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Abstract

We prove that the Gibbs measures ρ for a class of Hamiltonian equations written

∂tu = J(− 4 u + V ′(|u|2)u) (1)

on the real line are invariant under the flow of (1) in the sense that there exist random variables
X(t) whose laws are ρ (thus independent from t) and such that t 7→ X(t) is a solution to (1).
Besides, for all t, X(t) is almost surely not in L2 which provides as a direct consequence the
existence of weak solutions for initial data not in L2. The proof uses Prokhorov’s theorem,
Skorohod’s theorem, as in the strategy in [8] and Feynman-Kac’s integrals.
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1 Introduction and setting

1.1 Introduction

We prove the invariance of Gibbs measures on R under the flow of Hamiltonian equations using
Feynman-Kac’s theorem.

The problem is the following. We have a Hamiltonian equation that writes

∂tu = J 5u H(u) (2)

where J is a skew symmetric (or anti Hermitian) operator and

H(u) = −
1
2

∫
u 4 u +

1
2

∫
V(|u|2)

is the Hamiltonian of the equation and displays a purely kinetic part −1
2

∫
u4u and a potential one

1
2

∫
V(|u|2). The equation (2) can be written

∂tu = J(− 4 u + V ′(|u|2)u).

Under these assumptions, the mass M(u) = 1
2

∫
|u|2 is conserved under the flow of (2). We assume

that the equation is defocusing in the sense that V is non negative.
The type of equation that we have is mind is the non linear Schrödinger equation on R in the

case when u is complex valued and the modified Korteweg de Vries equation when u is real valued.
We prove that the Gibbs measure e−H(u)−M(u)“du“ is invariant under the flow of (2).
The literature about Gibbs measure and their invariance under the flows of Hamiltonian equa-

tions on the torus is manifold. The interest started with the seminal paper by Lebowitz, Rose and
Speer [19], and was carried on by the many works of Bourgain, see for instance [4, 5, 6] among
others. One can also mention [7, 11, 22, 24, 26, 30, 32] and references therein.

In some of these papers, what is proved is a strong invariance of the Gibbs measure ρ under
the flow ψ(t) of a Hamiltonian equation in the sense that the equation is ρ-almost surely globally
well-posed and for all ρ measurable set A and for all times t ∈ R,

ρ(ψ(t)−1(A)) = ρ(A).

The strategy of the proof consists in approaching the problem by a finite dimensional one, use
Liouville’s theorem to get finite dimensional invariance and then pass to the limit.

The problem in dimension 2 or higher presents more difficulties, see for instance [6, 7, 15, 25],
as the invariant measure is supported on spaces for which no good control on the flows is available.

On spaces of infinite volume, there are results using randomization to get existence of solu-
tions, [2, 3, 20, 23].

OnR, there are results of invariance under the flow of the Schrödinger equation with a quadratic
potential [9], that uses the fact that −4+|x|2 has a discrete spectrum. There are results on the wave
equation [21, 31] that uses the finite propagation of speed. There are results when the non linearity
is localised, [12, 14]. Those results are of strong invariance.

We do not hope to achieve such a strong generic result on R for our generic equation (2). What
we prove is the following theorem.

Theorem 1. Under Assumptions 1, 2 on J and V, there exist a non-trivial measure ρ (independent
from t), a probability space (Ω,A, P) and a random variable X∞ with values in C(R,D′) such that
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• for all t ∈ R, the law of X∞(t) is ρ,

• X∞ is a weak solution of (2).

What is more, X∞(t) is almost surely a s-Hölder continuous map, for s < 1
2 , and the law of X∞(t, x)

is absolutely continuous with respect to the Lebesgue measure and independent from x and t.

Remark 1.1. The properties of X∞ are consequences of properties of ρ and ensure that X∞ is
almost surely not in L2. Indeed, as X∞ is Hölder continuous, if it is in L2, then X∞(x) converges
towards 0 when x goes to ∞. And since the law of X∞(x) does not depend on x, the probability
that it converges towards 0 at ∞ is less than the probability for X∞(0) to be 0 which is null since
the law of X∞(0) is absolutely continuous with respect to the Lebesgue measure.

Remark 1.2. This result can be deduced for the Schrödinger equation from the paper by Bourgain,
[5] who proves a stronger theorem in the case of a cubic non linearity, since he proves not only the
existence of a weak flow but also its uniqueness. A strong invariance result can be deduced from it.
The idea is to take the invariant measure on a box of size L with periodic boundary condition and
pass to the limit. On the other hand, our strategy allows us to obtain results for a wider class of
equations that in fact include, after some additional manipulations, also some variable coefficients
Schrödinger equations (see Appendix).

The strategy of our proof is inspired by [8], in which the authors adapt to the contest of dis-
persive PDEs a technology already developed in fluid mechanics that essentially relies on the
application of Prokhorov’s and Skorohod’s Theorems. The idea is to construct a sequence of ran-
dom variables which solve some approximating equations for which the existence of an invariant
measure is standard to prove and then passing to the limit. This will produce the existence of a
measure and a random variable as in Theorem 1. The main difficulty in the present contest is due to
the infinite volume setting, which makes the approximating procedure significantly less intuitive,
together with the infinite speed of propagation. Nevertheless, we show that the only invariance
we need is the one of a finite dimensional problem and is obtained just by the application of Li-
ouville’s Theorem for finite dimensional Hamiltonian flows. The rest is reduced to proving that
the measure ρ is the limit of the invariant measures for the finite dimensional problems along with
some probabilistic estimates. The idea of the proof is the following.

We take L > 0 and build the Gibbs measure for the ODE

∂tu = ΠN(L)JLΠN(L) 5u HL(u) (3)

where ΠN(L) projects onto the Fourier modes in [−N(L),N(L)], and JL is a periodisation of J.

HL(u) = −
1
2

∫
2π
L T

u 4 u +
1
2

∫
2π
L T
χLV(|u|2)

where χL is a smooth compactly supported function.
The Gibbs measure is given by

dρL(u) = Z−1e−2HL(u)+M(u)dL(u)

where L is the Lebesgue measure and Z is a normalization factor (ρ is a probability measure). It
can be written

dρL(u) = Z−1
L e−

∫
χLV(|u|2)dµL(u)
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where ZL is a normalization factor and µL is the measure induced by the random variable

ξ
f
L(x) =

∑
k∈Z∩[−N(L)L,N(L)L]

eikx/L√
1 + k2

L2

(
W

(k + 1
L

)
−W

( k
L

))
and W is similar to a Brownian motion. Letting N go to∞ independently from L, we get that this
random variable converges in some sense to

ξL(x) =
∑
k∈Z

eikx/L√
1 + k2

L2

(
W

(k + 1
L

)
−W

( k
L

))
,

and if we let L go to∞ in ξL we get that it converges towards

ξ(x) =

∫
eikx

√
1 + k2

dW(k)

which is a known object called the oscillatory or Ornstein-Uhlenbeck process, we refer to [29] or
[16]. It induces a measure µ.

Hence, if we take the limit only in the kinetic part of the Hamiltonian we get the measure

dρL,2(u) = Z−1
L,2e−

∫
χLV(|u|2)dµ(u)

where ZL,2 is a normalization factor. If we let χL go to the function constant to 1, we get thanks to
Feynman-Kac’s theory a non trivial measure ρ, which is described precisely in the book by Simon,
[29] pages 58 and onward.

The idea is that by choosing N(L) and χL appropriately then the sequence ρL converges weakly
towards ρ. And this is heuristically sufficient to get the result.

Indeed, we then build νL which is the image measure ρL under the flow ψL(t) of (3). That
means that νL is the law of a random variable XL such that XL(t) = ψL(t)XL(0) and such that the law
of XL(0) is ρL. Thanks to the Prokhorov-Skorohod method, we can reduce the problem to proving
that the family (νL)L is tight in C(R,Hϕ). The topology in space, driven by some Banach space Hϕ,
is not so important, the only thing is that it has to be separable in order to apply the Prokhorov-
Skorohod method. The topology in time, though, has to be such that taking X∞(t) = lim XL(t)
makes sense, that is why we choose C(R). This method has been used on dispersive equation in
[8, 25], and comes from the fluid mechanics literature, see for example [1, 13].

Using the invariance of ρL under ψL, we then reduce the problem to proving estimates on ρL

and to proving that ρL goes to ρ (and not to something trivial). These results are consequences of
Feynman-Kac’s theory.

The paper is organized as follows : in the next subsection, we give or recall definitions and
notations, together with some preliminary probabilistic properties. We give the assumptions on
J,V, χL,N(L), and others.

In Section 2, we explain the Prokhorov-Skorohod method and reduce our problem to proving
estimates on ρL and its convergence towards ρ.

In Section 3, we prove the estimates and the convergence relying on our choices for χL and
N(L).

1.2 Assumptions and notations

We write 〈x〉 =
√

1 + x2 and D =
√

1 − ∂2
x.
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Assumptions on the equation

Assumption 1. One chooses V in C2 such that there exist C, rV , such that for all u ∈ C,

0 ≤ V(|u|2) ≤ C〈u〉rV , (4)

|V ′(|u|2)| ≤ C〈u〉rV , (5)

|V ′′(|u|2)| ≤ C〈u〉rV . (6)

One also requires that the operator − 4 +|x|2 + V(|x|2) has a non-degenerate first eigenvalue,
which should often be the case, see [27].

One may choose rV > 1.

Assumption 2. One chooses J such that there exist κ ∈ R+, C ≥ 0, such that for all s ∈]0, 1
2 [,

u ∈ L2(R),
‖Ds−κJ(1 − 4)u‖L2 ≤ C‖u‖L2 .

and such that for all σ ≥ 0, all u ∈ Hσ+κ

‖DσJu‖L2 ≤ C‖u‖Hσ+κ .

We also assume that if u is C∞ with compact support, then Ju also is.
We set for some test function u, JLu(x) = ηL(x)J(ηLu)(x) if x ∈ [−L, L] and JLu(x) = JLu(x −

bx/LcL) otherwise where ηL is a C∞ function equal to 1 on [−L + 1, L − 1] and to 0 outside [L, L].
This defines JL who inherits the properties on J, except the last one.

We have in mind J = i or J = ∂x but one may choose J =
∑

k≤κ ak(x)∂k
x with ak C

∞ bounded
functions whose derivatives are also bounded as long as J remains skew-symmetric.

Notations on measures Let W(k) be a centered complex Gaussian process defined on R with
covariance

E(W(k)W(l)) = δkl≥0 min(|k|, |l|)

where δkl≥0 = 1 if k and l have the same sign and δkl≥0 = 1 otherwise. This yields that

E(dW(k)dW(l)) = δ(k − l), and E(|W(t) −W(s)|2) = |t − s|.

For further properties on Gaussian processes, we refer to [28].
For all L > 0, we write

ξL(x) =
∑
k∈Z

eikx/L√
1 + k2

L2

(
W

(k + 1
L

)
−W

( k
L

))
(7)

if the solution of the equation has values in C and

ξL(x) = Re
(∑

k∈Z

eikx/L√
1 + k2

L2

(
W

(k + 1
L

)
−W

( k
L

)))
if the solution of the equation has values in R.
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We write ξ the limit when L goes to∞ of this random variable, that is

ξ(x) =

∫
eikx

√
1 + k2

dW(k)

in the complex case and

ξ(x) = Re
( ∫ eikx

√
1 + k2

dW(k)
)

in the real case.
We write ξ f

L the restriction to low frequencies of ξL, that is with N(L) a function that goes to
∞ when L goes to∞,

ξ
f
L(x) = ΠN(L)ξL(x) =

∑
k∈Z∩[−N(L)L,N(L)L]

eikx/L√
1 + k2

L2

(
W

(k + 1
L

)
−W

( k
L

))
in the complex case and we take its real part in the real case.

We write µL the measure induced by ξ f
L, µ the measure induced by ξ, and µL,1 the one induced

by ξL.
With R(L) a function that goes to∞ when L goes to∞, we write

ZL,3 =

∫
e−

∫ R(L)
−R(L) V(|u(x)|2)dxdµ(u)

and

dρL,3(u) =
e−

∫ R(L)
−R(L) V(|u(x)|2)dx

ZL,3
dµ(u).

We also write
ZL =

∫ (
e−

∫
χL(x)V(|ξ f

L(x)|2)dx
)
dµL(u),

and

dρL(u) =
e−

∫
χL(x)V(|ξ f

L(x)|2)dx

ZL
dµL.

What is more, we write

ZL,1 =

∫ (
e−

∫
χL(x)V(|ξL(x)|2)dx

)
dµL,1(u), dρL,1(u) =

e−
∫
χL(x)V(|u(x)|2)dx

ZL,1
dµL,1(u).

and

ZL,2 =

∫
e−

∫
χL(x)V(|u(x)|2)dxdµ(u), dρL,2(u) =

e−
∫
χL(x)V(|u(x)|2)dx

ZL,2
dµ(u).

We recall that ρ is the limit when R goes to∞ of

e−
∫ R
−R V(|u(x)|2)dx

Z′R
dµ(u)

where Z′R is a normalization factor. It exists, is non-trivial, is carried by s-Hölder continuous maps
for s < 1

2 and the law of u(x) induced by ρ is independent from x and absolutely continuous with
regard to the Lebesgue measure, see [29] pp 58 and onward.
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Hence ρ is also the limit of ρL,3 when L goes to∞.
We sum up the notations on measures in the following table

random variable linear measure Z final measure
Finite dimension ξ

f
L µL ZL ρL

Including high frequencies ξL µL,1 ZL,1 ρL,1

L goes to∞ ξ µ ZL,2 ρL,2
in the kinetic energy
χL ← 1[−R(L),R(L)] ξ µ ZL,3 ρL,3

R(L)→ ∞ ξ µ ρ

Finally, we write νL the image measure of ρL under the flow ψL, that is

νL(A) = ρL{u| t 7→ ψL(t)u ∈ A}.

Assumptions on χL, N(L)

Assumption 3. Let R(L) be such that for L ≥ 1,

ZL,3 ≥ L−1/6.

This is possible because ∫
e−

∫ R
−R V(|u(x)|2)dxdµ(u)

is positive for all R ≥ 0 and is equal to 1 if R = 0.

Assumption 4. Let R′(L) = R(L) + 1
C
√

L
where C is a (big) positive constant.

Assumption 5. We assume that χL is a C∞ function such that χL(x) = 1 on [−R(L),R(L)], and
χL(x) = 0 outside [−R′(L),R′(L)] and χL(x) ∈ [0, 1].

Under these assumptions, χL converges to 1 in 〈x〉L∞.
Finally,

Assumption 6. Let N(L) ≥ L4 and assume N(L) ≥ L1/(3−6s) where s is taken according to As-
sumption 7.

Invariance

Proposition 1.1. We have that ρL is strongly invariant under the flow ψL(t) of

∂tu = −ΠN(L)JLΠN(L) 4 u + ΠN(L)JLΠN(L)χLV ′(|u|2)u

in Hs(TL), for all s < 1
2 . The map ΠN(L) is the projection onto the Fourier modes in [−N(L),N(L)].

In other words, the equation is globally well-posed on a set of full ρL measure and for all measur-
able sets A of Hs(TL) and all times t we have

ρL(ψL(t)−1(A)) = ρL(A).

This is due to the fact that we are in finite dimension, thus Liouville’s Theorem applies, and
HL(u) is invariant under ψL(t).
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Some probabilistic properties We have that µ is the complex or real valued oscillatory process,
also known as Ornstein-Uhlenbeck process: we recall that this means that

E(µ(x)µ(y)) =
1
2

e−|x−y|.

Its law is invariant under translations in x.
In the following proposition we collect some basic facts about oscillatory processes that will

be needed in the sequel.

Proposition 1.2. We have that for all p ≥ 2, and s < 1
2 , there exists C such that for all x ∈ R

‖Ds(ξ − ξL)(x)‖Lp
proba
≤ CL−1〈x〉.

The space Lp
proba is short for the Lp space of the probabilistic space where the Gaussian process

W is defined.
This is due to the fact that Ds(ξ − ξL)(x) is a Gaussian variable hence

‖Ds(ξ − ξL)(x)‖Lp
proba
. ‖Ds(ξ − ξL)(x)‖L2

proba
.

What is more,

Ds(ξ − ξL)(x) =

∫ ( eikx

(1 + k2)1/2−s −
eibkcL x

(1 + bkc2L)1/2−s

)
dW(k)

where bkcL = L−1bkLc = min{ nL ≥ k|n ∈ Z}. Since∣∣∣∣ eikx

(1 + k2)1/2−s −
eibkcL x

(1 + bkc2L)1/2−s

∣∣∣∣ . 〈x〉L (1 + k2)s−1/2

we get the result.

Proposition 1.3. From Feynman-Kac’s theory, we have that for all r ≥ 2, s < 1
2 , there exists ϕr,s

such that for all x, y ∈ R, L ≥ 1,∫
|u(x)|rdρL,3(u) ≤ ϕr,s(|x|), and

∫
|u(x) − u(y)|r

|x − y|1+rs dρL,3(u) ≤ ϕr,s(max(|x|, |y|)).

Proof. The first estimate is proved in [5].
For the second inequality, we use the description of the measure. Let TV be the operator

defined as TV f (u) = − 4 f (u) + |u|2 + V(|u|2) − 1
2 , and let ΩV be the eigenstate associated to the

non-degenerate first eigenvalue E(V) of TV .
Let x, y ∈ R and let R(L) ≥ max(|x|, |y|). We assume, without loss of generality, x ≥ y. We

apply Theorem 6.7 in [29] page 57 with

G(u) =
|u(x) − u(y)|r

|x − y|1+sr Ω0(u(−R(L)))Ω−1
V (u(−R(L)))Ω0(u(R(L)))Ω−1

V (u(R(L)))e−2E(V)R(L).

We get on one hand that∫
G(u)ΩV (u(−R(L)))Ω−1

0 (u(−R(L)))ΩV (u(R(L)))Ω−1
0 (u(R(L)))e2E(V)R(L)dρL,3(u)
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is equal to ∫
|u(x) − u(y)|r

|x − y|sr+1 dρL,3(u),

and on the other hand that is equal to∫
|ux − uy|

r

|x − y|sr+1 Ω0(u−R(L))Ω−1
V (u−R(L))Ω0(uR(L))Ω−1

V (uR(L))e−2E(V)R(L)ΩV (uR(L))ΩV (u−R(L))

e−(y+R(L))T̂V (u−R(L), uy)e−(x−y)T̂V (uy, ux)e−(R(L)−x)T̂V (ux, uR(L))du−R(L)duyduxduR(L).

By simplifying the ΩV we get∫
|u(x) − u(y)|r

|x − y|sr+1 dρL,3(u) =∫
G̃e−(y+R(L))T̂V (u−R(L), uy)e−(x−y)T̂V (uy, ux)e−(R(L)−x)T̂V (ux, uR(L))du−R(L)duyduxduR(L)

with

G̃(u−R(L), uy, ux, uR(L)) =
|ux − uy|

r

|x − y|sr+1 Ω0(u−R(L))Ω0(uR(L))e−2E(V)R(L).

Using the maximum principle, we get∫
|u(x) − u(y)|r

|x − y|sr+1 dρL,3(u) ≤
∫
|ux − uy|

r

|x − y|sr+1 Ω0(u−R(L))Ω0(uR(L))e−2E(V)R(L)e−(y+R(L))T̂0(u−R(L), uy)

e−(x−y)T̂0(uy, ux)e−(R(L)−x)T̂0(ux, uR(L))du−R(L)duyduxduR(L).

Integrating over u−R(L) and uR(L) yields∫
|u(x) − u(y)|r

|x − y|sr+1 dρL,3(u) ≤
∫
|ux − uy|

r

|x − y|sr+1 Ω0(ux)Ω0(uy)e−(x−y)T0(uy, ux)duydux.

We remark that the T̂0 as turned into T0 as we simplified with e−2E(V)R(L).
Now that we simplified the expression, we get∫

|u(x) − u(y)|r

|x − y|sr+1 dρL,3(u) ≤
∫
|u(x) − u(y)|r

|x − y|sr+1 dµ(u)

whose right-hand side does not depend on L and is uniformly bounded in x, y as a result of prop-
erties of the oscillatory process. We get∫

|u(x) − u(y)|r

|x − y|sr+1 dρL,3(u) ≤ Cr,s.

For R(L) ≤ max(|x|, |y|), we have∫
|u(x) − u(y)|r

|x − y|sr+1 dρL,3(u) ≤
1

ZL,3

∫
|u(x) − u(y)|r

|x − y|sr+1 dµ(u)

where we have thanks to (3), 1
ZL,3
≤ L1/6. Thus, with

ϕs,r(x) = Cr,s max
R(L)≤|x|

CL1/6,

we get the result.
�
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Norms Let S s be the space induced by the norm

‖ f ‖2S s
= ‖〈t〉−1ϕDs−κ f ‖2L2(R2) + ‖〈t〉−1ϕDs−κ∂t f ‖2L2(R2), (8)

let Hϕ be the space induced by the norm

‖ f ‖ϕ = ‖〈x〉−1ϕD−κ f ‖L2 (9)

and S be the space S = C(R,Hϕ) normed by

‖ f ‖2S = sup
t∈R
〈t〉−3‖ f ‖2ϕ. (10)

The map ϕ is an even decreasing on R+ positive map that we specify later.

Assumption 7. We take s < 1
2 such that the embedding Hs ↪→ Lp holds for p = 2rV + 2, 2rV and

2rV + 4.

2 The Prokhorov-Skorohod method and the reduction to rough esti-
mates and convergence

2.1 The Prokhorov-Skorohod method

We start by giving Prokhorov’s and Skorohod’s Theorems.

Theorem 2.1 (Prokhorov). Let (νL)L be a family of probability measures defined on the topological
σ algebra of a separable complete metric space S . Assume that (νL)L is tight, that is, for all ε > 0,
there exists a compact Kε of S such that for all L, we have

νL(Kε) ≥ 1 − ε.

Then there exists a sequence Ln such that νLn converges weakly. That is, there exists a probability
measure on S , ν such that for all functions F bounded and Lipschitz continuous on S , we have

EνLn
(F)→ Eν(F).

We refer to [18], page 114.

Theorem 2.2 (Skorohod). Let νn be sequence of probability measures defined on the topological
σ algebra of a separable complete metric space S . Assume that (νn)n converges weakly towards a
probability measure ν. Then there exists a subsequence νnk of (νn)n, a probability space (Ω,A, P),
a sequence of random variable on this space (Xk)k and a random variable X∞ on this space such
that

• for all k, the law of Xk is νnk , that is for all measurable set A of S , νnk (A) = P(X−1
k (A)),

• the law of X∞ is ν,

• the sequence Xk converges almost surely in S towards X∞.

We refer to [17], page 79.
We get a corollary from the combination of these two theorems.
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Corollary 2.3. Let (νL)L be a family of probability measures defined on the topological σ algebra
of a separable complete metric space S . Let S s be a normed space. For all R ≥ 0, let BR be the
closed ball of S s of center 0 and radius R. Assume that

• for all R ≥ 0, the ball BR is compact in S ,

• there exists C ≥ 0 such that for all L, we have∫
‖u‖2S s

dνL(u) ≤ C.

Then, there exists a sequence Ln, a probability space Ω,A, P, a sequence of random variable on
this space (Xn)n and a random variable X∞ on this space such that

• for all n, the law of Xn is νLn ,

• the sequence Xn converges almost surely in S towards X∞.

Proof. The proof uses Markov’s inequality :

νL(‖u‖S s > R) ≤ R−2C

therefore
νL(BRε) ≥ 1 − ε

for CR−2
ε ≤ ε. And BRε is compact in S . Then, one can apply Prokhorov’s theorem and then

Skorohod’s theorem to conclude. �

We justify our choice for S s. For now on, S s and S are the spaces defined in the first section
(8), (10).

Proposition 2.4. Let BR be the ball of S s of center 0 and radius R. For all R ≥ 0, BR is compact
in S .

Proof. The proof is classical so we keep it short. Let η be a C∞(R+) function with compact
support. Assume that η is such that η(r) = 1 if r ≤ 1, η(r) = 0 if r ≥ 2.

Let f ∈ BR and let ε > 0.
Let f T = η(|t|/T ) f . We have thanks to Sobolev’s inequality on the time norm,

‖ f − f T ‖S ≤ C〈T 〉−1/2‖ f ‖S s

where C is a universal constant. Thus,

‖ f − f T ‖S ≤ C〈T 〉−1/2R.

We choose T such that C〈T 〉−1/2R ≤ ε
5 .

Let f T,F = η
(1−∂2

t
F2

)
f T . We have, thanks to Sobolev’s inequality on the time norm

‖ f T,F − f T ‖S ≤ C(T )‖(1 − ∂2
t )3/8( f T,F − f T )‖L2(R,Hϕ)

and thus
‖ f T,F − f T ‖S ≤ C(T )F−1/4‖(1 − ∂2

t )1/2 f T ‖L2(R,Hϕ) ≤ C(T )F−1/4R

11



where C(T ) is a constant depending only on T . We choose F such that C(T )F−1/4R ≤ ε
5 .

Let f T,F,X be η
(
|x|
X

)
f T,F . We have

‖ f T,F,X − f T,F‖S ≤ C(T, F)X−1‖ f T,F‖S s ≤ C(T, F)X−1R

where C(T, F) is a constant depending only on T and F. We choose X such that C(T, F)X−1R ≤ ε
5 .

Let f T,F,X,N = η
(1−∂2

x
N2

)
f T,F,X , we have

‖ f T,F,X,N − f T,F,X‖S ≤ C(T, F, X)N−s‖ f T,F,X‖S s ≤ C(T, F, X)N−sR

where C(T, F, X) is a constant depending only on T, X and F. We choose N such that

C(T, F, X)N−sR ≤
ε

5
.

Finally, we have that
‖ f T,F,X,N‖S ≤ C(T, F, X,N)R

where C(T, F, X,N) is a constant depending only on T, F, X,N.
What is more, f T,F,X,N as a function on [−2T, 2T ] × [−2X, 2X], belongs to

Vect
({

(t, x) 7→ ei(ωt+kx)
∣∣∣∣ω ∈ π

2T
Z ∩ [−F, F] , k ∈

π

2X
∩ [−N,N]

})
which is of finite dimension.

Hence, there exists a finite family of function f1, . . . , fNε of S such that for all f ∈ BR,

f T,F,X,N ∈

Nε⋃
k=1

BS
(

fk,
ε

5

)
where BS ( fk, ε5 ) is the open ball of S of center fk and radius ε

5 . Therefore, for all f ∈ BR,

f ∈
Nε⋃

k=1

BS ( fk, ε)

which concludes the proof. �

2.2 Reduction to rough estimates and convergence

Proposition 2.5. Assume that for all r ≥ 2, s < 1
2 , there exists a positive, even, decreasing on R+

map ϕ1 and a constant Cr,s such that for all L∫ (
‖ϕ1Dsu‖rL2(R)

)
dρL(u) ≤ Cr,s.

Then, there exists a positive, even, decreasing on R+ map ϕ such that the Prokhorov-Skorohod
method applies, that is, there exists a sequence Ln, a probability space (Ω,A, P), a sequence of
random variables on this space (Xn)n and a random variable X∞ on this space such that

• for all n, the law of Xn is νLn ,

• the sequence Xn converges almost surely in S towards X∞.
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Proof. Given Corollary 2.3, all we have to do is prove that there exists C ≥ 0 such that for all L,
we have ∫

‖u‖2S s
dνL(u) ≤ C.

Since ϕ1 is positive, we can replace ϕ1(x) by inf[−1,1] ϕ1 for x ∈ [−1, 1] and the assumption is
still satisfied with a ϕ1 constant on [−1, 1] and we choose

ϕ(x) =

{
ϕ1(0) if x = 0

ϕ1(|x| + 1) otherwise.

We have ∫
‖u‖2S s

dνL(u) = A + B

with
A =

∫
S

∫
R

dt〈t〉−2‖ϕDs−κu(t)‖2L2(R)dνL(u)

and
B =

∫
S

∫
R

dt〈t〉−2‖ϕDs−κ∂tu(t)‖2L2(R)dνL(u).

We use the definition of νL in terms of the flow ψL to get

A =

∫
Hϕ

∫
R

dt〈t〉−2‖ϕDs−κψL(t)u‖2L2(R)dρL(u)

and
B =

∫
Hϕ

∫
R

dt〈t〉−2‖ϕDs−κ∂tψL(t)u‖2L2(R)dρL(u).

We can exchange the integral in time and in probability to get

A =

∫
R

dt〈t〉−2
∫

Hϕ

‖ϕDs−κψL(t)u‖2L2(R)dρL(u)

and
B =

∫
R

dt〈t〉−2
∫

Hϕ

‖ϕDs−κ∂tψL(t)u‖2L2(R)dρL(u).

We use the fact that ψL(t)u solves the equation

i∂tψL(t)u = −ΠN(L)JLΠN(L) 4 ψL(t)u + ΠN(L)JLΠN(L)χLV ′(|ψL(t)u|2)ψL(t)u

to get

B ≤
∫
R

dt〈t〉−2
∫

Hϕ

‖ϕDs−κΠN(L)JLΠN(L) 4 ψL(t)u‖2L2(R)dρL(u)+∫
R

dt〈t〉−2
∫

Hϕ

‖ϕDs−κΠN(L)JLΠN(L)χLV ′(|ψL(t)u|2)ψL(t)u‖2L2(R)dρL(u).

We have ϕ1(x) = ϕ(|x| − 1) if |x| ≥ 1 and ϕ1(x) = ϕ(0) otherwise. We have that 4, D, and ΠN(L)
commute. With our assumptions on J, V , s and κ, Assumptions 1, 2, 7, κ compensates for the loss
of derivatives in J, and we have the embedding Hs ↪→ L2rV +2. We get for L ≥ 1,

B .
∫
R

dt〈t〉−2
∫

Hϕ

‖ϕ1DsψL(t)u‖2L2(R)dρL(u) +

∫
R

dt〈t〉−2
∫

Hϕ

‖ϕ1DsψL(t)u‖2rV +2
L2(R)

dρL(u).
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We use the invariance of ρL under ψL(t) to get

A =

∫
R

dt〈t〉−2
∫

Hϕ

‖ϕDs−κu‖2L2(R)dρL(u)

and thus
A .

∫
R

dt〈t〉−2
∫

Hϕ

‖ϕ1Dsu‖2L2(R)dρL(u)

and
B .

∫
R

dt〈t〉−2
∫

Hϕ

‖ϕ1Dsu‖2L2(R)dρL(u) +

∫
R

dt〈t〉−2
∫

Hϕ

‖ϕ1Dsu‖2rV +2
L2(R)

dρL(u).

Using that 〈t〉−2 is integrable, we get
A ≤ CC2,s

and
B ≤ C(C2,s + C2rV +2,s)

which concludes the proof. �

Proposition 2.6. Assume that ρL → ρ weakly in Hϕ. Assume that for all r ≥ 2, s < 1
2 , there exist

Cr,s and ϕ1 such that for all L ∫ (
‖ϕ1Dsu‖rL2(R)

)
dρL(u) ≤ Cr,s.

Then, the random variable X∞ given by the Prokhorov-Skorohod method satisfies

• for all t ∈ R, the law of X∞ is the weak limit of ρLn , ρ, and thus do not depend on time,

• X∞ is a weak solution (in the sense of distribution) of

∂tu = −J 4 u + JV ′(|u|2)u.

Proof. The fact that the law of X∞(t) is ρ at all times is due to the fact that Xn converges almost
surely in S = C(R,Hϕ). Hence for all t, Xn(t) converges almost surely towards X∞(t) in Hϕ. Since
the almost sure convergence implies the convergence in law, we get that the law of X∞ is the limit
of the laws of Xn(t), ρLn , and hence is ρ.

Let us prove that X∞ is a weak solution to

∂tu = J 4 u − JV ′(|u|2)u.

We have that
∂tX∞ − J 4 X∞

is almost surely the limit in terms of distributions of

∂tXn − ΠnJΠn 4 Xn

where Πn = ΠN(Ln).
Indeed, let f be a C∞ with compact support test function of R2. Since f has compact support,

for L big enough, we get∣∣∣∣〈 f ,ΠnJΠnXn〉 − 〈 f , JX∞〉
∣∣∣∣ ≤ ∣∣∣∣〈(J − ΠnJΠn) f , Xn〉

∣∣∣∣ +
∣∣∣∣〈J f , Xn − X∞〉

∣∣∣∣
14



where 〈·, ·〉 is the inner product and Πn when applied to f stands for the Fourier multiplier ˆΠn f (k) =

ηn(k) f̂ (k) where ηn is a C∞ function which is equal to 1 on [−N(Ln),N(Ln)] and to 0 outside
[−N(Ln) − 1

2Ln
,N(Ln) + 1

2Ln
]. Since Xn converges towards X∞ in S , Xn(t) converges towards X∞(t)

in Hϕ, hence∣∣∣∣〈(J − ΠnJΠn) f (t), Xn(t)〉
∣∣∣∣ ≤ ‖(J − ΠnJΠn) f (t)‖ sup

n
‖Xn(t)‖ϕ ≤ ‖(J − ΠnJΠn) f ‖ sup

n
‖Xn‖S

where ‖ · ‖ is the norm of the dual of Hϕ. We have

‖(J − ΠnJΠn) f (t)‖ = ‖ϕ−1(x)〈x〉Dκ(J − ΠnJΠn) f (t)‖L2 .

As f (t) has a compact support, we get

‖(J − ΠnJΠn) f (t)‖ ≤ sup
x∈supp f

(
ϕ−1(x)〈x〉

)
‖Dκ(J − ΠnJΠn) f (t)‖L2 .

Since J − ΠnJΠn = (1 − Πn)J + ΠnJ(1 − Πn) and thanks to Assumption 2, we have for σ > 0,

‖Dκ(J − ΠnJΠn) f (t)‖L2 . N(Ln)−σ‖ f (t)‖Hσ+2κ ,

from which we deduce,∣∣∣∣〈 f ,ΠnJLΠnXn〉 − 〈 f , JX∞〉
∣∣∣∣ ≤ sup

(t,x)∈supp f

(
〈t〉ϕ−1(x)〈x〉‖ f (t)‖Hσ+2κ

)
N(Ln)−σ+

sup
(t,x)∈supp f

(
〈t〉‖J f (t)‖

)
‖Xn − X∞‖S

which goes to 0 when n goes to∞.
Besides, we have

|V ′(|X∞|2)X∞ − V ′(|Xn|
2)Xn| ≤ |V ′(|X∞|2)| |Xn − X∞| + sup

[|X∞ |2,|Xn |2]
|V ′′| |Xn|(|X∞| + |Xn|)|X∞ − Xn|.

With the hypothesis on V , Assumption 1, we get

|V ′(|X∞|2)X∞ − V ′(|Xn|
2)Xn| . 〈X∞〉rV |Xn − X∞| +

(
〈X∞〉rV + 〈Xn〉

rV
)
|Xn|(|X∞| + |Xn|)|X∞ − Xn|.

Therefore, for all weight functions g

‖g(x, t)〈x〉−1ϕ〈t〉−6(V ′(|X∞|2)X∞ − V ′(|Xn|
2)Xn)‖L1(R×R) .(

1 + ‖g(x, t)XrV
∞ ‖L2 + ‖g(x, t)XrV +2

∞ ‖L2 + ‖g(x, t)XrV +2
n ‖L2

)
‖〈x〉−1ϕ〈t〉−6(X∞ − Xn)‖L2(R×R).

By taking the L1 norm in probability, we get

‖g(x, t)〈x〉−1ϕ〈t〉−2(V ′(|X∞|2)X∞ − V ′(|Xn|
2)Xn)‖L1(Ω×R×R) .(

1 + ‖g(x, t)XrV
∞ ‖L2 + ‖g(x, t)XrV +2

∞ ‖L2 + ‖g(x, t)XrV +2
n ‖L2

)
‖〈x〉−1ϕ〈t〉−6(X∞ − Xn)‖L2(Ω×R×R).

With a suitable choice for g, and for r = rV or r = rV + 2, we get, using Sobolev’s estimates,

‖g(x, t)Xr
n‖

2
L2 ≤ E

( ∫
〈t〉−2dt‖ϕ1DsXn‖

2r
L2(R)

)
.
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We exchange the integrals in time and probability to get

‖g(x, t)Xr
n‖

2
L2 ≤

∫
〈t〉−2dtE

(
‖ϕ1DsXn‖

2r
L2(R)

)
.

Given the law of Xn, this yields

E
(
‖ϕ1DsXn‖

2r
L2(R)

)
=

∫ (
‖ϕ1Dsu‖2r

L2(R)

)
dρL(u) ≤ C2r,s.

From which we deduce

‖g(x, t)〈x〉−1ϕ〈t〉−2(V ′(|X∞|2)X∞ − V ′(|Xn|
2)Xn)‖L1(Ω×R×R) .(

1 + C2rV ,s + C2rV +4,s
)
‖〈x〉−1ϕ〈t〉−2(X∞ − Xn)‖L2(Ω×R×R).

For
‖〈x〉−1ϕ〈t〉−6(X∞ − Xn)‖L2(Ω×R×R),

we fix some time t and consider

‖〈x〉−1ϕ(X∞(t) − Xn(t))‖L2(Ω×R)

We proceed as in the proof of the compactness of BR in S to get that for all ε > 0, there exists X,N
such that for all n,

‖〈x〉−1ϕ(Xn − XX,N
n )‖L2(R) ≤ ε‖ϕ1DsXn‖L2(R).

We integrate in probability to get

‖〈x〉−1ϕ(Xn − XX,N
n )‖L2(R) ≤ ε‖ϕ1DsXn‖L2(Ω×R) ≤ ε

√
C2,s.

We recall that C2,s does not depend on n. Hence, we have

‖〈x〉−1ϕ(X∞(t) − Xn(t))‖L2(Ω×R) ≤ C2,sε + ‖〈x〉−1ϕ(X∞(t)X,N − XX,N
n (t))‖L2(Ω×R).

We use the fact that (X∞(t)X,N − XX,N
n (t)) belongs to a space of finite dimension to get

‖〈x〉−1ϕ(X∞(t)X,N − XX,N
n (t))‖L2(Ω×R) ≤ C(T,N)‖X∞(t)X,N − XX,N

n (t)‖ϕ

and finally
‖〈x〉−1ϕ(X∞(t)X,N − XX,N

n (t))‖L2(Ω×R) ≤ C1(T,N)‖X∞(t) − Xn(t)‖ϕ.

Integrating in time yields

‖〈x〉−1ϕ〈t〉−6(X∞ − Xn)‖2L2(Ω×R×R) ≤ C2ε + C1(T,N)E
( ∫ dt
〈t〉12 ‖X∞(t) − Xn(t)‖2ϕ

)
which gives

‖〈x〉−1ϕ〈t〉−6(X∞ − Xn)‖2L2(Ω×R×R) ≤ C2ε + C1(T,N)E
(
‖X∞ − Xn‖

2
S

)
.

By the dominated convergence theorem, E
(
‖X∞ − Xn‖

2
S

)
converges towards 0. Indeed, Let R ≥ 0,

and let fn = ‖X∞ − Xn‖
2
S , let gn = 1 fn≤R fn. We have that gn converges almost surely towards 0 and

gn is bounded. Hence, E(gn) converges towards 0 by DCT. Besides, fn = gn + 1 fn>R fn and

E(1 fn>R fn) ≤
√

P( fn > R)E( f 2
n )1/2 ≤ R−1E( f 2

n ).
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Finally, E( f 2
n ) . E(‖X∞‖4S + ‖Xn‖

4
S ) is uniformly bounded in n.

From that we deduce that

‖g(x, t)〈x〉−1ϕ〈t〉−6(V ′(|X∞|2)X∞ − V ′(|Xn|
2)Xn)‖L1(Ω×R×R)

goes to 0 when n goes to∞. Since χL goes to 1 in 〈x〉L∞, we get that

‖g(x, t)〈x〉−2ϕ〈t〉−6(V ′(|X∞|2)X∞ − χLnV ′(|Xn|
2)Xn)‖L1(Ω×R×R)

goes to 0 when n goes to∞, which ensures that almost surely, up to a subsequence, χLnV ′(|Xn|
2)Xn

converges towards V ′(|X∞|2)X∞ in the norm ‖g〈x〉−2ϕ〈t〉−6 · ‖L1(R×R). Hence, almost surely, up to a
subsequence, and in the sense of distributions

ΠnJLΠnχLnV ′(|Xn|
2)Xn) −→

n→∞
JV ′(|X∞|2)X∞.

Finally, almost surely, up to a subsequence, we have that

0 = ∂tXn + ΠnJΠn 4 Xn − ΠnJΠnχLnV ′(|Xn|
2)Xn

converges towards
∂tX∞ + J 4 X∞ − JχLnV ′(|X∞|2)X∞

which ensures that almost surely,

∂tX∞ + J 4 X∞ − JχLnV ′(|X∞|2)X∞ = 0

�

3 Proofs of the estimates and convergence

3.1 Estimates

We recall the assumptions on χL, Assumption 5. It is a C∞ function such that χL(x) = 1 if
x ∈ [−R(L),R(L)], χL(x) = 0 if x < [−R′(L),R′(L)] and χL(x) ∈ [0, 1]. And we recall that R(L) has
been chosen small enough such that

ZL,3 = E
(
e−

∫ R(L)
R(L) V(|ξ(x)|2)dx)

≥ L−1/6,

and that R′(L) has been chosen close enough to R(L) such that R′(L) − R(L) ≤ 1
CL1/2 with C a

constant big enough.

Proposition 3.1. for all r ≥ 2, all s < 1
2 , there exists Cr,s and a positive, even, decreasing on R+

map ϕ1 such that for all L ∫ (
‖ϕ1Dsu‖rL2(R)

)
dρL(u) ≤ Cr,s.

We divide the proposition into four lemmas.

Lemma 3.2. We have
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•

E
(∣∣∣∣e− ∫

χLV(|ξ|2) − e−
∫ R(L)
−R(L) V(|ξ|2)

∣∣∣∣2) ≤ Z6
L,3

which ensures in particular ZL,2 ≥ ZL,3(1 − Z2
L,3),

•

E
(∣∣∣∣e− ∫

χLV(|ξ|2) − e−
∫
χLV(|ξL |

2)
∣∣∣∣2) ≤ Z4

L,3

which ensures in particular ZL,1 ≥ ZL,3(1 − 2ZL,3),

•

E
(∣∣∣∣e− ∫

χLV(|ξL |
2) − e−

∫
χLV(|ξ f

L |
2)
∣∣∣∣2) ≤ Z4

L,3

which ensures in particular ZL ≥ ZL,3(1 − 3ZL,3).

Lemma 3.3. There exists a positive, even, decreasing on R+ map ϕ1 such that for all r ≥ 2, all
s < 1

2 , there exists Cr,s such that for all L

E
(∣∣∣∣e− ∫

χLV(|ξL |
2)

ZL,1
‖ϕ1DsξL‖

r
L2(R) −

e−
∫
χLV(|ξ f

L |
2)

ZL
‖ϕ1Dsξ

f
L‖

r
L2(R)

∣∣∣∣) ≤ Cr,s.

Lemma 3.4. There exists a positive, even, decreasing on R+ map ϕ1 such that for all r ≥ 2, all
s < 1

2 , there exists Cr,s such that for all L

E
(∣∣∣∣e− ∫

χLV(|ξL |
2)

ZL,1
‖ϕ1DsξL‖

r
L2(R) −

e−
∫
χLV(|ξ|2)

ZL,2
‖ϕ1Dsξ‖rL2(R)

∣∣∣∣) ≤ Cr,s.

Lemma 3.5. for all r ≥ 2, all s < 1
2 , there exists Cr,s and a positive, even, decreasing on R+ map

ϕ1 such that for all L

E
(e−

∫
χLV(|ξ|2)

ZL,2
‖ϕ1Dsξ‖rL2(R)

)
≤ Cr,s.

Proof of Lemma 3.2. We have

I = E
(∣∣∣∣e− ∫

χLV(|ξ|2) − e−
∫ R(L)
−R(L) V(|ξ|2)

∣∣∣∣2) ≤ E(∣∣∣∣ ∫
R
|χL − 1[−R(L),R(L)]|V(|ξ|2)

∣∣∣∣2)
and exchanging the order of integration we get

I ≤
∫

dxdy|χL(x) − 1[−R(L),R(L)](x)||χL(y) − 1[−R(L),R(L)](y)|E(V(|ξ(x)|2)V(|ξ(y)|2))

and since V(|ξ(x)|2) ≤ 〈ξ(x)〉rV and since the law of ξ is invariant by translation, we get that

E(V(|ξ(x)|2)V(|ξ(y)|2)) ≤ E(〈ξ(x)〉2rV )

is less that a constant depending only on V . Hence

I .
( ∫
|χL(x) − 1[−R(L),R(L)](x)|

)2

and given the Assumptions 5 on χL this yields

I . |R′(L) − R(L)|2 ≤ cL−1
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which gives the first result assuming that the constant C in the definition on R′(L) = R(L) + 1
C
√

L
has been chosen big enough.

We also have

II = E
(∣∣∣∣e− ∫

χLV(|ξ|2) − e−
∫
χLV(|ξL |

2)
∣∣∣∣2) ≤ E( ∫ |χL(V(|ξ|2) − V(|ξL|

2))|2
)
.

With the assumption on V ′, Assumption 1, we get that

√
II ≤

∫
χL‖〈ξ(x)〉rV +1 + 〈ξL(x)〉rV +1‖L4

proba
‖ξ − ξL‖L4

proba
.

Thanks to Proposition 1.2, we have that

‖ξ − ξL‖L4
proba
. 〈x〉L−1/2

and that
‖〈ξ(x)〉rV +1 + 〈ξL(x)〉rV +1‖L4

proba

is uniformly bounded in x and L. Therefore,

√
II . L−1/2

∫
χL〈x〉.

Choosing R(L) small enough such that
∫
χL〈x〉 ≤ cL1/6 with c small enough we get

II ≤ L−2/3 = Z4
L,3.

For
III = E

(∣∣∣∣e− ∫
χLV(|ξL |

2) − e−
∫
χLV(|ξ f

L |
2)
∣∣∣∣2)

we have
√

III ≤
∫

χL‖〈ξ
f
L(x)〉rV +1 + 〈ξL(x)〉rV +1‖L4

proba
‖ξ

f
L − ξL‖L4

proba
.

We have that ξ f
L − ξL is a Gaussian hence

‖ξ
f
L − ξL‖L4

proba
. ‖ξ f

L − ξL‖L2
proba

.

The L2 norm to the square is given by

‖ξ
f
L − ξL‖

2
L2

proba
=

∑
k∈Z,|k|/L>N(L)

1

1 + k2

L2

1
L
. N(L)−1/2

∫
dy

(1 + y2)3/4 .

What is more,
‖〈ξ

f
L(x)〉rV +1 + 〈ξL(x)〉rV +1‖L4

proba

is uniformly bounded in x and L. Therefore, with the choice of N(L), Assumption 6, we have

√
III . L−1

∫
χL.

Choosing R(L) small enough such that
∫
χL ≤ cL with c small enough we get

III ≤ L−1 ≤ Z4
L,3

which concludes the proof. �
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Proof of Lemma 3.3. Let

A = E
(∣∣∣∣e− ∫

χLV(|ξL |
2)

ZL,1
‖ϕ1DsξL‖

r
L2(R) −

e−
∫
χLV(|ξ f

L |
2)

ZL
‖ϕ1Dsξ‖rL2(R)

∣∣∣∣).
The proof of this lemma and the next one are new compared to the other proofs. They rely on the
fact that by choosing appropriate N(L),R(L), the measure ρL converges towards ρ.

We have
A ≤ A1 + A2

with

A1 = E
(∣∣∣∣e− ∫

χLV(|ξL |
2)

ZL,1
−

e−
∫
χLV(|ξ f

L |
2)

ZL

∣∣∣∣‖ϕ1DsξL‖
r
L2(R)

)
and

A2 = E
(e−

∫
χLV(|ξ f

L |
2)

ZL

∣∣∣∣‖ϕ1DsξL‖
r
L2 − ‖ϕ1Dsξ

f
L‖

r
L2

∣∣∣∣).
By Hölder’s inequality, we have

A1 ≤ E
(∣∣∣∣e− ∫

χLV(|ξL |
2)

ZL,1
−

e−
∫
χLV(|ξ f

L |
2)

ZL

∣∣∣∣2)1/2
E(‖ϕ1DsξL‖

2r
L2)1/2.

As long as ϕ1 is in L1 and s < 1
2 , we have that

E(‖ϕ1DsξL‖
2r
L2)1/2

is uniformly bounded in L (but not in r, s). Hence,

A1 .
1

ZL,1
E
(∣∣∣∣e− ∫

χLV(|ξL |
2) − e−

∫
χLV(|ξ f

L |
2)
∣∣∣∣2)1/2

+ E
(
e−2

∫
χLV(|ξ f

L |
2)
)1/2∣∣∣∣ 1

ZL,1
−

1
ZL

∣∣∣∣.
Thanks to Lemma 3.2, we get

A1 .
ZL,3

1 − 2ZL,3
+

Z1/2
L,3

(1 − 3ZL,3)1/2(1 − 2ZL,3)
,

which goes to 0 as L goes to∞ and hence is bounded.
By Hölder’s inequality, we have

A2 ≤
E(e−2

∫
χLV(|ξ f

L |
2))1/2

ZL

(
E(‖ϕ1Dsξ

f
L‖

4(r−1)
L2 )1/4 + E(‖ϕ1DsξL‖

4(r−1)
L2 )1/4

)
E(‖ϕ1Ds(ξL − ξ

f
L)‖4L2)1/4.

We have that
E(‖ϕ1Dsξ

f
L‖

4(r−1)
L2 )1/4

is uniformly bounded in L (but not in r, s) as long as ϕ1 is in L1. Therefore,

A2 . (ZL)−1/2E(‖ϕ1Ds(ξL − ξ
f
L)‖4L2)1/4.

We have that
E(‖ϕ1Ds(ξL − ξ

f
L)‖4L2)1/4 = ‖ϕ1Ds(ξL − ξ

f
L)‖L4

proba,L
2(R)
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and by Minkowski’s inequality, since 4 ≥ 2, we can exchange the norms to get

E(‖ϕ1Ds(ξL − ξ
f
L)‖4L2)1/4 ≤ ‖ϕ1Ds(ξL − ξ

f
L)‖L2(R),L4

proba
.

Given ξL and ξ f
L, we have that for all x,

‖Ds(ξL − ξ
f
L)(x)‖L4

proba
. N(L)−1/4+s/2

( ∫ dy
(1 + y2)3/4−s/2

)1/4

and thus
E(‖ϕ1Ds(ξ − ξL)‖4L2)1/4 . N(L)−1/4+s/2‖ϕ1‖L2 .

Hence, as long as ϕ1 is in L2 we have

A2 . N(L)−1/4+s/2Z−1/2
L,3 (1 − 3ZL,3)−1/2

and given the estimate on ZL,3, Assumption 3, and Assumption 6, we have

A2 . (1 − 3ZL,3)−1/2

which is bounded. �

Proof of Lemma 3.4. Let

A = E
(∣∣∣∣e− ∫

χLV(|ξL |
2)

ZL,1
‖ϕ1DsξL‖

r
L2(R) −

e−
∫
χLV(|ξ|2)

ZL,2
‖ϕ1Dsξ‖rL2(R)

∣∣∣∣).
We have

A ≤ A1 + A2

with

A1 = E
(∣∣∣∣e− ∫

χLV(|ξL |
2)

ZL,1
−

e−
∫
χLV(|ξ|2)

ZL,2

∣∣∣∣‖ϕ1Dsξ‖rL2(R)

)
and

A2 = E
(e−

∫
χLV(|ξL |

2)

ZL,1

∣∣∣∣‖ϕ1DsξL‖
r
L2 − ‖ϕ1Dsξ‖rL2

∣∣∣∣).
By Hölder’s inequality, we have

A1 ≤ E
(∣∣∣∣e− ∫

χLV(|ξL |
2)

ZL,1
−

e−
∫
χLV(|ξ|2)

ZL,2

∣∣∣∣2)1/2
E(‖ϕ1Dsξ‖2r

L2)1/2.

As long as ϕ1 is in L1 and s < 1
2 , we have that

E(‖ϕ1Dsξ‖2r
L2)1/2

is finite. Hence,

A1 .
1

ZL,1
E
(∣∣∣∣e− ∫

χLV(|ξL |
2) − e−

∫
χLV(|ξ|2)

∣∣∣∣2)1/2
+ E

(
e−2

∫
χLV(|ξ|2)

)1/2∣∣∣∣ 1
ZL,1
−

1
ZL,2

∣∣∣∣.
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Thanks to Lemma 3.2, we get

A1 .
ZL,3

1 − 2ZL,3
+

Z1/2
L,3

(1 − 2ZL,3)(1 − Z2
L,3)

,

which goes to 0 as L goes to∞ and hence is bounded.
By Hölder’s inequality, we have

A2 ≤
E(e−2

∫
χLV(|ξL |

2))1/2

ZL,1

(
E(‖ϕ1DsξL‖

4(r−1)
L2 )1/4 + E(‖ϕ1Dsξ‖4(r−1)

L2 )1/4
)
E(‖ϕ1Ds(ξ − ξL)‖4L2)1/4.

We have that
E(‖ϕ1DsξL‖

4(r−1)
L2 )1/4

is uniformly bounded in L as long as ϕ1 is in L1. Therefore,

A2 . (ZL,1)−1/2E(‖ϕ1Ds(ξ − ξL)‖4L2)1/4.

We have that
E(‖ϕ1Ds(ξ − ξL)‖4L2)1/4 = ‖ϕ1Ds(ξ − ξL)‖L4

proba,L
2(R)

and by Minkowski’s inequality, since 4 ≥ 2, we can exchange the norms to get

E(‖ϕ1Ds(ξ − ξL)‖4L2)1/4 ≤ ‖ϕ1Ds(ξ − ξL)‖L2(R),L4
proba

.

Given ξ and ξL, we have that for all x,

‖Ds(ξ − ξL)(x)‖L4
proba
. 〈x〉L−1/2

and thus
E(‖ϕ1Ds(ξ − ξL)‖4L2)1/4 .

1
L1/2 ‖ϕ1〈x〉‖L2 .

Hence, as long as ϕ1〈x〉 is in L2 we have

A2 .
1

L1/2Z1/2
L,3 (1 − 2ZL,3)1/2

and given the estimate on ZL,3, we have

A2 .
1

L5/12(1 − 2ZL,3)1/2

which goes to 0 as L goes to∞ and hence A2 is bounded. �

Proof of Lemma 3.5. Let

B = E
(e−

∫
χLV(|ξ|2)

ZL,2
‖ϕ1Dsξ‖rL2(R)

)
We have

B ≤ B1 + B2
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with

B1 = E
(∣∣∣∣e− ∫

χLV(|ξ|2)

ZL,2
−

e−
∫ R(L)
−R(L) V(|ξ|2)

ZL,2

∣∣∣∣‖ϕ1Dsξ‖rL2(R)

)
and

B2 = E
(e−

∫ R(L)
−R(L) V(|ξ|2)

ZL,2
‖ϕ1Dsξ‖rL2(R)

)
.

By Hölder’s inequality and for the same reasons as in the proof of Lemma 3.4, we have

B1 .
1

ZL,2
E
(∣∣∣∣e− ∫

χLV(|ξ|2) − e−
∫ R(L)
−R(L) V(|ξ|2)

∣∣∣∣2)1/2
+ E

(
e−2

∫ R(L)
−R(L) V(|ξ|2)) |ZL,2 − ZL,3|

ZL,2ZL,3
.

From Lemma 3.2, we get

B1 .
ZL,3

1 − Z2
L,3

+
Z1/2

L,3

1 − Z2
L,3

which is uniformly bounded in L.
For B2, we have

‖ϕ1Dsu‖2L2 ≤
∑
n∈Z

a2
n‖D

su‖2L2([n,n+1])

with an = sup[n,n+1] ϕ1. We also have that ‖Dsu‖2
L2([n,n+1]) can be described as

‖Dsu‖2L2([n,n+1]) = ‖u‖L2([n,n+1]) +

∫
[n,n+1]2

dxdy
|u(x) − u(y)|2

|x − y|1+2s

and by symmetry in x and y

‖Dsu‖2L2([n,n+1]) = ‖u‖L2([n,n+1]) + 2
∫

[n,n+1]2
1|x|≥|y|dxdy

|u(x) − u(y)|2

|x − y|1+2s .

Besides, we have with

dρL,3(u) =
e−

∫ R(L)
−R(L) V(|u|2)

ZL,3
dµ(u),

B1/r
2 = ‖ϕ1Dsu‖Lr

ρL,3 ,L
2(R).

We use the description of ‖ϕ1Dsu‖L2 to get

B2/r
2 ≤ ‖

∑
a2

n‖D
su‖2L2[n,n+1]‖Lr/2

ρL,3
.

Since r ≥ 2, by the triangle inequality, we get

B2/r
2 ≤

∑
a2

n‖D
su‖2Lr

ρL,3 ,L
2[n,n+1]

and by using the description of ‖Dsu‖L2([n,n+1]),

B2/r
2 .

∑
a2

n

(
‖u‖2Lr

ρL,3 ,L
2([n,n+1]) + 2‖ũ‖2Lr

ρL,3 ,L
2([n,n+1]2)

)
where ũ(x, y) = 1|x|≥|y|

|u(x)−u(y)|
|x−y|1/2+s .
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By Minkowski inequality, since r ≥ 2, we can exchange the norm in probability and the one
in space to get

B2/r
2 ≤

∑
n

a2
n

(
‖u‖2L2([n,n+1],Lr

ρL,3 ) + 2‖ũ‖2L2([n,n+1]2,Lr
ρL,3 )

)
.

We have

‖u(x)‖rLr
ρL,3

= E
(e−

∫ R(L)
−R(L) V(|ξ|2)

ZL,3
|ξ(x)|r

)
and

‖ũ‖rLr
ρL,3

= 1|x|≥|y|E
(e−

∫ R(L)
−R(L) V(|ξ|2)

ZL,3

|ξ(x) − ξ(y)|r

|x − y|r/2+rs

)
.

Thanks to Proposition 1.3, there exists ϕr such that

‖u(x)‖rLr
ρL,3
≤ ϕr(|x|)

and
‖ũ(x, y)‖rLr

ρL,3
≤ ϕr(|x|)|x − y|−r/2+1.

This is due to Feynman-Kac’s integrals and the dependence in x is due to different rates of point-
wise convergence in terms of x.

Therefore, we have

‖ũ(x, y)‖2L2([n,n+1]2,Lr
ρL,3
≤

∫ n+1

n
ϕ2/r

r (|x|)
∫ n+1

n
|x − y|−1+2/rdydx,

and since −1 + 2
r > −1, we get

B2/r
2 .

∑
n

a2
n

(
‖ϕ1/r

r ‖
2
L2([n,n+1] + 2‖ϕ1/r

r ‖
2
L2([n,n+1])

)
.

Choosing ϕ1 small enough such that the series converges, and positive, even, decreasing on R+,
we get the result. �

3.2 Convergence

Proposition 3.6. The family (ρL)L converges weakly in Hϕ towards ρ when L goes to∞.

Proof. Let F be a bounded, Lipschitz continuous function on S .
We have ∣∣∣∣Eρ(F) − EρL(F)

∣∣∣∣ ≤ I + II + III + IV

with

I =
∣∣∣∣Eρ(F) − EρL,3(F)

∣∣∣∣
II =

∣∣∣∣EρL,3(F) − EρL,2(F)
∣∣∣∣

III =
∣∣∣∣EρL,2(F) − EρL,1(F)

∣∣∣∣
IV =

∣∣∣∣EρL,1(F) − EρL(F)
∣∣∣∣.
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We have that I goes to 0 when L goes to∞ by Feynman-Kac theory.
We have

II ≤ E
(
|F(ξ)|

∣∣∣∣e−
∫ R(L)

R(L) V(|ξ|2)

ZL,3
−

e−
∫
χLV(|ξ|2)

ZL,2

∣∣∣∣)
which thanks to Lemma 3.2 and the fact that F is bounded, satisfies

II ≤ CFZL,3

where CF is a constant depending only on F and hence goes to 0.
We have

III ≤ E
(∣∣∣∣F(ξ)

e−
∫
χLV(|ξ|2)

ZL,2
− F(ξL)

e−
∫
χLV(|ξL |

2)

ZL,1

∣∣∣∣).
Since F is bounded and Lipschitz continuous we have that

III ≤ CF
(∣∣∣∣e− ∫

χLV(|ξ|2)

ZL,2
−

e−
∫
χLV(|ξL |

2)

ZL,1

∣∣∣∣) + CFZ−1/2
L,2 E(‖ξL − ξ‖

2
ϕ)1/2.

The norm of Hϕ is weak enough to get

‖ξL − ξ‖ϕ ≤ ‖〈x〉−2(ξL − ξ)‖L2

from which we deduce
E(‖ξL − ξ‖

2
ϕ)1/2 . L1/2.

Since Z−1/2
L,2 ∼ L1/12, and by Lemma 3.2, we get that III goes to 0 when L goes to∞.

Finally,

IV ≤ E
(∣∣∣∣F(ξL)

e−
∫
χLV(|ξL |

2)

ZL,1
− F(ξ f

L)
e−

∫
χLV(|ξ f

L |
2)

ZL

∣∣∣∣).
Since F is bounded and Lipschitz continuous we have that

IV ≤ CF
(∣∣∣∣e− ∫

χLV(|ξL |
2)

ZL,1
−

e−
∫
χLV(|ξ f

L |
2)

ZL

∣∣∣∣) + CFZ−1/2
L,1 E(‖ξL − ξ

f
L‖

2
ϕ)1/2.

We have
E(‖ξL − ξ

f
L‖

2
ϕ)1/2 ≤ E(‖〈x〉−1(ξL − ξ

f
L)‖2L2)1/2 . N(L)−1/4 ≤ L−1.

Since Z−1/2
L,1 ∼ L1/12, and by Lemma 3.2, we get that IV goes to 0 when L goes to∞. �

A Variable coefficients equations

As mentioned in the introduction, we can generalize Theorem 1 to include also the case of asymp-
totically flat variable coefficients. We devote this appendix to sketch the necessary modifications
needed in order to prove the following

Proposition A.1. Let a(x) be a positive map such that there exist constants C ∈ R and γ > 1 such
that

a(x) ≤ C〈x〉−γ.
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Let V satisfying assumptions (1). We consider the equation

i∂tu = −∂x((1 + a)∂xu) + V ′(|u|2u). (11)

Then, there exists a non-trivial measure ρ (independent from t), a probability space (Ω,A, P) and
a random variable X∞ with values in C(R,D′) such that

• for all t ∈ R, the law of X∞(t) is ρ,

• X∞ is a weak solution of (2).

Proof. We introduce the change of variable y = Φ(x) with Φ′(x) = 1
1+a(x) for every x. Then we set

v(y) = u ◦ Φ−1(y) so that v satisfies, for u solution of (11)

i∂tv =
−1

(1 + a) ◦ Φ−1(y)
∂2

yv + V ′(|v|2)v.

We then get
∂tv = J 5v H(v)

with J = i
(1+a)◦Φ−1 skew-symmetric and with the Hamiltonian given by

H(v) =
1
2

∫
v(−4)v +

∫
(1 + a) ◦ Φ−1(y)V(|v|2).

The difficulty is now that V is replaced by

(1 + a) ◦ Φ−1(y)V(|v|2)

which depends on y. Anyway we can write

H = H0 + Hpert

with
H0(v) = H(v) =

1
2

∫
v(−4)v +

∫
V(|v|2) and Hpert =

∫
a ◦ Φ−1(y)V(|v|2)

Notice that H0 falls within the assumptions of Theorem 1 and therefore defines, in the sense we
have seen above, an invariant measure ρ given by

dρ(u) = lim
R(L)→∞

e−
∫
χL(y)Φ−1(y)V(|ξ f

L(y)|2dy

ZL
dµL.

On the other hand, notice that a ◦ Φ−1(y) is positive and such that∣∣∣a ◦ Φ−1(y)
∣∣∣ . 〈y〉−γ;

therefore, Hpert =
∫

a ◦ Φ−1(y)V(|v|2) can be seen as a perturbative term, as Hpert is ρ a-s well-
defined and e−Hpert ∈ L1

ρ. The proof of Theorem 1 can then be reproduced in this new setting to get
Proposition A.1: indeed, the approaching equations are perturbations of the ones in the setting of
Theorem 1:

∂tv = ΠN(L)
i

(1 + a) ◦ Φ−1 ΠN(L) 5u HL(u)

(compare with (3)), and the corresponding approached measures are perturbative as well.
�
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