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Low-order discretization schemes are suitable for modeling 3-D multiphysics problems 
since a huge number of degrees of freedom (DoFs) is typically required by standard 
high-order Finite Element Method (FEM). On the other hand, polyhedral meshes ensure 
a great flexibility in the domain discretization and are thus suitable for complex model 
geometries. These features are useful for the multiphysics simulation of micro piezoelectric 
devices with a thin multi-layered and multi-material structure. The Cell Method (CM) 
is a low-order discretization scheme which has been mainly adopted up to now for 
electromagnetic problems but has not yet been used for mechanical problems with 
polyhedral discretization. This work extends the CM to piezo-elasticity by reformulating 
local constitutive relationships in terms of displacement gradient. In such a way, piecewise 
uniform edge basis functions defined on arbitrary polyhedral meshes can be used for 
discretizing local constitutive relationships. With the CM matrix assembly is completely 
Jacobian-free and do not require Gaussian integration, reducing code complexity. The 
smoothing technique, firstly introduced for FEM, is here extended to CM in order to avoid 
shear locking arising when low-order discretization is used for thin cantilevered beams 
under bending. The smoothed CM is validated for static and dynamic problems on a real 
test case by comparison with both second-order FEM and experimental data. Numerical 
results show that accuracy is retained even a much lower number of DoFs is required 
compared to FEM.

© 2019 Elsevier Inc. All rights reserved.

1. Introduction

Piezoelectric materials are nowadays of widespread use for producing actuators, sensors, and energy harvesters for 
feeding ultra-low power electronics [1]. Analytical models are well assessed and important tools for designing and opti-
mizing piezoelectric devices (piezo-MEMS) [2]. Lumped circuit models are derived for instance in control applications [3]. 
Non-ideal conditions like clamping setup, local variations in geometry and material properties, and residual stress may sig-
nificantly affect the device performance, and in particular its resonance frequency. Main issues in the numerical modeling 
of piezo-MEMS are a large aspect ratio and a multi-layered structure, which requires 3-D electro-mechanical coupled mod-
els. First-order finite elements are not suitable to discretize thin structures due to shear and/or volume locking. Therefore, 
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higher-order elements have to be used for accurate analyses even though a large amount of DoFs is required, which limits 
the model size. Shell and plate elements have thus been proposed in order to overcome such limitations [4]. These models 
rely on Kirchhoff’s or Reissner–Mindlin plate element theories, which provide analytical approximations for displacement 
field of thin multi-layered structures. Reduced integration or enhanced assumed strains (EAS) are used in order to avoid 
locking deriving from polynomial approximation.

1.1. Polyhedral methods

Numerical models based on plate theory assumption however are not adequate to predict the behavior of fully 3-D 
structures (e.g. multilayer structure with a piezoelectric layer embedded within a uniform polymer layer) typical of real-life 
piezo-MEMS. In this context numerical formulations based on polyhedral meshes (poly-meshes) provide much more flexi-
bility by using arbitrarily shaped elements. For instance, carving out a structured background grid naturally leads to a mesh 
with polyhedral elements on the boundary. Moreover, the mesh can be locally refined and coarsened much more easily 
by adopting a poly-mesh (i.e. automatic inclusion of hanging nodes) and standard tetrahedral and hexahedral meshes can 
be connected very well by using polyhedral transition elements. Different strategies have been proposed in literature for 
interpolating fields within polyhedrons, e.g. harmonic basis functions [5], natural elements [6], mean value coordinates [7]. 
However, the construction of shape functions for polyhedral elements is not straightforward as in conventional FEM (e.g., 
rational functions used as interpolants increase formulation complexity) and very efficient numerical integration techniques 
are required to limit inaccuracy and computing cost. Moreover, poly-mesh generators are still under development and not 
yet made available by software producers. These features have strongly limited the adoption of polyhedral finite elements. 
Recently, Virtual Element Method (VEM) has been proposed in order to avoid an explicit computation of basis functions 
within polyhedrons. Elementary stiffness matrices are computed from discrete local projection operators, which are defined 
in turn by solving local matrix systems for any polyhedron [8–10]. In such a case computing cost can become demanding 
for large-scale models.

1.2. Cell Method: an alternative to FEM

A different strategy compared to previous approaches, which does not require evaluations of interpolating functions or 
local system matrix solutions, is here proposed and applied for discretization of 3-D piezoelastic problems on poly-meshes. 
Cell Method (CM) is alternative to FEM for the discretization of partial differential equations (PDEs) because field problem is 
formulated in a circuit-like manner in terms of DoFs such as line, surface, and volume integrals of scalar and vector fields, 
in one-to-one correspondence with geometric entities [11]. The CM has shown to be well suited for analyzing coupled 
problems, since topological relationships are split from constitutive relationships and integral variables are used to enforce 
element continuity. A coupling between different physics is provided in [12] by solving an electro-thermal problem with 
the CM. The extension of CM to elastic problems is more complex due to mathematical structure of elasticity, inherently 
different from electromagnetics. A first attempt of CM elastic formulation was proposed by Tonti for static problems [13]
and for dynamic problems [14], proving that the same discrete gradient matrix of FEM could be obtained with CM. Using 
this discretization scheme, formulations for 2-D electro-elastic problems and 3-D electro-thermo-elastic problems were 
presented, respectively, in [15] and [16,17].

It was observed by Bossavit in [18] that the same discretization principles and techniques used by CM for computational 
electromagnetics could be used for coupled elasto-magnetic problems as well. In particular, it was shown that strain can be 
locally discretized by edge element functions, typically used in electromagnetic problems. These basis functions are related 
to edges and are useful to expand e.g. electric field in terms of edge DoFs (voltages), which is different from standard FEM 
formulations where nodal bases and nodal DoFs are used.

Starting from this standpoint, a CM-based approach for elasticity is here rigorously derived by splitting constitutive and 
topological relationships with a new set of variables, i.e. DoFs related to the displacement gradient instead of its symmetric 
part (strain). In such a way, piezoelastic problem can be discretized over polyhedral grids by using piecewise uniform bases 
[19], which have been applied up to now only to electromagnetic problems. The main advantage is that, unlike standard 
FEM, interpolation function evaluations on Gauss’s points for numerical integration are not required and matrix assembly is 
completely Jacobian-free. Piecewise uniform basis functions are defined on star-shaped polyhedrons, with planar faces, and 
are therefore suitable for discretizing any type of model geometry.

1.3. Extending smoothing to CM

In standard FEM, once the displacement is assumed, its strain field is available using the strain-displacement relationship, 
which is called fully-compatible strain field. When low-order nodal functions are used, fully-compatible FEM leads to locking 
behavior of many problems. The discontinuous strain field at element interfaces induces inaccuracies in stress solutions. 
In addition, the Jacobian matrix related to domain mapping becomes badly conditioned on distorted elements, leading to 
further deterioration of solution accuracy [20]. To avoid low-order FEM issues, a numerical technique termed Smoothed 
FEM (S-FEM) was proposed in 2007 by Liu et al. [21,22]. S-FEM makes use of smoothing technique to modify the fully 
compatible strain field in order to avoid interface jumps between elements. The smoothed gradient matrix is obtained by 
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computing surface integrals on the boundary of smoothing cells, instead of volume integrals such as in standard FEM. In such 
a way, smoothed integration does not require an explicit computation of shape functions gradients nor physical-to-parental 
mapping, with benefits in terms of accuracy and simplicity in the numerical scheme. The type of smoothing technique 
(i.e. nodal, edge, face or cell-based smoothing) depends on the construction of smoothing domains, where strain field is 
piecewise uniform.

The extension of S-FEM to poly-FEM is quite recent and aims at combining advantages of both numerical techniques. 
In [23] a novel mesh carving approach, based on trimming and splitting processes on hexahedral meshes, is proposed. 
Trimmed hexahedra are replaced by polyhedrons and local stiffness matrices are obtained without explicitly computing 
nodal shape functions under the assumption of linear fields. For any polyhedral element, the number of local matrices 
to be computed is equal to the number of element boundary faces. This approach is then extended to non-linear elastic 
problems in [24], where a smoothed deformation gradient tensor for poly-meshes is defined. In [25] polyhedral elements 
are used as transition elements for coupling arbitrary non-matching hexahedral grids and smoothing is used for avoiding an 
explicit computation of nodal shape functions. Finally, a linear strain smoothing scheme is presented in [26] for improving 
accuracy of linear and quadratic approximations over convex polytopes. In this poly-FEM approach elementary stiffness 
matrix construction requires a number of submatrices equal to the number of elemental subcells times the number of 
Gauss’s points per subcell. All previous approaches seem to be limited to elastic and single-material problems [22].

S-FEM has been extended to analyzing different types of multiphysics problems field such as acoustics [27], heat transfer 
[28], and metamaterials [29]. S-FEM for piezoelectric problems has been developed for 2-D models only [30,31]. In order 
to overcome shear locking arising when simulating thin structures (e.g., piezo-MEMS under bending) a novel smoothing 
technique is here developed and applied for the first time to CM, leading to the so-called Smoothed Cell Method (S-CM). 
Piecewise uniform bases are smoothed on face-based smoothing domains, which have octahedral shape and are constructed 
by linking any polygonal face to centroids of polyhedral cells attached to it. In such a way, only two elements per face are 
involved in the construction of smoothed stiffness matrix, differently from smoothed poly-FEMs presented above. Moreover, 
multi-material models (not yet considered by elastic poly-FEMs) can be treated as well by S-CM. Numerical examples show 
that S-CM results are comparable in terms of accuracy to second-order FEM on standard structured hexahedral meshes.

This paper is organized as follows. Differential formulations for 3-D piezoelectric static and dynamic problems are il-
lustrated in Section 2. Piecewise uniform bases for poly-meshes together with Cell Method discretization of differential 
formulation are described in Section 3. The smoothing procedure applied to piecewise uniform bases is discussed in Sec-
tion 4. Mesh generation and constitutive matrix assembly procedures are detailed in Section 5. Numerical results show that 
both standard and smoothed CM pass the patch test and that S-CM is accurate even when compared to second-order FEM 
on realistic MEMS models (Section 6). The outcomes of this research are finally drawn in the Conclusion.

2. Basic piezoelectric formulation

Let � ⊂ R
3 be a piezoelectric body with boundary � = ∂�. Let �s and � f be parts of � with Dirichlet and Neumann 

boundary conditions (BCs), respectively. Displacement si is enforced on �s and surface force density f̄ i on � f , with i =
1, . . . 3 spatial component. The mechanical part of the solid response to an external body force density F i is governed by 
dynamic equilibrium relationships, which expressed by Einstein’s summation convention are [32]:

T ij
/ j(x) + F i(x) = ṗi(x), x ∈ �

T ij(x) n j(x) = f̄ i(x), x ∈ � f

(1)

where T ij are stress second-order tensor components, pi are the momentum density components, / j indicates the covariant 
derivative with respect to j-th spatial component, and n j is the exterior unit normal on �, with j = 1, . . . 3. By assuming 
small displacements, i.e. � is a linear electro-elastic solid, compatibility conditions become:

Sij(x) = si/ j(x) + s j/i(x)

2
, x ∈ �

si(x) = s̄i(x), x ∈ �s

(2)

where Sij are strain second-order tensor components and s̄i is the displacement imposed on the domain boundary.
For electrostatic problem in � similar relationships hold, i.e. Gauss’s law and conservative electric field condition. Let 

�φ be the part of the boundary with Dirichlet BCs (i.e. electric scalar potential φ) and �σ that one with Neumann BCs (i.e. 
electric charge density σ ), with � = �φ ∪ �σ . Electric equilibrium and compatibility become:

Di
/i(x) = 0, x ∈ �

Di(x) ni(x) = −σ(x), x ∈ �σ

Ei(x) = −φ/i(x), x ∈ �

φ(x) = φ̄(x), x ∈ �

(3)
φ



JID:YJCPH AID:8511 /FLA [m3G; v1.252; Prn:5/03/2019; 13:09] P.4 (1-26)

4 F. Moro et al. / Journal of Computational Physics ••• (••••) •••–•••

1

2

3

4

5

6

7

8

9

10

11

12

13

14Q3

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

47

48

49

50

51

52

53

54

55

56

57

58

59

60

61

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

47

48

49

50

51

52

53

54

55

56

57

58

59

60

61
Fig. 1. Primal and dual grids with N = Ṽ = 10, E = F̃ = 17, F = Ẽ = 9, V = Ñ = 2 (nodes and edges of G� , G̃� , and G̃� are indicated in black, red, and 
blue color, respectively; nodes of G� are numbered from 1 to 10; nodes of G̃� from 1 to 2). (For interpretation of the colors in the figure(s), the reader is 
referred to the web version of this article.)

where Di , Ei are the electric displacement and the electric field vector components, and φ̄ is the potential imposed on the 
domain boundary.

The electro-mechanical coupling is obtained in piezoelectric problems by constitutive relationships, relating displace-
ments and electric potentials. By assuming piecewise homogeneous material properties and adopting the so-called e-form of 
constitutive equations, in which strain and electric field are used as independent variables, these equations can be written 
in the following form [33]:

T ij(x) = C ijkh
E (x) Skh(x) − eki j(x) Ek(x),

Di(x) = eikh(x) Skh(x) + εik
S (x) Ek(x),

(4)

where C ijkh
E are the elastic fourth-order tensor components evaluated at constant electric field, eikh are the piezoelectric 

stress constant third-order tensor components, εik
S are the dielectric constant second-order tensor components evaluated at 

constant strain, with spatial components i, j, k, h = 1, . . . 3. Finally, momentum density is given by the following constitutive 
relationship:

pi(x) = ρ(x) κ i j(x) ṡ j(x), (5)

where ρ is the mass density and κ i j are the metric tensor components.

3. Cell Method discretization

Unlike FEM formulations, where DoFs are related only to nodes and field equations are expressed in variational form, 
with the CM problem variables are defined on geometric entities, i.e. points, edges, faces, and volumes, and field equations 
are given directly in algebraic form suitable for computation [11]. A combinatorial model of the field problem is thus 
constructed. The computational domain � is first meshed into polyhedrons and the resulting mesh G� is termed domain 
primal grid, made of N vertexes, E edges, F faces, and V volumes (i.e. the number of polyhedral cells). The boundary primal 
grid G� is the restriction of G� to �, i.e. vertexes of G� are traces of bulk primal edges (of mesh G�), edges of G� are traces 
of bulk primal faces, and faces of G� are traces of bulk primal volumes [34]. Dual grids G̃� (made of Ñ vertexes, Ẽ edges, 
F̃ faces, and Ṽ volumes), and G̃� (made of Ñ� vertexes, Ẽ� edges, F̃� faces) are then defined on � and �, respectively, by 
taking the barycentric subdivisions of primal grids G� and G� . In such a way, a one-to-one correspondence exists between 
primal and dual grids so that Ñ = V , Ẽ = F , F̃ = E, Ṽ = N . The augmented dual grid is then defined as the union of volume 
and boundary grids, as G̃a = G̃� ∪ G̃� [34].

Fig. 1 shows an example of dual complexes for a mesh made up by a pair of polyhedrons v1 = {1,2,3,4,10,9,8,7} and 
v2 = {1,4,5,6,10,7}. In that case, N = Ṽ = 10, E = F̃ = 17, F = Ẽ = 9, and V = Ñ = 2. Note that, for instance, the dual 
node 1 in red color (i.e. the centroid of v1) is in one-to-one correspondence with v1; the primal node 1 in black color is 
in one-to-one correspondence with the dual volume (shaded in orange) which is complemented by dual faces pertaining to 
G̃� (shaded in blue).

Geometric entities of the primal grid are oriented by inner orientation, i.e. any vertex is oriented as a sink (inward 
direction of any edge connected to such vertex), any edge is oriented by taking its transversing direction from one end to 
the other, any face is oriented clockwise or counterclockwise, and any cell is an oriented volume by assuming all boundary 
faces oriented counterclockwise with respect to the exterior normal. The outward orientation of dual grid entities is inherited 
by the one-to-one correspondence with primal grid entities.
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3.1. Discrete field variables (DoFs)

The orientation of geometric entities is useful to define DoFs properly, since these are defined as integrals of scalar or 
vector fields on lines, faces, volumes endowed with a specific orientation. These orientations can be regarded as local refer-
ence frames related to elements. For the mechanical problem, the following arrays of DoFs are defined for any i-th spatial 
component (i = 1, . . . , 3) and any time t: displacement on primal vertexes n, si(t) = (si,n(t)); line integrals of the displace-
ment gradient Rij(t) = si/ j(t) along primal edges e, ri(t) = (ri,e(t)), where ri,e(t) =

∫
e Ri j(x, t) t j(x) dγx and t j is the unit 

tangent vector along e; fluxes of the stress tensor through dual faces f̃ , ̃ti(t) = (̃ti
f̃
(t)), where ̃ti

f̃
(t) = ∫

f̃ T i j(x, t) n j(x) dσx

and n j is the unit normal vector to face f̃ .
For the electrostatic problem, arrays of DoFs are as usual: electric potentials on primal nodes, �(t) = (φn(t)); voltages 

along primal edges, u(t) = (ue(t)), where ue(t) =
∫

e E j(x, t) t j(x) dγx is the line integral of the electric field E j ; fluxes of the 
electric displacement D j through dual faces ̃d(t) = (̃d f̃ (t)), where ̃d f̃ (t) =

∫
f̃ D j(x, t) n j(x) dσx .

3.2. Topological relations

An incidence number is +1 if a pair of connected geometric entities carries the same orientation, −1 otherwise, and 0 if 
they are disconnected. Connectivity between grid geometric entities is established by the following incidence matrices, with 
{0,±1} coefficients: G� (edges to nodes on G�), D̃� = −GT

� (volumes to faces on G̃�), and D̃�� (volumes on G̃� to faces 
on G̃�). On the primal grid, for the mechanical problem, line integrals of the displacement gradient are related to nodal 
displacements, whereas, for the electric problem, potentials are related to voltages by gradient theorem. Time dependence 
of DoFs arrays is omitted hereafter for the sake of brevity.

Let e be a primal edge oriented from vertex m to n. Mechanical and electric compatibility conditions (1) yield:

ri,e(t) =
∫
e

Ri j(x, t) t j(x)dγx =
∫
e

si/ j(x, t) t j(x)dγx = si,n(t) − si,m(t),

ue(t) =
∫
e

E j(x, t) t j(x)dγx =
∫
e

−φ/ j(x, t) t j(x)dγx = φm(t) − φn(t),
(6)

which, written in matrix form for all edges of G� , become:

ri = G� si,

u = −G� �.
(7)

On the augmented dual grid, mechanical and electric equilibrium are imposed by applying Gauss’s theorem to any dual 
volume. By integrating (1) and recasting expression for all dual volumes of G̃a in matrix form, the following system of 
second-order ordinary differential equations (ODEs) is obtained:

D̃� t̃i + D̃�� t̃i
� + f̃i = ˙̃pi

,

D̃� d̃ + D̃�� d̃� = 0,
(8)

where ̃ti
� and d̃� are, respectively, the array of stress tensor and electric displacement fluxes on the boundary dual faces, 

p̃i = (̃pi
ṽ(t)) are momentum integrals, and ̃ fi = ( f̃ i

ṽ(t)) are external body forces, both computed on dual volumes. Array 
coefficients ̃pi

ṽ(t) = ∫
ṽ pi(x, t) dx, f̃ i

ṽ(t) = ∫
ṽ ρ gi(x, t) dx are integrals of momentum density and acceleration density gi(x, t), 

respectively, for any dual volume ṽ .

3.3. Discrete constitutive relations

Constitutive equations (4) are not suited for building a CM formulation since the stress tensor is not naturally related to 
a geometric entity and thus does not depend directly on DoFs. By noting that strain tensor is Skh(x) = 1/2(Rkh(x) + Rhk(x))

and that elasticity and piezoelectric tensors are symmetric, i.e. C ijkh
E (x) = C ijhk

E (x) and eikh(x) = eihk(x), constitutive equations 
for piecewise homogeneous materials can be reformulated as:

T ij(x) = C ijkh
E (x) Rkh(x) − eki j(x) Ek(x),

Di(x) = eikh(x) Rkh(x) + εik
S (x) Ek(x).

(9)

These relationships are discretized by using the so-called energetic approach in [19], where piecewise uniform vector basis 
functions for polyhedral meshes are provided. In such a way, discrete constitutive relationships are built from (9) in order to 
map DoFs on the augmented dual grid to the primal grid. These vector functions fulfill the following fundamental properties:

federicomoro
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equilibrium

federicomoro
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al
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Fig. 2. Uniformity region and geometric entities for edge vector basis we (for instance ve , shaded in yellow, is the uniformity region related to edge e and 
is made up of (1234) and (1325) tetrahedrons; ̃ fe , shaded in purple, is the dual face related to e).

• They form a vector basis (linear independence);
• An element-wise uniform vector field is exactly represented (uniformity);
• Dual geometric entities are mapped to primal ones (consistency);
• They enforce the continuity of field tangent component between polyhedral cells, whereas normal component can be 

discontinuous (continuity).

In (9) the stress tensor and the electric displacement fields are related (by integration) to DoFs defined on dual faces, 
whereas the displacement gradient tensor and the electric field are related to DoFs defined on primal edges. Therefore, an 
edge vector basis functions is required to map dual fluxes to primal line integrals by exploiting consistency and the assumption 
of a locally uniform field when mesh is sufficiently refined.

In the construction outlined in [19] the primal (polyhedral) cell v is first subdivided into tetrahedrons, by taking the 
centroid of v and the centroids of its faces. For any edge e′ , the so-called uniformity region ve′ within v is the union of 
tetrahedron pair attached to e′ . In ve′ the basis function we is uniform. The union of subregions forms thus a partition of 
v , i.e. v = ⋃

e′ ve′ and ve′ ⊆ v . The vector basis function related to e, restricted to any ve′ , is defined as:

we(x) = f̃e

f̃e · e
δee′ +

(
I − f̃e′ ⊗ e′

f̃e′ · e′

)
f̃e

|v| , x ∈ ve′ (10)

where, for instance, e and ̃fe are edge and face vectors related to e and f̃e , δee′ is the Kronecker delta (δee′ = 1 if e = e′ , 
0 otherwise), I is the identity tensor, |v| is the cell volume, and ⊗ is the dyadic product between vectors a and b, i.e. 
(a ⊗ b) c = a (b · c) for any vector c. The edge function support is the union of all polyhedrons attached to edge e. Geometric 
entities involved in (10) are depicted in Fig. 2. The edge e is oriented from 1 to 2; the uniformity region ve (shaded in 
yellow) is made up by tetrahedrons (1234) and (1325); dual face f̃e , related to e, is shaded in purple.

Displacement gradient (for any k-th component) and electric field can be approximated, for any x ∈ � and time t , by the 
following expansions, under the assumption of locally uniform vector field with a very fine polyhedral mesh:

Rkh(x, t) =
E∑

e=1

rk,e(t) wh,e(x),

Ek(x, t) =
E∑

e=1

ue(t) wk,e(x),

(11)

where, for instance, wh,e is the h-th Cartesian component of we . Noting that consistency holds, i.e. 
∫
�

we(x) dx = f̃e for any 
edge e, and by assuming locally uniform fields, (9) can be expressed directly in terms of DoFs, as:

t̃ i
f̃
(t) =

∫
f̃

T i j(x, t)n j(x)dσx

=
E∑

e=1

∫
C ijkh

E (x) w j,e(x) Rkh(x, t) − eki j(x) w j,e(x) Ek(x, t)dx,
�
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d̃ f̃ (t) =
∫
f̃

Di(x, t)ni(x)dσx (12)

=
E∑

e=1

∫
�

eikh(x) wi,e(x) Rkh(x, t) + εik
S (x) wi,e(x) Ek(x, t)dx,

which, by using (11), become:

t̃ i
f̃
(t) =

E∑
e=1

E∑
e′=1

∫
�

C ijkh
E (x) w j,e(x) wh,e′(x) rk,e′(t)

− eki j(x) w j,e(x) wk,e′(x) ue′(t)dx,

d̃ f̃ (t) =
E∑

e=1

E∑
e′=1

∫
�

eikh(x) wi,e(x) wh,e′(x) rk,e′(t)

+ εik
S (x) wi,e(x) wk,e′(x) ue′(t)dx.

(13)

These constitutive relationships are assumed to hold, with a numerical approximation, even for non-locally uniform fields 
encountered in general problems. In matrix form discretized piezoelectric constitutive relationships (13) are:

t̃i = Cik rk − EiT
u,

d̃ = Ek rk + ε u,
(14)

where Cik = (C ik
ee′), Ek = (Ek

ee′), ε = (εee′) are respectively the elastic, piezoelectric, and dielectric constitutive matrices with 
coefficients:

C ik
ee′ =

∫
�

C ijkh
E (x) w j,e(x) wh,e′(x)dx,

Ek
ee′ =

∫
�

eikh(x) wi,e(x) wh,e′(x)dx,

εee′ =
∫
�

εik
S (x) wi,e(x) wk,e′(x)dx,

(15)

with e, e′ = 1, . . . E and i, j, h, k = 1, . . . 3. These are complemented by momentum equation:

p̃i = Mρ ṡi, (16)

where Mρ = (mn) is the (diagonal) mass matrix. Its coefficients are obtained by integrating (5) over any dual cell ̃vn (in one-
to-one correspondence to a primal node n) and noting that coefficients of array ṡi are given by evaluating the displacement 
at n. Since n is also the center of mass of ṽn by definition, mn = ∫

ṽn
ρ(x) dx. With the assumption of a (locally) uniform 

mass density ρn , there are approximated as mn ≈ ρn |̃vn|, where | · | indicates the cell volume. This approach leads to a con-
struction of a lumped mass matrix, where mass is concentrated at the mesh nodes. A possible variation of the mass lumping 
approach, not here considered, is proposed in [35], with the so-called Mass Redistributed FEM (MR-FEM), even though applied 
to 2-D models discretized by linear triangular (T3) elements.

3.4. Static coupled problem

For the piezo-elastic case, by posing ˙̃pi = 0 and by using (7) together with (14), matrix system (8) can be expressed in 
terms of displacements and electric potentials, as:

GT
� Ci jG� si − GT

� EiT
G� � = f̃i + D̃�� t̃i

�,

GT
� EiG� si − GT

� ε G� � = D̃�� d̃�.
(17)

The final electro-mechanical coupled system is derived from (17) by rearranging displacement components and electric 
potentials into a unique unknown array:(

Ki j Ki�

Ki�T
K��

)(
si
�

)
=

(
f̃i + D̃�� t̃i

�

D̃�� d̃�

)
, (18)
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where Ki j = GT
� Ci jG� , Ki� = −GT

� Ei T
G� , and K�� = −GT

� ε G� are respectively the elastic, piezoelectric, dielectric stiffness 

matrices. By posing x = (si,�)T and ̃f = (f̃i + D̃�� t̃i
�, D̃�� d̃�)

T
matrix system (18) becomes:

K x = f̃, (19)

which is solved after imposing nodal displacements (Dirichlet BCs) and tractions (Neumann BCs) on the boundary, and 
external body forces.

3.5. Dynamic coupled problem

Static Cell Method formulation for piezo-elasticity can be extended to dynamic problems by adding to equilibrium 
equations inertia forces and damping. As a reference problem, the case of a typical piezo-MEMS for energy harvesting 
is considered (e.g. Fig. 7 in Section 6.2). The mechanical base excitation and the piezoelectric material polarization are both 
directed along the 3-axis. Electrical charge is collected at circuit terminals, which are metallic layers placed at the bottom 
and upper faces of the piezo-layer (depicted in cyan in Fig. 7).

Frequency domain Let gi(x) = 0 for any i = 1, 2 and g3(x, t) = g(x) sin(ω t) be the external acceleration density components, 
with g(x) amplitude and ω angular frequency. Equation of motion (8) can be expressed in the frequency domain by posing 
f̃i = f̃i

0 eiωt and si = si,0 eiωt , where i is the imaginary unit. The hysteretic damping model is suitable for describing losses 
within elastic materials [36]. According to the hysteretic damping model, if the equation of motion is expressed in the 
frequency domain, the damping matrix is defined from the stiffness matrix as Di j = iη Ki j , i, j = 1, 2, 3, where η is the 
so-called isotropic loss factor (to be determined experimentally). External circuit conditions have to be introduced as well 
for modeling piezo-energy harvesters. External voltage source �ext , connected to cantilever terminals, is related to terminal 
electrical charge σ by Ohm’s law, i.e. �ext = Rext σ̇ with Rext load resistance. Electrical charge affects the electrostatic 
problem according to (18).

Dynamic behavior of the coupled piezoelectric problem in discrete form is governed by the following equation:(
−ω2 M + iω C + D + K′)x0 = f̃0, (20)

where x0 = (
si,0,�0, σ

)T
, ̃f0 =

(
f̃i
0 + D̃�� t̃i

�0, D̃�� d̃�0,0
)T

are complex vectors. Matrices in (20) are defined as:

M =
(
I3 ⊗ Mρ O

O O

)
, C =

(
O O

O Rext

)
,

D =
(

Di j
O

O O

)
, K′ =

⎛⎜⎝ Ki j Ki�
O

Ki�T
K�� K�σ

O K�σ T
O

⎞⎟⎠ ,

where I3 is a 3 × 3 identity matrix, O are null matrices, and K�σ = (0, . . . ,−1, . . . ,0)T, with −1 corresponding to position 
of �ext within potential array �0.

Time domain Hysteretic damping is not defined for transient analysis models, therefore Rayleigh’s model is used as an 
equivalent proportional damping model [36]. According to Rayleigh’s theory damping matrices are defined as a linear combi-
nation of mass and stiffness matrices, that is Di j = α Mρ +β Ki j , where α and β are coefficients to be defined experimentally.

The dynamic behavior of piezoelectric body is then governed by the following second-order ODE system:

M ẍ + (C + D) ẋ + K x = f̃, (21)

which is solved by the Newmark-β integration scheme, described as follows. The responses after time �t , i.e. xn+1, ̇xn+1, ̈xn+1,
are calculated from those at the previous n-th time step, i.e. xn, ̇xn, ̈xn , and from the rhs ̃fn , as

A ẍn+1 = bn+1,

ẋn+1 = ẋn + (1 − γ )�t ẍn + γ �t ẍn+1,

xn+1 = xn + �t ẋn + �t2
[(

1

2
− β

)
ẍn + β ẍn+1

]
,

(22)

where

A = M + γ �t D + ξ�t2 K,

bn+1 = fn+1 − K xn − (D + �t K) ẋn −
[
(1 − γ )�t D + �t2

(
1 − ξ

)
K
]

ẍn.
(23)
2
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Fig. 3. Face-based smoothing domain: two polyhedral cells are attached to primal face f = (a b c d); the smoothing domain related to f (region shaded in 
color, with octahedral shape) is the union of pyramids with base f and apexes m̃, ̃n.

The iterative time-stepping integration algorithm is proven to be unconditionally stable and convergent for a proper choice 
of parameters γ and ξ such that 4β ≥ 2γ ≥ 1 [37].

4. Polyhedral face-smoothed functions

The idea of shape function smoothing has been introduced first in the context of mesh-free methods by Chen [38]
and then extended by Liu et al. [39] in order to overcome some peculiar issues of low-order finite element elements 
when applied to elasticity problems. In particular the standard FEM formulation with first-order Lagrange elements for 
hexahedral or tetrahedral meshes leads to shear and/or volume locking. The assumed continuous displacement field provides 
a discontinuous strain field across element interfaces and, in turn, a poor numerical accuracy. This holds true in particular 
for low-order hexahedral elements, which are suitable for discretization of thin layered and Manhattan structures. Likewise 
hexahedral finite elements also edge elements for polyhedral cells, presented in Section 3.3, suffer from locking because the 
normal component of displacement gradient jumps across elements. To overcome this issue, smoothing is here extended to 
piecewise uniform edge vector functions.

In the face-based smoothed finite element method (FS-FEM), presented in [40] for tetrahedral elements, the domain 
discretization is the same as that of standard FEM, but the integration using the strain-smoothing technique is performed 
over smoothing domains constructed over element faces. Up to now FS-FEM has not been developed for polyhedral meshes, 
even though the construction of smoothing domain is much simpler (i.e. only a pair of polyhedrons involved for polygonal 
face). The face smoothing approach is here extended to polyhedral cells in the CM framework. Moreover, multi-material 
models can be treated as well by the proposed smoothing strategy for polyhedral meshes, following a strategy similar to 
that one presented in [31] for NS-FEM on triangular meshes and in [41] for ES-FEM on triangular/tetrahedral meshes.

In order to obtain a local integral approximation of F the computational domain � is partitioned into subdomains �μ

with homogeneous material μ. Each subdomain is divided into a number of non-overlapping smoothing cells v̂ f equal to 
the number of primal faces F . For any face f , v̂ f is the union of pyramids with base f and apexes the centroids of primal 
cells sharing f . The resulting mesh, obtained from the primal grid G� , is the smoothing grid Ĝ� = ⋃

f v̂ f , with ̂v f ∩ v̂ f ′ = ∅
for any f = f ′ . By this construction the original domain � is thus entirely paved by smoothing cells.

Fig. 3 shows an example of v̂ f for an interior face; smoothing cells related to boundary faces are made up by one 
pyramid only.

The smoothed field is defined on the top of the smoothing grid, following the definitions of smoothed strain provided for 
FS-FEM, see e.g. [42] equation (30) or [40] equation (7). Using notations above, it can be written:

Definition 1 (Smoothed field). Let F be a generic scalar, vector, or tensor field defined on domain �. If x ∈ Ĝ� then there 
exists f such that x ∈ v f , and F can be approximated locally as a uniform field

F̂(x) = 1

|̂v f |
∫
v̂ f

F(y)dy.

The resulting field ̂F is defined directly on the smoothing grid and is a piecewise uniform approximation of the original 
field F.

Definition 2 (Smoothed edge functions). For any face f and edge e, the smoothed vector functions ŵe are the integral approx-

imations of piecewise uniform vector bases we , i.e. ŵe(x) = 1

|̂v |
∫

v̂ f
we(y) dy, x ∈ v̂ f , such that
f
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Fig. 4. Smoothed edge function support ω̂e obtained by smoothing basis vector we on a polygonal mesh (ω̂e , in cyan, is the union of smoothing cells ̂v f

overlapping supp(we), in orange; ω̂e is included in the uniformity region ωe , in yellow).

1.
∫

v̂ f
ŵe(x) dx = ∫

v̂ f
we(x) dx;

2. ŵe is uniform within v̂ f .

Let supp(we) be the support of we , i.e. the union of polyhedral cells attached to e. The support of ŵe is then provided 
by the union of all smoothing cells intersecting supp(we), i.e. ω̂e = supp(ŵe) = ⋃

f v̂ f such that v̂ f ∩ supp(we) = ∅. Finally, 
let ωe be the minimal union of polyhedral cells containing ω̂e .

For the sake of simplicity, Fig. 4 provides an example of this construction for a two-dimensional polygonal mesh. For any 
edge e (indicated by an arrow), the corresponding smoothed function support is built according to these steps:

1. supp(we) is the union of pair of polygons (in orange) attached to e;
2. Polygon vertexes are joined to their centroids in order to build a secondary mesh (in dashed black line);
3. For any face f (in red line), the corresponding smoothing domain v̂ f is the union of triangles of secondary mesh 

attached to f (in dashed red line);
4. ω̂e is the union of smoothing domains covering supp(we) (in cyan);
5. ωe is the union of polygons covering ω̂e (in yellow).

The extension of this construction to a 3-D mesh made up of polyhedrons is then trivial. Note that, in that case, supp(we)

can be the union of more than two polyhedrons, unlike a 2-D mesh, and v f is the union of a pair of pyramids with 
polygonal base f as depicted in Fig. 3.

Property 1 (Uniformity). Any uniform vector field a in ωe can be expressed within ω̂e ⊂ ωe as a function of its edge DoFs, 
i.e. ae′ = ∫

e′ a(x) · t(x) dγx , as:

a(x) =
∑

e′∈E(ωe)

ŵe′(x)ae′ , x ∈ ω̂e (24)

where E(ωe) is the set of all primal edges within G� pertaining to ωe .

Proof. Any uniform field can be exactly represented as a(x) = ∑
e′ we′(x) ae′ , for any x ∈ ωe , by using piecewise uniform 

edge basis functions (10). If a is uniform within ωe , then is uniform also within its subset ω̂e and a(x) = â(x) for any 
x ∈ ω̂e . By using Definition 1, the corresponding smoothed field becomes:

â(x) = 1

|̂v f |
∫
v̂ f

a(x)dx =
∑

e′∈E(ωe)

ŵe′(x)ae′ . � (25)

Property 2 (Consistency). For any edge e, let ̃ fe be the area vector related to dual face f̃e and �μ ⊆ � a subdomain with 
homogeneous material μ, where bases we are defined. Then, the following geometric property holds:∫

�

ŵe(x)dx = f̃e. (26)
μ
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Proof. By splitting the computational domain into smoothing regions v̂ f and exploiting the consistency property of edge 
vector bases we , Definition 2 provides:∫

�μ

ŵe(x)dx =
∑

f ∈F(�μ)

∫
v̂ f

ŵe(x)dx =
∑

f ∈F(�μ)

∫
v̂ f

we(x)dx =
∫

�μ

we(x)dx = f̃e, (27)

where F(�μ) is the set of all primal faces within G� pertaining to �μ . �
Exploiting previous properties the following result show that, for uniform fields, an exact reconstruction of fluxes (on 

the dual complex) can be obtained from line integrals (on the primal complex). This property makes it possible to build 
approximate constitutive relationships for CM by using smoothed edge functions instead of standard piecewise uniform edge 
vector bases.

The construction of discrete constitutive equations is similar to (13) and is here reported for a fourth-order tensor, 
e.g. elasticity tensor C ijkh

E in (4). Similar derivations hold for discretizing piezoelectric and dielectric tensors. These matrix 
relationships are built and assembled separately on each subdomain �μ with homogeneous material properties, in order to 
fulfill Property 2. This extends smoothing to multi-material problems discretized by poly-meshes.

Property 3 (Smoothed constitutive relationship). Let akh, bij be locally uniform tensor fields in ωe and τ i jkh a tensor describ-
ing homogeneous material properties in �μ ⊆ �, with bij = τ i jkh akh local constitutive relationship and i, j, k, h = 1, 2, 3
indexes of spatial components. For any pair (i, k), the corresponding discrete constitutive relationship is a matrix τ ik with 
coefficients:

τ ik
ee′ =

∫
�μ

τ i jkh(x) ŵ j,e(x) ŵh,e′(x)dx. (28)

Then, fluxes of bij through dual faces are exactly reconstructed from line integrals of akh along primal edges, as

b̃i
e =

∑
e′∈E(ωe)

τ ik
ee′ ak,e′ . (29)

Proof. Let ak,e′ = ∫
e′ akh(x) th(x) dγx be the line integral of akh related to edge e′ . Let ̃bi

e = ∫
f̃e

bi j(x) n j(x) dσx the flux of bij

through the dual face f̃e related to edge e. By noting that ω̂e is the support of ŵe , the following identities hold:∑
e′∈E(�μ)

τ ik
ee′ ak,e′ =

∫
�μ

τ i jkh(x) ŵ j,e(x) ŵh,e′(x)ak,e′ dx

=
∑

e′∈E(ωe)

∫
�μ

τ i jkh(x) ŵ j,e(x) ŵh,e′(x)ak,e′ dx

=
∑

e′∈E(ωe)

∫
ω̂e

τ i jkh(x) ŵ j,e(x) ŵh,e′(x)ak,e′ dx,

which, by noting that ω̂e ⊂ ωe and akh(x) = ∑
e′∈E(ωe)

ak,e′ ŵh,e′(x) in ωe , becomes:∫
ω̂e

τ i jkh(x) ŵ j,e(x)akh(x)dx =
∫
ω̂e

ŵ j,e(x)bij(x)dx.

Due to uniformity of bij in ω̂e and to consistency property of ŵe in �μ:

∫
ω̂e

ŵ j,e(x)bij(x)dx =
⎛⎜⎝∫

ω̂e

ŵ j,e(x)dx

⎞⎟⎠ bij(x) =
⎛⎜⎝∫

�μ

ŵ j,e(x)dx

⎞⎟⎠bij(x)

= f̃ j,e bi j(x) =
∫
f̃e

bi j(x)n j(x)dσx = b̃i
e. �
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In such a way, piezolectric constitutive relationships (9) can be discretized following the same strategy used to obtain 
(13), that is

t̃ i
f̃
(t) =

E∑
e=1

E∑
e′=1

∫
�

C ijkh
E (x) ŵ j,e(x) ŵh,e′(x) rk,e′(t) − eki j(x) ŵ j,e(x) ŵk,e′(x) ue′(t) dx,

d̃ f̃ (t) =
E∑

e=1

E∑
e′=1

∫
�

eikh(x) ŵi,e(x) ŵh,e′(x) rk,e′(t) + εik
S (x) ŵi,e(x) ŵk,e′(x) ue′(t) dx.

(30)

In matrix form these constitutive relationships become:

t̃i = Ĉik rk − Êi T
u,

d̃ = Êk rk + ε̂ u,
(31)

where ̂Cik = (̂C ik
ee′), ̂Ek = (̂Ek

ee′), ̂ε = (̂εee′ ) are respectively the elastic, piezoelectric, and dielectric smoothed constitutive matri-
ces with coefficients:

Ĉ ik
ee′ =

∫
�

C ijkh
E (x) ŵ j,e(x) ŵh,e′(x)dx,

Êk
ee′ =

∫
�

eikh(x) ŵi,e(x) ŵh,e′(x)dx,

ε̂ee′ =
∫
�

εik
S (x) ŵi,e(x) ŵk,e′(x)dx,

(32)

with e, e′ = 1, . . . E and i, j, h, k = 1, . . . 3.

5. Numerical implementation

5.1. Polyhedral mesh generation

Since commercial software for mesh generation provides mostly tetrahedral or hexahedral meshes, a polyhedral mesh 
generator based on the concept of mesh carving has been developed and coded in Matlab® software environment. The 
polyhedral mesh generator is suitable for discretizing thin multi-layered structures of any shape, which are typical of piezo-
electric MEMS devices.

Mesh generation steps are schematically depicted in Fig. 5. A 2-D structured mesh of quadrilateral cells is first built 
(Fig. 5a). Any row of matrix nod2d is a pair of vertex (x, y) Cartesian coordinates. 2-D polygonal mesh is represented by a 
cell-array data structure poly, in which any entry is a list of four vertex indexes (i.e. quadrilateral). After mesh clipping a 
polygonal mesh with curved boundaries is generated (Fig. 5b). Polygonal cells can be deleted by deletepolygons algorithm. 
Any entry of poly represents a generic polygon with an arbitrary number of vertexes. The 3-D polyhedral mesh is built from 
2-D mesh (Fig. 5c) by sweeping. 3-D mesh can be carved by using deletepolyhedra algorithm for deleting a list of polyhedral 
cells (Fig. 5d). Clipping and sweeping algorithms are detailed below.

The quadrilateral mesh is clipped by Algorithm 1 (Appendix A), which is useful for finding intersections with circles 
(curved boundary edges). Any polygonal cell polygon is clipped by the function polyintersect_circle, which finds the inter-
section vert between polygon and a circle of radius R and center (xC , yC ). The intersection is analytically computed in order 
to avoid round-off errors, which can lead to robustness issues in the algorithm. Array vert is made by a pair of vertexes 
vert(1), vert(2), which may overlap in case. Vertexes are considered to be overlapping for a given tolerance, which is com-
puted from the convex hull of the polygonal mesh. By clipping polygon with the edge passing through intersection vertexes, 
a pair of counter-clockwise oriented curves curve[1], curve[2] is generated. New polygons created by mesh clipping (which 
can be non-convex) are added to cell list poly. The final polygonal mesh is made up of N2d vertexes, E2d edges, and F2d
polygons.

Input data for the sweeping algorithm are incidence matrices of polygonal mesh, the coordinate matrix, and the sweeping 
direction. Primal edge-to-vertex incidence matrix G2d (of size E2d × N2d) has coefficient G2d(e, n) = +1 if edge e enters 
vertex n, −1 otherwise. Face-to-edge incidence matrix C2d (of size F2d × E2d) has coefficient C2d( f , e) = +1 if polygon 
boundary f is oriented according to edge e, −1 otherwise. For horizontal edges and faces incidence numbers do not change 
for any value of vecz, whereas for vertical ones these can be easily reconstructed from 2-D matrices. The sweeping direction 
(z-axis) is orthogonal to the base (x, y)-plane with 2-D mesh. Sweeping coordinates (one coordinate for each 3-D mesh 
layer) are in the array vecz of length Nz . 3-D mesh elements have the following sizes: N3d = N2d Nz vertexes, E3d =
E2d Nz + N2d (Nz − 1) edges, F3d = F2d Nz + E2d (Nz − 1) faces, V 3d = F2d (Nz − 1) polyhedral cells.



JID:YJCPH AID:8511 /FLA [m3G; v1.252; Prn:5/03/2019; 13:09] P.13 (1-26)

F. Moro et al. / Journal of Computational Physics ••• (••••) •••–••• 13

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

47

48

49

50

51

52

53

54

55

56

57

58

59

60

61

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

47

48

49

50

51

52

53

54

55

56

57

58

59

60

61
Fig. 5. Polyhedral mesh generation by clipping and sweeping a 2-D polygonal mesh.

Polyhedral mesh is generated from 2-D incidence matrices and the sweeping array as follows. 3-D incidence matrices 
G3d (E3d × N3d), C3d (F2d × E2d), D3d (V 3d × F3d) and coordinate matrix nod3d, made of (x, y, z)-triplets for any vertex, 
are first built from corresponding 2-D matrices. Cell-array data structures edgs, facs, cells (representing edges, polygonal 
faces, and polyhedral cells) are then reconstructed from element connectivities by Matlab® commands for sparse matrices. 
Edges, faces, and cells are oriented according to inner orientation assigned to primal grid. This procedure is described by 
Algorithm 2 (Appendix A), where Is indicates the identity matrix of size s and find(v) command gives indexes of non-zero 
entries of an array v.

5.2. Constitutive matrix assembly

Assembly procedures for standard and smoothed discrete constitutive relationships are presented. The assembly process 
for linear elastic materials is similar to piezoelectric ones. For any domain �μ , with homogeneous material properties, 
assembly procedure is repeated. Input data are coordinate matrix nod3d, data structures edgs, facs, cells and the material 
property matrix. Constitutive relationships (4) are rewritten in Voigt’s notation for representing second-order tensors as 
vectors and third and fourth-order tensors as matrices, with the following maps: 11 → 1, 22 → 2, 33 → 3, 13 → 4, 23 →
5, 12 → 6. In this way the dielectric matrix ε S is diagonal for typical piezoelectric materials and the piezoelectric coupling 
matrix reduces to:

e =
⎛⎝ 0 0 0 0 0 e15 0

0 0 0 0 e24 0 0
e31 e32 e33 0 0 0 0

⎞⎠ , (33)

while the symmetric elastic stiffness matrix results:

cE =

⎛⎜⎜⎜⎜⎜⎝
C11 C12 C13 0 0 0
C12 C22 C23 0 0 0
C13 C23 C33 0 0 0
0 0 0 C44 0 0
0 0 0 0 C55 0
0 0 0 0 0 C66

⎞⎟⎟⎟⎟⎟⎠ . (34)

These matrices are stored in an array format for tensors in the material property matrix, equivalent to (4):

m =
(

cE −eT

e εS

)
. (35)

The assembly procedure based on standard CM discretization is schematically described in Algorithm 3 (Appendix A). 
For any polygon/polyhedron, its area/volume vol(·) and centroid centre(·) are computed by algorithms proposed in [43], 
with exploit divergence theorem to reduce complexity. Any polyhedron face is represented as a cell-array of edge indexes 
indicated with face. Any polyhedron is represented as a cell-array of face indexes indicated with cell. edges is the cell-array 
of polyhedron edges, where any entry edge is an oriented pair of vertexes indexes. The array of global edge indexes (as 
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Fig. 6. Polyhedral mesh used for the patch test.

stored in the cell-array edgs) is indicated with iedgs. In order to calculate basis functions, for any edge ts corresponding 
edge vector e and dual face area vector ̃fe are calculated. For any edge, cell-array edgtofac provides faces attached to that 
edge and supp the volume of the corresponding uniformity region (Fig. 2). Edge functions we are computed by function 
basis(·), which implements definition (10), and are stored as E v × 3 size matrices, where E v is the local number of edges 
(i.e. uniformity regions). Mapping function map(·) extracts tensor coefficients from m, restoring original format of system 
(4). Integral for coefficients in (15) are finally computed without need of evaluating Jacobian, unlike FEM, and assembled in 
the global constitutive matrix mat.

Constitutive matrix assembly in the case of smoothed CM is based on faces instead of cells, differing thus from standard 
CM or FEM assembly (Algorithm 4, Appendix A). For any face smoothface adjacent polyhedrons adjcells are identified by 
the cell-array facetocells. For internal cells two polyhedrons are selected, whereas only one polyhedron for boundary cells. 
For any adjacent cell v , the volume svol[v][e] of the intersection between the smoothing cell v̂ f (diamond shaped region 
of Fig. 3) and the uniformity region ve related to edge e is calculated. The smoothed vector function ŵe is a cell-array 
structure, where any entry ŵe[v] is a E v × 3 matrix. According to Definition (2), it is obtained by first averaging edge basis 
function we on v̂ f ∩ v and then on cell v̂ f .

6. Numerical results

6.1. 3-D piezoelectric patch test

In order to validate polyhedral CM with edge vector basis functions (poly-CM) for static problems and that one with 
smoothed edge vector functions (poly-SCM) a linear patch test is proposed. A unit cube made of piezoelectric material 
(PZT-5H in Table B.2, Appendix B) is meshed in non-regular polyhedrons as depicted in Fig. 6. By assuming Dirichlet BCs on 
the whole boundary, displacements u, v, w and potential ϕ are assumed to be in the whole domain:

u(x, y, z) = 0.1 + 0.1 x + 0.2 y + 0.2 z,

v(x, y, z) = 0.05 + 0.015 x + 0.1 y + 0.2 z,

w(x, y, z) = 0.05 + 0.1 x + 0.2 y + 0.2 z,

ϕ(x, y, z) = u(x, y, z) + v(x, y, z) + w(x, y, z),

(36)

where x, y, z are Cartesian coordinates in the reference frame of Fig. 6. The fulfillment of the patch test then requires that 
numerically computed displacements and potentials of any interior node inside the patch follow exactly (up to machine 
precision) the analytical solution (36). The numerical solution either by poly-CM or poly-SCM is provided by the final 
matrix system (19) for piezoelastic problems, with ̃f = 0 under Dirichlet BCs only. By partitioning the solution vector x in 
(19) into interior xi and boundary xb unknowns, (19) becomes:(

Kii Kib

Kbi Kbb

)(
xi
xb

)
=

(
0
0

)
, (37)

so that the residual ‖Kii xi − Kib xb‖ for the numerical solution is zero. The analytical solution x = (xi ,xb)
T, given by (36), 

does not fulfill exactly (37) and discrepancy from numerical solution is evaluated as:

e = ‖Kii xi − Kib xb‖
ib

, (38)
‖K xb‖
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Fig. 7. PPA1001 unimorph cantilever model (polyimide – purple, steel – gray, piezo – cyan, copper – orange, polyester – green; 5-ply structure embedded 
into polyimide).

Fig. 8. Hexahedral mesh of PPA1001 unimorph cantilever.

where ‖ · ‖ is the vector 2-norm. For the test case considered, discretized by the polyhedral mesh shown in Fig. 6, the 
discrepancy is 2.2846 · 10−14, for standard CM, and 2.6716 · 10−14, for poly-SCM.

6.2. Unimorph piezoelectric cantilever

1) Base PPA 1001 harvester model A realistic 3-D model geometry of a unimorph piezoelectric cantilever (PPA 1001 product 
type in [44]), which can be used as an actuator (imposing an external voltage) or energy harvester (converting mechanical 
vibrations into electrical energy) is considered for validating poly-CM. Fig. 7 shows the base model used in simulations. 
The harvester structure is multi-layered and is made up of five different and perfectly bonded materials (starting from the 
bottom layer: polyimide, steel, PZT-5H, copper, and polyester). The substrate layer is simulated as a linearly elastic materials 
with isotropic property. Conversely, the piezoelectric substrate (PZT-5H) is modeled as a transverse isotropic linear elastic 
material with polarization axis directed along the z-axis. The cantilever is clamped at one end (vertical plane x = 0). The 
multi-layered structure with PZT layer (W pz width, Lpz length) is embedded into a polyimide structure (δ thickness, W
width, L length larger than W pz , Lpz). The whole model, which is a Manhattan structure, can be discretized by a structured 
mesh made of regular hexahedra (Fig. 8).

2) Harvester with dynamic vibration absorber Fig. 9 shows a PPA1001 harvester equipped with a dynamic vibration absorber, 
which is a small vibrating system tuned to the natural frequency of the harvester [45]. Dynamic vibration absorber is able 
to modify the frequency response of the harvester and in particular to lower the first natural frequency, which is useful 
in many applications [3]. In the case here investigated the structural layer of the harvester (steel substrate) is properly 
extended and shaped in order to create the dynamic vibration absorber. The steel part exceeding the multi-layer structure 
is described by the following geometric parameters: curvature radius R , center (xc, yc), and length La . Curved boundary 
cannot be discretized by a standard hexahedral mesh (e.g., made with bricks) and a polyhedral mesh is thus required 
instead (Fig. 10). For the proposed cantilever, model discretization can be easily built from a structured mesh by the carving 
technique of Section 5.1 and implemented in the numerical code.

Material properties of piezo-layer and substrates are given respectively in Table B.2 and B.3 (Appendix B). Geometric 
parameters for test model 1 and 2 are given respectively in Table B.4 and B.5 (Appendix B).

Static analysis Numerical codes implementing poly-CM and poly-SCM formulations and solving system (19) for static anal-
yses have been developed. Both harvester models are validated by means of quadratic FEM in static conditions. An external 
potential �ext = 10 V is applied at the upper surface of PZT layer, whereas the lower surface is at the mass potential. There-
fore, a beam deflection due to piezoelectric effect is generated, which is assessed by computing the displacement along 
the beam longitudinal x-axis (coordinates y = 0, z = δpi + δst ). Reference FEM models used for comparisons are refined 
till convergence. FEM model for the base PPA1001 harvester is meshed by a structured mesh (7,068 quadratic hexahedra, 
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Fig. 9. PPA1001 unimorph cantilever with absorber model (the absorber is the beam extending the structural steel layer of the 5-ply structure).

Fig. 10. Polyhedral mesh of PPA1001 unimorph cantilever with absorber.

Fig. 11. FEM structured (a) and CM polyhedral (b) meshes of the absorber.

198,370 DoFs) with subdivisions along axis Nx = 31, N y = 12 (one subdivision for discretizing the polyimide boundaries) 
and Nz = 19 (five subdivisions for steel and PZT layers and three subdivisions for the other layers). For the harvester with 
absorber model, a structured mesh is used only for discretizing the multi-layer structure whereas absorber part is dis-
cretized by non-regular hexahedra, with particular care in preparing CAD geometry (the same number of subdivisions has 
to be used in y direction in order to generate mesh). Fig. 11 shows the structured and polyhedral meshes used by FEM 
and CM numerical codes. For the harvester with absorber model, the mesh consists in 11,120 quadratic hexahedra (312,110 
DoFs) with Nx = 41 (11 subdivisions for absorber), N y = 16, and Nz as above.

Fig. 12 shows that z-axis displacement component w calculated from numerical model implementing standard piecewise 
uniform bases is not accurate due to shear locking. In fact, poly-CM does not attain convergence values (quadratic FEM 
solution) by increasing the number of DoFs. On the contrary, Fig. 13 shows that face-smoothed formulation provides accurate 
results even with a model with coarse mesh refinement (14,768 DoFs). Similar results are obtained for test case 2), with 
polyhedral mesh for poly-CM. In such a case, with almost a half of quadratic FEM DoFs a comparable displacement profile 
is obtained (Fig. 15), whereas poly-CM does not converge (Fig. 14). Computing performances of both poly-CM and poly-SCM 
(implemented under Matlab® software environment and simulated on Intel CORE i7-6920HQ CPU@2.9GHz, 16.38 GB RAM) 
are provided in Table 1. This table shows the overhead involved by the smoothing approach with respect to non-smoothed 
CM, for each given number of DoFs. Numerical routines for matrix assembly are written in a non-optimized scripting code, 
based on the use of cycles and cell array data structures. The solution of the final algebraic system is provided by the 
standard Matlab® backslash operator. The reference FEM model for test case 1 is simulated on the same machine by a 
commercial FEM software, highly-optimized for numerical computing, in ∼ 30 s CPU time (28 s of which are required by 
direct solver for linear system solution).

Frequency analysis The validation of poly-SCM numerical code is then extended to frequency analysis in which matrix 
system (20) is solved by sweeping the angular frequency ω in order to identify the characteristic resonances of the harvester. 
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Fig. 12. Displacement along the z-axis computed by poly-CM for an increasing number of DoFs (test case 1). Quadratic FEM (dashed line) taken as a 
reference.

Fig. 13. Displacement along the z-axis computed by poly-SCM for an increasing number of DoFs (test case 1). Quadratic FEM (dashed line) taken as a 
reference.

Table 1
Computing performances of poly-CM and poly-SCM.

Assembly CPU time (s) Solution CPU time (s)

DoFs poly-CM poly-SCM poly-CM poly-SCM

14,768 14.16 110.65 1.23 2.36
43,584 70.33 346.11 6.32 14.80
153,384 621.03 1,359.68 75.62 270.05

Comparisons are made with numerical results (quadratic FEM) and experimental data (only in the case of base cantilever 
model of PPA 1001 piezo-harvester). The frequency response of the PPA 1001 cantilever is measured by an impulsive testing 
method (equipment, test rig and methodology are described in detail in [46,47]). The piezo-harvester is connected to an 
external electrical circuit and different load resistances are considered (Rext = 12.7 k�, 50 k�, 1 M�). Frequency response 
function (FRF) between generated voltage and base acceleration shows a peak of 17 mV/g at 125 Hz (natural frequency 
f0) for the base PPA1001 harvester. Hysteretic damping ratio (estimated experimentally by half power method [48]) is 
η = 0.015. The initial load resistance is chosen by taking optimal load value, which is determined (according to [49]) as 
Ropt = (ω0 C pz)

−1, with C pz = 0.1 μF measured harvester capacitance and ω0 = 2π f0 resonance angular frequency.
Generated voltage at circuit terminals is computed (by both quadratic FEM and poly-SCM) and measured in the frequency 

range from 120 up to 130 Hz, around the resonance peak. The same mesh used for the static model is used by FEM (with 
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Fig. 14. Displacement along the z-axis computed by poly-CM for an increasing number of DoFs (test case 2). Quadratic FEM (dashed line) taken as a 
reference.

Fig. 15. Displacement along the z-axis computed by poly-SCM for an increasing number of DoFs (test case 2). Quadratic FEM (dashed line) taken as a 
reference.

198,368 DoFs), whereas for poly-SCM a structured mesh with subdivisions Nx = 210, N y = 12, Nz = 22 (172,646 DoFs) is 
used. Figs. 16 and 17 show that FRF modulus and phase are in very good agreement with quadratic FEM results, even 
though a much lower number of DoFs is needed with poly-SCM. Both numerical models are in good agreement with 
measurements.

For the test case 2, optimal load resistance is estimated to be Rext = 22 k�, since resonance frequency is 73 Hz 
(first mode). It can be observed that main effect of the dynamic vibration absorber is a frequency splitting (i.e. two 
resonance peaks are generated: the former at lower frequency than the resonance frequency of PPA 1001 alone, the lat-
ter at higher frequency) as shown in Figs. 18 and 19. Frequency responses computed by both poly-SCM and quadratic 
FEM show to be in very good agreement. It should be noted also in this case that convergence is attained by poly-SCM 
by using a much lower number of DoFs than quadratic FEM (115,008 vs. 181,990) which shows the advantage of us-
ing low-order basis functions for multiphysics coupled simulations. Moreover, mesh in correspondence of the absorber 
part is much less refined (i.e. polymesh does not require a constant number of subdivisions such as structured FEM 
mesh).

Transient analysis Results of transient smoothed CM model, given by the solution of (21) with the Newmark time-stepping 
scheme, are compared to both quadratic FEM results and experimental measurements. In experimental tests piezo-harvester 
is excited by force pulses of different duration. Input base acceleration and output voltage time profiles are measured at 
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Fig. 16. Frequency response (modulus) of piezo-harvester voltage (PPA1001) for different load resistances. Experimental data (circles) and quadratic FEM 
(dashed line) taken as a reference.

Fig. 17. Frequency response (phase) of piezo-harvester voltage (PPA1001) for different load resistances. Experimental data (circles) and quadratic FEM 
(dashed line) taken as a reference.

Fig. 18. Frequency response (modulus) of piezo-harvester voltage (PPA1001 with absorber) at the optimal load resistance (22 k�). Quadratic FEM (dashed 
line) taken as a reference.
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Fig. 19. Frequency response (phase) of piezo-harvester voltage (PPA1001 with absorber) at the optimal load resistance (22 k�). Quadratic FEM (dashed line) 
taken as a reference.

Fig. 20. Interpolated acceleration pulse profiles used for simulating the transient response of piezo-harvester (PPA1001). Experimental data taken as a 
reference.

the same instants by a data logger. Fig. 20 shows acceleration pulses (4 ms duration) measured and fitted for any test 
case (Rext = 12.7 k�, 50 k�, 1 M�). Fitted curves are used as input data for both poly-SCM and FEM models, which 
provide numerical voltage profiles in a 40 ms time interval. Equivalent Rayleigh’s damping model parameters are derived 
from the hysteretic factor as α = 0 s−1 and β = η/ω0 = 19 μs. The same mesh used for the static and frequency models is 
used with FEM. Figs. 21–23 show that numerically computed transients are in good agreement with experimental data. In 
particular, observing first time periods, poly-SCM guarantees a very good accuracy also in the weakly-damped case (Rext = 1
M�).

7. Conclusion

This work demonstrates that low-order Cell Method schemes used for electromagnetic problems can be adapted to 
piezoelectric coupled problems. A reformulation of constitutive relationships in terms of displacement gradient makes it 
possible to split discrete topological and constitutive relationships in the CM framework. Piecewise uniform basis functions 
for polyhedral grids can be thus used allowing for a general treatment of model discretization. By using the face smoothing 
technique developed for FEM (which is limited to tetrahedral and hexahedral meshes) novel functions have been proposed. 
In such a way, locking phenomena arising when low-order basis functions are used for analyzing thin structures can be 
overcome. A novel numerical procedure (exploiting the carving technique of structured meshes) has been proposed in order 
61 
to generate polyhedral grids of thin multilayer structures. This mesh construction requires much less effort in CAD model
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Fig. 21. Voltage transient response of piezo-harvester voltage (PPA1001) with 12.7 k� resistance load. Poly-SCM solution compared with quadratic FEM 
(dashed line) and experimental data (circles).

Fig. 22. Voltage transient response of piezo-harvester voltage (PPA1001) with 50 k� resistance. Poly-SCM solution compared with quadratic FEM (dashed 
line) and experimental data (circles).

Fig. 23. Voltage transient response of piezo-harvester voltage (PPA1001) with 1 M� resistance. Poly-SCM solution compared with quadratic FEM (dashed 
line) and experimental data (circles).
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preparation compared to FEM. Moreover, constitutive matrix assembly is completely Jacobian-free and does not require 
Gaussian integration, with benefits in terms of code complexity and readability. Test cases show that CM numerical codes for 
static, frequency, and transient analyses are accurate and reliable even when 3-D models of real-life piezoelectric cantilevers, 
with complex multilayer structure, are analyzed. The number of DoFs in test cases considered is even smaller than quadratic 
FEM, with similar accuracy of results. These features show the advantage of adopting low-order elements when 3-D coupled 
analyses on complex structures need to be carried out.
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Appendix A

1 Polygonal mesh clipping algorithm.
1: P ← length(poly)

2: for k = 1 : P do
3: polygon ← poly[k]
4: vert ← polygon ∩ circle
5: if length(vert) = 2 then
6: nod2d ← vert
7: edge ← vert(1) ∪ vert(2)

8: {curve[1], curve[2]} ← polygon \ edge
9: poly[P + 1] ← (vert(1), vert(2)) ∪ curve[1]

10: poly[P + 2] ← (vert(2), vert(1)) ∪ curve[2]
11: end if
12: end for

2 Polygonal mesh sweeping algorithm.
1: for k = 1 : Nz do
2: n ← (k − 1)N2d + 1 : kN2d � add vertexes for k-th layer
3: nod3d(n, ·) ← (nod2d, vecz(k))

4: e ← (k − 1) E2d + 1 : k E2d � add horizontal edges
5: G3d(e, n) ← G2d
6: f ← (k − 1) F2d + 1 : k F2d � add horizontal faces
7: C3d( f , e) ← C2d
8: end for
9: emax ← max e, fmax ← max f

10: for k = 1 : Nz − 1 do
11: n ← (k − 1)N2d + 1 : kN2d � add vertical edges
12: G3d(e + emax, n) ← −IN2d

13: G3d(e + emax, n + N2d) ← +IN2d

14: e ← (k − 1)E2d + 1 : kE2d � add vertical faces
15: C3d(e + fmax, e) ← +IE2d

16: C3d(e + fmax, e + E2d) ← −IE2d

17: C3d(e + fmax, n + E2d) ← G2d
18: f ← (k − 1) F2d + 1 : k F2d � add polyhedral cells
19: D3d( f , f ) ← −IF2d

20: D3d( f , f + F2d) ← IF2d

21: D3d( f , e + F2d) ← C2d
22: end for
23: for e = 1 : E3d do
24: edgs[e] ← {find(G3d(e, ·) = −1), find(G3d(e, ·) = 1)}
25: end for
26: for f = 1 : F3d do
27: facs[ f ] ← find(C3d( f , ·))
28: end for
29: for v = 1 : V 3d do
30: cells[v] ← find(D3d(v, ·))
31: end for
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3 Constitutive matrix assembly for standard CM.
1: for v = 1 : V 3d do
2: cell ← cells[v]
3: for f = 1 : length(cell) do
4: face ← cell[ f ]
5: edges ← edges ∪ edgs[face]
6: end for
7: c(0) ← centre(cell)
8: for e = 1 : E v do
9: edge ← edges[e]

10: {face(1), face(2)} ← edgtofac[e]
11: c(1 : 2) ← centre(face(1 : 2))

12: c(3) ← centre(edge)

13: e[e] ← nod3d(edge[2], ·) − nod3d(edge[1], ·)
14: f̃e[e] ← 1

2 (c(0) − c(3)) × (c(1) − c(2))

15: supp[e] ← 1
3 e · f̃e

16: end for
17: for i, j = 1 : 4 do
18: for h, k = 1 : 3 do
19: mloc(h, k) ← m(map(i, j,h,k))

20: end for
21: for e, e′ = 1 : E v do
22: we ← basis(e, f̃e,vol(cell))
23: we′ ← basis(e′ ,̃ fe′ ,vol(cell))
24: we′ ← we′ · mloc � basis change due to material property
25: ie ← 4 (iedgs[e] − 1) + i
26: ie′ ← 4 (iedgs[e′] − 1) + j
27: mat(ie, ie′) ← mat(ie, ie′) + ∑

k supp[k] we(k, ·) · we′ (k, ·)
28: end for
29: end for
30: end for

4 Constitutive matrix assembly for smoothed CM.
1: for f = 1 : F3d do
2: smoothface ← facs[ f ]
3: adjcells ← facetocells[ f ]
4: for v = 1 : length(adjcells) do
5: cell ← adjcells[v]
6: edges, c, e, ̃fe, supp ← . . . � compute variables as Algorithm 3
7: for e = 1 : E v do � compute smoothing region volume
8: if edges ∩ edgs[smoothface] = ∅ then
9: edge ← edges[e]

10: c(5) ← centre(smoothface) � smoothing face centroid
11: v(1 : 2) ← nod3d(edge(1 : 2), ·)
12: svol[v][e] ← 1

6 (c(0) − v(1)) · [e × (c(5) − v(1))]
13: end if
14: end for
15: we[v] ← basis(e, f̃e,vol(cell))
16: ŵe[v] ← (

svol[v][·]/∑
k svol[v][k]) we[v] � smoothing on ̂v f ∩ v

17: end for
18: ŵe[v] ← (∑

k svol[v][k]/∑
v,k svol[v][k]) we[v] � smoothing on ̂v f

19: for i, j = 1 : 4 do
20: for v, v ′ = 1 : length(adjcells) do
21: for e, e′ = 1 : E v , E v ′ do
22: ŵe′ ← ŵe′ · mloc � mloc computed as Algorithm 3
23: ie ← 4 (iedgs[e] − 1) + i
24: ie′ ← 4 (iedgs[e′] − 1) + j
25: mat(ie, ie′) ← mat(ie, ie′) + ∑

v,k svol[v][k] ̂we[v] · ŵe′ [v ′]
26: end for
27: end for
28: end for
29: end for
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Appendix B

Table 2
PZT-5H material properties.

Elastic stiffness matrix cE (Pa) Piezoelectric matrix e (C/m2) Dielectric matrix ε S
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C11 = 1.272 · 1011 e31 = −6.62281 ε11 = 1704.4 · ε0

C12 = 8.021 · 1010 e32 = e31 ε22 = 1704.4 · ε0

C13 = 8.467 · 1010 e33 = 23.2403 ε11 = 1433.6 · ε0

C22 = C11 e15 = 17.0345
C23 = C13

C33 = 1.174 · 1011

C44 = 2.299 · 1010

C55 = C44

C66 = 2.347 · 1010

(ε0 = 8.85 · 10−12 F/m is the vacuum electric permittivity)

Table 3
Substrate material properties.

Material Elastic modulus (GPa) Poisson’s ratio (·) Density (kg/m3)

Polyester 3.65 0.48 1380
Copper 110 0.34 1300
Steel (AISI 304) 193 0.29 8000
Polyimide 4.1 0.34 1410
PZT-5H – – 7800

Table 4
Geometric parameters of PPA-1001 unimorph cantilever (base model).

Parameter Symbol Value (mm)

Substrate width W pz 20.8
Cantilever width W 23.3
Substrate length Lpz 41.0
Cantilever length L 42.83
Polyimide thickness δpi 0.03
Steel thickness δst 0.15
PZT thickness δpz 0.15
Copper thickness δcp 0.03
Polyester thickness δpe 0.05
Cantilever thickness δ 0.41

Table 5
Geometric parameters of unimorph cantilever with integrated absorber.

Parameter Symbol Value (mm)

Cantilever width W 20.8
Cantilever length L 41.0
Polyimide thickness δpi 0.03
Steel thickness δst 0.15
PZT thickness δpz 0.15
Copper thickness δcp 0.03
Polyester thickness δpe 0.05
Cantilever thickness δ 0.41
Absorber length La 27
Absorber curvature radius R La/2
Absorber curvature centre (x coordinate) xc L + La/2
Absorber curvature centre (y coordinate) yc W /2 + 0.3 R
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Highlights

• Novel low-order discretization scheme on polyhedral meshes.
• Cell Method extended to 3-D piezo-elastic problems.
• Cell Method extended to smoothing technique for avoiding shear locking.
• Matrix assembly completely Jacobian-free and Gaussian integration not required.
• Accuracy of Smoothed Cell Method similar to second-order FEM with a much lower number of degrees of freedom.
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