|p|�1

− tr (I − p⊗p)A􏼈 􏼉, (37)

and this is used in [8] or in [9] to define (weak-) subsolutions
of the horizontal mean curvature flow equation, by requiring
(36) instead of (32).

3. Viscosity Solutions

In this section, we consider equation (28) and prove an
equivalent definition of viscosity solution. +is result ex-
tends [3] to our setting and simplifies the treatment of
singularities of equation (28) by restricting the family of test
functions at characteristic points.

When it will be necessary to emphasise the variable x
in which we are computing the vector fields Xi (and with
respect to computing the derivatives), we will denote the
horizontal gradient and the horizontal Hessian matrix as
Xx and X2

x . For example if H(x, y) is a C2 function
defined in Rn × Rn and (xo, yo) is a generic point of
Rn × Rn; we will denote with XxH(xo, yo) the horizontal
gradient of H with respect to the variable x and with
XyH(xo, yo) the horizontal gradient ofH with respect to y,
both computed at the point (xo, yo). Analogous defini-
tions hold for X2

xH(xo, yo) and X2
yH(xo, yo). We consider

an homogeneous (with respect to any dilatation δλ, λ> 0)
norm on Rn:

‖x‖G � xh

􏼌􏼌􏼌􏼌
􏼌􏼌􏼌􏼌
4

+ xv

􏼌􏼌􏼌􏼌
􏼌􏼌􏼌􏼌
2

􏽨 􏽩
1/4

, (38)

and we define a left invariant metric dG: Rn × Rn

⟶ [0, +∞) as

dG(x, y) � x
− 1 ∘y

����
����G

� yh − xh

􏼌􏼌􏼌􏼌
􏼌􏼌􏼌􏼌
4

+ yv − xv − 〈Bxh, yh〉
􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌
2

􏽨 􏽩
1/4

.

(39)

Remark 3. Here, we make some comments on definitions
(38) and (39). Dealing with fully nonlinear partial differ-
ential equations with singularities poses a number of ad-
ditional difficulties. Viscosity solutions theory can cope with
these difficulties since the work of Evans and Spruck [14] and
Chen et al. [2]. +e horizontal mean curvature flow equation
adds further difficulties since the singularity does not just
appear when the gradient of the solution vanishes, but rather
when the horizontal gradient vanishes, so when the gradient
takes its values in a nontrivial subspace. In some key step of the
proofs, the standard Euclidian distance does not work and one
has to think something different. One natural choice would be
to exchange the Euclidian distance with the Carnot–
Caratheodory distance. +is distance is not smooth, however
being only locally Hölder continuous. +erefore, due to the
nature of Carnot groups, one thinks of distance functions that
are related to homogeneous norms, which are distance func-
tion equivalents to the Euclidian one but are smooth. One well-
known example is the norm in (38).+is one works well in step
two groups, at least for the results we prove, but not for the
comparison principle, one reason being that the group oper-
ation is not commutative and this makes the distance not
symmetric. In groups of higher steps, one has a natural ho-
mogeneous distance with more terms, making the computa-
tions in this section more complex. Moreover, we are often
using the structure (17), which is valid specifically in step two
groups. +ere might be additional difficulties due to the fact
that Carnot groups with steps higher than two differ in some
important geometric properties. Nonetheless, step two groups
already have important applications thatmake their study quite
interesting as, for instance, in models of the visual cortex (see
[11] and the references therein for details).

We start proving a nice property of the homogeneous
metric dG defined in (39).

Lemma 1. Put N(x) � ‖x‖4G for any x ∈ Rn. 6en,

(i) x ∈ Rn: |XN(x)| � 0{ } � x ∈ Rn: X2N(x) � O􏼈 􏼉 �

x ∈ Rn: xh � 0􏼈 􏼉

Abstract and Applied Analysis 5



(ii) |Xxd4
G(x, y)| � |Xyd4

G(x, y)| and X2
xd4

G(x, y) �

X2
yd4

G(x, y) for any x, y ∈ Rn; moreover, they all have
as zero-set the set (x, y) ∈ Rn × Rn: xh � yh􏼈 􏼉

Proof

(i) +e proof of the first point follows by some simple
computations. In fact, since

XN(x) � 4 xh

􏼌􏼌􏼌􏼌
􏼌􏼌􏼌􏼌
2
xh + 2 􏽘

n− m

k�1
xv( 􏼁kB

(k)
xh, (40)

and since the matrices B(k) are all skew symmetric, we
have that,

|XN(x)|
2

� 16 xh

􏼌􏼌􏼌􏼌
􏼌􏼌􏼌􏼌
6

+ 4 􏽘
n− m

k�1
xv( 􏼁kB

(k)
xh

􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌

2

� 16 xh

􏼌􏼌􏼌􏼌
􏼌􏼌􏼌􏼌
6

+ 4 􏽘
n− m

k,l�1
xv( 􏼁k xv( 􏼁l〈B

(k)
xh, B

(l)
xh〉.

(41)

+us, XN(x) � 0 if and only if xh � 0. Moreover,

X
2
N(x) � 4 xh

􏼌􏼌􏼌􏼌
􏼌􏼌􏼌􏼌
2
Im + 8xh ⊗xh + 2 􏽘

n− m

k�1
B

(k)
xh ⊗B

(k)
xh,

(42)

which is null at xh � 0.
(ii) First of all we observe that, since the vector fields Xi

are invariant by left composition of the group op-
eration, we have

Xyd
4
G(x, y) � XyN x

− 1 ∘y􏼐 􏼑 � (XN) x
− 1 ∘y􏼐 􏼑, (43)

X
2
yd

4
G(x, y) � X

2
N􏼐 􏼑 x

− 1 ∘y􏼐 􏼑, (44)

and so by point (i) Xyd4
G(x, y) and X2

yd4
G(x, y) are null

if and only if (x− 1 ∘y)h � 0, i.e., yh � xh. To compute
the horizontal gradient and the horizontal Hessian
matrix with respect to the x variable, we observe that,
since N(x− 1) � N(− x) � N(x), it holds d4

G(x, y) �

N(x− 1 ∘y) � N(y− 1 ∘x) and, by left invariance of the
vector fields,

Xxd
4
G(x, y) � (XN) y

− 1 ∘x􏼐 􏼑,

X
2
xd

4
G(x, y) � X

2
N􏼐 􏼑 y

− 1 ∘x􏼐 􏼑.
(45)

Again Xxd4
G(x, y) and X2

xd4
G(x, y) are null exactly when

yh � xh.

Finally, we observe that |Xyd4
G(x, y)|2 � |Xxd4

G(x, y)|2

and X2
yd4

G(x, y) � X2
xd4

G(x, y).
We use the previous lemma to prove an equivalent

definition of solution other than Definition 2 which is the
usual definition of viscosity solution for equation (28). +e
definition will only change at singular points of the differ-
ential operator. □

Theorem 1. An upper (respectively, lower) semicontinuous
function u is a viscosity subsolution (respectively, super-
solution) of (28) if and only if for any ϕ ∈ C2(Rn × (0, +∞)),
if (x, t) ∈ Rn × (0, +∞) is a local maximum (respectively,
minimum) point for u − ϕ, one has
zϕ(x, t)

zt
+ F x, t, Xϕ(x, t), X

2ϕ(x, t)􏼐 􏼑≤ 0, if Xϕ(x, t)≠ 0,

(46)

zϕ(x, t)

zt
≤ 0, if Xϕ(x, t) � 0, X

2ϕ(x, t) � 0, (47)

respectively,
zϕ(x, t)

zt
+ F x, t, Xϕ(x, t), X

2ϕ(x, t)􏼐 􏼑≥ 0, if Xϕ(x, t)≠ 0,

zϕ(x, t)

zt
≥ 0, if Xϕ(x, t) � 0, X

2ϕ(x, t) � 0.

(48)

Proof. We only show the result for subsolutions, the other
part being similar. It is clear that a viscosity subsolution will
satisfy (47) since G*(x, t, p,O) � 0 if pσ(x) � 0 by Remark 2
and (F1).

Let u be an upper semicontinuous function which sat-
isfies (46) and (47). Consider ϕ ∈ C2(Rn × (0, +∞)) and
(􏽢x,􏽢t ) ∈ Rn × (0, +∞) a local maximum point for u − ϕ such
that Xϕ(􏽢x,􏽢t) � 0 and X2ϕ(􏽢x,􏽢t)≠ 0. Without loss of gen-
erality, we can assume that u is a strict local maximum point
for u − ϕ. We need to prove that

zϕ(􏽢x,􏽢t)

zt
+ G∗ x, t,∇ϕ(􏽢x,􏽢t), D

2ϕ(􏽢x,􏽢t)􏼐 􏼑≤ 0. (49)

For any ε> 0, we consider the function

ψε(x, y, t) � u(x, t) −
d4

G(x, y)

ε
− ϕ(y, t). (50)

By standard arguments, one proves that for ε being
sufficiently small, there is a family of local maxima (xε, yε, tε)

of ψε such that (xε, yε, tε) converges to (􏽢x, 􏽢x,􏽢t). Indeed, if
(xε, yε, tε) are the maximum points of ψε in a small compact
neighborhood of (􏽢x, 􏽢x,􏽢t), (xε, yε, tε) will converge to some
(x, y, t) (passing to a subsequence if necessary). One first
uses ψ(xε, yε, tε)≥ψ(􏽢x, 􏽢x,􏽢t) to show that x � y and next by
taking the limit that (x, t) is a maximum of u − ϕ in the
neighborhood so that (x, t) � (􏽢x,􏽢t).
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Moreover, since the function y⟼ψε(xε, y, tε) has a
local maximum in yε, we have

∇ϕ yε, tε( 􏼁 � −
Dyd4

G xε, yε( 􏼁

ε
,

D
2ϕ yε, tε( 􏼁≥ −

D2
yd4

G xε, yε( 􏼁

ε
.

(51)

+us,

Xϕ yε, tε( 􏼁 � −
Xyd4

G xε, yε( 􏼁

ε
,

X
2ϕ yε, tε( 􏼁≥ −

X2
yd4

G xε, yε( 􏼁

ε
.

(52)

Two cases may now occur:

(1) Xϕ(yε, tε) � 0 along a subsequence. +is means that
Xyd4

G(xε, yε) � 0 and by Lemma 1, (xε)h � (yε)h.
Since the map (x, t)⟼ u(x, t) − φ(x, t) with

φ(x, t) � (d4
G(x, yε)/ε) + ϕ(yε, t) attains a maximum

at (xε, tε) and

Xφ(x, t) � 0⟺ xε( 􏼁h � yε( 􏼁h⟺X
2φ(x, t) � 0, (53)

by (47), we get

zφ
zt

xε, tε( 􏼁 � ztϕ yε, tε( 􏼁≤ 0. (54)

For future reference, we remark that the test function φ
satisfies in a neighborhood of (􏽢x,􏽢t): Xφ � 0 implies
X2φ � 0.We proceed and by (52) and (xε)h � (yε)h, we
get that X2ϕ(yε, tε)≥O. Using the ellipticity of F and
Remark 2, it holds

ztϕ yε, tε( 􏼁 + G∗ yε, tε,∇ϕ yε, tε( 􏼁, D
2ϕ yε, tε( 􏼁􏼐 􏼑≤ ztϕ yε, tε( 􏼁 + F

∗
yε, tε, Xϕ yε, tε( 􏼁, X

2ϕ yε, tε( 􏼁􏼐 􏼑

≤ ztϕ yε, tε( 􏼁 + F
∗

yε, tε, 0,Om×m( 􏼁 � ztϕ yε, tε( 􏼁≤ 0,
(55)

and we conclude by letting ε go to 0.
(2) Xϕ(yε, tε)≠ 0 for all ε being sufficiently small. Using

(52) and the previous lemma, this means
(yε)h≠ (xε)h. Moreover, the point (xε, tε) is a
maximum for

(x, t)⟼ψε x, x ∘x− 1
ε ∘yε, t􏼐 􏼑 � u(x, t) −

d4
G xε, yε( 􏼁

ε

− ϕ x ∘x− 1
ε ∘yε, t􏼐 􏼑

≔ u(x, t) − φ(x, t),

(56)

since d4
G(x, x ∘x− 1

ε ∘yε) � N(x− 1
ε ∘yε) � d4

G(xε, yε). Let
􏽥τα(x) � x ∘ α be the right translation by α and
D􏽥τα(x) ≡ D􏽥τα its Jacobian matrix. A simple compu-
tation shows that D􏽥τα has the form

D􏽥τα �

Im Om×n

t tB(1)( 􏼁αh( 􏼁

⋮ In
t tB(n− m)( 􏼁αh( 􏼁

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

�

Im Om×n

t − B(1)αh( 􏼁

⋮ In
t − B(n− m)αh( 􏼁

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

�

Im Om×n

− tBαh In

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝
⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠.

(57)

By the chain rule, we get

Xφ xε, tε( 􏼁 �
tσ xε( 􏼁

t
D􏽥τx− 1

ε ∘yε
∇ϕ 􏽥τx− 1

ε ∘yε
xε( 􏼁, tε􏼐 􏼑

�
t

D􏽥τx− 1
ε ∘yε

σ xε( 􏼁􏼐 􏼑∇ϕ yε, tε( 􏼁

�
tσ 2xε − yε( 􏼁∇ϕ yε, tε( 􏼁⟶ Xϕ(􏽢x,􏽢t ) � 0,

as ε⟶ 0,

(58)

since (xε)h − (x− 1
ε ∘yε)h � (xε ∘y− 1

ε ∘ xε)h � (2xε − yε)h and

X
2φ xε, tε( 􏼁 �

tσ xε( 􏼁
t
D􏽥τx− 1

ε ∘yε
D

2ϕ 􏽥τx− 1
ε ∘yε

xε( 􏼁, tε􏼐 􏼑D􏽥τx− 1
ε ∘yε

σ xε( 􏼁

�
tσ 2xε − yε( 􏼁D

2ϕ yε, tε( 􏼁σ 2xε − yε( 􏼁

⟶ X
2ϕ(􏽢x,􏽢t)≠ 0, as ε⟶ 0.

(59)

Moreover, we show that Xφ(xε, tε)≠ 0. In fact, as
u(xε, t) − (1/ε)d4

G(xε, y) − ϕ(y, t) has a maximum at
(y, t) � (yε, tε),

Xφ xε, tε( 􏼁 �
tσ 2xε − yε( 􏼁∇ϕ yε, tε( 􏼁

� − ε− 1 tσ 2xε − yε( 􏼁∇yd
4
G xε, yε( 􏼁

� − ε− 1 tσ 2xε − yε( 􏼁
t
Dτx− 1

ε
∇N x

− 1
ε ∘yε􏼐 􏼑

� − ε− 1 tσ xε − yε( 􏼁∇N x
− 1
ε ∘yε􏼐 􏼑

� ε− 1 tσ xε − yε( 􏼁∇N y
− 1
ε ∘ xε􏼐 􏼑 � ε− 1

XN y
− 1
ε ∘ xε􏼐 􏼑.

(60)
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By Lemma 1, this is null if and only if (yε)h � (xε)h, and
we already know that this cannot be true. +us, by (32), it
holds

zφ
zt

xε, tε( 􏼁 + G xε, tε,∇φ xε, tε( 􏼁, D
2φ xε, tε( 􏼁􏼐 􏼑≤ 0, (61)

and we conclude by letting ε⟶ 0:

0≥ lim inf
ε⟶0

zφ
zt

xε, tε( 􏼁 + G xε, tε,∇φ xε, tε( 􏼁, D
2φ xε, tε( 􏼁􏼐 􏼑􏼠 􏼡

≥ ztϕ(􏽢x,􏽢t) + G∗ 􏽢x,􏽢t,∇ϕ(􏽢x,􏽢t), D
2ϕ(􏽢x,􏽢t)􏼐 􏼑.

(62)
□

Remark 4. By a remark during the previous proof, it is not
restrictive to assume in Definition 2 that if u (respectively, v)
is an upper semicontinuous subsolution (respectively, a
lower semicontinuous supersolution) of equation (28) and
φ ∈ C2(Rn × (0, +∞)) is a test function for u (resp., for v) at
the point (x, t), then at any point (y, s) in a neighborhood of
(x, t) such that

Xφ(y, s) � Xφ(x, t) � 0, (63)

it holds

X
2φ(y, s) � 0. (64)

Complementing+eorem 1 and Remark 2, we obtain the
following consequence. It shows, in particular, that the
notion of solution for the horizontal mean curvature flow
equation used in [8] or in [9], which is different from vis-
cosity solutions at characteristic points, is in fact equivalent
to standard viscosity solutions and ours.

Corollary 1. Let u: Rn × (0, +∞)⟶ R be an upper (re-
spectively, lower) semicontinuous function. Function u is a
viscosity subsolution (resp., supersolution) of (28) if and only
if for any ϕ ∈ C2(Rn × (0, +∞)), if (x, t) ∈ Rn × (0, +∞) is a
local maximum (respectively, minimum) point for u − ϕ, one
has

ztϕ(x, t) + F∗ x, t, Xϕ(x, t), X
2ϕ(x, t)􏼐 􏼑≤ 0, (65)

respectively,

ztϕ(x, t) + F
∗

x, t, Xϕ(x, t), X
2ϕ(x, t)≥ 0􏼐 􏼑. (66)

Proof. Suppose that (x, t) ∈ Rn × (0, +∞) is a local maxi-
mum point for u − ϕ. If ∇u(x, t)≠ 0, then
G(x, t,∇u(x, t), D2u(x, t)) � F(x, t, Xu(x, t), X2(x, t)) so
there is nothing to prove. We therefore limit ourselves to
discuss the case Xu(x, t) � 0.

If u is a viscosity subsolution, by Remark 2, we know that
F* ≤G*; therefore, (65) is satisfied.

If instead we suppose that (65) holds true, then by
+eorem 1, we limit ourselves to test functions ϕ that satisfy
the following: Xϕ(x, t) � 0 implies X2ϕ(x, t) � O. In this

case F*(x, t, Xϕ(x, t), X2ϕ(x, t)) � 0 and then ztϕ(x, t)≤ 0.
+us, by +eorem 1, we know that u is a viscosity
subsolution. □

Remark 5. In [11], the authors require a subsolution u of the
horizontal mean curvature flow equation to satisfy

ztϕ(x, t) − TrX2ϕ(x, t)≤ 0, (67)

if u − ϕ has a maximum at (x, t) and Xϕ(x, t) � 0. If in
particular ϕ is in the class of test functions such that
Xϕ(x, t) � 0 implies X2ϕ(x, t) � 0, then ztϕ(x, t)≤ 0.
+erefore, u is a subsolution in the sense of +eorem 1, and
then, it is a viscosity subsolution of (28).

4. Examples of Explicit Supersolutions
or Subsolutions

In this section, we present examples of supersolutions and
subsolutions of the geometric equation in the case of the
horizontal mean curvature flow equation (mcfe) when F is
given in (4). From+eorem 1, we see that when we deal with
functions with separated variables like u(x, t) � ϕ(t)+ U(x),
it is easy to check the (mcfe) at singular points of the op-
erator. If u − φ has a maximum/minimum at (xo, to) and
Xφ(xo, to) � 0, then we only need to look at the sign of
φt(xo, to) provided suitable test functions exist, i.e.,
X2φ(xo, to) � O, otherwise we have nothing to check. We
start with a general result in step two Carnot groups, based
on the definition of convex functions in the group. +e
definition of v− convex function (as in viscosity-convex) is
given by Bardi and Dragoni [19], where it is discussed and
characterised and the reader can find explicit examples.

Definition 3. A continuous function U: Rn⟶ R is
v− convex in the Carnot group if there is α≥ 0, and for all test
functions, ϕ ∈ C2 such that U − ϕ has a maximum at xo, then
X2ϕ(xo, to)≥ αI. If α> 0, we say that U is strictly v-convex.

+e idea is to build supersolutions of the (mcfe) from a
v− convex function.

Proposition 1. In a Carnot group of Step 2, let U ∈ C(Ω) be
continuous and a strictly v− convex function. 6en for
c, r ∈ R, the function u(x, t) � ct − U(x) + r is a super-
solution of (mcfe) for all c≥ − (m − 1)α, r ∈ R. Suppose that
U is nonnegative. 6en, if c � − (m − 1)α and r> 0, the initial
front x: u(x, 0) � 0{ } � x: U(x) � r{ } becomes extinct before
time t � r/((m − 1)α).

Proof. In order to check the supersolution condition, we use
the alternative definition as in +eorem 1. Let φ ∈ C2(Rn ×

(0, +∞)) be such that u − φ has a minimum at (xo, to). Since
U − (− φ(·, to)) has a maximum at xo and U is strictly
v− convex, then − X2φ(xo, to)≥ αI for some α> 0. +erefore,
it cannot be Xφ(xo, to) � 0 if φ is an appropriate test
function, and then,
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ztφ xo, t0( 􏼁 − tr I −
Xφ xo, to( 􏼁

Xφ xo, to( 􏼁
􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌
⊗

Xφ xo, to( 􏼁

Xφ xo, to( 􏼁
􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌
􏼠 􏼡X

2φ xo, to( 􏼁􏼠 􏼡

≥ c +(m − 1)α≥ 0,

(68)

provided c≥ − (m − 1)α.
+e zero sublevel set of the supersolution u becomes a

barrier if a comparison principle holds. At time t, if
c � − (m − 1)α, it is given by x: u(x, t)≥{

0} � x: U(x)≤ − (m − 1)αt + r{ } and becomes empty if
t> r/((m − 1)α).

In the previous proposition, the front may have char-
acteristic points, as we see in some more explicit examples in
the following.

To simplify, we now specialise Heisenberg-like groups.
Building supersolutions seems to be easier than subsolutions
in particular if characteristic points are present. Below, we
consider as reference space Rn � Rm × R ∋ x � (xh, xv),
m≥ 2, and suppose that σ(xh, xv) � t(Im, Bxh), where tB �

− B � B− 1 is an m × m matrix. Notice that Bxh · xh � 0,
B2 � − Im, and |Bxh| � |xh|. □

Example 2. In the first example, we avoid characteristic
points. For c, r ∈ R, consider the family of functions
w(x, t) � ct − |xh|2 + r. We easily get that

Xw(x, t) � − 2xh,

X
2
w(x, t) � − 2Im×m.

(69)

In particular, |xh|2 is strictly v− convex; we can compute
exactly the operator

wt(x, t) − tr X
2
w(x, t) −

X2wXw⊗Xw(x, t)

|Xw(x, t)|2
􏼠 􏼡 � c + 2(m − 1),

(70)

and thus by +eorem 1 and Proposition 1, w is a super-
solution for c≥ − 2(m − 1) and a subsolution for
c≤ − 2(m − 1) in Rn × (0, +∞), so w is a viscosity solution,
for c � − 2(m − 1). Note that for r> 0, the zero level set of w

is a cylinder with axis x: xh � 0􏼈 􏼉 and it goes extinct at time
t � r/(2(m − 1)).

In general, it is not as easy to find explicit solutions.

Example 3. We consider a function built on the gauge
function of the Heisenberg group, namely, a variation of the
homogeneous norm:

u(x, t) � ct − G xh, xv( 􏼁 + r, whereG xh, xv( 􏼁 � xh

􏼌􏼌􏼌􏼌
􏼌􏼌􏼌􏼌
4

+ 4 xv

􏼌􏼌􏼌􏼌
􏼌􏼌􏼌􏼌
2

(71)

and c and r are constants to be decided later. Note that the
zero level set of u is (we will always regard r> 0 for
convenience)

(x, t): u(x, t) � 0{ } � (x, t): G(x, t) � r + ct{ }. (72)

+erefore, it is the boundary of a ball for the distance G1/4

centred at the origin. It has characteristic points, namely,
points where XG(x, t) � 0 precisely in its intersection with
the axis xh � 0, as we readily see in the following. We can
easily compute (here, we will do complete calculations and
not only the signature of X2G because we also want to check
the subsolution condition)

XG(x, t) � σ(x)
t∇G(x, t) � 4 xh

􏼌􏼌􏼌􏼌
􏼌􏼌􏼌􏼌
2
xh + 8xv

t
Bxh( 􏼁,

|XG(x, t)|
2

� 16 xh

􏼌􏼌􏼌􏼌
􏼌􏼌􏼌􏼌
2
G(x, t),

X
2
G(x, t) �

tσ D
2
G σ(x) � Im×m, Bxh( 􏼁

8xh ⊗ xh + 4 xh

􏼌􏼌􏼌􏼌
􏼌􏼌􏼌􏼌
2
Im×m 0

0 8
⎛⎜⎝ ⎞⎟⎠ t

Im×m, Bxh( 􏼁

� 8xh ⊗ xh + 4 xh

􏼌􏼌􏼌􏼌
􏼌􏼌􏼌􏼌
2
Im×m + 8Bxh ⊗Bxh ≥ 0.

(73)

+erefore, G is v-convex but not strictly v-convex.
Finally,

XG · X
2
G(x, t)XG(x, t) � 48 xh

􏼌􏼌􏼌􏼌
􏼌􏼌􏼌􏼌
4
xh + 96xv xh

􏼌􏼌􏼌􏼌
􏼌􏼌􏼌􏼌
2

Bxh􏼐 􏼑

· XG(x, t) � 192 xh

􏼌􏼌􏼌􏼌
􏼌􏼌􏼌􏼌
4
G(x, t).

(74)

and since u is smooth, we conclude that, for xh ≠ 0,

ut(x, t) − tr X
2
u(x, t) −

X2uXu⊗Xu(x, t)

|Xu(x, t)|2
􏼠 􏼡

� c + tr X
2
G(x, t) −

X2GXG⊗XG(x, t)

|XG(x, t)|2
􏼠 􏼡

� c +(8 + 4m + 8) xh

􏼌􏼌􏼌􏼌
􏼌􏼌􏼌􏼌
2

− 12 xh

􏼌􏼌􏼌􏼌
􏼌􏼌􏼌􏼌
2

� c + 4n xh

􏼌􏼌􏼌􏼌
􏼌􏼌􏼌􏼌
2
.

(75)
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Now, we can use our alternative definition to obtain that
the viscosity supersolution/subsolution condition is satisfied
also at points where the horizontal gradient vanishes. We
conclude that

(i) For c≥ 0, u is a global supersolution in Rn × R+,
since ut ≥ 0

(ii) For c< 0, u is a subsolution but only in the cylinder
x: |xh|<

�����
− c/4n

√
􏼈 􏼉 around the axis xh � 0

Compared to the previous example, now umay itself be a
test function and then we cannot fulfill a supersolution or
subsolution condition just by the lack of test functions.

Note that the level sets of u in the supersolution case,
which are propagating (super) fronts, have radius nonde-
creasing in time and it may even be stationary for c � 0.
Instead, the radius decreases in time in the subsolution case
where however the diameter of the section of the domain of
the subsolution vanishes with c. +e zero level set at time
t � 0 is contained in the cylinder in (ii) provided − c> 4n

�
r

√
,

and it goes extinct at time t � − r/c.

Example 4. Similar calculations of the previous example can
be made for w(x, t) � ct − |x|2 + r. We get

Xw(x, t) � − 2xh + 2xvBxh( 􏼁,

X
2
w(x, t) � − 2Im×m,

|Xw(x, t)|
2

� − 4 xh

􏼌􏼌􏼌􏼌
􏼌􏼌􏼌􏼌
2 1 + x

2
v􏼐 􏼑,

(76)

and therefore,

wt(x, t) − tr X
2
w(x, t) −

X2wXw⊗Xw(x, t)

|Xw(x, t)|2
􏼠 􏼡

� c + 2(m − 1) + 2
xh

􏼌􏼌􏼌􏼌
􏼌􏼌􏼌􏼌
2

1 + x2
v

.

(77)

Again by +eorem 1, Proposition 1, and since |x|2 is
strictly v-convex, w is a supersolution in Rn × (0, +∞), for
c≥ − 2(m − 1), and a subsolution for c< − 2(m − 1) in the
open sets x ∈ Rn: |xh|2 < ε(1 + x2

v)􏽮 􏽯 if ε is sufficiently small.
We now construct a modification of the second example

to build a global subsolution of the mean curvature flow
equation whose level sets have characteristic points. We first
prove a lemma on change of variables for the horizontal
mean curvature operator.

Lemma 2. Let U ∈ C2(Rn) and ψ: R⟶ R be smooth with
ψ′ > 0. 6en, for W � ψ(U), if XU≠ 0, we have

− tr X
2
W −

X2W XW⊗XW(x)

|XW(x)|2
􏼠 􏼡 � − ψ′(U)tr

· X
2
U −

X2U XU⊗XU(x)

|XU(x)|2
􏼠 􏼡.

(78)

Proof. It is just a matter of computing terms. We obtain

∇W � ψ′(U)∇U,

XW(x) � ψ′(U)XU(x),

|XW(x)|
2

� ψ′(U)( 􏼁
2
|XU(x)|

2
,

D
2
W(x) � ψ″(U)∇U⊗∇U(x) + ψ′(U)D

2
U(x),

X
2
W(x) � ψ″(U)XU⊗XU(x) + ψ′(U)X

2
U(x),

trX
2
W(x) � ψ″(U)|XU|

2
+ ψ′(U)trX

2
U(x),

X
2
W XW · XW(x) � ψ′(U)( 􏼁

2 ψ″(U)|XU(x)|
4

􏼐

+ψ′(U) X
2
U XU · XU(x)􏼑.

(79)

Finally, putting things together the first two terms in the
previous equations cancel out. □

Example 5. In this example, we consider the function

v(x, t) � ct − G xh, xv( 􏼁
1/2

+ r, (80)

which is now not differentiable at points (0, t) ∈ Rn×

(0, +∞). However, v is locally Lipschitz continuous and is
differentiable in the group of variables xh. Moreover, there is
no smooth test function such that v − ϕ has a local minimum
at (0, t), and if v − ϕ has a local maximum at (0, t), then
ϕt(0, t) � c and ∇xh

ϕ(0, t) � 0 so that Xϕ(0, t) � 0 since
σ(0) � (Im×m, 0). +erefore, to check the mean curvature
flow equation at such points, we only need to look at the sign
of c by +eorem 1.

We now proceed at points such that xh ≠ 0. We use the
lemma with ψ(s) � s1/2, so that ψ′(s) � 1/(2ψ(s)), and the
calculations of the previous example. Again, the zero level
sets of v are

(x, t): v(x, t) � 0{ } � (x, t): G(x, t) � (r + ct)
2

􏽮 􏽯, (81)

and we check the equation at noncharacteristic points. We
obtain, by the lemma,

vt(x, t) − tr X
2
v(x, t) −

X2vXv⊗Xv(x, t)

|Xv(x, t)|2
􏼠 􏼡

� c +
1

2G(x, t)1/2
4n xh

􏼌􏼌􏼌􏼌
􏼌􏼌􏼌􏼌
2
.

(82)

We conclude that v is a supersolution for c≥ 0 as before,
but now, since |xh|2 ≤G(x, t)1/2, v becomes a global sub-
solution for c≤ − 2n. If c � − 2n, the extinction time of the
zero level set of the subsolution is t � r/(2n). Finally, note
that all functions of the family share the same initial con-
dition at time t � 0 independently of c.

5. A Geometric Definition of Generalised
Flow in Carnot Groups

In this section, we extend the definition of generalised
superflows and subflows introduced by Barles and Souga-
nidis [4], later revisited by Barles and Lio [5], to the setting of
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level set equations in Carnot groups, also in view of the ideas
described in Section 3. +is more geometric definition turns
out to determine uniquely the geometric flow of a hyper-
surface if the usual level set equation determines a unique
evolution with empty interior (no fattening). +is definition
has been proven to be much more efficient when dealing
with singularly perturbed problems that give rise to geo-
metric flows and we will use it in [6] to extend to the Carnot
group setting the classical Allen–Cahn approach. In the
following definition, we follow [5] with one modification
(see Remark 6).

Definition 4. Let F: Rn × (0, +∞) × Rm\ 0{ } × Sm be locally
bounded and satisfy (F1), (F2), and (F3), and letG be defined
as in (29). A family (Ωt)t∈(0,T) (resp., (Ft)t∈(0,T)) of open
(resp., close) subsets of Rn is called a generalized superflow
(resp., subflow) with normal velocity − F if, for any x0 ∈ Rn,
t ∈ (0, T), r> 0 and h> 0 so that t + h<T and for any
smooth function, ϕ: B(x0, r] × [t, t + h]⟶ R such that

(i) ztϕ(x, s) + G∗(x, t,∇ϕ(x, s), D2ϕ(x, s))< 0 in
B(x0, r] × [t, t + h] (resp., ztϕ(x, s) + G∗(x, t,

∇ϕ(x, s), D2ϕ(x, s))> 0 in B(x0, r] × [t, t + h])
(ii) For any s ∈ [t, t + h], x ∈ B(x0, r]: ϕ(x, s) � 0􏼈 􏼉≠∅

and |∇ϕ(x, s)|≠ 0 on (x, s) ∈ B(x0, r] × [t, t + h]:􏼈

ϕ(x, s) � 0}

(iii) If there exists a pair (x, s) ∈ B(x0, r] × [t, t + h] so
that |Xϕ(x, s)| � 0, then it also holds |X2ϕ(x, s)| � 0

(iv) x ∈ B(x0, r]: ϕ(x, t)≥ 0􏼈 􏼉 ⊂ Ωt (resp., x ∈ B(x0,􏼈

r]: ϕ(x, t)≤ 0} ⊂ Fc
t)

(v) For all s ∈ [t, t + h], x ∈ zB(x0, r]: ϕ(x, s)≥􏼈

0} ⊂ Ωs (resp. x ∈ zB(x0, r]: ϕ(x, s)≤ 0􏼈 􏼉 ⊂ Fc
s)

+en, we have

x ∈ B x0, r( 􏼃: ϕ(x, s)> 0􏼈 􏼉 ⊂ Ωs,

resp. x ∈ B x0, r( 􏼃: ϕ(x, s)< 0􏼈 􏼉 ⊂ Fc
s( 􏼁,

(83)

for every s ∈ (t, t + h).
A family (Ωt)t∈(0,T) of open subsets of Rn is called a

generalized flow with normal velocity − F if (Ωt)t∈(0,T) is a
superflow and (Ωt)t∈(0,T) is a subflow.

Remark 6. +e previous definition focuses on evolution of
sets directly instead of looking at the level sets of the so-
lutions of a differential equation. It does this by assuming
local comparison with smooth evolutions. Indeed, checking
if a collection of open sets provides a superflow (i) requires
the smooth function ϕ to be a local strict subsolution, (ii)
assumes that the zero level set of ϕ is smooth, (iv)-(v) re-
quires compatible initial and boundary conditions in the
local cylinder between the family of sets and the smooth
evolution. Condition (iii) is new and we add it to restrict the
family of test functions in view of what we did in Section 3.
As we will see from the proof of the characterisation of
+eorem 2 in the following, in view of our +eorem 1, the
condition (iii) can be present or not and the corresponding
definition would be equivalent.

It follows immediately by Definition 4 that a family
(Ωt)t∈(0,T) of open subsets of Rn is a generalised superflow
with normal velocity − F if and only if (Ωc

t)t∈(0,T) is a
generalised subflow with normal velocity F.

We now state and prove the following result which
describes the connection between generalised flows and
solutions of (28).

Theorem 2

(i) Let (Ωt)t∈(0,T) be a family of open subsets of Rn such
that the set Ω ≔ ∪t∈(0,T)Ωt × t{ } is open in
Rn × [0, T]. 6en, (Ωt)t∈(0,T) is a generalised super-
flow with normal velocity − F if and only if the
function χ � 1Ω − 1Ωc is a viscosity supersolution of
(28).

(ii) Let (Ft)t∈(0,T) be a family of closed subsets ofRn such
that the set F ≔ ∪t∈(0,T)Ft × t{ } is closed in
Rn × [0, T]. 6en, (Ft)t∈(0,T) is a generalised subflow
with normal velocity − F if and only if the function
χ � 1F − 1Fc is a viscosity subsolution of (28).

Proof. We adapt to our situation some of the ideas in [5] and
only consider (i) as the other case is similar. We first assume
that χ � 1Ω − 1Ωc is a supersolution of (28), and we show that
(Ωt)t∈(0,T) is a generalised superflow. To do this, we consider
a smooth function ϕ, a point (x0, t) ∈ Rn × (0, T), and
r, h> 0 satisfying conditions (i)–(v) in Definition 4. We
assume that ϕ≤ 1 in B(x0, r] × [t, t + h] (otherwise, we
change ϕ with ηϕ for η> 0 small enough and we use the
homogeneity of F). We consider

m ≔ min χ(x, s) − ϕ(x, s): (x, s) ∈ B x0, r( 􏼃 ×[t, t + h]􏼈 􏼉.

(84)

Since ϕ satisfies condition (i), χ is a supersolution of
equation (28) in B(x0, r) × (t, t + h) and it is well known
(see, e.g. [20]) that χ is therefore also a supersolution in
B(x0, r) × (t, t + h]; we deduce that the minimum m has to
be attained either in zB(x0, r) or at time t.

Let (x, s) ∈ (zB(x0, r) × [t, t + h])∪ (B(x0, r] × t{ }). If
x ∈ Ωs, then χ(x, s) � 1 and (χ − ϕ)(x, s)≥ 0 because ϕ≤ 1
in B(x0, r] × [t, t + h]. If instead x ∉ Ωs, then χ(x, s) � − 1
and, by (iv) and (v), (χ − ϕ)(x, s)≥ − 1 + δ for some δ > 0. In
any case, we can conclude that

χ(y, s) − ϕ(y, s)≥ − 1 + δ, (y, s) ∈ B x0, r( 􏼃 ×[t, t + h].

(85)

In particular, ϕ(y, s)≤ − δ, if y ∉ Ωs. +is means that for
every s ∈ [t, t + h],

y ∈ B x0, r( 􏼃: ϕ(y, s)≥ 0􏼈 􏼉∩Ωc
s � ∅, (86)

which implies that (Ωt)t∈(0,T) is a generalised superflow with
normal velocity − F.

Conversely, we assume that (Ωt)t∈(0,T) is a generalised
superflow and we show that χ is a supersolution of equation
(28) in Rn × (0, T). We consider a point (x, t) ∈ Rn × (0, T)

and a function ϕ ∈ C∞(Rn × [0, T]) so that (x, t) is a strict
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local minimum point of χ − ϕ and by adding a constant to ϕ
if necessary, we may assume ϕ(x, t) � 0. We want to show
that

ztϕ(x, t) + G
∗

x, t,∇ϕ(x, t), D
2ϕ(x, t)􏼐 􏼑≥ 0. (87)

By using the equivalent definition of viscosity solution
with a restricted family of test functions, we will suppose that
X2ϕ(y, s) � 0 whenever |Xϕ(y, s)| � 0.

When (x, t) is in the interior of either χ � 1􏼈 􏼉 or
χ � − 1􏼈 􏼉, then χ is constant in a neighborhood of (x, t) and
therefore ztϕ(x, t) � 0, ∇ϕ(x, t) � 0, and D2ϕ(x, t)≤ 0.
Since F satisfies (F1) and (F2), then the inequality in (87) is
true. Assume instead that (x, t) ∈ z χ � 1􏼈 􏼉∩ z χ � − 1􏼈 􏼉.
+us, by the lower semicontinuity of χ, χ(x, t) � − 1. We
suppose by contradiction that there exists an α> 0 so that we
have

ztϕ(x, t) + G
∗

x, t,∇ϕ(x, t), D
2ϕ(x, t)􏼐 􏼑< − α. (88)

We can find r, h> 0 such that for all (y, s) ∈
B(x, r] × [t − h, t + h]:

ztϕ(y, s) + G
*

y, s,∇ϕ(y, s), D
2ϕ(y, s)􏼐 􏼑< −

α
2

, (89)

χ(x, t) − ϕ(x, t) � − 1< χ(y, s) − ϕ(y, s), (y, s)≠ (x, t).

(90)

We consider first the case |∇ϕ(x, t)|≠ 0, and by choosing
smaller r and h, we assume that |∇ϕ|≠ 0 in
B(x, r] × [t − h, t + h]. We introduce the test function
ϕδ(y, s) ≔ ϕ(y, s) + δ(s − (t − h)), for 0< δ≪ 1. Since
ϕ(x, t) � 0 and∇ϕ(x, t)≠ 0, it is easy to see that if h and δ are
small enough then, for any t − h≤ s≤ t + h, the set
y ∈ B(x, r): ϕδ(y, s) � 0􏼈 􏼉 is not empty. We observe that,
for δ > 0 small enough, by (89) and (90), we have

ϕδ(y, s) − 1< χ(y, s), (91)

for all (y, s) ∈ (B(x, r) × t − h{ })∪ (zB(x, r)× [t − h, t + h]),
and

ztϕδ(y, s) + G
∗

y, s,∇ϕδ(y, s), D
2ϕδ(y, s)􏼐 􏼑< −

α
4

, (92)

for all (y, s) ∈ B(x, r] × [t − h, t + h]. Inequality (91) implies
that

y ∈ B(x, r]: ϕδ(y, t − h)≥ 0􏼈 􏼉 ⊂ Ωt− h,

y∈ zB(x, r): ϕδ(y, s)≥ 0􏼈 􏼉 ⊂ Ωs,
(93)

for all s ∈ [t − h, t + h]. +erefore, ϕδ satisfies (i), (ii), (iv),
and (v) in Definition 4. Assumption (iii) holds as well by
assumptions on function ϕ. +e definition of superflow then
yields

y ∈ B(x, r]: ϕδ(y, s)> 0􏼈 􏼉 ⊂ Ωs, (94)

for every s ∈ (t − h, t + h). Since ϕδ(x, t) � δh> 0, we deduce
that x ∈ Ωt, and this is a contradiction with
(x, t) ∈ z χ � − 1􏼈 􏼉.

Now, we turn to the case when ∇ϕ(x, t) � 0. In par-
ticular, Xϕ(x, t) � 0 and X2ϕ(x, t) � O by our assumption,
and therefore, to prove (87), it is then enough to show that

ztϕ(x, t)≥ 0. (95)

We further observe that by the result in [3] corre-
sponding to our+eorem 1, we could have restricted ϕ to the
class of functions such that ∇ϕ(x, t) � 0 implies

z2ϕ
zxi

zxj

(x, t) �
z3ϕ

zxi
zxj

zxk

(x, t) �
z4ϕ

zxi
zxj

zxk
zxl

(x, t) � 0,

(96)

for any i, j, k, l ∈ 1, . . . , n{ } as we do now. Suppose by
contradiction that a ≔ ztϕ(x, t)< 0. +erefore, by Taylor
formula

ϕ(y, s) � ztϕ(x, t)(s − t) + o |s − t| +|y − x|
4

􏼐 􏼑,

as s⟶ t, |y − x|⟶ 0.
(97)

+us, for all ε> 0, there exist r � rε, h �

hε, and h′ � hε′ > 0 such that

h′ ≤ h,

h< −
εr4

a
,

(98)

and, for any (y, s) ∈ B(x, r] × [t − h, t + h′],

ϕ(y, s)≥ a(s − t) +
a

2
|s − t| − ε|y − x|

4

�
a

2
(s − t) + a(s − t)

+
− ε|y − x|

4 ≥
a

2
(s − t)

− ε|y − x|
4

+ ah′.

(99)

Let dG(x, y) � ‖x− 1 ∘y‖G be the distance function de-
fined in (39). For any compact set K ⊂ Rn, by known results
(see, e.g., Proposition 5.15.1 in [18]), there exists a positive
constant CK > 0 so that

|x − y|

CK

≤dG(x, y)≤CK|x − y|
1/2

, (100)

for any x, y ∈ K. +us, if we put Cr � (CB(x,r])
4, we get

|x − y|4

Cr

≤N x
− 1 ∘y􏼐 􏼑≤Cr|x − y|

2
, (101)

and by definition of N,

ϕ(y, s)≥
a

2
(s − t) − εCrN x

− 1 ∘y􏼐 􏼑 + ah′, (102)

for any (y, s) ∈ B(x, r] × [t − h, t + h′]. By (90), we can take
β> 0 such that

2β + ϕ(y, s) − 1< χ(y, s), (103)

for all (y, s) ∈ (B(x, r] × t − h{ })∪ (zB(x, r) × (t − h, t +

h′)). By taking β smaller, we may also suppose β< εr4/2. We
now proceed similarly as before and consider the function
ψβ(y, s) � (a/2)(s − t) − εCrN(x− 1 ∘y) + β. Since we can
take h′ smaller, we assume from now on that h′ ≤ − β/a.
Combining the last two displayed inequalities and the as-
sumptions on β, h, h′, and r, we get
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ψβ(y, s) − 1< χ(y, s), (104)

for all (y, s) ∈ (B(x, r] × t − h{ })∪ (zB(x, r) × [t − h, t +

h′]).+us, with a reasoning similar to the one that we used in
the previous case, it is possible to prove that ψβ satisfies
conditions (iv) and (v) in Definition 4. Furthermore, we
consider a fixed s ∈ [t − h, t + h′]. We have ψβ(x, s) �

a(s − t)/2 + β≥ ah′/2 + β> 0 while for |y − x| � r,

ψβ(y, s) �
a

2
(s − t) − εCrdG(x, y)

4
+ β≤

a

2
(s − t) − ε|y − x|

4
+ β

≤ −
ah

2
− εr4 + β≤ −

ah + εr4

2
≤ 0.

(105)

+us, the set y ∈ B(x, r]: ψβ(y, s) � 0􏽮 􏽯 is not empty.
Let y ∈ B(x, r]; we compute

∇ψβ(y, s) � − εCr

4 yh − xh

􏼌􏼌􏼌􏼌
􏼌􏼌􏼌􏼌
2

yh − xh( 􏼁 − 2 􏽐
n− m

i�1
ym+i − xm+i − 〈B(i)xh, yh〉( 􏼁B(i)xh

2 yv − xv − 〈Bxh, yh〉( 􏼁.

⎛⎜⎜⎜⎜⎜⎝
⎞⎟⎟⎟⎟⎟⎠. (106)

+us, since the matrices B(i) are skew-symmetric,
∇ψβ(y, s) � 0 if and only if y � x and therefore
|∇ψβ(y, s)|≠ 0 for every (y, s) ∈ B(x, r] × [t − h, t +{

h′]: ψβ(y, s) � 0}. +is proves that ψβ satisfies (ii) in
Definition 4. Moreover, it also satisfies (iii) since, by
Lemma 1,

Xψβ(y, s)
􏼌􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌􏼌 � 0⟺yh � xh⟺ X
2ψβ(y, s)

􏼌􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌􏼌 � 0. (107)

It remains to prove that (i) holds. Since G* is upper
semicontinuous, G*(y, s, 0,O) � 0 and G is geometric, and
we have that

ztψβ(y, s) + G
*

y, s,∇ψβ(y, s), D
2ψβ(y, s)􏼐 􏼑

�
a

2
+ G

*
y, s, − εCr∇yN x

− 1 ∘y􏼐 􏼑, − εCrD
2
yyN x

− 1 ∘y􏼐 􏼑􏼐 􏼑< 0,

(108)

for (y, s) ∈ B(x, r] × [t − h, t + h′] and ε is small enough.
+us, since (Ωt)t∈(0,T) is a generalised superflow, we have

y ∈ B(x, r]: ψβ(y, s)> 0􏽮 􏽯 ⊂ Ωs, (109)

for any s ∈ (t − h, t + h′). But again, ψβ(x, t) � β> 0, and
this means x ∈ Ωt, which is a contradiction. □

Remark 7. When we define generalised flows as in Defi-
nition 4, then +eorem 2 provides a discontinuous solution
of (28). +e discontinuous solution χ bears a natural initial
condition at t � 0 in the following way. Since χ is lower
semicontinuous, we can extend it at t � 0 by lower semi-
continuity and then define a lower semicontinuous initial
condition as

χo(x) � χ∗(x, 0). (110)

In order to better understand the nature of Definition 4,
we comment briefly on the previous result by recalling the
connection between the discontinuous solution of (28) that
appears in +eorem 2 and usual viscosity solutions of (28)
(see, e.g., Souganidis [16] and the references therein).
Suppose that u ∈ CRn × [0, +∞) is a viscosity solution of
(28). +en, we can define the following family of sets, for
t≥ 0,

Γt � (x, t): u(x, t) � 0{ },

D
+
t � (x, t): u(x, t)> 0{ },

D
−
t � (x, t): u(x, t)< 0{ }.

(111)

+e following result is well known in the theory and
contains as a consequence of +eorem 2 an existence result
for geometric flows. +e second part of the statement is
based on the validity of a comparison principle, which at the
moment for equation (28) is valid under some restrictions as
we discussed in the introduction.

Theorem 3. Suppose that u ∈ CRn × [0, +∞) is a viscosity
solution of (28). With the notation in (111), the two functions
χ(x, t) � 1D+

t ∪Γt
(x) − 1D−

t
(x) and χ(x, t) � 1D+

t
(x) − 1D−

t ∪Γt

(x) are viscosity solutions of (28) associated, respectively, with
the discontinuous initial data:

wo � 1D+
o∪Γo − 1D−

o
,

wo � 1D+
o

− 1D−
o∪Γo,

(112)

respectively. In particular, the family of sets (D+
t )t> 0 and

(D+
t ∪ Γt)

o
t>0 are generalised flows and they coincide if and

only if the no-interior condition holds: Γt � zD+
t � zD−

t , for
all t≥0.

If moreover Γo has an empty interior and a comparison
principle holds for equation (28), then χ and χ are, re-
spectively, the maximal subsolution and the minimal
supersolution of the Cauchy problem coupling (28) with the
initial condition wo � 1D+

o
− 1D−

o
and it has a unique dis-

continuous solution if and only if the no-interior condition
holds. +e unique solution is given by the following
function:

χ(x, t) � 1D+
t
(x) − 1D−

t
(x). (113)
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