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Abstract: In the last decade, the generation of cardiac disease models based on human-induced
pluripotent stem cells (hiPSCs) has become of common use, providing new opportunities to overcome
the lack of appropriate cardiac models. Although much progress has been made toward the generation
of hiPSC-derived cardiomyocytes (hiPS-CMs), several lines of evidence indicate that two-dimensional
(2D) cell culturing presents significant limitations, including hiPS-CMs immaturity and the absence
of interaction between different cell types and the extracellular matrix. More recently, new advances
in bioengineering and co-culture systems have allowed the generation of three-dimensional (3D)
constructs based on hiPSC-derived cells. Within these systems, biochemical and physical stimuli
influence the maturation of hiPS-CMs, which can show structural and functional properties more
similar to those present in adult cardiomyocytes. In this review, we describe the latest advances in
2D- and 3D-hiPSC technology for cardiac disease mechanisms investigation, drug development, and
therapeutic studies.

Keywords: cardiac disease modeling; human induced pluripotent stem cells; 3D cardiac models;
engineered heart tissue

1. Introduction

Cardiovascular diseases (CVDs) are a major cause of morbidity and the first cause of death
worldwide, and no decline in this trend is expected in the foreseeable future [1]. At present, the
treatments of most cardiac disorders are still palliative and not really curative. Besides, in patients
sharing similar symptoms, and hence classified as suffering from the same disease, the underlying
molecular mechanisms can actually be different. For these reasons, the creation of new, human-relevant
disease models is a task of paramount importance, as they would allow a better understanding of
the onset, progression, and molecular mechanisms of the various diseases, paving the way for new
therapeutic approaches.

Animal models have so far greatly contributed to the present knowledge on cardiac pathogenic
mechanisms. Mice have played a key role in this field, thanks to the availability of ever more
sophisticated methods of genetic manipulation, besides their ease of breeding compared to other
mammalian models such as pigs. However, the murine heart exhibits important differences if
compared with the human heart. Besides discrepancies in ion channel roles, calcium handling, and
the development of cardiomyocytes, mice and humans present relevant difference in terms of cardiac
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electrophysiological properties, such as resting heart rate, repolarization phase of action potential,
response to exercise, and duration of ventricular action potential [2,3]. These differences represent
an obstacle to the creation of accurate models for human diseases and explain why many treatments
proved inefficient when translated from murine preclinical studies to human clinical trials.

Primary cell lines derived from patients have been an important means to study cardiac diseases
in vitro, and the above-mentioned issues related to animal models can be prevented by using human
cardiomyocytes. However, heart primary cells show clear limitations, related to the invasive procedures
required for their collection from patients and their limited survival and proliferation potential.

In the last decade, research focus has turned to strategies based on induced pluripotent stem
cells (iPSCs) obtained from somatic cells. Human iPSCs (hiPSCs) were first described in 2007, when
Takahashi and Yamanaka’s seminal work demonstrated the possibility to reprogram adult somatic
cells to a pluripotent condition by overexpressing four transcription factors—OCT3/4, SOX2, KLF4,
and c-MYC [4]. Due to their ability to potentially differentiate into cells of all three embryonic germ
layers, hiPSCs showed soon their potential in the area of in vitro disease modeling, potentially offering
numerous desirable features. First and foremost, thanks to their self-renewal capability, patient-derived
hiPSCs could provide a potentially unlimited source of precursors carrying the genetic background of
the patient, which could then be differentiated into a number of different tissues. Besides, as they can
be obtained from somatic tissues, their use would allow us to bypass the ethical conundrums linked to
the use of embryonic stem cells (ESCs).

In this review, we will focus on the application of hiPSCs in the context of two-dimensional
(2D) and three-dimensional (3D) cardiac culture models for disease mechanisms investigation, drug
development, and therapeutic studies.

2. Human iPSC-Derived Cardiomyocytes

After the reprogramming of somatic cells and the validation of their pluripotent condition [5,6],
hiPSCs can be differentiated into cells of mesodermal germ layer; this in turn can allow the generation of
cardiac cell lineages, including cardiomyocytes (Figure 1). Floating embryoid bodies (EBs) or monolayer
cultures on Matrigel are the two most commonly used methods to induce cardiac differentiation
of hiPSCs [7]. In both cases, cells are placed in culture media containing defined sets of signaling
molecules, specifically designed to induce cardiomyocytes (hiPS-CMs) generation.
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Figure 1. Schematic overview of patient-derived human-induced pluripotent stem cells–derived
cardiomyocytes (hiPS-CMs) generation. The process consists of the following three main steps:
reprogramming of somatic cells in human induced pluripotent stem cells (hiPSCs); hiPSCs differentiation
in hiPSC-derived CMs; and maturation approaches to obtain adult-like hiPS-CMs. The resulting
hiPS-CMs are ultimately used for research studies and clinical applications.
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2.1. 2D Cultures of hiPS-CMs for Disease Mechanisms Investigation

In the area of CVDs, hiPS-CMs have already shown a wide range of possible applications;
important parameters like morphology, calcium handling, and contractility have been successfully
analyzed in such systems. Studying hypertrophic cardiomyopathy (HCM), Lan et al. described the
generation of patient-derived hiPS-CMs that displayed specific HCM-related alterations, such as
abnormal sarcomere organization, cellular hypertrophy, and altered calcium handling [8]. In a different
disease context, arrhythmogenic cardiomyopathy (ACM), transmission electron microscopy allowed
to detect alterations of cell structure and morphology in hiPS-CMs obtained from patients carrying a
plakophilin-2 (PKP2) gene mutation [9]. In these cells, the authors observed larger cardiomyocytes,
altered Z-bands, and less organized desmosomes, hence recapitulating some typical ACM features [9].
Still in the context of ACM, abnormal plakoglobin nuclear localization was reported in patient-derived
hiPS-CMs, together with decreased β-catenin activity in cardiogenic conditions [10]. In this work, the
mutant hiPS-CMs showed increased lipogenesis and apoptosis as well as calcium-handling defects,
once again recapitulating the disease phenotype and confirming that the hiPS-CM system could play a
pivotal role in discovering ACM pathogenic mechanism(s) [10].

hiPS-CMs also offer an invaluable system for understanding the genetic basis of human CVDs
and are being used as a model to test the pathological relevance of specific gene mutations. During the
past few years, gene-editing approaches, such as TALENs and CRISPR/Cas9, have been used to correct
suspected causative mutations in hiPSCs from patients [11–13]. This allowed not only the generation
of proper experimental controls, i.e., isogenic hiPSC lines, but also the observation of a potential
rescue of the defect caused by the mutation, thus suggesting its pathological relevance [14–17]. The
opposite approach, i.e., the introduction of a mutation of interest in control hiPSC lines, has also been
used [18–24]. Mosqueira and colleagues used CRISPR/Cas9 technology in three independent hiPSC
wild-type lines to produce 11 variants of a suspected HCM-causing mutation, which they showed to
promote severe and penetrant pathophysiology regardless of the genetic background [18]. Although
Mendelian cardiac diseases are best suited for modeling through hiPS-CMs, Wei et al. recently reported
interesting advances in recapitulating ischemic conditioning, suggesting the possibility to move toward
the use of hiPS technology to also model non-Mendelian CVDs, such as myocardial infarction (MI) [25].

Human iPS-CMs have also allowed the investigation of the molecular pathways underlying
CVDs [26–28]. The first example of such approach dates back to 2010, when Carvajal-Vergara
and colleagues reported the generation of cardiomyocytes from patients suffering from
“LEOPARD,” a complex syndrome that includes electrocardiographic abnormalities and hypertrophic
cardiomyopathy [29]. In these cells, bFGF failed to activate MAPK, leading to an alteration of the
RAS-MAPK signaling that in turn led to a HCM phenotype [29]. In another study, using hiPS-CMs
from a patient with dilated cardiomyopathy (DCM) harboring a TNNT2 mutation, the authors showed
that an altered epigenetic regulation of key β-adrenergic signaling genes in mutant cardiomyocytes was
the cause of contractile dysfunctions [30]. More recently, Lee et al. reported that the platelet-derived
growth factor (PDGF) signaling pathway was abnormally activated in a patient-derived hiPS-CMs
model of Lamin A/C-related DCM compared to isogenic controls, identifying a new potential target
for therapeutic approaches [31]. Also, using patient-specific hiPS-CMs to model Duchenne muscular
dystrophy (DMD) cardiomyopathy, single-cell RNA-seq analysis showed significant activation of
fibrosis program in DMD hiPS-CMs compared to controls [32]. Moreover, combining DMD hiPS-CMs
and human DMD left ventricle RNA-seq datasets, the authors found shared dysregulated pathways,
suggesting the importance of this model for investigating cardiomyopathic mechanisms of DMD [32].

HiPS-CMs have also been used in electrophysiology studies based on patch clamp, calcium flux
assays, and multielectrode arrays to describe aberrant features in genetic arrhythmic diseases, such as
long QT syndrome (LQTS), catecholaminergic polymorphic ventricular tachycardia (CPVT), short QT
syndrome (SQTS), sick sinus syndrome (SSS), as well as atrial fibrillation (AF) and Brugada syndrome
(BrS) [33]. One of the first studies in which electrophysiological recording techniques have been used
on hiPS-CMs was reported by Moretti at al., who found typical electrophysiological features of LQTS
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type 1 in patient-specific hiPS-CMs carrying a mutation in KCNQ1 gene, which encodes the alpha
subunits of the channels responsible for IKs generation [34]. More recently, electrophysiological studies
were performed on hiPS-CMs derived from a SQTS patient carrying a mutation in the hERG potassium
channel (KCNH2) responsible for the generation of the IKr current. This model recapitulated the disease
phenotype, including shortened action potential duration and potassium current abnormalities [35].
The characterization of KCNH2 mutant hiPS-CMs was recently performed also in another study,
confirming the ability of hiPSCs technology to provide important insights into arrhythmia mechanisms
in SQTS [36].

2.2. 2D Cultures of hiPS-CMs as a Platform for Investigating CVDs Therapies

Another use of hiPS-CMs is the creation of disease models suitable for drug testing, as well as for
drug discovery and development (Table 1) [37–41]. Particularly, hiPS-CM technology could be used to
evaluate efficacy of drugs in a mutation-specific or even in a patient-specific context. One of the great
opportunities provided by hiPS-CM is to establish large-scale, high-throughput screens for drug safety
testing and discovery in large cohorts of patients. The validation and the use of these approaches for
drug development is extremely attractive, as it could greatly reduce the costs resulting from animal
disease models. One of the first studies demonstrating the reliability of hiPS-CM as a platform for
drug evaluation was reported by Itzhaki et al. in the context of type-2 LQTS [42]. The authors assessed
the effect of existing and novel pharmacological agents that could aggravate or ameliorate the disease
phenotype, confirming the ability of the hiPS-CM model to recapitulate the expected drug response [42].
Studying the same cardiac disorder, Matsa et al. showed a proper response of LQT2 hiPS-CMs to
clinically relevant pharmacology [43]. However, the two groups reported different responses to
isoprenaline, likely because of different underlying mutations [42,43]. This discrepancy could support
the potential use of hiPS-CMs from patients harboring different mutations in personalized medicine
studies. More recently, Mehta et al. found that Lumacaftor, a drug acting as chaperone during protein
folding, can correct the hERG trafficking defects in LQT2 hiPS-CMs, thus preventing arrhythmias in
mutant cells [44]. These promising findings recently led to the realization of the first in-human study,
highlighting the translational strength of this in vitro platform [45]. In the context of drug safety testing,
Liang and colleagues for the first time recapitulated in hiPS-CMs drug-induced cardiotoxicity profiles
for healthy subjects as well as for LQTS, HCM, and DCM patients, at the single cell level [46]. Not only
healthy and diseased cells exhibited different susceptibilities to known cardiotoxic compounds, but
hiPS-CMs could also accurately predict adverse drug responses [46].

Besides testing the effect of a specific compound, hiPS-CMs might be used also as a
platform to develop new therapeutic strategies, including targeted genome editing [47], transgene
overexpression [48], and RNA interference for either knockdown [49] or exon-skipping [50,51] in
mutant genes.

Table 1. List of 2D cardiac disease models for pharmacological studies described in this review.

Ref. Objective Pharmacological Approach and Outcome of the Study

[42] LQTS type 2 treatment

- E-4031 and cisapride→ pro-arrhythmic effect
- Nifedipine→ shortened APD90, elimination of EAD events,
abolished arrhythmic events, long-term treatment associated

with toxicity
- Pinacidil→ APD90 shortening, abolished EADs, potentially

pro-arrhythmic
- Ranolazine→ anti-arrhythmic effect

[43] LQTS type 2 treatment - E-4031→ APD/FPD prolongation, EADs (only in mutant CMs)
- Nicorandil and PD-118057→ shortened APD, abolished EADs

[52] Drug safety study Confirmed effect of 25 known cardioactive compounds



Int. J. Mol. Sci. 2020, 21, 3404 5 of 32

Table 1. Cont.

Ref. Objective Pharmacological Approach and Outcome of the Study

[37] CPVT - Dantrolene→ rescue of the arrhythmogenic defect (normal Ca2+

spark properties)

[46] Cardiotoxicity study for
LQTS, HCM, and DCM

- Cisapride→ pro-arrhythmic effects (particularly in
LQTS and HCM)

- Nicorandil→ normalized APD and abolished EADs (LQTS).
Dose-dependent pro-arrhythmic effect

[53] Drug safety study
(10 compounds)

- E-4031 and Cisapride→ prolonged FPD and pro-arrhythmic effect
- Nifedipine and Verapamil→ dose-dependent FPD shortening,

increased beat rate
- Terfenadine→ dose-dependent effect on FPD,

no pro-arrhythmic effect
- Quinidine, Mexiletine→ reduced spike amplitude

- Flecainide→ reduced spike amplitude and pro-arrhythmic potential
- GSK A→ dose-dependent FPD prolongation

- GSK B→ increased heart rate

[38] JLNS treatment

- Noradrenaline→ Increased APD90 and PlaA
- Cisapride→ genotype-dependent pro-arrhythmic effect

- NS1643→ reduced FPD and protection from cisapride-induced
arrhythmias

[22] LQTS treatment - Nifedipine→ APD90 shortening
- Pinacidil→ APD90 shortening

[54] Diabetic cardiomyopathy
treatment

Screening of 480 compound for CM phenotype preservation during
diabetic stress:

- Thapsigargin and Fluspirilene→ Identified as
most-effective compounds

[55] Drug safety study
(24 compounds)

16 of 18 compound with known clinical cardiac risk showed
drug-induced effect in hiPS-CMs upon structural and

functional evaluation

[56] Drug safety study

Bay K8644, Mibefradil, NS1643, Levcromakalim, Ouabain→
Repolarization effects

Isoproterenol, ZD7288, BaCl2→ Chronotropic effects
Quinidine, Cisapride, Thioridazine, Astemizole, Bepridil, Pimozide

→ Arrhythmogenic effect
Amiodarone, Tolterodine, Vanoxerine, Alfuzosin, Ranolazine→

FPD prolongation (clinical QT prolongation)

[44] LQTS type 2 treatment
-Lumacaftor→ shortened FPD, genotype-dependent hERG

membrane localization, increased IKr current density, reduced
Ca2+-handling abnormalities

[57] Drug safety study Screening of 28 known pro-arrhythmic drugs: all the analysed
compounds confirmed pro-arrhythmic effect

[58] Preventing oxidative injury
post MI

Screening of 48,649 protective molecules preventing
peroxide-induced cell death:

- Cardioprotectant 312 (CP-312)→ increased antioxidant response

[39] DCMA syndrome treatment SS-31→ reduced mitochondrial fragmentation

[59] Cardiomyocyte protection
in MI

Screening of 1800 active compounds:
- F1386-0303→ suppressed hiPS-CMs death

APD, action potential duration; APD90, action potential duration at 90% repolarization; CM, cardiomyocyte;
CPVT, catecholaminergic polymorphic ventricular tachycardia; DCM, dilated cardiomyopathy; DCMA, dilated
cardiomyopathy with ataxia; EAD, early after depolarization; FPD, field potential duration; HCM, hypertrophic
cardiomyopathy; hiPSC; human induced pluripotent stem cell; hiPS-CM, human induced pluripotent stem
cell-derived cardiomyocyte; JLNS, Jervell and Lange-Nielsen syndrome; LQTS, long QT syndrome; LVEF, left
ventricular ejection fraction; MI; myocardial infarction; PlaA, plateau amplitude.
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The use of hiPS-CMs has been proposed in another, highly appealing research area, namely cell
therapy for CVDs (Table 1). Considering the limited regenerative ability of the myocardium upon an
adverse event such as a heart attack, hiPS-CMs may represent a potential solution to repopulate the
damaged area. In this context, several studies have already been performed on small animals [60–63].
In 2015, hiPS-CMs transplanted into a mouse model after MI improved left ventricular (LV) function
and attenuated cardiac remodeling [60]. Although engraftment was limited, transplanted hiPS-CMs
provided pro-angiogenic and anti-apoptotic paracrine factors in an ischemic microenvironment [60].
The beneficial paracrine effects of hiPS-CMs on a murine injured myocardium have also been described
by Tachibana et al., who observed no myocardial regeneration but cardio-protective paracrine effects
on the damaged tissue [61]. Other studies reported grafting of transplanted hiPS-CMs. Transplantation
of hiPS-CMs overexpressing the cell cycle regulator CCND2 in mice that underwent MI successfully
improved the cardiac phenotype. Fifty percent of the myocardial scar was replaced over the following
six months and LV function improved due to the electrical integration of the hiPS-CMs graft [62].
Large animals have also been used to test the potential of hiPSC technology in cell therapy for cardiac
disorders [64–67]. Kawamura et al. generated hiPS-CMs sheets for transplantation over the MI areas
in a porcine model of ischemic cardiomyopathy [64]. The authors observed attenuated LV remodeling
and improved cardiac performance; however, very few hiPS-CMs survived long term [64]. In a more
recent work, intra-myocardial injection of iPS-CMs in monkeys subjected to MI promoted cardiac
contraction improvement for at least 12 weeks due to integrated graft survival [66]. As suggested
by the above-mentioned works, cells survival in the host tissue is one of the main issues of hiPSC
technology in cell therapy, and further studies will be needed to improve the hiPS-CMs engraftment
efficiency and duration. In this context, the quality of the delivered cells can influence the efficacy of
the treatment after hiPS-CMs transplantation. Current protocols used to prepare the cells for therapy
consist of accelerated growth conditions, which lead to cell stress, including DNA damage. The quality
of the cells can be selectively improved by activating transcription factor p53, which leads to apoptosis
in DNA-damaged cells while not affecting DNA damage-free (DdF) cells [68]. This approach was
used to prepare hiPS-CMs to treat heart failure caused by coronary artery ligation in mice. Cells
were injected into the LV, and a significantly higher engraftment rate was found in murine hearts that
received DdF hiPS-CMs when compared to controls, suggesting that the selected cells would better
repopulate the ischemic myocardium of a failing heart [68].

2.3. Limits of hiPSC-Derived 2D Models and Current Strategies to Enhance hiPS-CMs Maturation

Despite the many progresses that have characterized the hiPSC field in recent years, such as
the optimization of culture conditions allowing to obtain hiPS-derived cardiomyocytes with >90%
purity [69], the use of hiPSCs in cardiac disease models still presents two major issues: the immaturity
of hiPS-CMs and the inability of a 2D system to reproduce the complex 3D-structure of the heart tissue.

Van den Berg et al. showed that hiPS-CMs were comparable to first trimester gestational stage
CMs in terms of structure, function and gene expression [70]. Indeed, hiPS-CMs are known to exhibit
typical fetal-like features, such as reduced cellular size, immature myofibril alignment, lack of T-tubules,
depolarized resting membrane potential, decreased ion channels expression and reduced upstroke
velocity, fetal-like mitochondria, and metabolism [71]. Several approaches have been attempted to
overcome the issue of hiPS-CMs immaturity; one of them is long-term culture. Kamakura et al. reported
interesting ultrastructural sarcomeric changes in 180-day-old EB-contained cardiomyocytes compared
to 14-day-old hiPS-CMs [72]. Specifically, in long-term culture, they observed myofibrils becoming more
tightly packed and forming parallel arrays, together with the appearance of mature Z-, A-, H-, and I-
bands; M-bands were also detected, but only in 360-day-old EBs [72]. The same structural improvements
were observed by another group, who in addition performed electrophysiological assessments and
found differences in AP amplitude, maximum diastolic potential, and upstroke velocity amongst
20/40-day-old and 80/120-day-old hiPS-CMs [73]. These findings suggest that hiPS-CMs are capable of
maturing, albeit slowly, and better mimic the adult CMs phenotype. However, long-term culture is a
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cumbersome and expensive approach, which would be unsuitable for many experimental settings, such
as high throughput screenings. Other strategies to promote hiPS-CMs maturation rely on the use of
specific adult-like metabolic substrates, such as insulin and fatty acids [10,54,74], and of hormones and
small molecules, including Tri-iodo-L-thyronine (T3) [75,76], GSKA [77], Wnt pathway modulators [78],
or microRNAs [79–81]. Recently, inhibition of mTOR pathway has been found to enhance hiPS-CMs
maturation [82]. Transient treatment during late differentiation with Torin1, a mTOR inhibitor,
promoted a significant increased expression of mature cardiomyocyte markers in hiPS-CMs, as well as
enhanced metabolic, contractile, and electrophysiological properties toward values observed in adult
CMs [82]. Also, the modulation of the extracellular matrix (ECM) surrounding hiPS-CMs was reported
to promote increased maturity in hiPS-CMs [83–87]. Matrix sandwiches combined with specific growth
factors [83], as well as synthetic culture matrices engineered from combinatorial polymers [85], have
been shown to enhance hiPS-CMs maturation and promote improvements in sarcomeric dimensions,
mitochondrial function, electrophysiology, and contractility. However, there are still conflicting
data about the optimal substrate properties. It was first reported that ESC- and hiPS-derived CMs
maturation increased with substrate stiffness [86,88]. On the other hand, Herron et al. showed that
culturing hiPS-CMs on Matrigel, and polydimethylsiloxane (PDMS), their softest experimental ECM
condition, led to a higher expression and functional maturation levels compared to hiPS-CMs cultured
on fibronectin and glass, their stiffest experimental ECM condition [87]. Another promising approach
for hiPS-CMs maturation comes from the application of electric or mechanical stimulation, which can
promote an appropriate physical modulation of the cellular microenvironment. Recently, physiological
cyclic pulsatile hemodynamic forces were found to enhance hiPS-CMs maturation within a microfluidic
system [89]. Particularly, the authors observed more elongated and rod-like-shaped hiPS-CMs with
increased cell size, sarcomere length and alignment, contractility, and mitochondrial density, indicating
an improved maturation of the cells when compared to static cultures [89]. Finally, the co-culture of
hiPS-CMs with other cardiac cell types (e.g., fibroblasts or endothelial cells) has been also described as
possible strategy to support cardiomyocytes maturation [90,91]. Yoshida et al. showed that co-culturing
hiPS-CMs with mesenchymal stem cells (MSCs) can induce structural and functional maturation of
hiPS-CMs in 2D culture [90]. MSCs were found to release soluble factors, including cytokines and
exosomes, that promote the cardiomyocyte-specific markers expression impacting the maturation of
hiPS-CMs [90].

The heart is characterized by a specific architecture in which cells are in contact with each other and
the ECM. Despite the improved maturation protocols developed in the last few years, hiPS-CMs in 2D
cultures are placed in a physiological and structural context that does not mimic the in vivo condition.

3. 3D Cultures of hiPS-CMs

In an effort to overcome the intrinsic limitations 2D cell cultures in terms of spatial architecture,
recent years have seen a burgeoning development of three-dimensional culture models. Such
phenomenon has also involved the field of heart diseases and many groups have developed 3D models
of both healthy and pathological cardiac tissues. Once again, given the lack of bona fide adult precursors
of cardiomyocytes, many of these systems have relied on hiPS-CMs. Importantly, several studies report
that culturing hiPS-CMs within 3D constructs better recreates adult cardiomyocyte physiological,
contractile, and electrical function, particularly when compared to 2D cultures [71,92–99] (Table 2).
However, re-creating in vitro a reliable 3D tissue is undoubtedly more complex than using standard
cell cultures, and several new aspects have to be considered simultaneously. Besides the source of
cardiomyocytes, which has been discussed so far, at least three more elements must be considered for
the creation of a 3D heart tissue model: the type of supporting scaffold, when present, the external
stimuli that need to be applied and, last but not least, the role played by the non-contractile cell
population(s) (Figure 2).
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Table 2. Improved maturation of hiPS-derived cardiomyocytes within 3D constructs.

Feature Phenotype of hiPS-CMs in 3D
System References

Proliferation Decreased proliferation capacity [100,101]

Morphology Switch from a round/polygonal to a
more rod-shaped morphology [95,100,102,103]

Cell size Increased cell area and volume [92,100,103–106]

Number of nuclei Multinucleation [105,106]

Cell aggregation hiPS-CMs are robustly interconnected
by electrical and mechanical junctions [93,100,102,104,106,107]

Contractile apparatus
Increased sarcomere organization,

length, and alignment
Early-stage t-tubules formation

[93,95,100,102–104,106,108]

[103]

Mitochondria Increased number of mitochondria
close to the contractile apparatus [100,103,108]

Gene expression

Decreased expression of:
- fetal cardiac genes

Increased expression of:
- ion channel genes of mature CMs
- cardiac contractile function and

sarcomere-related genes
(MYL2, MYOZ2, TCAP, MYL3,

MYOM2, MYLK3, MYH7B, MYH6,
TNNI3, TNNT2, ACTC1)

[92,93,100]

[93,100]
[92,93,101,102,105,107,108]

Cardiac contraction Increased contraction force [93,102,104,106,107]

Cardiac conduction Increased conduction velocity [93,100,102,106,107,109]

Calcium handling

Increased expression of
calcium-handling genes

(SERCA, RYR2, CX43, ASPH, CaV1.2,
NCX1, HCN4, CASQ2, TRDN)

Improved calcium transient amplitude

[93,104,105,107];

[94,103,105,106,110]

Electrophysiological
properties

Resting membrane potential (Vrest)
closer to adult CMs

Increased APD50 and APD90
Increased maximum upstroke velocity

(higher INa density)

[100]
[92,94]
[92,95]

Response to β-adrenergic
stimulation

Increased adrenergic response to
catecholamine stimulation [93,107,109,110]

Metabolism

Higher oxygen consumption rate
(OCR)

Increased expression of fatty acid
oxidation-related genes

Decreased expression of glycolytic
genes

[92]

APD50, action potential duration at 50% repolarization; APD90, action potential duration at 90% repolarization;
CM, cardiomyocyte; hiPSC, human induced pluripotent stem cell; hiPS-CM, human induced pluripotent stem
cell-derived cardiomyocyte.
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Figure 2. Generation of three-dimensional (3D) hiPSC-based cardiac constructs. Human iPSC-derived
cardiac cells, scaffolds, and physical and environmental stimuli are the three main elements required for
the generation of a 3D cardiac construct. Examples of 3D-hiPSC formats are reported from published
studies. Figures reprinted from: (A) [93] Zhang et al., Tissue-engineered Cardiac Patch For Advanced
Functional Maturation Of Human ESC-derived Cardiomyocytes, Biomaterials 34(23), 5813-20 (2013).
With permission from Elsevier (Copyright 2013, Elsevier LTD.); (B) [111] Zhao et al., A Platform for
Generation of Chamber-Specific Cardiac Tissues and Disease Modeling, Cell 176(4), 913-927 (2019).
With permission from Elsevier (Copyright 2018, Elsevier Inc); (C) [109] Goldfracht et al., Generating
ring-shaped engineered heart tissues from ventricular and atrial human pluripotent stem cell-derived
cardiomyocytes, Nat Commun 11(1), 75 (2020). Licensed under the terms of the Creative Commons CC
BY License (Copyright 2020, Springer Nature); (D) [112] Tsuruyama et al., Pulsatile tubular cardiac
tissues fabricated by wrapping human iPS cells-derived cardiomyocyte sheets, Regen Ther 11, 297-305
(2019). With permission from Elsevier (Copyright 2019, The Japanese Society for Regenerative Medicine);
(E) [113] Forsythe et al., Environmental Toxin Screening Using Human-Derived 3D Bioengineered Liver
and Cardiac Organoids, Front Public Health 6, 13 (2018). Licensed under the terms of the Creative
Commons Attribution License (CC BY) (Copyright 2018, Authors); (F) [114] Noor et al., 3D Printing
of Personalized Thick and Perfusable Cardiac Patches and Hearts, Adv Sci (Weinh) 6(11), 1900344
(2019). Licensed under the terms of the Creative Common Attribution Licence (CC BY) (Copyright
2019, Authors).

3.1. 3D Scaffolds

The peculiar organization of cardiac muscle fibers along specific directions, which define
myocardial mechanical and physiological properties, is intrinsically linked to the ECM. Although
present day in vitro 3D constructs cannot recreate anything similar to a whole heart, they do aim at
reproducing as best as possible the in vivo cardiac tissue architecture; in this sense, scaffolds play a
fundamental role in regulating cell adhesion, migration, proliferation and differentiation [115]. The
molecular composition of the scaffold is a crucial feature in any 3D system, and the most obvious choice
would then be to use the tissue’s own ECM. In 2013, Lu et al. generated a 3D heart model by combining
functional hiPSC-derived cardiac progenitor cells and mouse decellularized heart matrix [116]. This 3D
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model exhibited the typical myocardium structure, the expected electrophysiological characteristics,
and spontaneous contractions with a rate of 40–50 beats per minute, thus generating mechanical
force [116]. Also, the engineered heart tissue showed normal response to various pharmaceutical
agents that are known to affect cardiomyocyte physiology [116]. Importantly, the study reported the
ability of ECM to promote hiPS-CMs differentiation, proliferation, and myofilament organization [116].

Another approach for fabricating in vitro 3D constructs relies on loading the desired cells into
natural (e.g., gelatin, collagen, fibrin, alginate) [104,117] or artificial (e.g., polycaprolactone, poly
D,L-lactic-co-glycolic acid) [118,119] polymers, which are sometimes combined together in hydrogel
mixtures [120,121] and organized in oriented fibers [122,123] or in well-defined shapes [109,112]. Using
hiPS-CMs from patients with Barth syndrome–related cardiomyopathy, Wang et al. succeeded in
creating an engineered BTHS “heart-on-chip” tissue to simulate human myocardium, generating
sheets of spontaneously beating cardiomyocytes [124]. Seeding hiPS-CMs onto thin elastomers
micropatterned with fibronectin lines, hiPS-CMs self-organized into laminar myocardium that featured
aligned sarcomeres [124]. Using a similar strategy, Zhao et al. generated a novel and open-access
heart-on-a-chip system, in which hiPS-CM tissue contraction could be continuously monitored [125].
A “contactless” hydrodynamic approach, based on Faraday waves, has been used by Serpooshan et al.
to promote rapid aggregation in a fibrin-based suspension of hiPS-CMs [102]. Such approach allowed
the authors to reach cell packing densities that approximate native myocardium (108–109 cells/mL);
further in vitro culture gave rise to formation of self-organized, closely packed, and symmetric 3D
constructs, showing improved cell viability and maturation, intercellular connections, and contractile
function when compared to constructs with random cell distribution [102]. The evidence that cell
culture in 3D scaffolds promotes the maturation of hiPS-CMs has been recently confirmed by Silbernagel
et al., who demonstrated for the first time that shaping iPSC-derived CMs in 3D micro-scaffolds can
induce T-tubules formation, normally absent in 2D cultures, improving the structural and functional
maturation of the cells [103].

In recent times, 3D bio-printing has also been used to recreate functional cardiac tissues based
on stem-cell-derived CMs [105,114,126]. For example, Noor and colleagues succeeded in printing
functional vascularized patches that matched the immunological, cellular, biochemical, and anatomical
properties of the cell donor [114]. Specifically, after taking a biopsy of fatty tissue from patients,
cells were extracted from part of the sample, while the remaining material was decellularized and
processed to generate a fully personalized hydrogel, which served as a bioink for 3D printing [114].
Computerized tomography (CT) of a patient’s heart was used to identify the three-dimensional
structure and orientation of the major blood vessel in the LV [114]. Afterward, anatomical data
obtained from the CT images were used to design patch dimensions and blood vessel geometry, in
order to generate a personalized scaffold [114]. hiPSC-derived cardiomyocytes and endothelial cells
from patients were separately combined with the personalized hydrogel to form a bioink for the
parenchymal cardiac tissue and blood vessels [114]. Moreover, since the patient-specific hydrogel
could not sustain the weight of a whole printed organ, the authors used a printing strategy based on a
support material composed of alginate microparticles in xanthan gum–supplemented growth medium,
which maintained high cell viability and to print accurate, high resolution thick structures from the
personalized hydrogel [114].

3.2. External Stimuli

Another limit of standard 2D hiPS-CM models is the difficulty to reproduce the in vivo–like
condition in which stimuli coming from the external environment influence cardiac tissue development
and maintenance. Indeed, a proper modeling of the myocardium should include not only
electrical [125,127] but also mechanical [108] stimuli, such as those derived from fluid flow and
hydrostatic pressure. Nunes and colleagues described an innovative platform for engineered heart
construct in which a 3D cardiac tissue was generated by the self-assembly of hESC- and hiPSC-derived
cardiomyocytes seeded into a template PDMS channel, around a surgical suture in type I collagen
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gels [100]. In this system, named “biowires,” cells were subjected to geometric electrical stimulation
inducing highly organized cardiac structure and cell maturation. Indeed, their 3D constructs exhibited
increased myofibril ultrastructural organization, enhanced calcium handling properties, and improved
conduction velocity and electrophysiological properties compared to non-stimulated controls [100].
Thavandiran et al. generated aligned and functional 3D-hiPSC-derived cardiac microtissues, also
defined as cardiac microwires (CMWs) [120]. In this work, pacing with point stimulation electrodes
was found to promote cardiac maturation–associated gene expression and electrical signal propagation
similar to in vivo conditions [120]. More recently, the Biowire II platform was used to generate 3D
engineered cardiac tissues from hiPS-CMs and cardiac fibroblasts, employing long term electrical
stimulation [128]. Thanks to the electrical conditioning, the engineered tissue expressed an adult-like
human myocardium phenotype, including contractile properties and expected responses to therapeutic
and to cardiotoxic agents affecting contractility [128].

Mechanical stimulation has also been proven to benefit 3D culturing of hiPS-CMs. Ruan et al.
demonstrated that electric and mechanical stimulation could lead to the creation of advanced
hiPS-derived cardiac microtissues, promoting the maturation of their structural, mechanical, and force
generation properties after two weeks of electric pacing combined with static stress conditioning,
achieved by maintaining constructs at a fixed static length [104]. Moreover, considering the positive
effect on cardiac maturation of the increased mechanical loading during development, Leonard et al.
tested the effect of moderate afterload on the maturation of hiPS-CMs in engineered heart muscles [129].
In this model, mechanical loading promoted increased hiPS-CM area and elongation, sarcomere length,
and mRNA expression of maturation markers, as well as improved calcium handling and auxotonic
contraction [129]. Similarly, Tsuruyama et al. found increased maturation in cardiac tubular 3D tissues
in which hiPS-CMs were subjected to electrical and mechanical stimulation [112]. The authors observed
increased expression of CM markers, including myosin light chain 2 (MYL2) and myosin light chain 7
(MYL7) when compared with hiPS-CMs cultured in static cultures [112].

3.3. Multi-Cellular Composition

Several lines of evidence showed the importance of multi-cellular interactions in promoting
prolonged cell survival in 3D models [108,125]. As expected, the cellular composition of 3D cardiac
tissues also plays a key role in better mimicking the physiology and the beating behaviour of native
cardiac tissue [130–132]. Besides, mixed cell types composition in 3D cardiac constructs may improve
drug testing, considering that different compounds can either act directly on CMs or indirectly,
through the surrounding cells [133]. In recent years, various reports described methods to derive
cardiac fibroblasts [134], smooth muscle [135,136], endothelial [137], and epicardial [138,139] cells
from hiPSCs. However, primary cell lines might also be used in combination with hiPS-derived
CMs. The possibility to generate different cardiac cell types offers the opportunity to model also
those conditions in which the interaction between different cell types become decisive to exhibit the
pathological phenotype [140], particularly characterized by the disruption of paracrine signals and
cell-cell interactions. The combination of hiPS-CMs with fibroblasts has been reported to improve
synchronised beating [141–143]. Jang and colleagues developed 3D cardiac macrotissues (CMTs) using a
Layer-by-Layer (LbL) technique [144], based on deposition and centrifugation of hiPS-CMs and cardiac
fibroblasts [145]. In this instance, the authors found that the incorporation of cardiac fibroblasts into the
cardiomyocyte layer was a prerequisite for maturation and synchronized beating of CMTs, suggesting
that the paracrine effects of fibroblasts could improve the functional properties of the CMT, compared
to the mono-culture constructs [145]. Similarly, the introduction of endothelial cells in combination
with hiPS-CMs has shown important advantages in the creation of advanced 3D cardiac constructs.
For example, Giacomelli et al. generated human cardiac microtissues composed of hiPS-CMs and
endothelial cells, finding increased expression of genes encoding cardiac ion channels and calcium
handling proteins, which are considered evidences of advanced maturation when compared to hiPS-CM
monoculture constructs [146].
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Several groups described the generation of 3D cardiac constructs consisting on more than two cell
types. Burridge et al. showed that in a 3D hydrogel tri-culture with hiPS-derived endothelial cells
and human amniotic mesenchymal stem cells spontaneous synchronous contractility of hiPS-CMs
was significantly increased when compared to hiPS-CM monoculture [147]. Amano and colleagues
developed a vascularized 3D hiPS-CMs tissue by using a filtration layer-by-layer (LbL) technique for
cells, showing that the introduction of cardiac microvascular endothelial cells together with human
cardiac fibroblasts into the 3D hiPS-CM tissue modulated CMs organization and synchronous beating
in 3D constructs; of notice, they also showed the formation of blood capillary-like networks [148].
Characterization of hiPS-CMs in tri-culture has been recently reported by Pitaktong et al., who observed
improved microvasculature and increased contraction rate in 3D microtissue spheroids consisting of
hiPS-CMs, adult cardiac fibroblasts, and hiPSC-derived early vascular cells, when compared with
control 3D spheroids [149].

Importantly, hiPSC technology is also making progress toward the differentiation of cardiomyocyte
subtypes: i.e., atrial, ventricular and nodal [150–154]. These CM subtypes are distinguished by
electrophysiological properties and specific gene expression patterns [155,156]. Several groups have
tried to modulate the latter to derive the different CMs subtypes, since early protocols for cardiac
differentiation of hiPSCs resulted in heterogeneous populations of CMs, predominantly ventricular-like
cells with a small percentage of atrial-like and nodal-like cells [155]. By combining stem-cell-derived CM
differentiation protocols with electrical field conditioning, Zhao et al. were able to successfully model
polygenic left ventricular hypertrophy, generating heteropolar cardiac tissues containing distinct atrial
and ventricular ends [111]. These latter expressed chamber-specific genes and showed the expected
drug responses [111]. Similarly, subtype-specific CMs differentiation protocols have been recently
used to develop an engineered cardiac tissue that comprised chamber-specific human pluripotent
stem-cell-derived cardiomyocytes (hPS-CMs) [109]. Ventricular and atrial hPS-CMs were embedded in
a collagen-based hydrogel to generate ring-shaped 3D constructs showing proper atrial and ventricular
phenotypes at gene and protein expression levels, as well as in terms of electrophysiological and
contractile parameters [109]. However, none the above-described models recreated Purkinje fibers,
the conduction system that electrically connect the atrial and ventricular chambers of the heart. The
generation of an integrated cardiac tissue, including atrial and ventricular chambers, as well as
vasculature network and electric conduction system, will likely further improve physiological-relevant
drug response studies.

4. 3D Models for CVDs

4.1. 3D Cultures for Investigating CVDs Pathogenic Mechanisms

In some cardiac diseases the pathological phenotype is fully discernible only at a tissue/organ
level [157], which makes 3D hiPS-CM models indispensable to avoid the use of animal models. For
this reason, such systems are expected to soon become commonplace tools in the characterization of
molecular mechanisms underlying cardiac diseases, as well as in preliminary testing and screening
of drugs. In this regard, some brilliant works already succeeded in recapitulating cardiac organ
functions and properties in a 3D model, both in healthy and pathological conditions (Table 3) [158–161].
Hinson and colleagues generated cardiac microtissues engineered from hiPS-CMs carrying different
titin-truncating variants (TTNtvs), introduced by CRISPR/Cas9 technology [162]. The authors showed
that some of the missense TTNtvs are pathogenic, leading to decrease contractile force in cardiac
microtissues, whereas other variants promoted contractile function impairment only when genetic
modifiers were also present [162]. Also, they observed that some of these variants produced a stable
truncated protein unable to assemble with sarcomeric components, resulting in typical DCM patient
features [162]. Stillitano and co-workers generated a 3D model starting from hiPS-CMs obtained from a
patient harbouring a mutation in the phospholamban gene (PLN), shown to be causative of DCM [163].
A study performed by the same group in 2D hiPS-CMs from the same patient had already showed some
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features of DCM, such as calcium handling abnormalities and irregular electrical activity [14]; however,
the 3D model demonstrated that the PLN mutation impaired cardiac contractility and that genetic
correction restored contractile function [163]. In another study performed by Streckfuss-Bömeke et al.,
the authors obtained in parallel 2D hiPS-CM cultures and 3D cardiac constructs from a DCM patient,
showing that the latter exhibited not only impaired force of contraction but also reduced passive
stress of the tissue in response to gradual increase in strain, hence suggesting increased visco-elasticity
of the mutated constructs [164]. The advantage of 3D cultures over monolayers in recapitulating
disease features was also shown by Prondzynski and colleagues, who were able to detect some of the
functional consequences of a α-actinin 2 (ACTN2) mutation only when hiPS-CMs derived from an
HCM patient were cast in a 3D format [165]. The mutant hiPS-CMs embedded in the 3D construct
showed increased contractility, relaxation deficit, higher myofilament Ca2+ sensitivity, and prolonged
action potential duration when compared to controls, providing an in vitro model subsequently used
to test personalized treatments for the patient [165].

Beside modeling inherited cardiomyopathies, 3D models could represent an attractive approach to
study disease mechanisms underlying non-Mendelian cardiovascular disorders. This is made possible
mostly by the introduction of advanced systems that manipulate specific parameters, e.g., oxygen
content and medium composition, thus mimicking pathological conditions typical of disorders in
which the genetic component is not the driving cause. Tiburcy et al. described an in vitro engineered
human myocardium that showed structural and functional properties of postnatal tissue and could
reproduce the typical hallmarks of heart failure upon chronic catecholamine overstimulation [99].
Recently, Sebastião et al. generated and characterized a new human in vitro 3D model of myocardial
ischemia/reperfusion (I/R) injury using hiPS-CM aggregates and stirred tank bioreactors [166]. The
extracellular microenvironment of I/R phases of acute myocardial infarction (MI) was recreated by
finely controlling and monitoring critical process parameters, such as pO2 and pH [166]. The authors
were able to mimic specific hallmarks of MI, including loss of CMs, cellular ultrastructure disruption,
increased angiogenesis, and secretion of proinflammatory cytokines, suggesting that this model could
serve as novel platform to investigate the disease mechanisms of MI [166]. Recently, Richards et al.
recently generated 3D microtissues to mimic MI, establishing a model that combined an oxygen
diffusion system with chronic adrenergic stimulation to create an apoptotic gradient in human cardiac
organoids, which recapitulated the organotypic response of myocardium after infarction [167]. In this
model, typical features of MI were recreated, including pathological calcium handling, metabolic shifts,
and fibrosis [167]. Also, detrimental effects were observed in the 3D microtissues upon treatment with
known cardiotoxic drugs, supporting the translational strength of this 3D model [167]. Moreover,
in order to generate an in vitro model to study ventricular tachycardia, Lemme et al. investigated
the effect of chronic tachypacing on hiPS-CMs embedded in a 3D engineered heart tissue [168]. The
authors demonstrated a high vulnerability to tachycardia of tachypaced hiPS-CMs, terminated by
ryanodine receptor stabilization or sodium or hERG potassium channel inhibition, hence indicating
this new model as a potential tool to test anti-arrhythmic drugs to treat ventricular tachycardia [168].
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Table 3. List of 3D hiPSC-based cardiac constructs reported in this review.

Ref. Scaffold Cell Types Physical Stimulation Disease Modeling Therapeutic Studies

[108] Type I Collagen-based
3D scaffold

- hESC-/hiPS-CMs (2 × 106)
- HUVEC (1 × 106)

- human MSCs/MEFs (1 × 106)

Uniaxal cyclic stress
conditioning (mechanical) N/A Implantation in athymic

rats

[93]
3D cardiac patches

(PDMS + fibrinogen, Matrigel,
thrombin)

hESC-CMs (1 × 106)
Patches cultured on a rocking

platform N/A N/A

[116] Decellularized mouse heart hiPSC-derived MCPs (CMs,
SMCs, ECs) (Tot. 1 × 107) N/A N/A Drug responsiveness

[120] Collagen master mix (Collagen
I and Matrigel)

- hESC-CMs
- hiPS-derived FBs

(Tot. 0.5 × 106)

Uniaxial mechanical stress
and electrical point

stimulation

Tachycardic model of
arrhythmias Drug responsiveness

[100] Type I collagen gel hESC-/hiPS-derived MCPs (CMs,
ECs, FBs, SMCs) Electrical stimulation N/A N/A

[124] Elastomers micropatterned
with fibronectin lines hiPS-CMs (1 × 105 cells/cm2) N/A

Barth syndrome
cardiomyopathy caused

by TAZ mutations
N/A

[147] 3D Hydrogel platform
(Matrigel-based)

- hESC-CMs (2.5 × 105)
- hiPSC-derived ECs (5 × 104)

- hAMSCs (5 × 104)
N/A N/A N/A

[162] PDMS substrate + collagen I
and human fibrinogen

- hiPS-CMs
- Human MSCs
(Tot. 1.1 × 106)

Electrical field stimulation DCM caused by TTN
mutations N/A

[104] Collagen (I)-based 3D scaffold hiPS-CMs (2 × 106)
Electric pacing and static

stress conditioning N/A N/A

[130] Matrigel +
collagen type I matrix

- hiPS-CMs
- hiPSC-derived ECs
- hiPSC-derived MCs

(Tot. 3 × 106)

N/A N/A Implantation in a rat
MI model
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Table 3. Cont.

Ref. Scaffold Cell Types Physical Stimulation Disease Modeling Therapeutic Studies

[148]
Fabricated fibronectin and

gelatin nanofilms (LbL
assembly)

- hiPS-CMs
- Human cardiac FBs

(Tot. 1–50 × 105)
N/A N/A Responsiveness to

cardiotoxic drugs

[158]
Micropatterned wells (PDMS

substrate + collagen type I and
fibrinogen)

- hiPS-CMs
- human mesenchymal stem cells

(Tot. 1.1 × 106)
N/A PRKAG2 cardiomyopathy N/A

[160] PDMS template +
Matrigel/collagen I matrix

- hiPS-CMs
- stromal cells
(Tot. 1 × 106)

N/A HCM caused by BRAF
mutation N/A

[163] PDMS template +
Matrigel/collagen I matrix hiPS-CMs (1 × 106) N/A DCM caused by PLN

mutation N/A

[169]
PDMS stencils containing
rectangular through-holes

(hydrogel-free)

- hiPS-CMs
- hiPSC-derived FBs

(Tot. 2 × 107)
N/A N/A

Clinically relevant
responsiveness to

isoproterenol treatment

[95]
Agarose casting molds + fibrin
matrix (Matrigel, fibrinogen,

thrombin)
hiPS-CMs (1 × 106) N/A N/A N/A

[99] Circular casting molds +
Matrigel/collagen matrix

- hESC-/hiPS-CMs
- human FBs

(Tot. 1 × 104–15 × 106)
Dynamic stretch conditioning Model of heart failure Implantation in athymic

rats

[102] Fibrin hydrogel suspension
(fibrinogen, thrombin) hiPS-CMs (1.7 × 106)

Hydrodynamic drag force
fields (Faraday waves) N/A N/A

[105] 3D-MPE printed scaffold
(methacrylated gelatin-based)

- hiPS-CMs (25 × 103)
- hiPSC-derived ECs (12.5 × 103)

- hiPSC-derived SMCs (12.5 ×
103)

N/A N/A Implantation in a murine
model of MI
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Table 3. Cont.

Ref. Scaffold Cell Types Physical Stimulation Disease Modeling Therapeutic Studies

[131] PDMS template +
Matrigel/collagen I matrix

- hiPS-CMs
- hiPSC-derived ECs
- hiPSC-derived MCs

(Tot. 6 × 106)

N/A N/A Implantation in rat model
of MI

[146] Scaffold-free (spheroids)
- hESC-/hiPS-CMs

- hESC-/hiPSC-derived ECs
(Tot. 5 × 103)

N/A N/A Drug responsiveness

[164] Circular casting molds +
Matrigel/collagen matrix hiPS-CMs (1 × 106)

Mechanical stress
conditioning

DCM caused by RBM20
mutation N/A

[170] PDMS elastomer molds +
Matrigel/collagen I matrix

- hESC-CMs (1 × 105)
- human FBs (1 × 105)

N/A N/A Responsiveness to
cardioactive drugs

[171]
PDMS square molds +

Hydrogel matrix (fibrinogen,
Matrigel, thrombin)

hiPS-CMs (0.5–1 × 106)
Patches cultured on a rocking

platform N/A
Implantation in nude

mice (skin) and nude rats
(epicardium)

[172]
Fabricated fibronectin and

gelatin nanofilms (LbL
assembly)

- hiPS-CMs
- human cardiac FBs

- HCMVECs
(Tot. 1.1–3.7 × 106)

N/A N/A Implantation in rat
infarcted hearts

[97]
PDMS elastomeric pillars +
fibrin hydrogel (fibrinogen,

thrombin)

- hiPS-CMs
- human dermal FBs

(Tot. 2 × 106)

Mechanical loading and
electrical conditioning N/A Responsiveness to

isoproterenol treatment

[123] PDMS elastomer molds +
collagen I matrix

- hiPS-CMs (1 × 106)
- human MSCs (0.2 × 106)

Static stress conditioning Systolic cardiomyopathy
(MYH7 mutation) N/A

[129]
Rectangular agarose/PDMS

casting molds +
fibrinogen/thrombin matrix

- hiPS-CMs (5 × 105)
- human MSCs (5 × 104)

Mechanical loading
(afterload) N/A N/A
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Table 3. Cont.

Ref. Scaffold Cell Types Physical Stimulation Disease Modeling Therapeutic Studies

[161]
Cell-encapsulation gel-free

filamentous matrix
(OrmoClear®polymer)

- hiPS-CMs
- hiPSC-derived FBs

- hiPSC-derived stromal cells
(Tot. 3 × 106)

Mechanical conditioning Contractile dysfunctions
caused by MYBPC3 deficit N/A

[173] Fibronectin/gelatin nanofilms
(LbL assembly)

- hiPS-CMs
- hiPSC-derived FBs

- hiPSC-derived SMCs
(Tot. 5 × 105)

N/A N/A Drug-induced
cardiotoxicity assay

[113] Scaffold-free (organoids)
- hiPS-CMs

- human cardiac FBs
(Tot. 1 × 103)

N/A N/A Environmental toxin
screening

[174]
Fibrin matrix (patch)
containing spheroids

(spheroid fusions)
hiPS-CMs (2.5 × 103–3 × 105) N/A N/A Implantation in a murine

model of MI

[112]

Cell sheets wrapped around a
hollow octagonal tubular

column (fibrin and collagen
gels to seal the extremities)

- hiPS-CMs (6 × 106 cells/sheet)
- human dermal FBs
(6 × 106 cells/sheet)

Electrical stimulation and
mechanical stretch (provided

by a circulation system)
N/A N/A

[114] Personalized hydrogel from
decellularized human ECM

- hiPS-CMs (1 × 108)
- hiPSC-derived ECs (1.5 × 107)
- human neonatal dermal FBs

(3 × 106)

N/A N/A N/A

[128]
Parallel POMaC wires +

hydrogel matrix (collagen,
Matrigel, fibrin)

- hiPS-CMs (1 × 105)
- human cardiac FBs (1 × 104)

Long-term electrical field
stimulation N/A

Canonical responses to
cardiotherapeutic and

cardiotoxic agents
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Table 3. Cont.

Ref. Scaffold Cell Types Physical Stimulation Disease Modeling Therapeutic Studies

[111]
Flexible POMaC wires +

hydrogel matrix (collagen,
Matrigel)

- hESC-/hiPS-CMs (7.47 × 104)
- human cardiac FBs (3.5 × 104)

Electrical field stimulation Left ventricular
hypertrophy

Chamber-specific
responsiveness to

serotonin and ranolazine

[159]
Micromolded gelatin muscular

thin film substrate +
fibronectin and gelatin matrix

hiPS-CMs (1 × 106) N/A CPVT caused by RYR2
mutation N/A

[165]
Flexible PDMS posts + fibrin
matrix (Matrigel, fibrinogen,

thrombin)
hiPS-CMs (8 × 105) N/A HCM caused by ACTN2

mutation
Ameliorated phenotype

upon diltiazem treatment

[168]
Agarose/PDMS-casting molds

+ fibrin matrix (Matrigel,
fibrinogen, thrombin)

hiPS-CMs (1 × 106) Chronic optical tachypacing Ventricular tachycardia
Responsiveness to

antiarrhythmic
compounds

[175]
PDMS molds +

Matrigel/Collagen I mixture
(to form cardiac organoids)

- hESC-CMs
- hESC-derived stromal cells

(Tot. 5 × 104)
N/A N/A

Functional screening of
105 compounds with

pro-regenerative potential

[176]
Circular microfibrous

polycaprolactone sheets
+ Geltrex

- hiPS-CMs (1 × 106)
- hiPSC-derived ECs (4 × 104)

N/A N/A

Subcutaneous
transplantation in SCID

mice and epicardial
transplantation onto rat

MI model

[109]
Ring-shaped casting molds +

Collagen-based hydrogel
matrix

- hESC-CMs (atrial and
ventricular differentiation)

(Tot. 2 × 106)
Passive stretch conditioning Atrial arrhythmia model

(AF-like)

Arrhythmic phenotype
rescued after electrical
cardioversion or after

treatment with
anti-arrhythmic agents
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Table 3. Cont.

Ref. Scaffold Cell Types Physical Stimulation Disease Modeling Therapeutic Studies

[125]

Polystrene chip with two
parallel POMaC wires +
collagen hydrogel (with

Matrigel) or collagen/fibrin
hydrogel (with fibrinogen)

- hESC-/hiPS-CMs (atrial and
ventricular)

- mesenchymal stem cells
- human cardiac FBs
(Tot. 25–150 × 106)

Electrical conditioning N/A N/A

[103]
3D-printed cuboids and

hexagons micro-scaffolds
(PETA monomer)

-iPSC-derived CMs (murine)
(2 × 104) N/A N/A N/A

[145] PDMS support + collagen I
mixture (LbL assembly)

- hESC-/hiPS-CMs (1 × 106)
- human cardiac FBs (2 × 105)

N/A N/A N/A

[149] Scaffold-free (3D-bioprinted
spheroids)

- hiPS-CMs
- human cardiac FBs

- HUVEC or hiPSC-derived
vascular cells

(Tot. 3.3 × 104)

N/A N/A N/A

[166] Scaffold-free aggregates (3D
self-organization) hiPS-CMs (1.5 × 103)

3D aggregates cultured with
controlled pO2 and pH in
stirred-tank bioreactors

Myocardial
ischemia-reperfusion

injury model
N/A

[167] Scaffold-free self-assembled
organoids

- hiPS-CMs
- human cardiac FBs

- HUVEC
- human adipose-derived stem

cells
(Tot. 1.5 × 105)

Oxygen-diffusion gradient Model of MI

Fibrotic phenotype
ameliorated upon

treatment with HF drug
candidate and canonical
cardiotoxic response to

doxorubicin

+, combined with; 3D, three-dimensional; ACTN2, alpha actinin 2; AF, atrial fibrillation; CM, cardiomyocyte; CMPC, cardiomyocyte progenitor cell; DCM, dilated cardiomyopathy; EC,
endothelial cell; ESC, embryonic stem cell; FB, fibroblast; hAMSC, human amniotic mesenchymal stem cell; HCMVEC, human cardiac microvascular endothelial cells; hESC-CM, human
ESC-derived cardiomyocyte; HCM, hypertrophic cardiomyopathy; HF, heart failure; hiPSC, human induced pluripotent stem cell; hiPS-CM, human induced pluripotent stem cell-derived
cardiomyocytes; HUVEC, human umbilical vein endothelial cell; LbL, Layer-by-Layer; MC, mural cell; MCP, multipotential cardiovascular progenitor; MEF, mouse embryonic fibroblast;
MI, myocardial infraction; MPE, multiphoton excited; MSC, marrow stromal cells; MYBPC3, myosin binding protein C3; MYH7, myosin heavy chain 7; PDMS, polydimethylsiloxane; PETA,
pentaerythritol triacrylate; pO2, partial pressure of oxygen; PLN, phospholamban; POMaC, poly (octa-methylene maleate (anhydride) citrate); PRKAG2, protein kinase AMP-activated
non-catalytic subunit Gamma 2; RBM20, RNA-binding motif protein 20; RYR2, ryanodine receptor 2; SCID, severe combined immunodeficiency; SMC, smooth muscle cell; TAZ, tafazzin;
Tot., total number of cells; TTN, titin.
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4.2. 3D Models as a Platform for Developing Therapies for CVDs

In recent years, 3D cardiac models have been used in the context of drug screening and toxicity
screening (Table 3). One of the many advantages of 3D models is the possibility to independently
modulate molecular factors suspected of being involved in disease onset and progression by controlling,
and measuring, the functional parameters of the tissue [177]. Huebsch et al. successfully developed
miniaturized 3D cardiac tissues with the aim to perform physiologically relevant drug response analyses,
once again showing that 3D constructs yielded more reliable results compared to 2D cultures [169].
Intriguingly, machine learning has been used by Lee et al. to analyze several different functional
parameters obtained from force readouts of hiPSC-derived ventricular cardiac tissue strips embedded
in a 3D collagen-based matrix and exposed to a library of compounds [170]. This way, the authors
were able to generate a promising system for automated drug classification using a model capable of
predicting the mechanistic action of an unknown drug [170]. Three-dimensional cardiac tissues derived
from hiPS-CMs were also used as a platform for in vitro drug-induced cardiotoxicity assay [173].
Takeda et al. investigated the electrophysiological and contractile responses of the cardiac constructs
challenged with cardiotoxic drugs known to promote different effects on CMs [173]. Dose-dependent
cytotoxicity caused by doxorubicin was confirmed in the 3D cardiac tissues, as well as decreased hERG
channel blocker-dependent beating rate, which instead was increased after isoproterenol treatment [173].
Importantly, the authors also reported that their model showed greater drug sensitivity than animal
studies with the same compounds [173]. In yet another study, 3D human cardiac organoids were
used to screen a panel of environmental toxins by assessing cell viability, ATP activity and organoid
beating activity [113]. More recently, Mills et al. performed functional screening of more than 100
small molecules with presumed cardiac pro-regenerative potential using a high-throughput human
cardiac organoid system [175]. This approach allowed to uncover detrimental side effects in many
active molecules and led to the identification of two highly promising pro-proliferative molecules, as
well as to the characterization of their mechanism(s) of action [175].

Altogether, these lines of evidence indicate that 3D models based on hiPSCs represent a viable
alternative to at least part of the animal studies for the near future, thereby reducing research-related
costs and potential failures in human clinical trials.

Last but not least, the idea of using 3D constructs based on hiPSCs for cell therapy in CVDs has
been gaining traction for some years now. In the study by Shadrin and colleagues, smooth muscle cells
and fibroblasts were combined with hiPS-CMs in a fibrin-matrigel scaffold, generating cardiopatches
with clinically relevant size (4 × 4 cm) that exhibited electrical and mechanical functions similar to those
observed in the adult human myocardium, including evidence for T-tubules and M-bands [171]. When
implanted in nude mice via dorsal window chambers, cardiopatches underwent proper vascularization;
when implanted onto rat epicardium, the same patches showed robust engraftment and maintained
electrical function without increasing the incidence of arrhythmias [171]. Introducing the vascular
component, Narita and co-workers also reported a hiPS-CM 3D tissue for therapeutic studies [172].
In their system they observed tubular structures consisting of endothelial cells organized around
the hiPS-CMs, which provided a capillary network capable of supplying nutrients and oxygen
throughout the tissue upon implantation on the LV of experimentally-infarcted rat hearts [172].
Besides leading to an overall higher survival rate, the presence of the engrafted tissues led to a
significant increase in wall thickness and to a wide distribution in the implanted area of functional
blood vessels, comprising both host and implanted endothelial cells [172]. Driven by the same aim,
Mattapally et al. produced hiPS-CM spheroids, embedded in a fibrin patch, for transplantation in mice
after experimentally-induced MI [174]. Patch-receiving mice showed a higher engraftment rate and
improved cardiac function compared to non-treated mice [174]. More recently, Wanjare et al. generated
spatially patterned myocardial tissues combining hiPSC-derived cardiomyocytes and endothelial cells
seeded in microfibrous polycaprolactone scaffolds [176]. When transplanted in a rat myocardial injury
model, the engineered tissues promoted pro-survival and pro-angiogenic effects [176]. Interestingly, the
authors found that randomly oriented scaffolds promoted microvessel formation and higher arteriole
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density compared to engineered tissues with aligned scaffolds, underlying how scaffold topography
can play a key role in promoting differential effects on cellular survival and revascularization [176].

5. Conclusions and Perspectives

In the last decade, the emergence and growth of hiPSC technology has led to countless progress
in the medical field and the generation of diseased hiPS-CMs has already provided many advances in
the understanding of the genetic and molecular pathophysiology of cardiac disorders.

However, differentiation of hiPS-CMs in 2D cultures yields inadequate cell maturation,
representing a major obstacle to disease modeling and clinical translations of cell therapies. More
efforts should be dedicated to fine-tuning hiPS-CMs maturation, e.g., by applying combinatorial
approaches and coordinating the timing and the intensity of a specific intervention to recreate the
natural cardiac developmental program. On the other hand, development of 3D cardiac models is
already showing improvements in hiPS-CMs maturation due to the multi-cellularity of these systems
and to their ability to reproduce the physical and environmental cues necessary for the physiological
maturation process from postnatal stages into adulthood. However, a fully mature cardiac tissue that
recapitulates all the properties of an adult heart has not yet been generated, and this gap might be
filled only by uncovering the molecular mechanisms that govern postnatal maturation of the human
heart, including those deriving from postnatal inter-organ communication. Mature hiPS-CMs are
essential to model typical adult-onset disorders or conditions in which the pathogenic mechanisms
involve mechanisms or cellular components that are observed only in mature cells. However, while
the presence of hiPS-CMs with an embryonic or fetal phenotype is considered to be a limitation in most
cases, such cells might be required for cell therapy applications, in which a partially differentiated
phenotype is conducive to better engraftment and proliferation of hiPS-CMs delivered in infracted
myocardium [178]. So far, several approaches have been used in the generation of cardiac 3D
models—namely, bioreactors, biomimetic scaffolds, 3D bioprinting technologies, and organ-on-a-chip
micro-physiological systems. Each technique allowed the implementation of specific features, such as
electrical stimulation, mechanical loading, fine-tuning of medium composition, and oxygen content.
However, the increased complexity of these 3D systems could make them less widely accessible.
In terms of scalability, different applications require constructs of different size; larger formats are
mostly necessary for heart regeneration, whereas miniaturized 3D systems are mainly needed for
basic research or large-scale drug screening. Different sizes then imply different levels of complexity;
for example, large formats also require systems that provide sufficient nutrient and oxygen supply
to avoid the formation of necrotic areas. The number of cells required for a 3D construct is another
important factor to consider, as an average of 0.5–2 million cardiomyocytes per tissue are usually
necessary for 3D systems. Such requirement explains the work being carried out toward cell number
optimization and the creation of smaller functional tissues comprised of fewer cells, thus reducing
time and costs of production. Therefore, depending on the required application, the challenge will be
to generate advanced 3D hiPS-CM platforms capable of providing relevant microenvironment cues
combined with a relative ease of use.

Although technology of 3D models is still in its infancy and further advances in hiPSC culture
systems will be necessary (e.g., in biomaterial, microfluidics and mechanical engineering, as well
as in microfabrication methods), the new platforms based on 3D models are already leading to
better high-throughput screening of new molecules for therapeutics. In turn, these approaches are
generating larger multidimensional datasets, which will require the development of new methods
to fully characterize drug responses. Importantly, 3D humanized in vitro platforms could acquire
a pivotal role in the area of personalized medicine, potentially providing patient-specific in vitro
drug screening and therapeutic approaches, once technological advances will have reduced the time
and cost factors to manageable scales. Finally, despite the achievement of crucial goals in hiPS-CMs
differentiation and maturation, as well as in 3D construct generation, it should be noticed that the
growing body of work we are now witnessing at times shows conflicting data, likely due to the lack of
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hiPS-CMs quality control and standardized experimental conditions among different studies. In this
regard, a fitting example is represented by electrophysiology studies; in this context, there are examples
of hiPS-CMs showing a lack of ion currents normally observed in adult cells [87,179], but also of
hiPS-CMs expressing ion channels that are absent in adult cardiomyocytes [110,180]. This consideration
underlines the importance of carefully evaluating the expression of cardiomyocyte-specific ion channels
in hiPS-CMs before considering a particular model for electrophysiology and/or therapeutic studies.
Therefore, a major challenge now is to develop standardized protocols for reproducible production of
high-quality hiPS-CMs, to be used for studying CVD and for possible clinical applications. Considering
the advances obtained within the last decade, these goals might not be too far in the future.
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