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A three-dimensional coupled thermoelectromechanical model for electrical connectors is here proposed to evaluate local stress
and temperature distributions around the contact area of electric connectors under different applied loads. A micromechanical
numerical model has been developed bymerging together the contact theory approach, whichmakes use of the so-called roughness
parameters obtained from experimental measurements on real contact surfaces, with the topology description of the rough surface
via the theory of fractal geometry. Particularly, the variation of asperities has been evaluated via the Weierstrass-Mandelbrot
function. In this way the micromechanical model allowed for an upgraded contact algorithm in terms of effective contact area
and thermal and electrical contact conductivities. Such an algorithm is subsequently implemented to construct a global model for
performing transient thermoelectromechanical analyses without the need of simulating roughness asperities of contact surfaces,
so reducing the computational cost. A comparison between numerical and analytical results shows that the adopted procedure is
suitable to simulate the transient thermoelectromechanical response of electric connectors.

1. Introduction

Several engineering applications involve connections where
the electrical contact relies on a relatively weak pressure, able
to ensure a partial adhesion between two elements. The real
contact surfaces are not flat but include many asperities [1];
contacts occur in a number 𝑛

𝑐
of small surfaces named a-

spots, so that the effective contact area 𝐴
𝑐
is much smaller

than the apparent, macroscopic, contact one 𝐴
𝑎
(Figure 1).

The effective contact area can also be reduced due, for
example, to natural oxidation and the presence of other
superficial contaminant films, that can be present in the
contact zone. A direct consequence of the fact that the
electrical contact is established only through these a-spots is
that contact resistivity increases, producing the constriction
resistance. The total contact resistance can be generally
estimated by means of a statistical approach linking the
microscopic contact physics to the meso-scale modelling [2–
4]; with this approach the total constriction resistance is
defined as a function of parameters such as surface roughness,
material hardness, normal pressure 𝑝

𝑐
, and temperature 𝑇.

Numerical simulations of electrical contacts can be con-
ducted in agreement with the contact theory [5] which, in
general, is able to evaluate only the apparent contact area
𝐴
𝑐
, possibly overestimating the electrical and the thermal

connection; for example, in [6, 7] the electromechanical
contact has been evaluated by considering a micro-macro
approach where 𝐴

𝑐
has been statistically defined.

To improve the knowledge of the effective intercon-
nection between two bodies in contact, a micromechan-
ical numerical model is here developed to simulate the
irregular contact surface. Micromechanical models require
a homogenized material response which takes into account
microstructural heterogeneity [8]. Analytical models of com-
posite structures at nanoscale can be found in [9–14].

More specifically, in the present work the micromechan-
ical model is characterized by means of three-dimensional
contact surfaces obtained via the fractal theory [15, 16] which
makes use of roughness parameters resulting from experi-
mentalmeasurements on real contact surfaces to simulate the
surface asperities (Figure 2).
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Figure 1: Schematic view of a-spot area.

Asperities heights, peaks distribution, and so forth are
dependent on the contact surface preparation and the load
history; in fact residual strains under elastoplastic cycles
can modify the contact surfaces. The fractal theory has
been followed to represent the initial asperities for a virgin
material and to evaluate the effective electrical contact area;
the material is modelled to behave elastoplastically and able
to undergo large strains.

Previous three-dimensional models have been developed
[17] to evaluate the global effects in terms of stress and tem-
perature distributions around the contact area; the analyses
were supported by experimental tests to retrieve the thermo-
electromechanical characteristics of interest.

Here an analytical-numerical comparison is additionally
carried out to validate this procedure, considering a classic
case of a cylinder and a hemisphere in contact under different
compression loads.

Such problems may undergo instability [18–20], which
would require a local investigation of the stress field in large
strains [21–24]; nevertheless this topic is not addressed in the
present micro-macro approach, under the assumption that
the compressive load does not generate buckling.

2. The Analytical Model

On the macroscopic scale two contact elements pressed
together apparently touch each other on area 𝐴

𝑎
that, due to

surface roughness, is much larger than area 𝐴
𝑐
of effective

mechanical contact. In fact, on such a scale contact occurs
between the asperities of the two surfaces in a number 𝑛

𝑐

of small surfaces per macro-unit area, named a-spots, which
both increase with the applied contact force 𝑃 [25]. Current
density lines are forced to pass through a-spots, causing a
local increase in resistance 𝑅

𝑐
. For a single circular a-spot

of radius 𝑎
𝑐
and sufficiently thick elements, 𝑅

𝑐
is analytically

known. A more complex question is determining the total
constriction resistance corresponding to 𝐴

𝑎
and given by

many a-spots whose number and radius depend on the

compressive load 𝑃, the surface roughness, and the material
properties.

A statistical approach that allows linking themacroscopic
model needed for numerical simulation with the physics of
microscopic contacts is extensively presented in [2–4] and it
has been taken as reference for the present work. The statis-
tical characterization of the surface roughness is considered
as representative quantities: the mean plane between peaks
and valleys of the asperities, the mean absolute asperity slope
𝑚, and the root mean square (RMS) of the surface roughness
𝜎
𝑟
, whereas the contact between the two surfaces is expressed

by the mean plane distance 𝑌. As long as relatively weak
contact forces are considered, 𝑚 and 𝜎

𝑟
can be assumed to

be constant, so that only 𝑌 varies with the applied load 𝑃.
When the load increases, the asperities in contact are

crushed and the mean distance 𝑌 between two bodies
decreases (Figure 3). We define 𝑑max as the maximum mean
distance between the two bodies (𝑌 = 𝑑max when the two
bodies are in contact but the external load is equal to 0). If the
external load is applied, the mean distance 𝑑 is evaluated by

𝑌 = 𝑑max −
𝑃

𝐾spot
, (1)

where 𝐾spot is the spot stiffness in the contact surface. The
spot stiffness is evaluated in [4, 17] via the relationship

𝐾spot =
𝑐
1

2

(

2

√𝜋

)

1+𝑐
2

(

4𝜎
𝑟

𝑚

)

𝑐
2

, (2)

where 𝑐
1
, 𝑐
2
are two material parameters.

Starting from these conditions, the following expression
is derived for the a-spot mean radius, their number, and the
total contact surface

𝑎
𝑐
= √

8

𝜋

𝜎
𝑟

𝑚

exp( 𝑌
2

2𝜎
2

𝑟

) erfc( 𝑌

√2𝜎
𝑟

) ,

𝑛
𝑐
=

1

16

(

𝑚

𝜎
𝑟

)

2

𝐴
𝑎

erfc (𝑌/√2𝜎
𝑟
) exp (𝑌2/𝜎2

𝑟
)

,

𝐴
𝑐
= 𝑛
𝑐
𝜋𝑎
2

𝑐
=

1

2

erfc( 𝑌

√2𝜎
𝑟

)𝐴
𝑎
.

(3)

In order to relate 𝑌 to 𝑃, in agreement with most of the
available literature, a plastic deformation of the asperities
has been assumed, because a-spots are very small so that
weak forces can produce very high local pressures over them,
highly exceeding the yield limit [3, 4]. However it must
also be noted that hypothesis of elastic deformations is even
reported in literature, considering that asperities may behave
plastically at first but when the a-spots enlarge enough, loads
are elastically supported. As far as the linear assumption is
accepted, the plastic condition allows expressing the contact
force as 𝑃 = 𝐴

𝑐
𝐻
𝑐
, with 𝐻

𝑐
the contact micro-hardness,

whereas 𝐴
𝑎
is related to the macroscopic apparent pressure

𝑝
𝑐
= 𝑃/𝐴

𝑎
, so that

𝑝
𝑐
=

𝐻
𝑐

2

erfc( 𝑑

√2𝜎
𝑟

) . (4)
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Figure 2: (a) Effective contact area; (b) typical fractal surface.

dmax Kspot

Figure 3: Connection between two contact surfaces.

Considering the Vickers hardness test,𝐻
𝑐
can be found start-

ing by a Vickers micro-hardness measure𝐻V

𝐻V = 𝑐1𝑑
𝑐
2

V , (5)

where 𝑑V is themean indentation diagonal; that is, in a similar
way

𝐻
𝑐
= 𝑐
1
𝑑
𝑐
2

𝑐
,

𝑑
𝑐
= √2𝜋𝑎

𝑐
.

(6)

Considering the plurality of a-spots and the proximity among
them, each current tube can expand far from its contact point
to a radius 𝑏 (Figure 1). The total contact resistance 𝑅

𝑐
can be

defined as the inverse of the contact conductance 𝑅
𝑐
= 1/ℎ

𝑐

that can be evaluated as

ℎ
𝑐
= 1.25𝑘

𝑐
(

𝑚

𝜎
𝑟

)(

𝐴
𝑐

𝐴
𝑎

)

0.95

(7)

in which 𝑘
𝑐
is the electrical conductivity.

Moreover, as the contact surfaces generally present some
level of oxidation and often also stray deposits of insulating
substances, a film resistance has been added to the constric-
tion resistance from (7). As it strongly depends on the level of
cleanness of the surfaces and on the used metal, values taken
from literature have been considered.

3. The Thermoelectromechanical Model

Under an electrical flux, bodies’ configurations are subjected
to modifications caused by electrical energy dissipation.
Correspondingly, a coupled thermoelectromechanical model
has been accounted for.

The electric field is governed by Maxwell’s equation

∫

Γ

J ⋅ n 𝑑Γ = ∫
Ω

𝑟
𝑐
𝑑Ω, (8)

where Γ is the surface area,Ω is the volume, J is the electrical
current density vector (per unit area), and 𝑟

𝑐
is the internal

volumetric current source (per unit volume).
J can be defined via Ohm’s law by considering the current

density as a function of the electrical conductivity matrix
𝜎
𝐸

= 𝜎
𝐸

(𝑇), with 𝑇 being temperature, and the gradient of
the electrical potential E𝐸

J = 𝜎𝐸 ⋅ Ε𝐸 = −𝜎𝐸 ⋅
𝜕𝜑

𝜕x
, (9)

where x is the position vector in the current configuration
and𝜑 is the electrical potential.The thermal energy generated
by the electrical current can be defined by Joule’s law that
evaluates the dissipated electrical energy 𝑃

𝐸
as

𝑃
𝐸
= E𝐸 ⋅ J. (10)

The energy released in the form of internal heat is

𝑟 = 𝜂𝑃
𝐸
, (11)

where 𝑟 is the heat energy generated during dissipation and 𝜂
is the energy conversion factor.

Thermal variations within a body involve a new mechan-
ical configuration.The stiffness matrix for a coupled thermo-
electromechanical model results as

[

[

[

[

k
𝑚𝑚

k
𝑚𝑇

0
k
𝑇𝑚

k
𝑇𝑇

k
𝑇𝜑

0 k
𝜑𝑇

k
𝜑𝜑

]

]

]

]

, (12)

where k
𝑚𝑚

, k
𝑇𝑇
, k
𝜑𝜑

are the mechanical, thermal, and
electrical parts, respectively, whereas k

𝑚𝑇
, k
𝑇𝑚

, k
𝜑𝑇
, k
𝑇𝜑

are
the coupling terms.

At present the piezoelectric behaviour is not considered
and the constitutive relation can be defined as

T = C (X, 𝑇) : E𝑒 (X, 𝑇) = C (X, 𝑇) : (E − E𝑇) , (13)

where the stress tensor T is dependent on the logarithmic
elastic strain E𝑒, obtained by subtracting the thermal strain
tensor E𝑇 to total logarithmic strain E, and the constitutive
tensor C. Considering an elastoplastic material, the constitu-
tive tensor C is dependent on both the position vector in the
reference configuration X and temperature 𝑇.
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Figure 4: Contact scheme.

4. The Contact Algorithm

In order to simulate the thermoelectric interconnectionwhen
two bodies are touching, the contact theory has been applied
[5].

Considering two bodies,Ω1 andΩ2 (Figure 4), for exam-
ple, representative of connection components, two surfaces
can be identified, Γ1 (with Γ1 ∈ Ω

1, named slave) and Γ2
(with Γ2 ∈ Ω2 namedmaster), where contact is possible. The
closed contact condition is achieved and the two bodies are in
contact if the contact surface Γ𝑐 = Γ1 ∩ Γ2 ̸= 0.

Contact is defined when the fundamental conditions are
set:

(i) Nonpenetration conditions:

(u𝑚 − u𝑠) ⋅ n + 𝑔 ≥ 0 on Γ𝑐

𝑔 = (X𝑚 − X𝑠) ⋅ n on Γ𝑐,
(14)

where u𝑖 (with 𝑖 equal to 𝑚, master, and 𝑠, slave) are
the displacement vectors, X𝑖 are the position vectors
in the reference configuration, 𝑔 is the gap function
(the distance between two points in contact), and n is
the normal vector (Figure 4).

(ii) Action-reaction conditions:

t𝑚 + t𝑠 = 0 on Γ𝑐, (15)

where t𝑖 are the stress vectors.
(iii) Kuhn-Tucker conditions:

𝑔 ≥ 0,

𝑝
𝑐
≤ 0,

𝑝
𝑐
⋅ 𝑔 = 0,

on Γ𝑐,

(16)

where 𝑝
𝑐
is the normal pressure: 𝑝

𝑐
= t ⋅ n.

n
nnn

n

n

Figure 5: Normal contact definition in the fractal surface.

Generally, friction effects between two bodies in contact are
dependent on the roughness of the contact surface; in our
case, if one considers the adopted material asperity model,
friction is a direct consequence of the model itself and it
comes from the transversal asperity connections, so that a
normal condition only has been considered (Figure 5).

The normal contact is characterized by a normal pressure,
defined based on the penalty method; that is,

𝑝
𝑐
= 𝑘
𝑛
⋅ 𝑔
𝛼

𝑛
, (17)

where 𝑔
𝑛
is the gap function along the normal direction and

𝑘
𝑛
is the penalty coefficient.
In the developed three-dimensional numerical model

here presented, characterized by tetrahedral elements, master
and slave surfaces have been defined on the contact faces
of the elements (Figure 6). The closed contact condition has
been considered in the contact pair, defined through a slave
node and a master point. On these surfaces only the gap
function 𝑔 is evaluated.

The master point x𝑚 in a contact pair is chosen as the
point with the minimum distance from the slave node x𝑠
(minimal distance rule); generally it does not coincide with
a master node but with a generic point belonging to surface
Γ
2.
The minimum distance between slave nodes and master

points can be defined by considering that the master point is
obtained by the orthogonal projection of the slave node onto
the master surface (see Figure 7), where the normal direction
n is defined by

n = a
1
× a
2





a
1
× a
2






(18)

and a
𝑖
are the tangent vectors to the master surface in x𝑚

(Figure 4) [26].
A “master element” is characterized by the elements faces,

and the tangent vector at a generic point x𝑚 can be con-
sequently defined taking into account the shape functions
derivatives in the master element. A master point can gener-
ally be represented by referring to two different reference sys-
tems: a global reference system (g.r.s.), x𝑚 = x𝑚(𝑥

1
, 𝑥
2
, 𝑥
3
),

and a local curvilinear reference system (l.r.s.) belonging to
the master surface, x𝑚 = x𝑚(𝜉) = x𝑚(𝜉

1
, 𝜉
2
). The shape
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Master
Slave

Figure 6: Master and slave surfaces in finite elements.
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Figure 7: Definition of the normal direction in a point and location
of a master point.

functions of a master element related to point x𝑚 can be
defined as

𝑥
𝑚

1
=

𝑛

∑

𝑖=1

𝑁
𝑖
(𝜉
1
, 𝜉
2
) 𝑥
𝑖

1
,

𝑥
𝑚

2
=

𝑛

∑

𝑖=1

𝑁
𝑖
(𝜉
1
, 𝜉
2
) 𝑥
𝑖

2
,

𝑥
𝑚

3
=

𝑛

∑

𝑖=1

𝑁
𝑖
(𝜉
1
, 𝜉
2
) 𝑥
𝑖

3

(19)

in which 𝑛 is the number of element nodes, 𝑁
𝑖
is the shape

function for node 𝑖, and x𝑖 = (𝑥𝑖
1
, 𝑥
𝑖

2
, 𝑥
𝑖

3
) are the coordinates

of the master element nodes referred to as the g.r.s.

5. Thermoelectromechanical Conditions

The contact surfaces shown before must additionally transfer
thermal and electrical potential fluxes.

The heat flux per unit area 𝑞 defined between a contact
pair has been assumed as

𝑞 = ℎ (𝑇
𝑚

, 𝑇
𝑠

, 𝑝
𝑐
) (𝑇
𝑚

− 𝑇
𝑠

) , (20)

where the thermal conductivity ℎ is dependent on the tem-
perature 𝑇𝑖 (with 𝑖 equal to 𝑚, master, and 𝑠, slave) and the
normal contact pressure 𝑝

𝑐
.

The electric flux density 𝐽 has been defined as

𝐽 = ℎ
𝑐
(𝑇

avg
, 𝑝
𝑐
) (𝜑
𝑚

− 𝜑
𝑠

) = ℎ
𝑐
Δ𝜑 (21)

withΔ𝜑 being the electric potential betweenmaster and slave
surfaces and ℎ

𝑐
the gap of electrical conductance or electrical

conductivity in the contact zone, which is dependent on the
average temperature in the contact zone 𝑇avg

= 𝑇
𝑚

− 𝑇
𝑠 and

on the normal pressure 𝑝
𝑐
.

By assuming that the effective contact area 𝐴
𝑐
can be

represented as a circular area, the contact resistance𝑅
𝑐
can be

obtained following Yovanovich’s resistance relation [3, 4] and
considering that, in general, the contact size is much larger
than the mean free path of electrons; correspondingly the
contact resistance can be obtained as

𝑅
𝑐
=

𝜌
𝑚

+ 𝜌
𝑠

2𝐷

, (22)

where 𝜌𝑖 is the resistivity of the contact surface 𝑖 and𝐷 is the
contact diameter. Experimental tests have been conducted on
samples in aluminium alloy with assumed resistivity equal to
3.4⋅10

−8

Ωm [27]. A thermoelectrical conductance due to the
interstitial gas layers [16] has been here neglected.
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(a) (b)

Figure 8: Sample of electrical contact (a); roughness surface test zone (b).
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Figure 9: Typical roughness profiles in two different positions.

6. Roughness Tests

To evaluate the electrical resistance between two contact
bodies under different compression load levels, experimental
tests have been conducted with an aluminium cylinder
and a hemisphere (Figure 8(a)). In this simplified case the
apparent contact surface 𝐴

𝑎
remains circular and can be also

analytically estimated. The effective contact area, that is, the
zone where the thermoelectric connections are defined, is
dependent on contact surface asperities; the surface rough-
ness in the contact area has consequently been characterized.

For each contact surface of cylinders and hemispheres,
20 roughness profiles have been evaluated, in 20 different
positions (the measurements have been taken in the neigh-
bourhood of the contact zone between the cylinder and the
hemisphere).

Profile lengths are equal to 4.0mm considering a cut-off
length of 0.8mm. The sampling measures have been taken
every 2𝜇m.

Typical examples of roughness profiles evaluated in dif-
ferent positions of the sample are shown in Figure 9.

The RMS surface roughness 𝜎
𝑟
in the contact zone has

been defined as

𝜎
𝑟
=

1

2

√𝜎
2

𝑟,1
+ 𝜎
2

𝑟,2
, (23)

where 𝜎
𝑟,𝑖
is the RMS value in the contact surface 𝑖. The RMS

for the two contact surfaces has been obtained based on the
roughness tests, reaching an average value of 𝜎

𝑟
= 0.105 𝜇m.

Themean absolute asperity slope𝑚 has been evaluated equal
to 13%.

7. The Fractal Surface

The roughness parameters obtained via the roughness tests
are dependent on the resolution of available measuring
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(a) (b) (c)

Figure 10: Example of a generated fractal surface (a); solid geometry (b); mesh of the numerical model (c).

instruments because of themultiscale character of the rough-
ness and its nonstationary features. The fractal theory can be
adopted [27] to evaluate the invariant roughness parameters
for all scale levels.

At this purpose the numerical representations of the
effective contact area have been conducted in agreement with
the fractal approach. A micromechanical model has been
developed to evaluate where the thermoelectrical connection

occurs, taking into account the material asperity in the con-
tact surface.

So, starting from the theory of the fractal geometry, the
topology description of the rough surface has been possi-
ble. The asperity height 𝑧(𝑥, 𝑦) in a plane (𝑥, 𝑦) has been
calculated with the modified Weierstrass-Mandelbrot (WM)
function [16]

𝑧 (𝑥, 𝑦)

= 𝐿 (

𝐺

𝐿

)

𝐷−2

(

ln 𝛾
𝑀

)

1/2 𝑀

∑

𝑚=1

{

{

{

𝑁

∑

𝑛=0

𝛾
𝑛(𝐷−3)

[

[

cos𝜑
𝑚,𝑛

− cos(
2𝜋𝛾
𝑛

(𝑥
2

+ 𝑦
2

)

0.5

𝐿

cos(tan−1 (
𝑦

𝑥

) −

𝜋𝑚

𝑀

) + 𝜑
𝑚,𝑛
)
]

]

}

}

}

,

(24)

where the mechanical characteristics are 𝐿, sample length, 𝐺,
fractal roughness, 𝐷, fractal dimension; considering a two-
dimensional surface, the limits of parameter 𝐷 are 2 < 𝐷 <

3. 𝐷 represents the extent of space occupied by the rough
surface; 𝛾 is the scaling parameter (equal to 1.5); 𝑀 is the
number of superimposed ridges used in constructing the
surface profile; 𝑛 is a frequency index; and 𝜑

𝑚,𝑛
is a random

phase with interval [0–2𝜋].
The only unknown variables in (24) are 𝐺 and 𝐷, which

can be experimentally estimated.

7.1. Fractal Surface Generation. To define the fractal surface
two different codes have been developed: the first written
in C++ language is able to define the WM coefficients
after reading different 1D roughness profiles experimentally
obtained, with roughness surface tests at different positions
in the same area of the analysed contact surface. This code
evaluates the surface conditions with different parameters
such as maximum and minimum height peak present in
the profiles, average height of asperities, profile slope, and
asperity density distribution.

These surface characteristics are necessary to obtain an
equivalent fractal surface developed via a second code, writ-
ten in Fortran 90, where the three-dimensional WM surface
(Figure 10) is defined.

After adopting such a method for generating a fractal
surface, a solid geometry has been then defined and after-
wards a numerical model has been created (Figures 10(b) and
10(c)).The irregular surface has been meshed via a triangular
discretization.

As shown in (24), the fractal surface can be defined
provided that a “random phase” parameter, representative of
an independent random variable, is known. Hence, a specific
Fortran function has been called to generate randomly a
phase parameter as shown in Box 1.

8. Mechanical Characteristics

An aluminium alloy has been tested. The mechanical char-
acteristics in terms of elastic modulus 𝐸 and yield stress
have been obtained at room temperature via tensile tests.
A thermal variation of such parameters has been accounted
for in agreement with Eurocode 9 prescriptions [28]. When
temperature increases, the elastic modulus and yield stress
decrease (Figure 11(a)).

For the sake of simplicity, a bilinear temperature-depend-
ent elastoplastic relation has been assumed for the numerical
analyses (Figure 11(b)).

The hardness parameters have been experimentally
defined by considering the Vickers measure; namely, a value
𝐻V = 315MPa at room temperature was obtained for the
tested alloy.

9. Numerical Analyses

Twodifferentmodels have been carried out in the following: a
micromechanicalmodel, to evaluate the effective contact area
between two contact surfaces (and consequently upgrading
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Real ∗ 8 function randomPhase()
implicit none
real ∗ 8 :: phi
real ∗ 8, parameter :: pi = 3.141592653589793d0

call RANDOM SEED()
call RANDOM NUMBER(phi)
randomPhase = abs(2.d0 ∗ pi ∗ phi)

return
end function randomPhase

Box 1: Random phase function in Fortran 90.

El
as

tic
 m

od
ul

us
 (M

Pa
)

Elastic modulus
Yield stress

0 200 400 600

Temperature (∘C)

×104 ×102

0

1

2

3

4

5

6

7

8

0

0.2

0.4

0.6

0.8

1

1.2

1.4

Yi
el

d 
str

es
s (

M
Pa

)

(a)

T = 20∘C

T = 200∘C

T = 300∘C

T = 450∘C

0

50

100

150

200

250

St
re

ss
 (M

Pa
)

0.02 0.06 0.08 0.10.040 0.12

Strain
(b)

Figure 11: Mechanical characteristics versus temperature (a); stress-
strain relation at different temperatures (b).

the contact algorithm), and a global model where the ther-
moelectromechanical characteristics have been modified in
agreement with the micromechanical results.

9.1. The Micromechanical Model. To evaluate the effective
contact zone, where the real electrothermomechanical con-
nections are established, fractal interfaces associated with the
contact algorithm have been considered. In the real contact

surfaces the irregular asperities generate stress concentra-
tions that can be estimated through the fractal surfaces them-
selves.

TheWMequation used to generate the roughness surface
considers a random phase parameter that allows the creation
of different fractal surfaces with the samemechanical charac-
teristics (derived by experimental tests). The contact surfaces
used in the numerical models have been built by taking an
average value of 10 different surfaces obtained via the WM
equation to simulate the cylinder contact surface and 10 for
the hemispheric one. The maximum in-plane extension of
the fractal surface has been assumed 1.0 × 1.0mm2 and the
average asperity height is equal to about 0.2 𝜇m.

The independent variables 𝐺 and 𝐷 have been calcu-
lated by taking into account that maximum, minimum, and
average asperity heights must be the same, when comparing
fractal surfaces and experimental measurements.

The micro-model of the cylinder in contact with the
hemisphere consists of 123610 nodes and 513833 tetrahedral
elements; circular macro asperities have been created to sim-
ulate the effective contact surface, by means of surface prep-
aration techniques.

During compression of the two electrical joint surfaces,
the different asperity heights come into contact at different
times and the effective contact area depends on the external
load as shown in Figure 12.

Figures 12(b) and 12(c) show that contact occurs first
in the circular macro asperities and, subsequently, contact
involves the internal part of the surface. As shown in Fig-
ure 13(a), the joint stiffness increases when surface asperities
enter into contact but stiffness decreases at higher tempera-
tures. The relation in terms of contact stiffness, temperature,
and gap function has been used to evaluate the mechanical
penalty coefficient in the global model.

When two asperities are touching, the transferred me-
chanical stress rapidly increases above the yield stress (Fig-
ure 13(b)).

As already stated, when compression occurs, at the
contact surface the effective contact area 𝐴

𝑐
changes with

temperature, but as reported also in [27], the relation between
the applied load and the effective contact area results to be
linear, with decreasing slope at increasing temperatures (see
Figure 14). At thermal melting point (about 550∘C) the curve
becomes almost horizontal.

If the effective contact area is equal to zero the two
surfaces are not in contact and the contact resistance 𝑅

𝑐
is

infinite. In agreement with (22), 𝑅
𝑐
decreases as 𝐴

𝑐
increases

(Figure 15(a)).
As evidenced in Figure 14, by varying normal pressure

and temperature, the effective contact area𝐴
𝑐
changes, which

allows obtaining 𝑅
𝑐
law in terms of pressure and temperature

variations (Figure 15(b)).
Hence, the contact algorithm adopted in the macro scale

model has been modified in light of the thermoelectrome-
chanical relations coming from the micromechanical model
just illustrated. In the global one, roughness contact surfaces
have not been represented to reduce the computational cost,
and the contact area itself gives the apparent contact area
𝐴
𝑎
related to the pair, once the effective contact area 𝐴

𝑐
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(a) (b) (c)

Figure 12: Effective contact surface at 79% of the applied load (a); at 89% of the applied load (b); at 100% of the applied load (c).
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is evaluated following the relationship shown in Figure 16.
Consequently, the contact resistance 𝑅

𝑐
has been defined for

each contact pair.

9.2. Global Model and Comparison of the Results. The global
model has been carried out as illustrated in Guarnieri et al.
[29], where a hemisphere and a cylinder are put in contact
at different compressive load levels and different electrical
potentials. These types of shapes ensure a closed solution
for the analytical approach, because the resulting contact
surface is always circular. The contact characteristics have
been compared considering the analytical formulation and
the previously described fractal characterization.

The schematic view of contact between the two surfaces
is shown in Figure 8, where the maximum diameter for the
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samples 𝑑 is assumed to be equal to 90mm and the material
is conceived to behave thermoelastoplastically.

A current density 𝐽 = 1.0A/mm2 is applied to the hemi-
sphere after the load application, at an initial temperature of
20∘C.

The three-dimensional numerical model consists of
730000 tetrahedral elements (Figure 17(a)) and linear shape
functions. Due to symmetry, only 1/4 of the geometry has
been considered.

After the application of the compressive load, the sphere
touches the cylinder in the contact zone and the contact
pressure increases following the elastoplastic relationship. A
permanent indentation occurs if the elastic field is exceeded
as shown in Figure 17(b) [30].

The geometric configuration of the sample allowed for
obtaining a circular apparent contact surface at different load
levels (see Figure 18), which is proved in the following to
correspond to that analytically evaluated [1].

In the contact algorithm the electrical conductance ℎ
𝑐𝑖

at the contact pair 𝑖 has been obtained via the apparent
contact area 𝐴

𝑎,𝑖
and the effective contact area 𝐴

𝑐,𝑖
, based on

Yovanovich’s formulation [2, 4]

ℎ
𝑐𝑖
= 1.25𝑘

𝑐

𝑚

𝜎

(

𝐴
𝑐,𝑖

𝐴
𝑎,𝑖

)

0.95

, (25)

where 𝑘
𝑐
is the average electrical conductance of the two

bodies in contact

1

𝑘
𝑐

= 2(

1

𝑘
𝑐,𝑚

+

1

𝑘
𝑐,𝑠

) . (26)

𝐴
𝑐𝑖

has been calculated, via the micromechanical models,
as a function of contact pressure and temperature. In the
analytical and numerical models 𝑘

𝑐
has been assumed to be

equal to 2.9 × 104 S/mm. Similarly, the thermal conductance
has been evaluated and the thermal conductivity ℎ has been
assumed to be equal to 0.237W/(K⋅mm). This assumption
allowed evaluating the variation of the electrical and the
thermal conductance at different contact positions, under
different contact pressures.

Analytical and numerical results have been compared by
considering the contact surface at 20∘C.

A comparison in terms of real contact area 𝐴
𝑐
and ℎV is

reported in Table 1 and in Figure 19.
As shown, the numerical and the analytic results for 𝐴

𝑐

are pretty similar at different load levels, which confirms that
fractal surfaces are good to evaluate the real contact surface
in these types of problems.

A slight discrepancy is encountered in the first load steps:
such difference can be explained by the fact that the analytical
method is based on a statistical approach and the correspon-
dent results are averaged, whereas the fractal approach takes
into account the effective contact area found through the
micromechanical model during the overall compressive load
histories; that is, the analytical method is not able to locally
catch the real contact area at low load values. Indeed, the
deviation between the results gradually decreases when the
load increases, due to the fact that the contact spots defined
by the fractal model are comparable to those obtained via the
statistical approach. In fact, the resulting contact areas must
finally coincide, getting closer to the real one.

According to the micromechanical model, the real con-
tact area 𝐴

𝑐
is consequently a function dependent on load

and temperature, 𝐴
𝑐
= 𝐴
𝑐
(𝑃, 𝑇). This allows evaluating the
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Figure 17: Three-dimensional model of the electric connector (a); sphere indentation (b).

(a) (b) (c)

(d) (e) (f)

Figure 18: Apparent contact surface at different load levels (at room temperature 𝑇 = 20∘C): 2% (a); 11.6% (b); 18.4% (c); 35% (d); 56% (e);
100% (f).

Table 1: Comparison between analytical and numerical results.

% load 𝐴
𝑎
(mm2) 𝐴

𝑐,analytical (mm2) 𝐴
𝑐,fractal (mm2) 𝑃 (MPa) ℎ

𝑐,analytical (S/mm2) ℎ
𝑐,fractal (S/mm2)

0.00E + 00 0.00E + 00 0.00E + 00 0.00E + 00 0.00E + 00 0.00E + 00 0.00E + 00
1.00E − 02 1.26E − 01 1.02E − 02 1.27E − 03 5.06E + 01 3.98E + 03 5.48E + 02
1.00E − 01 2.89E − 01 2.63E − 02 1.24E − 02 2.20E + 02 4.44E + 03 2.17E + 03
2.50E − 01 5.15E − 01 4.97E − 02 4.02E − 02 3.09E + 02 4.69E + 03 3.83E + 03
4.00E − 01 8.49E − 01 8.14E − 02 7.65E − 02 3.00E + 02 4.69E + 03 4.39E + 03
5.50E − 01 1.32E + 00 1.24E − 01 1.17E − 01 2.64E + 02 4.69E + 03 4.39E + 03
7.50E − 01 1.99E + 00 1.81E − 01 1.84E − 01 2.40E + 02 4.69E + 03 4.50E + 03
1.00E + 00 2.90E + 00 2.64E − 01 2.74E − 01 2.20E + 02 4.69E + 03 4.60E + 03
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Figure 19: Apparent and real contact area at different load levels (20∘C) (a); comparison between analytical and numerical electrical con-
ductivities (b).
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Figure 20: Vertical displacements versus position at different loads levels (a); Von Mises stress (b).

interaction between two bodies during an electrical con-
nection, by taking into account the different thermal defor-
mations at different positions of the contact zone during
transient load scenarios.

The global model is also able to evaluate the displacement
variations and the stress fields (Figures 20(a) and 20(b)) when
an electrical current is applied at different compressive loads.

The contact discontinuity generates a sudden deviation
in terms of electrical potential and temperature (Figure 21);
when the contact area increases, at higher loads, the peak of

temperature and electrical potential decreases, being locally
higher than the thermal and the electrical contact conductiv-
ities.

10. Conclusions

A three-dimensional coupled thermoelectromechanical
model for electrical connectors has been here proposed to
evaluate local stress and temperature distributions around the
contact area of the connectors under different applied loads.
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Figure 21: Comparison between electrical potential versus position at different loads levels (a); comparison between temperature versus
position at different loads levels (b).

The electrical resistance arising in the contact area varies
with the effective contact area 𝐴

𝑐
, where thermal and elec-

trical contacts are established. It can be assumed that 𝐴
𝑐

depends on the surface roughness and the contact pressure.
A micromechanical numerical model has been devel-

oped by merging together the contact theory approach [5],
which makes use of roughness parameters obtained from
experimental measurements on real contact surfaces, with
the topology description of the rough surface via the theory
of fractal geometry. Particularly, the asperities variation has
been evaluated via theWeierstrass-Mandelbrot function [16].

In this way the micromechanical model has allowed for
obtaining an upgraded contact algorithm in terms of effective
contact area 𝐴

𝑐
, as well as thermal and electrical contact

conductivities, qualifying a small region of the total contact
zone.

Such an algorithm has been subsequently implemented
in a global model for performing transient thermoelectrome-
chanical analyses without the need of simulating roughness
asperities of contact surfaces, so reducing the computational
costs.

A comparison between numerical and analytical results
proved that the adopted procedure is suitable to simulate
the transient thermoelectromechanical response of electric
connectors.

Nomenclature

a
𝑖
: Tangent vector along 𝑖 direction

𝐴
𝑎
: Apparent contact area

𝐴
𝑐
: Effective/real contact area

𝑎
𝑐
: a-spot radius

𝑏: Contact point radius
C: Constitutive tensor
𝑐
𝑖
: Material parameters (𝑖 = 1, 2)
𝑑: Sample diameter
𝐷: Fractal dimension

𝑑max: Maximum mean distance between two
bodies

𝑑V: Mean indentation diagonal
E: Total logarithmic strain
E𝐸: Electrical potential gradient
E𝑒: Elastic logarithmic strain
E𝑇: Thermal logarithmic strain
𝑔: Gap function
𝐺: Fractal roughness
𝑔
𝑛
: Gap function along normal direction

ℎ: Thermal conductivity
ℎ
𝑐
: Electrical contact conductance

𝐻
𝑐
: Contact microhardness

𝐻V: Vickers microhardness
𝐽: Current density
J: Electrical current density
k
𝑖𝑗
: Stiffness matrix parameters

𝑘
𝑛
: Penalty coefficient

𝐿: Sample length
𝑚: Mean asperity slope
𝑀: Number of superimposed ridges used in

constructing the surface profile
n: Normal vector
𝑁
𝑖
: Shape function

𝑛
𝑐
: Numbers of a-spots

𝑃: Compressive load
𝑝
𝑐
: Contact pressure

𝑃
𝐸
: Dissipated energy

𝑞: Heat flux per unit area
𝑟: Heat energy release
𝑟
𝑐
: Internal volumetric current source

𝑅
𝑐
: Contact resistance

𝑇: Temperature
T: Stress tensor
t: Contact stress vector
u: Displacement vector
x: Position vector in actual configuration



14 Modelling and Simulation in Engineering

X: Position vector in reference configuration
𝑌: Mean plane distance
𝑧: Asperity height
𝛾: Scaling parameter
Γ: Surface area
𝜂: Energy conversion factor
𝜉
𝑖
: Curvilinear coordinates
𝜌: Resistivity in the contact surface
𝜎
𝑔
: Gap electrical conductance

𝜎
𝑟
: RMS (root mean square)
𝜎
𝐸: Electrical conductivity matrix
𝜑: Electrical potential gradient
Ø: Random phase
Ω: Volume.
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