Concentration of ground states in stationary
Mean-Field Games systems

Annalisa Cesaroni and Marco Cirant

Abstract

In this paper we provide the existence of classical solutions to stationary mean field game
systems in the whole space RY | with coercive potential and aggregating local coupling, under
general conditions on the Hamiltonian. The only structural assumption we make is on the
growth at infinity of the coupling term in terms of the growth of the Hamiltonian. This re-
sult is obtained using a variational approach based on the analysis of the non-convex energy
associated to the system. Finally, we show that in the vanishing viscosity limit mass concen-
trates around the flattest minima of the potential. We also describe the asymptotic shape of
the rescaled solutions in the vanishing viscosity limit, in particular proving the existence of
ground states, i.e. classical solutions to mean field game systems in the whole space without
potential, and with aggregating coupling.

AMS-Subject Classification. 35J50, 49N70, 35J47, 91A13, 35B25
Keywords. Ergodic Mean-Field Games, Semiclassical limit, Concentration-compactness method,
Mass concentration, Elliptic systems, Variational methods.

Contents
1 Introduction
2 Some preliminary regularity results

3 Regularization procedure and existence of approximate solutions for ¢ > 0
3.1 The regularized problem . . . . . . . ... L L
3.2 A priori estimates and energy bounds . . . ... ... oo
3.3 Existence of a solution . . . . . . . . . ...

4 Existence of a solution to the MFG system for ¢ > 0
4.1 Apriori L® bounds . . . . . ...
4.2 Existence of a solution to the MFG system . . . . ... ... ... ... .....

5 Concentration phenomena
5.1 Therescaled problem . . . . . . . . . . .. .
5.2 A preliminary convergence result . . . . . . .. ... ...
5.3 Concentration-compactness . . . . . . . . . . . ..
5.4 Existence of ground states. . . . . . . ... ...
5.5 Concentration of mass . . . . . . . . . ... e e

References

2.1 The Hamilton-Jacobi-Bellman equation on the whole space . . . . ... ... ..
2.2 A priori estimates for the Kolmogorov equation . . . . . . . .. ... ... ....

oo

13
13
14
15

20
20
24

27
27
29
30
37
39

43



1 Introduction

We consider a class of ergodic Mean-Field Games systems set on the whole space R with un-
bounded decreasing coupling: our problem is, given € > 0 and M > 0, to find a constant A € R
for which there exists a couple (u,m) € C?(RY) x WHP(RY), for any p > 1, solving

—eAu+ H(Vu)+ A= f(m)+V(z)
—eAm — div(mVH(Vu)) =0 on R¥Y, (1.1)
f]RN m = M.

The aim of this work is two-fold. Firstly, for any fixed € > 0, we prove the existence of classical
ground states of (1.1). Secondly, we study their behavior in the vanishing viscosity limit € — 0.

The Hamiltonian H : RY — R is strictly convex, H € C%(RY \ {0}) and has superlinear
growth: we assume that there exist Cy > 0, K > 0 and v > 1 such that, for all p € RY,

Culp|” = K < H(p) < Culp|”,

1.2
VH(G) p- Hp) 2 K ~ K and  [VH(p)| < K[l (2

The coupling term f : [0,400) — R is a locally Lipschitz continuous function such that there exist
C¢ > 0and K > 0 for which

—Cm® — K < f(m) < -Cym~ + K, (1.3)
with ,
0<a<ﬁ:%, (1.4)
where v/ = ﬁ is the conjugate exponent of .

Finally, we assume that the potential V' is a locally Holder continuous function, and that there
exist b > 0 and a constant Cy > 0 such that

Oyt (max{|z| — Cy,0})? < V(z) < Cy (1 + |z])°. (1.5)

Note that the requirement of V' to be non-negative is not crucial, we just need it to be bounded
from below.

Mean-Field Games (MFQG) is a recent theory that models the behaviour of a very large num-
ber of indistinguishable rational agents aiming at minimizing a common cost. The theory was
introduced in the seminal works by Lasry, Lions [23, 24, 25, 26] and by Huang, Caines, Malhamé
[19], and has been rapidly growing during the last decade due to its mathematical challenges and
several potential applications (from economics and finance, to engineering and models of social
systems). In the ergodic MFG setting, the dynamics of a typical agent is given by the controlled
stochastic differential equation

dX, = —veds +V2edBg, s> 0,

where v, is the control and B; is a Brownian motion, with initial state given by a random variable
Xo. The cost (of long-time average form) is given by

lim AE / [L(02) + V(X.) + f(m(X.)]ds,
0

T—00

where the Lagrangian L is the Legendre transform of H (see (2.1)) and m(x) denotes the density
of population of small agents at a position z € RV. A typical agent minimizes his own cost, and
the density of its corresponding distribution law £(X) converges as time s — 0o to a stationary
density p, which is independent of the initial distribution £(Xp). In an equilibrium regime,
coincides with the population density m. This equilibrium is encoded from the PDE viewpoint



in (1.1): a solution « of the Hamilton-Jacobi-Bellman equation gives an optimal control for the
typical agent in feedback form VH (Vu(+)), and the Kolmogorov equation provides the density m
of the agents playing in an optimal way.

The two key points of our setting are the following: firstly, the cost is monotonically decreasing
with respect to the population distribution m, namely agents are attracted toward congested areas.
A large part of the MFG literature focuses on the study of systems with competition, namely when
the coupling in the cost is monotonically increasing; this assumption is essential if one seeks for
uniqueness of equilibria, and it is in general crucial in many existence and regularity arguments,
see, e.g [18], and references therein. On the other hand, models with aggregation like (1.1) have
been considered in few cases, see [10, 13, 14, 15, 16].

Secondly, the state of a typical agent here is the whole euclidean space RY. Usually, the
analysis of (1.1) is carried out in the periodic setting, in order to avoid boundary issues and the
non-compactness of RY. Few investigations are available in the truly non-periodic setting: see
[30] for time-dependent problems, [2] for the case of bounded controls, [17] for some regularity
results and [3] for the Linear-Quadratic framework. We observe that the non-compact setting is
even more delicate for stationary (ergodic) problems like (1.1): a stable long-time regime of a
typical player is ensured if the Brownian motion is compensated by the optimal velocity vs. In
other words, if a force that drives players to bounded states is missing, dissipation eventually leads
their distribution to vanish on the whole RY. This phenomenon is impossible if the state space is
compact. The main issue here is that the behaviour of the optimal velocity vs(-) = VH(Vu(-)) is a
priori unknown, and depends in an implicit way on V' and the distribution m itself. Note that V()
represents the spatial preference of a single agent; if it grows as |z| — oo, it discourages agents
to be far away from the origin. At the PDE level, this will compensate the lack of compactness
of RV, Let us mention that even without the coupling term f(m®), the ergodic control problem
in unbounded domains has received a considerable attention, see e.g. [4, 20, 21] and references
therein.

In our analysis, we exploit the variational nature of the system (1.1), which has been pointed
out already in the first papers on MFG, see [25], or the more recent work [28]. Indeed, solutions
to (1.1) can be put in correspondence with critical points of the following energy

E(m,w) = /RN mL (== ) +V(z)m+ F(m) dz if (m,w) € Ko,

(1.6)
Too otherwise,
where F(m) = fom f(n)dn for m > 0 and F(m) = 0 for m <0 and
w sup,epn (=52 — H(p)) if m >0,

+00 otherwise.
Note that mL(— - /m) reads as the Legendre transform of mH (-). The constraint set is defined as
Kear = {(m,w) € L"(RY) N LYRY) x L'(RY) s.t.

6/ m(—Aw)daz:/ w-Vedr VYo O (RY),
RN RN (1.8)

N/ /<N
mdxr = M, sza.e.} with ¢ = ]\Z‘VH 7/*
ol v > N.

RN
Under assumption (1.3) on the coupling term, the energy £ is not convex. Condition (1.4)
is necessary for the problem e.(M) := min(,, wek. ,, €(m,w) to be well-posed. Indeed, consider
any (mg,wo) € K. such that mg has compact support. An easy computation shows that if
a >~'/N, then
E(e VNmo(o™), 0 N+ yy(o71)) = —c0



as ¢ — 0, so &€ is not bounded from below on K. ps. We show that (1.4) is indeed sufficient for
e«(M) to be finite, and allows to look for ground states of (1.1). This will be accomplished by a
study of the Sobolev regularity of the Kolmogorov equation, see in particular Section 2.2. Note
that the critical case & = 4/ /N is more delicate, and requires additional analysis. We also mention
that another critical exponent is intrinsic in (1.1): if @ > +//(IN — «'), one has to expect non-
existence of solutions (see [13]). We refer to our case as the subcritical case, in analogy with the
L?-subcritical regime in nonlinear Schrédinger equations with prescribed mass (see [13, Remark
2.9] for additional comments). The analogy can be made precise in the purely quadratic framework,
that is when H(p) = 1|p|?. Indeed, as observed in [23, 24], the so-called Hopf-Cole transformation

u(z)

=, with

permits to reduce the number of unknowns in the system. Setting v?(z) := m(z) = ce™
¢ normalizing constant, then v is a solution to

—2e2Av + (V(z) = Nv = —f(v*)v

with [,y v*(z)dz = M. Then the energy reads £(v) = [on €2|V|? + $V (2)v? + 1 F(v?)dx.

In our approach, to construct solutions to (1.1), we look for minimizers (m,w) € K¢ of
the energy (1.6). These minimizers can be obtained by classical direct methods, by using in
particular estimates and compactness in some L? space for elements (m, w) in K. ps with bounded
action, i.e. which satisfy fRN mL (f%) dr < C, obtained in Section 2.2. Then, the existence
of a solution (ue, A¢) of the HJB equation in (1.1) is obtained by considering another functional
with linearized coupling (around the minimizer) and the associated dual functional in the sense of
Fenchel-Rockafellar (as in [8]). One has to take care of the interplay between u and m as |z| — oco.
To handle the lack of a priori regularity on the function m, we first regularize the problem, by
applying standard regularizing convolution kernels on the coupling (see Section 3). We construct
minimizers (mg, wy) of the regularized energy and associated solutions (ug,my) of the regularized
version of (1.1). Then, in order to come back to the initial problem, we provide some new a priori
uniform L bounds on my, which in turn imply a priori uniform bounds on |Vu| and (local)
Holder regularity of my that is uniform in k. This key a priori bound is provided by Theorem 4.1

Note that we will consider classical solutions to this system (with a slight abuse of terminology),
that is (u,m) € C2(RY) x WLP(RYN), for all p > 1. The existence result, proved in Section 4, is
the following.

Theorem 1.1. Under the assumptions (1.2), (1.3), (1.4) and (1.5), for every e > 0 there exists
a classical solution (us.,me,\:) € C2RY) x WEP(RN) x R, for all p > 1, to (1.1). Moreover,
(me, —m:VH(Vu.)) is a minimizer in the set K. pr of the energy (1.6).

We observe (see Remarks 3.5, 4.2) that Theorem 1.1 holds under more general conditions on
H and f, that is, if there exist Cy, Cy > 0 and K > 0 such that

Cr'lel" =K < H(p) < Cu(lp|” +1),  —Cym® =K < f(m) < C;'m® + K, (1.9)

where o satisfies (1.4).

In the second part of the work, in Section 5, we analyze the behavior of the triple (ue, Ac, me)
coming from a minimizer of £ as € — 0, under the assumptions (1.2), (1.3). From the viewpoint of
the model, this amounts to remove the Brownian noise from the agents’ dynamics. Heuristically,
if the diffusion becomes negligible, one should observe aggregation of players (induced by the
decreasing monotonicity of coupling in the cost) towards minima of the potential V', that are the
preferred sites. Moreover, in the case V has a finite number of minima and polynomial behavior
(that is, when (1.13) holds) we specialize the result showing that the limit procedure selects the
more stable minima of V', implying e.g. full convergence in the case that there exists a unique
flattest minimum.

In order to bring as much as possible information to the limit, we consider an appropriate
rescaling of m, u, namely

il 0l

Ny’ 4 Noa(v'-1)—+' 4
ms() = E’Y/—QN m(g-y/faN . +.’L’€), a&-() =€ ~—aN (u(g’y/aN . +$5) — u({,['&.)) y (110)




for all € > 0. The rescaling is designed so that (@.,mc) solves a MFG system where the non-
linearities have the same behavior of the original ones, i.e. H. ~ |p|” as p — 0o, but the coefficient
in front of the Laplacian is equal to one for all e, see (5.19). Moreover, the couple ., m. is
associated to a minimizer of a rescaled energy &, see (5.23). It turns out that in this rescaling
process, the potential V' becomes

Na~y' !

V() = e V(gﬂﬁ ),

and vanishes (locally) as e — 0. Therefore, as one passes to the limit, the potential cannot
compensate anymore the lack of compactness of RV, and the convergence of m. in L'(RY) has
to be proven by other methods. Heuristically, the aggregating force should be strong enough
to overcome the dissipation effect, but the clustering point can be hard to predict by lack of
spatial preference. This is why we also have to translate in (1.10) by .. We will select x. to be
the minimum of u.: heuristically, being u. the value function, this is the point where most of the
players should be located. In order to recover compactness for the sequence m., we implement some
ideas of the celebrated concentration-compactness method [27]. This principle states intuitively
that if loss of compactness occurs, m. splits in (at least) two parts which are going infinitely far
away from each other, that is

Me ~ XBr(0)Me T XRN\Bag(0)Me> (1.11)

with R — 00, [ Xpg(0)Te ~ aand [ Xgy\p,,(0)Te ~ M—a for some a € (0, M) (a third possibility
might happen, but it is easily ruled out here by local estimates). This induces a splitting in the
energy &, that is

inf & 2 inf &4+ inf & (1.12)

fm:M m=a fm:Mfa

One then exploits a special feature of &, which is called sub-additivity:

inf & < inf &+ inf &,
fm:M fm:a fm:]\/lfa

that makes (1.12) impossible. While sub-additivity is easy to prove for & (see Lemma 5.5), the
splitting (1.12) requires technical work, in particular due to the presence of the term mL(—w/m)
in &, that becomes increasingly singular as m approaches zero (a simple cut-off as in (1.11) is not
useful). The property (1.12) is proven in Theorem 5.6. It relies on the Brezis-Lieb lemma and
a perturbation argument. The L' convergence of m. enables us to obtain the full convergence
of (te,m.) to a limit MFG system. By a uniform control of the decay of m. as || — oo, that
comes from a Lyapunov function built upon 4., energy arguments and the crucial L>° estimate of
Theorem 4.1, we are also able to keep track of z.. In terms of the non-rescaled density m., x. is
the point around which most of the mass is located.

The second main result of this work is stated in the following two theorems. The first one is
about concentration of m..

Theorem 1.2. Under the assumptions of Theorem 1.1, there exist sequences € — 0 and x., such
that for all m > 0 there exists R and g for which for all € < gg,

/ v medx > M —n.
!

z—x.|<Rev —aN

Moreover, x. — &, where V(Z) =0, i.e. T is a minimum of V.
If, in addition, V has the form

V(z) =h(@) [] |z — a;", Cyt < h(z) < Cy on RV, (1.13)
j=1

for some z; € RN, and b; > 0 (with D=1 by =0b), then e — x;, withi € {j =1,...,n | b; =
maxy, by }.



Secondly, we describe the asymptotic profile of (., m.) as € — 0. Note that as a byproduct
we obtain the existence of solutions to MFG systems without potential.

Theorem 1.3. Up to subsequences, (i.,m.) converges in CL_(RY) x Cloc(RYN) N LP(RY), for all

loc
p > 1, to a solution (@, m) of

—Au+ Cy|Vu]? + A= -Cym®
—Am — Cyy div(m|Vu|'=2Vu) =0 (1.14)
Jan m =M.

The function u is globally Lipschitz continuous on RY, and there exists ci1,co > 0 such that

0 < m(z) < cre~e2lel,
Finally, if w = —Cgym|Vau|'~2Vau, then

Eo(m, w) = min {&(m, w) | (m,w) € Ky, ar, m(1+ ly|°) € Ll(]RN)} , (1.15)
where ,
_ |w|’Y 1 a+1

We finally observe that by analogous methods, one can prove existence of solutions to more
general potential-free MFG systems, see Remark 5.9.
Notation

We will intend for classical solution to the system (1.1), a triple (u, m, \) € C?(RN)x WP (RN)xR,
for all p > 1.

For any given p > 1, we will denote by p’ = z% the conjugate exponent of p, p* = NN—Q ifp< N
and p* = 4o0if p > N.

For all R >0, x € RY, Br(z) := {y € RV : [z — y| < R}. We will denote by wy := |B1(0)]|.
Finally, C,C4, K, K, ... denote (positive) constants we need not to specify.

Acknowledgements. The authors are partially supported by the Fondazione CaRiPaRo
Project “Nonlinear Partial Differential Equations: Asymptotic Problems and Mean-Field Games”
and PRAT CPDA157835 of University of Padova “Mean-Field Games and Nonlinear PDEs”.

2 Some preliminary regularity results

Let L be the Legendre transform of H, i.e.

L(q) = H*(q) = Sl;gv[p'q—H(p)], g €RN. (2.1)

The assumptions on H guarantee the following (see, e.g., [11, Proposition 2.1]).
Proposition 2.1. There exist Cp,Cy,Coy > 0 depending on Cg and on v such that ¥V p,q € RY,
i) L € C?*(RN \ {0}) and it is strictly convez,
i) 0 < Crlgl" < L(g) < Cr(lal +1),
iii) VL(q) - q - L(q) > Cula]" = C1 ",
iv) Cag[" "' = C71 < |VL(g)| < CT (g +1).
v) Colp ™! = Gy < [VH(p)] < C3 ' (Ip) ™" +1).

We will use the following (standard) result on Holder functions vanishing at infinity.



Lemma 2.2. Suppose that m > 0, ||m|lcoemny < cp, for some 0,cp, > 0, and [y mdz < oco.
Then, m(x) — 0 as |z| — co. Moreover, if

/ mdx <n
lz|>R

for some n, R > 0, then
6
< Cn#twn 2.2
‘ggﬁﬂd z) < Cnow, (2.2)

where C' > 0 depends only on cp, N.

Proof. By contradiction, suppose that there exists 6 > 0 and a sequence |z,| — oo such that
m(z,) > 0 for all n. We may also assume that |z,41| > |z,|+1 for all n. By the Holder regularity
assumption,

)
m(z) > m(x,) — cplz — :rn|‘9 > 2

-

provided that & € By.(z,,), and r’ < 52-. Choose r = min{1, (
for all n # m. Then,

)y}, so that B,.(x,)NB,(x,,) = 0

2¢cy,

/Rdem>Z/ md(L’>Z*|B )| = 400

neN (zn) neN

that is impossible.
As for the second part, let M := max|, >z m(x) = m(z), || > R (note that such a maximum
is achieved as a consequence of the first part of the lemma). As before,

M
m(z) > m(z) — cplz — 2| > >

1/6
for all x € B,(Z), where r = (%) . Therefore,

N/6
M M M
de > 2 |B(2)] = =By (0)] [ —
n>/fﬂ|2Rm r= 4 | Br(z)| 4 |B1(0)] <20h>

and (2.2) follows. O
We recall the following well known result, proved in [7, Theorem 1].

Theorem 2.3. Let f, — f a.e. in RY and assume that || f||1e@~y < C for all n and for some
€ [1,400). Then
liTILn[an”Z[),y(RN) - an f”L:n RN)] ”f”Lp (RN)*

From classical elliptic regularity, we have the following result.

Proposition 2.4. Let p > 1 and m € LP(RY) be such that

‘/ mApdx
RN

for some K > 0. Then, m € WHP(RY) and there exists C > 0 depending only on p, such that

S K|Vl gny forallp € C&e(RN)

||Vm||Lp(RN) < CK.



Proof. Fix any R > 1. Let ¢ € C§°(B2(0)), ¢(Rzx) := ¢¥(z) (so, ¢ € C§°(B2g(0))) and v(x) :=

m(Rz) on RY. Then,
1/p’
[ mapay <k ([ vy
Bzr(0) B2r(0)

1/p
— KRV-N+N/P (/ |V1/)p'dx> < KRliN/pHQZJHWl’P/(Bz(O))'
B2(0)

_ RQ*N

/ v Ay dx
B2(0)

Hence, by [1, Theorem 6.1], v € WP(B1(0)) and there exists a constant C, depending on p
(but not on R), such that

IVolle (s, 0)) < lVllwirs o)) < C(KR'"™NP 4 vl e (B2 (0)))-

Therefore,

1/p 1/p 1/p
/ |VmP dy = RN/p1 / \VolP da < C |K + RN/P1 / |v|P dx
Br(0) B1(0) B2(0)

= C(K + R mll1o(Byn(0)))-

Letting R — oo, we get that |Vm| € LP(R™) and the desired estimate. O

2.1 The Hamilton-Jacobi-Bellman equation on the whole space

In this section we provide some a priori regularity estimates and existence results for Hamilton-
Jacobi-Bellman equations in the whole spaces of ergodic type. In particular we will consider
families of Hamilton-Jacobi-Bellman equations

—Aup + Hpy(Vuy,) + Ay = Fy(x) — fu(x) on RV (2.3)

where F,, — f, is locally Holder continuous, A, € R are equibounded in n, that is |\,| < A and
fn € L°(RY), with || fu]lec < ¢y for some ¢; > 0 independent of n. Moreover H,, is for every n an
Hamiltonian which satisfies (1.2), with constants v and Cy independent of n; finally, there exists
Cr > 0 and b > 0 independent of n such that

Cpt(max{|z| — Cp,0}) < F,(z) < Cp(1 + |z)? Vn and Vo € RY. (2.4)

Note that, differently from assumption (1.5) for the potential V, the function F, can also be
bounded, if b = 0.

Theorem 2.5. Let u,, € C2(RY) be a sequence of classical solutions of the HJB equations (2.3).
Then there exists a constant K > 0 depending on Cg,Cr,cy,v, N, X such that

[V (2)] < K(1+ |z))7, (2.5)

where b > 0 is the growth of F,, appearing in (2.4) and ~ is the growth of H, appearing in (1.2).

Proof. Without loss of generality we may consider H,,(p) = Cy|p|” for all n and p. Indeed, every
v, solves

*Aun + CVH|vun‘7 + )‘n = Fn(gj) - fn(x) + CH|VU7L‘A/ - Hn(vun) on RNa

and since |Cy|Vu,|” — H,(Vuy,)| < Cg by (1.2), we can redefine f,, to include Cg|Vu,|? —
H,,(Vu,), which then satisfies the bound || f,|lcc < ¢f + Ch.



We first claim that if v € C%(By(0)) satisfies
| — Av+ Cy|Vu|"| <k on Bs(0)
for some k > 0, then we have for any r € [1, 0],
IVl L (5100 < C, (2.6)

where C' depends only on k,Cy,v, N,r. If r € [1,00), this is proven in [22, Theorem A.l], see
also [12, Theorem 19]. The case rr = oo follows by classical elliptic regularity, since if r in (2.6) is
large enough, then —Aw is bounded in L9(B3/5(0)) for some ¢ > N, and the statement follows by
Sobolev embeddings.

In view of these considerations, the gradient bound (2.5) easily follows if b = 0. For the case
b >0, fix 2o € RN, and let § = (1 + |xo|)~""". Let

vn(y) = 5%1%(:1:0 +6y) on RV,
Then, v,, solves
—Avy, + Cy|Vou|Y = 87 (Fy (0 + 6y) — fa(mo + 6y) — An)-
Since § < 1,

Cr(3+|zo|)® +cp+ A

87| Fo (0 + 0y) — fulzo + 6y) — An| < <C
|Ep(2o + 6y) — fulxo + 6y) | < (1 + [zo]) =G
for all y € B3(0) by (2.4) and the bound on f,.

Therefore, by the first claim, B

[Vonll Lo (B, (0)) < C
for all n. In particular, choosing y = 0,
[Vun(@o)| = 6777 |Vun (0)] < C(1+ o),

and the desired estimate follows. O

Moreover, we prove the following a priori estimates on bounded from below solutions to (2.3).

Theorem 2.6. Let u,, € C*(RYN) be a family of uniformly bounded from below classical solutions
o0 (2.3), that is for which there exists C' > 0 such that u, > —C for every n.
Ifb=10 in (2.4), we moreover assume that there exists 6 > 0 and R > 0 independent of n such
that
Fo(z) — fo(z) = A\ > 5 >0, for all |z| > R. (2.7)

Then there exists C' > 0 such that
up(z) > Clz|'™*5 = C™',  VneN,zeRV, (2.8)
where b > 0 is the growth power appearing in (2.4) and v is the growth power appearing in (1.2).

Proof. The proof is based on the same argument as in [4, Proposition 3.4], we sketch it briefly for
completeness. Since u,, is bounded from below we can assume u,, > 0, up to addition of constant
C (without changing the equation).

We assume by contradiction that (2.8) does not hold. Then there exist sequences x; and uy,,
Un, (1)

such that |z;| > 2R, |z;| = +o0, and =, — 0. Let a; = % and we define the function
e
. 1
vi(z) = = Uy (x4 ajz)
a; "



By Theorem 2.5, we get that |Vuy, (z)| < K(1+ |x|)% Therefore, v!, [Vv!| are uniformly bounded.
Moreover, v* is a solution to

b_1q b
—a; A+ Hy (a] V) 4+ Ay = Fo, (21 + aix) — fo, (21 + aiz).

In particular, recalling (1.2), we get that v is a supersolution to

b _1-p
—a; At + C’H|Vvl|" > al_b (=An, + Fo, (2 + arx) — fo, () + 1)) .

Note that, for every [ sufficiently large, by (2.4) and by (2.7) (in the case b = 0) the right hand
side of the equation
afb (=An, + Fo, (2 + @iz) — fo, (2 + 1)) >0

for  such that |z| < 1.

Moreover, passing eventually to a subsequence, we get that v' — v locally uniformly in n and
b

a?ilib — 0. So v is a supersolution to Ci|Vv|? > 6 > 0 in B(0, 1) with homogeneous boundary
conditions (since v > 0). By comparison, recalling the explicit formula of the solution to the
eikonal equation |V f|Y = C in B(0,1) with homogeneous boundary conditions, we conclude that
v(x) > C%(l — |z|) for all  such that |z| < 1. Moreover, by uniform convergence, we get that,
eventually enlarging C' and taking [ sufficiently large, v!(z) > C’%(l — |z|) for all x with |z| < 1,
in particular v!(0) > C%. Recalling the definition of v!, we get that v'(0) — 0, which yields a
contradiction. O

Define ~
An = sup{A € R : (2.3) has a solution u,, € C*(R™)}.

Theorem 2.7. Assume that for every n the function F, — f, is bounded from below uniformly in
n.

(i) An < 00, for every n, and there exists, for every n, a solution u, € C2(RY) to (2.3) with
n = An. Moreover

> >l

A, = sup{\ € R: (2.3) has a subsolution u, € C*(R™)}.

(ii) If F,, satisfies (2.4), with b > 0, then, for every n, the solution u, to (2.3) with A\, = \,, is
unique up to addition of constants and satisfies (2.8).

(iii) If F,, =0, and there exists 6 > 0 independent of n such that

limsup f,(z) + Ap < —6 < 0, (2.9)

|z| =400
then for every n there exists a solution to (2.3) with A, = \,, which satisfies (2.8) with b = 0.

Proof. (i). The proof of this result can be obtained by a straightforward adaptation of the proof
of Theorem 2.1 in [4], using the a priori estimates on the gradient given in Theorem 2.5. Observe
that actually in [4] it is required a stronger assumption on the regularity of F;, — f,,, in particular
local Lipschitz continuity. This assumption is used to derive a priori estimates on the gradient of
solutions by using the so called Bernstein method (see Appendix A in [4]), which depends also on
the L norm of V(F,, — f,,). In our case we can weaken this assumption to just Holder continuity
(so still ensuring classical elliptic regularity) since we are using a priori estimates on the gradient
given in Theorem 2.5, which depends only on the L norm of F,, — f,, and are obtained in [22]
by the so called integral Bernstein method.

(ii). For the proof we refer to [20] (see also [4] and [11]). In particular in [20], it is proved that
Uy, is bounded from below. By looking at the proof, it is easy to check that, due to the uniformity
in n of the norms of coefficients, the bound can be taken independent of n, and by Theorem 2.6
we get the estimate on the growth.
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(iii). By adapting the argument in [4, Theorem 2.6], we get that there exists a bounded from
below solution to (2.3) with \,, = \,, with bound uniform in n. Then using Theorem 2.6, we get
the estimate on the growth. We give a brief sketch of the proof of the existence of a bounded from
below solution. For every R > 0, we consider the ergodic problem

_AnR R R _ _
{ Ault + H,(Vul) + \E=—f |z|<R (2.10)

ul(z) — +o0 |z| = R.

Using the result in [5], we get that for every R > 0 there exists a unique A and a unique up to
addition of constant solution uf* € C%(Bg).

First of all we claim that limg A® = X,. Tt is easy to check that if R > R, then A\ < AE,
and moreover that A* > X,. So, the sequence AZ is converging as R — +0o to some A\ > \,.
Moreover, by the same argument as in Theorem 2.5, we get that for every compact K C RY, there
exists a constant C' > 0 such that |Vuff| < C in K for every R sufficiently large and for all n.
Without loss of generality we can assume that uf}(0) = 0 for every R. So, using the gradient bound,
and elliptic regularity, we conclude that uf* is bounded in C?(K) by some constant independent
of R. Hence, by Ascoli-Arzeld Theorem, and via a diagonalization procedure, we get that uf
converges locally in RN, with u,, € C?(RY). Moreover, u, is a solution to (2.3), with A = \*.
Recalling the characterization of A, and the fact that An > An, we conclude that Ar = A

Then, we consider % € Bp such that uf(zf) = min|z|<r ulf’. Recalling that uf is a solution
to (2.10), we get by computing the equation at 2% and by recalling that H, (0) < 0, that

A+ f(@) > Ha(0) + A + f(af) > 0.

Using condition (2.9), and recalling that A — X,, we get that there exists a compact set K
(independent of R and of n) and Ry > 0 such that for all R > Ry, 2 € K.
Recalling that uf(0) = 0 and |Vuf| < C in K with C independent of n, R, we conclude that

uft(rr) > —C for some constant C independent of n, R. But, this implies, since ut(z) > uff(z)

for every R, that passing to the limit u,(z) > —C, with C independent of n. O

2.2 A priori estimates for the Kolmogorov equation

In this section we provide general a priori estimates for couples (m,w) € (L*(RN) nW1L4(RY)) x
L'(RN) such that [y m(z) = M and —eAm + divw = 0 where

/ '>N
=" v 1 (2.11)
oy V<A

Lemma 2.8. Let g < NN—fq, forg < N, and B < 400 for q > N. We define 1 <r < as follows

1—1+<1—1)1 (2.12)
ro V) B '

Then, there exists a constant C, depending only on N and (3, such that

1
1 w |y B i
[ c(ﬂ, /RNm‘E‘ dx+M) [ (2.13)
CL w % 1
= C(m/ /RN mi (=) d””M) Il 2o )

where Cr, = CL(Cy,7y) is the constant appearing in Proposition 2.1.

We now assume that ,

g
1 14+ —. 2.14
<B <1+ (2.14)
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Then, there exists § > 0 such that

¥ 1
[l ||(Ll;2%)]€ < ,M(H"S)B_1 (/ m ‘E‘ dx) <CCL— M(H‘S)B_l/ mL (—E) dx,
RN m e RN m

(2.15)
where the constant C' depends only on v, N, and (3.

Proof. Since m € W14(RY), by Sobolev embedding and interpolation, we get that m € L#(RY).
Using —eAm + divw = 0, we get for all ¢ € C§°(RY),

€ Vm-Vgodx:/ w - Vodz.
RN RN

Using Holder inequality, recalling (2.12), we obtain

1 1—L
f/ w-Vepdr §/ ‘—‘mw m'”V |V|dz
g JrN RN &
1

1 w |
< (2 [om|2 ) il 191

Therefore, we get that for all ¢ € C5°(RV),

L™ (RN)*

1
37

1 w Y
<2 [l ) 1l 1701

We apply then Proposition 2.4 and we obtain that m € W"(RY) and that there exists a constant
C, depending only on 7, such that

Vm - Vedx
RN

1
37

1 w |
IV p-@n) < C (w /RN m ’E‘ d:r) Il s s (2.16)

From this inequality, using Proposition 2.1 and recalling that by interpolation, since |[m|| ;1 (ry) =
1

M, |m|pr@ry < ||m||zﬁ(]RN)M$, we conclude the desired inequality (2.13).
Now we fix 7 such that

L_ (1 1\ N N N1
n \r N)N+1 N+1 N+1r
Note that, by a simple computation using (2.12), we get % - % = NLH%M (6 —1- 'YN)’ therefore,

by (2.14), we conclude that that n > 8. By Gagliardo Nirenberg inequality, and recalling that
[lm|l1 = M, we get

. 1
[l Lo ey < CIIVWIIXT*RN)MNH- (2.17)

Since n > 3, by interpolation we get that there exists 6 > 1 such that ||m||9 , ®N) S l[m| oy MOL.

Actually
1 1

1
9_<1_5)(N+1)1+N(1—é) (1_$>.

So, we substitute in (2.17) and (2.16) and we get, elevating both terms to +

/N+1

9N+1 w o4 77/
Il 2, < €M )(/RNm‘m’ d:zc) Il 3 (2.18)

12



Now, since 6 > 1, by (2.14), we get

,_Yl

SR =6+5ﬁ1{N+1—ﬁ]>0.

g NEL_ Y Y
N v N@B-1)

Therefore we deduce (2.15) from (2.18) with

!

I e e
5_,8—1[N+1_ﬁ}' (2.19)

Corollary 2.9. For every r < q, there exists C > 0 depending on N, v' and r such that

C w ’
[mflwrr@yy < - (CL /RN mL (_E) dx +¢&” M) . (2.20)

Moreover, if v > N (so ¢ > N), then m € C%?(RN) and

C w /
_Z 2l
[m|coe@mny < = (C’L /RN mL( m) dr +¢ M) . (2.21)

Proof. For ¢ > N (equivalently v/ > N), we fix r < ¢ and we choose 8 which satisfies (2.12) for
such 7. By Sobolev embedding theorem, W (RY) is continuously embedded in L?(RY). So,
there exists C' depending on N and r such that |[m||s@y) < C|[m|lyr-@y). Using inequality

(2.13), we get
C w ’Y/ ’
,</ m’—‘ d:chsVM).
e RN m

C 'Y/ /
,</ m’g‘ d:c+5”M>.
ev RN m

In particular for ¢ > N, we can choose r > N and by Sobolev embedding theorem we get that
there exists 6 = 1 — % and a constant C' > 0 depending on N and r such that

[[mllco.o ) (j (/ m‘g’v dm+57'M)

g RN m
¢ CL/ mL (—E) de +eV' M) .
6’)// RN m

For ¢ < N, we fix r < ¢, and choose the corresponding § in (2.12), that satisfies § <
Hence we conclude again from inequality (2.13).

[mlLe@yy <

If we substitute again in (2.13) we get

Il @yy <

IN

IN

_N
N—~""

O

3 Regularization procedure and existence of approximate
solutions for ¢ > 0

3.1 The regularized problem

We consider the following approximation of the system (1.1),

—eAu+ H(Vu) + X = fi[m](z) + V(z),
—eAm — div(mVH(Vu)) =0, (3.1)
fRN mdx = M,
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where
flnl(e) = flmex) s o) = [ e =nf ([ mat-2as)ay 62

and g, for k > 0, is a sequence of standard symmetric mollifiers approximating the unit as k — oc.
We observe that fj[m](x) is the L2-gradient of a C' potential F}, : L'(RY) — R, defined as
follows

Fylm] := /RN F(m* xx(z))dz, (3.3)

where F(m) = [;" f(n)dn for m >0 and F(m) = 0 for m < 0. Note that using Jensen inequality
and (1.3), we get that for all m € L*(RY) such that m >0, and [,x m(z)dz = M,

Cy
a+1

Cy
a+1

/ m*tH(z)dz — KM < Fy[m] < — / (m* x5k () do+ KM. (3.4)
RN RN

In order to construct solutions to the system, we follow a variational approach and we associate
to (3.1) a energy, as already described in the introduction. We define the energy

/ mL (—E) +V(x)mdz + Fplm] if (m,w) € K¢,
RN m

E(m,w) := (3.5)

400 otherwise,

where K. s is defined in (1.8) and L is defined in (1.7). We recall that the exponent ¢ appearing
in the definition of K. n is

/

N
g = N 7Y <N
5 v > N.

Therefore, ¢ < 4'. Observe that, if ¢ < N, ¢* = % — N%aw and that ¢* > 1+ % S 1+aby
(1.4). If g =~" > N, then we let ¢* = +o0.

3.2 A priori estimates and energy bounds

In this section, we provide bounds from below for the energy &, assuring in particular that the
minimum problem is well defined.

Lemma 3.1. Let (m,w) € K. pr. Then

'y/aN

Er(m,w) > —K — Ce 7'=aN (3.6)

where C, K > 0 are constants depending only on N, M,Cp,~v,a, M.
In particular there exists finite

ere(M) = - wi)rg;C . Er(m,w).

Proof. Recalling that V' > 0, estimate (3.4) and applying (2.15) with « = § — 1, we get

C
Ex(m,w) > /‘nd(—g)dm— ! meH de — KM
RN m a+1 [z
4 — a « 8 1 «
> O M-+ )||m| (Lla++1)(1+ ) THHmH(Ll:ll) KM
o 1 1+3

> —Cobe™ v [ ——— — KM
- ((6+l)(a+1))

where C' is a constant depending only on N, M, Cp,~v,«a and

5:1{V—4. (3.7)



Therefore, substituting in the energy, we get

(v —aN) _ Aan aN v —aN
> (— 7 /—aN - —
Ex(m,w) > -C N ¢ 7 ] KM,

which gives the desired inequality. O
We get also a priori bounds on minimizers and minimizing sequences.

Proposition 3.2. Let (m,w) € Ko a such that ey (M) > E(m,w) — n, for some positive 1.
Then

v 'No
/ m ’B] dr < Ce™7-~a + K, (3.8)
RN m
_2'Na_
]|t vy < Ce™7Ne + K, (3.9)

for some C, K positive constants which depends only on o, N,V,Cp,,n.

Proof. First of all we observe that there exists C' > 0 depending on M, Cy,, Cy such that
epe(M) <C. (3.10)

Let m = ce™ 1|, where ¢ is chosen to have Jgn mdz = M, and w = eVm, so that (m,w) € K¢ u.
By assumption (1.5), we get that [,, mV(z)dz < C for some constant C' > 0, by (3.4) that
Fy.[m] < KM and by the properties of L in Proposition 2.1, we have that [, mL(—w/m)dz <

(% + CL)M. So, in conclusion ey (M) < &E(m,w) < C as required.

Note that if (m,w) € K. ar, and e.(M) > E(m,w) — n, for some positive 1, then, by (3.4), by
the fact that V' > 0, and by the properties of L in Proposition 2.1, we get
' C
‘ - Loty — KM. (3.11)

>€M > 52
Cotnze(M) 402 Eumw) > | L

w
m|—
RN m

We apply (2.15) with « = 8 — 1, and we obtain

'Y/ Cf

— m*tdx
a+1

C’+n+KM2/
]RN

w
m|—
m

’ C
> Ce? M17(1+6)(1+a)Hm”gj:ﬁ)(l+6) _ —:1 ”mH(Ll:;O{)

'Na

~o- Note that if we choose
— [e3

Recall that 6 +1 = J—J/\, (can be computed using (2.19)), so %/ ==

A sufficiently large (depending on §, M, Cy,Cy), we get that

Cy

Cg,y/M1_(1+6)(1+a) (6—%’A)1+6 _
a+1

(5_%’14) >C+n+ KM,

from which we conclude that ||m||(Ll(iﬁ) < e_%A, and so estimate (3.9) holds. Estimate (3.8)
comes from (3.9) and (3.11). O

3.3 Existence of a solution

We are now in the position to show existence of minimizers of the energy & in the class K¢ ps for
every €, M > 0.
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Proposition 3.3. For every e > 0 and M > 0, there exists a minimizer (my, wy) € Ko m of &k,
that is

Er(my,wi) = inf Er(m,w).
(m,w)EK:E,IW

Moreover, for every minimizer (my,wy) € Ko ar of Ex, there holds
mi(1+ |z))® € LYRY),  wi(1+ |z))*" € LYRY), (3.12)

and there ezist constants C > 0 and K, independent of ¢ and k, such that

’Y/ A aN
Mloda +/ miV () dw + Hmk”(zjil(RN) < Ce 7-Na + K. (3.13)
RN

mg

Proof. Let (my,w,) € K. p be a minimizing sequence, that is E(mp,w,) — eg(M). This
implies that, choosing n sufficiently large, & (my, wy) < e.(M) + 1. From this and (3.4) we get

n C
/ my, L (_w) dx —|—/ V(z)my, dx < Ep(mp, w,) + it motde + KM
RN mn RN a+1 RN
Cy
< M)+1 ol L KM. (3.14
—ek,s( )Jr +Oz—|—1 RNmn + (3 )

By Proposition 3.2, we get that
/ ’ _2laN_
||mn||LC¥+1 +/ mi—’y \wn|7 dr < Ce v’jfaz\r + K.
RN

We conclude also that
~ aN
V(z)my,(x)de < Ce™ 7=V + K
RN

for some C, K > 0. These estimates will imply (3.13), after passing to the limit, using Fatou
lemma.

Moreover, by Corollary 2.9, we have that there exists C. > 0 depending on ¢ such that for all
r<g,

||mn||W1,r(RN) < Cg.

Moreover, due to Sobolev embeddings, we get that for all s < ¢*, then |m,|
addition, by applying Holder inequality, we get that there exists C' > 0

Ls(RN) S CE. In

a+1
Tl ~ -1

v aty’ _ RIS AIhTTa
/R | T e < C ( /R o, 7/|wn|7/dx) lmal 50 Gy -

By these estimates and Sobolev compact embeddings, we get that eventually extracting a
subsequence via a diagonalization procedure, m,, — mj weakly in W17 (RY) for all » < ¢ and

strongly in L*(K) for all 1 < s < ¢* and for every compact K C RY, and w,, — wj, weakly in
! +'Y/

L7+ (RY). By using the fact that [,y V(z)m,(z)dz < C. and (1.5), we get that we get that
forall R > 1,

C. > my(2)V(z)dz > /

My (2)V (z)dx > C’Rb/ my(x)dz.
RN |z|>R

|z|>R

So for every € > 0 fixed and all n > 0, there exists R > 0 for which f‘sz mp(x)de < n: up

to extracting a subsequence we get that m, — my in L'(RY), and so [y my(z)de = M. By
boundedness of m,, in L¥(RY) for all 1 < s < ¢*, we then have m,, — my, strongly in LoF1(RY).
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Finally, observe that from (3.13), using (1.5), we conclude that my(1+ |z|°) € L' (RY). Moreover,
we get that

w|"’ el 1/~
/ |wk|dx§/ lwg|(1 4 |27 d < (/ o d:c) </ mk(1+|x|)bdx> ,
RN RN RN My, RN

and so wi (1 + |z|)*/7 € LY (RY).

Therefore the convergence is sufficiently strong to assure that (mg,wy) € K¢ pr. We conclude
that (myg,wy) is a minimum of the energy, by the lower semicontinuity with respect to weak
convergence of the functional [;y mL (—%) + V(z)mdz and by using the fact that Fi[m,] —
Fy[my], since m,, — my, strongly in LoTH(RY). O

Using the minimizers we constructed in Proposition 3.3, we prove existence of a classical
solution to (3.1).

Proposition 3.4. There exists a classical solution (up, my, M) to (3.1) that satisfies for some
constant Ci . > 0 the following inequalities

Vur(@)] < Cre(l+[27)  wplz) > Cp L1+ |2 ') = .. (3.15)
Finally there exist C; K > 0 not depending on €,k such that
_AlaN_ _AlaN_
—K —Ce 7=aN < )\, < Ce 7-aN + K. (3.16)

Proof. Let (my,wy) be a minimizer of £. Define the space of test functions

\Y A
A=Ay, = e C*RY): limsup% < o0, limsup | ZZJ(;CN < ooy (3.17)
Note that we also have, for all 1) € A,
. ()|
e e <
We claim that
—& mi Ay dr = / w Vi dx Vi) € A. (3.18)
RN RN

Indeed, consider a radial smooth cutoff function x(z) which is identically equal to one in B;(0) and
identically zero in RN \ By (0). Set xr(z) := x(z/R); we have [Vxg| < C R~! and |Axg| < C R~2
on RY for some positive constant C.

Since the equality eAm;, = divwy, holds in the weak sense on R, we may multiply it by xr
with 1) € A and integrate by parts to obtain

—e [ mu(antd 4296Vt A do = [ w0+ uxm)de (3.19)
Bog B

2R

Note that for some positive C,

/ |ka¢|dx§C/ lwr|(1 + |27 dz < oo, / mg|AY| dx < C/ my(1 + |z))b dz < 0o
RN RN RN RN
by the integrability properties (3.12). Moreover,

1 b/y+1
/ mi| || Axe|de < C/ mk%dz
Rsle|<2R R<|s|<2R R

§C1/ mi(1+ |z))""tde =0 as R — oo,
R<|e|<2R
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because b/y — 1 < b. Reasoning in a similar way, we also have that fRS\z\SZR m V1 - Vxg and
fRS\w\QR wy, - WV x g converge to zero as R — oco. Equality (3.18) then follows by passing to the
limit in (3.19).

Therefore, recalling the integrability properties of my,wy obtained in Proposition 3.3, the
problem of minimizing &, on K¢ s is equivalent to minimize £, on K, where

A (a+1)

K :={(w,m) € (L'nWH")(RN)x L >+ (RY) : (w, m) satisfies (3.12), (3.18), m > 0, / m= M}
RN

for some r < ¢g. As in [8, Proposition 3.1], convexity of L implies that (mg,wy) is also a minimizer
of the following convex functional on K:

J(m,w) = /RN mL (—%) + (V(z) + fe[me])m dz.

We now aim to prove that
sup{A\M : —eAsp + H(Vp) + X < V(z) + fr[mi] on RY for some o € A} = ( mi)nlC J(m, w).
w,m)e
(3.20)
We proceed as in [9, Theorem 3.5]: setting

L{m,w, A\, ¢) = J(m,w) + / emAYp +wVip — dmdr + AM,
RN

we have

min j(m,w) = min  sup L(m,w,\ ),
(m,w)ek (m,w) (X, 4)ERx A

where the minimum in the right hand side has to be intended among couples (m,w) € (L' N
7/ (at1)

WEMY(RN) x L5+ (RY) for some r < g, satisfying (3.12). Note that £(-,-, \,) is convex, and
L(m,w,,-) is linear. Moreover, since L(-,-, A, 1) is weak-* lower semi-continuous, we can use the
min-max theorem (see [6, Theorem 2.3.7]), to get

min  sup L(m,w,\,¢)= sup min L(m,w,\, ) =
(mw) (X,p)ERXA (M )ERX A (m,w)

sup  min / mL (_E) + (V(@) + frlma))m + emAp + wVe — Amde + AM =
(A )ERx A (Mmw) JRN m

sup / min _mL (—B) + (V(z) + felmi])m + emAy + wVy — Amdz + AM,
(M Y)ERX A JRN (m,w)ERXRNY m

where the interchange of the min and the integration is possible by standard results in convex
optimisation. By computation, min,, ,)erxry mL (=) +(V(2)+ felmi])m+emAy+wVyp—Am
is zero whenever e Ay — H (V) — A+ (V (x)+ fr.[my]) is positive, and it is —oo otherwise. Therefore,
we have proven (3.20).

By Theorem 2.7, i), ii), there exists uy € C?(RY) such that

—eAu, + H(Vug) + A = V(z) + fr[ma] on RV, (3.21)
and which satisfies
Vur ()| < Cre(L+[2)7 k(@) > Crela 7+ = O

for some Ci . > 0.
Moreover,

elAui(2)| < [H(Vur(@))] + Ml + V(@) = fulme] < Cre(1+z))”  on RY
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so ug € A. Thus, the supremum in the left hand side of (3.20) is achieved by Ag, and it holds true
that

M = j(mk,wk) = 5k(mk,wk) + /N fk[mk]mk dx — F[mk] (322)
R
This gives in particular (3.16), using Lemma 3.1, estimates (3.10) and recalling Proposition 3.2

and assumptions (1.3), (3.2) and (3.4).
We now use (3.22), (3.21) and (3.18) with ¢ = uy to get

0= /RN <L (;‘;’;) FV(2) —ms — )\k) my de = /RN <L (;‘;’;) N H(Vuk)) my da

= / (L <—wk> + H(Vuyg) + Vuy - wk) my dx,
RN my mg
wy

— = —VH(Vuy) on the set {my > 0}.
my,

that implies

Hence, the Kolmogorov equation eAmy, + div(myVH (Vui)) = 0 holds in the weak sense, and by
elliptic regularity we conclude that (ug,mg, Ax) is a classical solution to (1.1). O

Remark 3.5. Note that if we assume that the local term f satisfies (1.9) instead of (1.3), then
the same argument as above applies. In particular there exists a classical solution (uy,mg, Ax) to
(3.1) such that

Vup(@)] < Cre(@+[al7)  un(z) > C(1+ |2]'F3) = G,

a+1d *7/%1\1]\,
my " dx, mi(z)V(x)de < Ce 7=oN 4+ K.
RN RN
We finally prove that every my, is bounded from above in R™ (this is not obvious from Propo-
sition 3.4 unless v’ > N). Note that the following result does not provide uniform bounds with
respect to k. These will be produced in Theorem 4.1 using a much more involved argument.

Proposition 3.6. Let (ug, my, A\) be as in Proposition 3.4. Then, my, is bounded in L>(RY).

Proof. Let ¢(x) = ug(x)P, for p > 1 to be chosen later. Using the fact that ug is a classical
solution to the HJB equation, we get

2
—eA¢+ VH(Vuy) - Vo = pub ™! (Auk —(p— 1)|VuLk| + VH(Vuy) - Vuk)
k

2
=publ! <Auk + H(Vug) — (p— 1)|vuLk| — H(Vug) + VH(Vuyg) - Vuk>
k
|Vuk|2 .

Uk

=pubt <—(p —1) H(Vug) + VH(Vug) - Vug, — A+ fe[mi] + V) . (3.23)

Observe that by (1.2), (1.5), (3.15) and the fact that fi[my] is bounded on RY, there exist large
R and C such that

G(z)=—-(p— 1)M — H(Vuy) + VH(Vuyg) - Vug — A+ fi[mg] + V(2)

ug
V|2
> K VY = (p— 1)% — K = X+ fr[mg] + V()
1 2—y
> (p—1)|Vugl” (K(p iy |Vu:}l ) - C+CylM P >1 for all |z| > R.
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Hence, again by (3.15), for all |x| > R
—eA¢+ VH(Vuyg) - Vo > clz|AF/MP-1),

In view of [29, Proposition 2.6], we have ||(1T0/M®=Dm, € LY (RY). Recall now that |V H (V)| <
b

C(1+]z])> by (3.15). Therefore, by choosing p large enough, |VH (Vuy,)|*my € L*(RY) for some

s > N. We conclude boundedness of my, in L by [29, Theorem 3.5]. O

4 Existence of a solution to the MFG system for ¢ > 0

Our aim is to pass to the limit ¥ — oo for solutions to (3.1).

4.1 A priori L* bounds

We need first a priori L*® bounds on my that are independent w.r.t. k. These will be achieved by
a blow-up argument, as proposed in [13] for systems set on the flat torus TV . Here, the unbounded
space RY and the presence of the unbounded term V make the argument much more involved
than the one in [13]. To control the points x;, € RY where my,(z)) possibly explodes, some delicate
estimates on the decay (in L') of its renormalization will be produced.

We provide a more general result, that will be used also in the rescaled framework (Section 5).
Let 7, sg, tx be bounded sequences of positive real numbers.

Theorem 4.1. Let (ug, A, mg) be a classical solution to the mean field game system
—Au+ ) H(r, 'Vau) + M\, = gr[m] + sV (tg),
—Am — div(m ] 'VH(r; ' Vu)) =0,
Jpn mdz = M,
where gy : LY(RY) — LY(RY) are so that for all m € L=®(RY) N LY(RYN) and for all k,
lgr[mlll oo vy < K([lm|Zoe @ry +1) (4.1)

for some K > 0. Suppose also that for all k, uy, is bounded from below and my, is bounded from
above on RN . Then, there erists a constant C independent of k such that

||mk||Loo S C
Proof. We argue by contradiction, so we assume that

supmy = L — 4o0.
RN
We divide the proof in several steps.

Step 1: rescaling of the solutions.

Let
=

- 1
Mk::LkB b=« > 0.

So, observe that u; — 0 as k — 0. Since uy is bounded by below, up to adding a suitable constant
we can assume that ming~ v = 0. We define the following rescaling

ng(z) = L 'mg(pe).

Note that 0 < ng(z) < 1. Moreover, due to (1.4),

aN(y—-1) 4
/ ni(x)de = ML, " — 0, (4.2)
RN
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and minwv, = 1. We define

v 1 1
Hy(q) = pg "riH(ri'pg 7q),  so VHi(g) = per) 'VH(ry i q).
Recalling (1.2) we have that for all ¢ € RV,

Culq|” = K < Hi(q) < Cu(lq]” +1),
|VHy(q))| < Culal" ™, (4.3)
VHi(q)-q— Hi(q) > K~ 'g|” — K.

Moreover, we define

() = pg " grlmi](pex).
Recalling that 0 < my < L, by (4.1) we get that for all z and for all k,

Jiie
|Gk (@)] < . K(Ly +1) < 2K (4.4)
where we used the fact that pu, = L;B with 8 = oﬂT_l. Finally, we let
Ne =g Ak = L
k B Ak Lo k
and we observe that ~
Ak < C. (4.5)
Finally, let
Jilie
Vi(z) = pd ™" sk V (pti).
By assumption (1.5), we get
sepy Oy (max{|trppz| — Cv,0})" < Vi(x) < Cv (14 oxfz]), (4.6)

where .
—t+
o =" spte =0 as k — oo.

In particular we also have the following bound from below for Vi,

-1

Vi.(z) > CLO’]C z|b for all |x| > 20y i) "L 4.7
920

An easy computation shows that by rescaling we have that (vg, ng, S\k) is a solution to

+ Vk($)7

{—Avk + Hi(Vug) + A = gr(z (4.8)

)
—A’I’L;~C — div(nkVHk(V’Uk) 0.

Step 2: a priori bounds on the rescaled solution to the Hamilton-Jacobi equation.
We observe that by Theorem 2.5 and (4.6), there exists C' > 0, independent of k, such that

\Vup(z)| < C(1+ 0] |z|7) on RV, (4.9)

We recall that we assumed vy (Z;) = minwvg, = 1. Since vy is a classical solution to (4.8), at a
minimum point & we have, by (4.3), (4.4), (4.5) and (4.7),

Jk‘.’fk|b S C

Therefore, by using this estimate and (4.9), since [v(0)] < vk (Zx)] + [Zk]SUP|y <)z, [VUur(y)| we
obtain . )
= b 1
[0 (0)] < 14+ C(L+ oy [2]777) < Ci(1+ 0, ")
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and then again by (4.9),

k(@) < C(+ 07, * + o7 2] 5 1) on RY. (4.10)

Let x be a smooth function x : [0, +00) — [0, +00) such that x = 0 in (0,1/2) U (3/2, +00),
x(1) > 0 and that |x'|,|x”| < 1. We fix # € RY such that |#| > 4Cy (¢xu) !, and we denote by

1
wlz) = oy 3]y ('1")

where £ > 0 has to be chosen. We have that w(z) < vi(z) for all  such that |z| > 2|Z| or
|z| < 1|2|. Moreover, for « such that 1|Z| < |z| < 2|Z| we have |z| > 2Cy (ugtr) !, so using the
estimates (4.3), (4.4), (4.5) and (4.7),

-1

s 1 C
—Aw + Hp(Vw) + X\, — Gi(z) — Vi(z) < kNo) \JE|%71 + CyrYop|z’ + C — Q—Vbak|j|b.

Note that there exist £ > 0 small and Cy > 0 large, depending only Cy and Cx and not on |Z|,
k, such that the right-hand side of the last expression is negative if

o) Z|” > Oy

(this also implies that tpur|Z| > 4Cy, as required). The test function w is then a subsolution of
the HJB equation in (4.8), therefore by comparison we get that,

1
vn(#) = rx(1)oy |77
By arbitrariness of & we conclude that, for some C' > 0,

1
ve(z) > Col x5 for all oylz(’ > Cy. (4.11)

Step 3: estimates on the (approximate) maxima of n.

We now fix 0 < § << 1 and x such that ng(zy) = 1 — §. Two possibilities may arise: either
limg, oy |71|® = +00 up to some subsequence, or there exists C > 0 such that op|z|® < C. We
rule out the second possibility by contradiction. Suppose indeed that there exists C' > 0 such
that op|x|® < C. By (4.9), |Vor| < C on By(zy) for some C > 0. Therefore, using the fact
that ng solves the second equation in (4.8), the elliptic estimates in Proposition 2.4, (4.3), the

interpolation inequality |||, < [In]l;/?|n]|% /¢ and the fact that 0 < ng < 1, we get for all ¢ > 1,

1
nkllwra (5 o) < CO A+ IVH(V0R) | Lo (Ba ) 171 2Ly 0y < C (4.12)

for some C; > 0 depending on ¢. This implies, choosing ¢ > N, that for all § € (0, 1) there exists Cyp
depending on ¢ (but not on k) such that ||ng||co.e(p, (z,)) < Co. Recalling that ng(vx) =14, we
can fix r < 1 such that ng(z) > 1 forall 2 € B, (2x). It is sufficient to choose r = 00_1/9(1/275)1/9.
Therefore we have, by (4.2),

1
0< warN S/
2 B, (z1)

aN(y—1) 1

ng(z)dr < / ng(x)de = ML, ~ — 0.
RN

This gives a contradiction. Then we deduce that, up to a subsequence,

lim oplzr|? = +oo. (4.13)

Step 4: construction of a Lyapunov function.
Let ¢(x) = vg(x)P, for p > 1 to be chosen later. Using the fact that vy is a classical solution to
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(4.8) (arguing as in (3.23)) we get

B Vo, |2
— A¢+ VHL(Vvp) - Vo = pol ! (—Avk —(p— 1)% + VH(Vog) - wk)

_ V| < -
= pu}, ! (—(p — 1)% — Hip (Vi) + VHE (Vo) - Vo, — Mg + g (z) + Vk(x)> )

We denote by

Gi(x) = —(p — 1)|v::|2 — Hk(Vvk) + VHg (Vo) - Vo — S\k + gr(z) + Vk(x) (4.14)

Using the previous computation and the fact that ny is a solution to (4.8), we get, by integrating
by parts, that

p—1

0= /RN ni(z) (—A¢(z) + VH(Vup(z)) - Vo(x)) do = p/RN n(2)Gr(2) 7 (z)dx.

Therefore from this, for every A > 0 we get

p—1

/ i (2) G (2)6 "5 (2)d = — / e (2)Ge(2)6 7 ()dz.  (4.15)
()27} fo(@)<Ar)
Observe that by (4.3), (4.4), (4.5) and (4.7) we get that for all ¢ ux|z| > 2Cy,

|V’Uk.|2

Gr(z) > K Vo = (p— 1) o

— K — X + gu(2) + Vi(2)

1 Vo |*~7
> - DIVl (g~ e ) - O Cranfal' (416
We first claim that by (4.9) and (4.11), K(z}—l) - W”l’ji?_v is positive if oy|z|’ > Oy, eventually

enlarging Co in (4.11). Indeed,

ER e
_ 1—|—a”|xW]
2—y |: k
Vor@)* " _ < Cu (4.17)

<ok i
i) ol |l

whenever o |z|® is large enough. This implies that for all oy |z|® > Cy, by (4.16) we have Gy, (z) >
—C'. On the other hand, again by the gradient bounds in (4.9) we have that |Vug(z)| < C(1+Cy)
on the set o |x|® < Cs, so (4.16) and min v, = 1 again guarantee that G () > —C3. In conclusion,
there exists C' > 0 such that

Gr(z) > -C  VxecRY,

Therefore, going back to (4.15), recalling (4.2), we obtain that

/ ng ()G () ((b(x)) " s <C ng(z)de < C ng(z)dz
{6(x)>Ar} Ar {#(x)<A?} RN

+

N4 —
=CMy, 7Y =0 (4.18)

as k — oo.
Note that by (4.16) and (4.17), if = is such that Gx(z) < 0, then necessarily oy|z|® < C
_1
for some C' > 0. Hence, by (4.10), we get that vi(z) < C3(1 4 0, 7). Therefore if we choose

A=A, = KO']:% for a sufficiently large K > 0, we get that Gi(z) > 0 in the set {z|¢(z) > AP}.
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Step 5: integral estimates on ny.
Arguing as in the end of Step 4, we may choose K big enough so that Gi(z) > 1 in the set
1

{z|¢(x) > AV}, where Ay, = Ko, *. If k is sufficiently large, by (4.11) and (4.13) it follows that
for some C' > 0,

v () > ng|q}k‘1+% in By(x), and
Bi(zk) C {zlo(x) = Ay}

Therefore, we may conclude that

p—1

et Tl |12
/ ng ()G (x) <¢(9£)) dx > C % / ng(z)dz
{o(2)>A7} Ay, 3 By (wk)

that together with (4.18) gives

1 1-p
/ ny(z)da < <o—,g |xk|3> (4.20)
Bl(wk)
for all k large.

Reasoning as in Step 3 (see in particular (4.12)), by Proposition 2.4, (4.3), (4.9) and (4.20),
we get that for all ¢ > 1,

1
ka8, () < COA IV HR(VOR) o (51 @) 7612 5, oy

1 L\ 7L 1 L\ (1=p)/a
1+<O’,§|Ik|7) (a,gxkh) <1,

whenever p is such that v — 1+ (1 — p)/¢ < 0 and k is large (recall that we are supposing

<Cy

1
og|xk|% — +00).
Therefore, we may conclude as in Step 3: choosing ¢ > N, for some 6 € (0,1) there exists Cp
such that ||nk|lcoe(B, u(x)) < Co- Since ny(2x) = 1— 4, we can fix r < 1 such that ny(z) > % for
all z € B,(z). Finally, by (4.2)

1
0< —wyr g/
2 Br(-Lk)

aN(y—1)
ng(z)dr < / ng(x)de = ML, "' —0.
RN

That gives a contradiction and rules out the possibility that oj|zx|® — 4+00. Therefore, Ly — 400
is impossible. O

4.2 Existence of a solution to the MFG system

Using the a priori bounds we obtained, we can pass to the limit in &k in the MFG system (3.1) to
get a solution to (1.1) for every € > 0.

Proof of Theorem 1.1. First, by Proposition 3.4, the existence for all k of a classical solution
(ug, my, A\x) to (3.1) follows. By (3.16), up to passing to a subsequence we have that A\x — A..
Note that by Propositions 3.4 and 3.6, ux and my, are bounded by below and above respectively,
so due to Theorem 4.1 (with g[m| = fg[m] and rp = s = tx = 1 for all k), we get that there
exists C. > 0 independent of k& (but eventually on ¢ > 0) such that ||mg||pe @~y < C.. Using

Theorem 2.5, this implies that |Vug(z)] < C:(1 + |x\%), for some C. independent of k. We
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can normalize u(0) = 0 and using Ascoli-Arzeld theorem we can extract by a diagonalization
procedure a sequence uy such that u; — u. locally uniformly in RY. Moreover, by using the
estimates and the equation we have that actually uj — u. locally uniformly in C'. Note that,
denoting by zj a minimum point of u, on RY, we have by the HJB equation that

H(O) + A\ — fk[mk](xk) > V(xg).

Coercivity (1.5) of V and uniform boundedness of A; and fi[my] guarantee that xj remains
bounded, in particular that u; > —C on RY by gradient bounds. Theorem 2.6 then applies, in

particular ug(x) > C’\x|1+% — C~! for all k. This implies, passing to the limit, that
u.(z) > Clz["*5 =~ onRV. (4.21)

By the elliptic estimates in Proposition 2.4, we get that mj — m. locally uniformly in C%®
for all a € (0,1) and weakly in WP (Bg) for every p > 1 and R > 0. Therefore we get that u. is a
solution in the viscosity sense of the Hamilton-Jacobi equation, by stability with respect to uniform
convergence, and m. is a weak solution to the Fokker-Planck equation, by strong convergence of
Vug — Vue. Finally this implies, again by using the regularity of the HJB equation, that uy — u.
locally uniformly in C2. Therefore, u., m. solve in classical sense the system (1.1).

Now we show that [y me(x)dz = M. We have that my — m. locally uniformly in C%® for
every a € (0,1). Moreover, due to (3.13) and to (1.5), we get that for all R > 1,

C. > mg(x)V (x)dx > /

my(2)V(x)dz > C’Rb/ my(x)dx.
RN |z|>R

|z|>R

This implies that f\xl <pMi(r)dr > M — C-R~" and then by uniform convergence we get that for
every € > 0, and 7 > 0, there exists R > 0 such that

/ me(x)de > M — 1.
lz|<R

From this we can conclude that my — m. in L'(RY), that is fRN me(xz)de = M. By boundedness
of my in L™, it also follows that mj — m. in L1 (RY).

Finally, we get that if w. = —m.VH(Vu,), then (m.,w.) € K. a, due to the second equation
in (1.1). Moreover, we have that if mj — m strongly in L*TH(RY), then, due to the Lebesgue
dominated convergence theorem and (3.4), F(my, * xx) — F(m) strongly in L*(R™). This im-
plies that the energy & I'-converges to the energy &, from which we conclude that (m.,w.) is a
minimizer of £ in the set K. . U

Remark 4.2. Note that by the very same arguments, recalling Remark 3.5, we have the existence
of solutions also in the more general case that condition (1.9) is satisfied.

We conclude proving some estimates on the solution (ue,me, Ac) given in Theorem 1.1 that
will be useful in the following.

Corollary 4.3. Let (ue,me, Ae) be as in Theorem 1.1. There exist constants C,Cy,Co, K, K1, Ko >
0 independent of € such that

/ me|Vue|"dz +/ m&ttdx + me(z)V(z)dr < Ce™ o8 + K (4.22)
RN RN RN
_AfaN_ _ ~lanN
—Ki — ClE V—aN <\, < Ko — CQE v —aN | (423)

Proof. We observe that, by the arguments in the proof of Theorem 1.1, mj — m. and |Vug| —
|[Vue| almost everywhere, and using the fact that V(z) > 0, we have that by Fatou lemma
Jan me(2)|Vue[Yde < liminfy [on mi(x)|Vug|Ydz, [ me(z)V (z)de < liminfy [ my(z)V (2)de
and [py m2tlde < liminfy, [y mgtdz. So inequality (3.13) gives immediately (4.22).
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Now we prove (4.23). Note that the estimate from below is a direct consequence of (3.16).

So, it remains to show that A\, < Cy — Che™ TN . Recalling that formula (3.22) holds and
J f(m)m — F(m) < 2KM by (1.3), it is sufficient to show that
inf  E(m,w) < —Cae” Fien 4 Cy (4.24)
(maw)eke, m
where C is a constant depending only on N, M, Cp,, v, «a, V. We construct a couple (m,w) € K¢ m
as follows. First of all we consider a smooth function ¢ : [0, +00) — R which solves the following
ordinary differential equation

1
7

{as'(r) = —p(r) (1 + ¢(r)*)
$(0) = L.

Then, it is easy to check that 0 < ¢(r) < se=". We define m(z) = A¢(r|z|), where A, T are
constants to be fixed, and w(z) = eVm(x).
First of all we impose

M= =5 [ ety = e
RN
recalling that ¢ is exponentially decreasing. So A = M7V C, where C~! f]RN o(ly|)d
Observe also that

m*t (z)dw = MOT N oot / T (|y)dy = Mot N et o, (4.25)

RN RN

where C,, = IRN ¢ (ly|)dy.
We check, recalling that the growth condition ( 5) that the followmg holds

/ m(z)V dx—MC/ s(ly)dy = 1~ = (4.26)
RN

where K is a constant depending on N, ¢, Cj.
Moreover, we compute, recalling that ¢ solves the ODE

’

Y

’ ’ ’ 1
= 57 T’Y m"’ (1 + Wm“) . (427)

1 N
eTm (1 + 7M°‘C‘17’N‘lm )

We consider the energy at (m, w)

E(m,w) = /RN mL (f%) + F(m) +mV (z)dx

" =

Observe that by (1.3), F(m) < —O%flmaﬂ + K'm. Using Proposition 2.1, and computation (4.27)
and (4.25), we get

C
/ mL <—£)+F(m)d$§/ mL (—E) dz — —1 m* T dr + KM
RN m RN m a+1 RN

‘w|’y, Cf a+1
<Cp, m—;-dx+ (Cp, + K)M — —— met dx
RN mY Oé“r]. RN

1

—C eV M ]
Le T < + RN MaCaTN(x

C
mo‘+1dx) (Cr+K) —% mt

= Cpe"' ' M+ (Cp + K)M — T atly
o L T L o+ ]. MO‘CQ RN m v

= (MCp + MCCL)" 77" — CJ:”lMa“Ca“c 7N 4 (CL + K)M.
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’

— i
Le™57=~a | where a is sufficiently large, in such a way that

We choose now 7 such that 7 = o

/ mL (—E) dx + F(m)dx < —Ce™ F-Na +C
RN m

where C'is a constant depending on «, Cp, M. Substituting this in the energy and recalling (4.26),
we get the desired inequality. O

5 Concentration phenomena

In the second part of this work, we are interested in the asymptotic analysis of solutions to (1.1)
when ¢ — 0.
5.1 The rescaled problem

We consider the following rescaling

N+ +

ily) = 7 (T ),
~ Na(v'—1)—~' ~
w(y) ;=& A —aN y(e7-eNy) (5.1)
~ Nay'
Ai=gr—aN )\
We introduce the rescaled potential
Na~y' ~'
Ve(y) =7 —eN V(ev-aN y). (5.2)
Note that by (1.5), we get
_1 Noa~y' ~' b Noa~y' ~' b
Cy er =N (max{|e7=Ny| — Cy,0})” < Ve(y) < Cvev=eN (1 + =N [y])". (5.3)
The rescaled coupling term is given by
N Nay' _ N+ ~'
Jetint)) =75 g (=7 mETy)). 6.4
Note that, using (1.3), we obtain that
Na~' Nay'
—Cym® — Kev=oF < f.(m) < —=Cym® + Ke7=aN (5.5)
Then we get that
lir% fe(m) = —-Crm*® uniformly in [0, 4+00). (5.6)
E—r

Moreover, we define F.(m) = [;" f-(n)dn if m > 0 and 0 otherwise, and we get

Cf ma-l—l _ Kg%m < Fs(m) < _ima""l + Kg’vl’vf;/l\’ m. (57)
a+1 a+1

We define also the rescaled Hamiltonian
Na~y' _ Na(y'-1)
H. (p)=ev-NH <5 A —aN p> . (5.8)

By (1.2),
Na~y'
Culp|” —e7-¥ K < H.(p) < Culp|,
\VH.(p)| < K|p|"™".
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So, we get that
lir% H_.(p) = Ho(p) := Culp|” uniformly in RY. (5.10)
E—r

Moreover, if we assume that V H. is locally bounded in C%7Y~1(R¥), then

Cu

VH.(p) = VHy(p) = | %p locally uniformly.

We can define L. as in (1.7), with H, in place of H and we obtain that condition (5.9) gives
that there exists Cr, > 0 such that

Culdl’ < Lola) < Crla” +e755 0y (5.11)
which in turns gives that
L.(q) = Lo(q) = CL|q|'Y, uniformly in RY. (5.12)
The rescalings (5.13) lead to the following rescaled system
—Adie + He (Vi) + Ae = fe(iie) + Ve(y)

— A, — div(m.VH.(Vi.)) = 0 (5.13)
Joux P2 = M.

Existence of a triple (., m., A:) solving the previous system is an immediate consequence of
Theorem 1.1. We first start by stating some a priori estimates.

Lemma 5.1. There exist C,C1,Cy > 0 independent of € such that the following holds

—C) < A < —Cy, (5.14)
[ vy [ i @Vldy + il e, <©. (5.15)
RN RN

Ml oo mvy < C. (5.16)

Proof. Estimates (4.23), (4.22) give (5.14), (5.15) by rescaling.

Na(y/-1) ay/ !

We apply Theorem 4.1 with g[m|(z) = fe(m(x)), ry =& -8 | s = £7-oN and tp = &7 —oN
which are all bounded sequences, and we obtain (5.16). O

Using the a priori bounds on the solutions to (5.13), we want to pass to the limit € — 0. The
problem is that these estimates are not sufficient to assure that there is no loss of mass, namely
that the limit of /. has still L'-norm equal to M. Therefore, we need to translate the reference
system at a point around which the mass of m. remains positive. This will be done as follows.

Let y. € RY be such that

as(ye) = rﬁlivnﬂg(y), (517)

note that this point exists due to (4.21).
We will denote by

ﬂs(y) :ﬂs(y+ys) 7ﬂs(ys) (5.18)
me(y) = Me(y + Ye)-
Note that (@, m., 5\5) is a classical solution to
—At, + HE(Vﬂs) + 5\5 = fs(ms) + Vg(y + ye)
—Am. — div(m:VH.(Vi.)) =0 (5.19)

fRN me = M,

and in addition @.(0) = 0 = mingw~ ..
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5.2 A preliminary convergence result

In this section, we provide some preliminary convergence results, where we are not preventing
possible loss of mass in the limit. First of all we need some a priori estimates on the solutions to
(5.19).

Proposition 5.2. Let (G, me, Ac) be as in (5.18). Then there exists a constant C > 0 independent
of € such that the following hold

(Na+b)y' b (Na+b)y' b

e N |y P <C and 0 < Ve(y+ye) <Cle =N Jy)” + 1), (5.20)

Va.(y)l <CO+yh)?  and  ay) > Clyt -7, (5.21)

/ mo(y)dy > C VR > 1. (5.22)

BRr(0)
Finally, if w. = —m.VH(Vi,), then (m., W) is a minimizer in the set K1, of the energy

w

E.(m,w) = / mLe (=) + Vi(y+ ye)m + F.(m) dy, (5.23)
RN m

where L. and F. are defined in Section 5.1.

Proof. Since . is a classical solution, we can compute the equation in y = 0, obtaining
Hs(o) + 5‘5 > fs(ms(o)) + V(ys)'
Using the a priori estimates (5.14), (5.16), (5.9) and the assumption (5.5), (5.3), this implies that

(Na+b)y'

e 7=Neo |y.|* < C, and then, again by assumption (5.3), that (5.20) holds.

Using estimates (5.14), (5.16), and (5.20), we conclude by Theorem 2.5 that estimate (5.21)
holds.

Again by the equation computed at y = 0, recalling that H.(0) — 0 and V. > 0 and estimate
(5.14), we deduce that —f.(m.(0)) > —C3 > 0. So, by assumption (5.5), we get that there
exists C' > 0 indipendent of &, such that m.(0) > C > 0. Using the estimates (5.21) and
(5.16), by Proposition 2.4, we get that there exists a positive constant depending on p such that
lme|lwi.e(By(0y) < Cp for all p > 1. This, by Sobolev embeddings, gives that ||m.||co.«(B,(0)) < Ca
for every « € (0,1) and for some positive constant depending on a. We choose now Ry € (0, 1]
such that m. > C/2 in Bpg,(0), using the C* estimate and the fact that m.(0) > C > 0. This
implies immediately that an,(, © me(y)dy > C/2|Bg,| > 0. This gives the estimate (5.22), for all
radii bigger than Ry.

Finally the fact that (m.,w.) is a minimizer of (5.23) in K’y as follows from Theorem 1.1, by
rescaling. O

We get the first convergence result.

Proposition 5.3. Let (fa§,m5,_5\s) be the classical solution to (5.19) constructed above. Up to
subsequences, we get that \. — X\, and

U. >, me—m, Vi.—Va,  VH.(Va.) — VHy(Va) (5.24)

locally uniformly, where @ > 0 = 4(0), and (@, m, \) is a classical solution to

—Au+ Ho(Va) + A= —Cpm® + g(z) (5.25)
—Am — div(mV Ho(Va)) =0 '
for a continuous function g such that 0 < g(z) < C on RY for some C > 0.
Moreover, there exist a € (0, M], C, K,k > 0 such that [,y mdx = a, and
a(x) > Clz| — C, |Va| < K on RY, / el (z)de < +o00. (5.26)
RN
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Proof. First of all observe that, since V' is a locally Holder continuous function, then (5.20) implies
that, up to subsequence, V.(z + y.) — g(z), locally uniformly as e — 0, where ¢ is a continuous
function such that 0 < g(z) < C, for some C > 0.

Using the a priori estimate (5.21), and recalling that @. is a classical solution to (5.19), by
classical elliptic regularity theory we obtain that . is locally bounded in C*® in every compact set,
uniformly with respect to €. So, up to extracting a subsequence via a diagonalization procedure,
we get that

e — 4, Viu.— Vi, VH(Vu.)— VHy(Va)

locally uniformly, and A = A Using the estimates (5.21) and (5.16), by Proposition 2.4, and
by Sobolev embeddings, for every compact set K C RY, we have that [Mellco.o (k) < Cka for
every « € (0,1) and for some positive constant depending on « and K. So, up to extracting a
subsequence via a diagonalization procedure, we get that m. — m locally uniformly.

So, we can pass to the limit in (5.19) and obtain that (@, m, \) is a solution to (5.25), which is
classical by elliptic regularity theory.

Using (5.22) and locally uniform convergence, we get that there exists a € (0, M] such that
Jpn mdy = a.

Observe that u is a solution to

—Ali+ Ho(Va) + A = —Cpm® + g(z).

By Theorem 2.5, we get that there exists a constant K depending on supg and —\ such that
|Va| < K. Moreover, by construction 4 > 0.

Since m is Holder continuous, and such that [,y mdz = a € (0, M], by Lemma 2.2, we get that
m — 0 as x| — +oo. Therefore, we get that liminf ;| oo (—M* () +g(x) = A— Ho(0 )) >-2>0.
So, by Theorem 2.6, recalling that by construction #(0) = 0 < u(y), we get that @ satisfies

a(z) > Clz| = C (5.27)

for some C > 0.
To conclude, consider the function ®(x) = **), We claim that we can choose x > 0 such
that there exist R > 0 and § > 0 with

—AdP +VHy(Va) - VO > §P |z| > R. (5.28)
Indeed, since @ solves the first equation in (5.25) , we get
—AdD 4+ VH(Va) - V® > k(=) — x|Va|* —m*)®.

Using (5.27) and m — 0 as |z| — 400, we obtain the claim. Reasoning as in [21, Proposition 4.3],
or [29, Proposition 2.6], we get that [y e*"mdz < 400, which concludes the estimate (5.26).
U

Remark 5.4. With estimates (5.26) in force, the pointwise bounds stated in [29, Theorem 6.1]
hold, namely there exist positive constants cq, co, such that

m(z) < cre~ el on RV,

5.3 Concentration-compactness

In this section we show that actually there is no loss of mass when passing to the limit as in
Proposition 5.3. In order to do so, we apply a kind of concentration-compactness argument.

First of all we show that the functional & (m,w) enjoys the following subadditivity property.
Let us denote

e (M) = i & .
é(M) (m)gl)ngM - (m, w)
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Recalling (3.6) and (4.24), and the rescaling (5.1), we get that for every M > 0 there exist
Cy(M),Co(M), K1, K2 > 0 depending on M (and on the other constants of the problem) but not
on ¢ such that there holds

Na'y/

(M) — Kye7 Ne < 8. (M) < —Co(M) — Kye? Ve (5.29)

Lemma 5.5. For all a € (0,M), there exist ¢g = eo(a) and a constant C = C(a,M) > 0
depending only on a, M and the data (not on e), such that C(M,M)=0= C(0,M), C(a,M) >0
forO<a< M and

6.(M) < é.(a) + é-(M —a) — Cla, M) Ve < <. (5.30)

Proof. We assume that a > M/2 (otherwise it suffices to replace a with M — a).
Let ¢ > 1 and B > 0. For all admissible couples (m,w) € Kp we have, recalling (5.7),

&.(cB) < E(em, cw) = / emLe (=) + Fu(em) + V(@ + y)m da

RN

= cE(m,w) + /RN F.(em) — cF.(m) dx

c(e* = 1)Cy

< c&(m,w) — )

/ mo‘+1dx—|—2Kchvj’v—a1’a. (5.31)
RN

Let now (m.,, w,) be a minimizing sequence of & in Kg, such that & (m,, w,) < é.(B)+ %

where C3(B) is the constant appearing in (5.29), which depends on B and on the data of the
problem. Recalling that V. > 0 and L. > 0, and estimate (5.7), we get that

B _Nany'
é.(M) + Ca(B) > E(mp,wy) > / F.(my,)dx > _ G me+ de — KBev ~a.
4 RN Oé+1 Rn

Using (5.29), we get, for all € sufficiently small,

Cy
a+1 RN

B ay' B
mot dg > wZT“ _ Kev-an > % > 0.

So, this estimate in particular holds for a minimizer of £ . Therefore in (5.31) we get, taking
(m,w) to be a minimizer of & (which exists by Proposition 5.2)

C2(B)
2

&.(cB) < cé-(B) — c(c™ — 1) + 2K cBeT N (5.32)

Using (5.32) with B = a and ¢ = M/a we get

M M [(M\" Nas
&(M) < —éc(a) - — K) - 1] Gaa) | o pges e,
a a a 2

If a = M/2, this permits to conclude, choosing e sufficiently small (depending on a). If a > M/2,
we use (5.32) with B= M —a and ¢ = a/(M — a) to get (multiplying everything by 24=2)

a

M= (a) < .M —a) - KMa_a)“ - 1} WHK(M—CL)S%
o[

_Nay" _Navy'
+2KMev-~Ne < é.(M —a) +2KMe~-~Na.
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So putting to together the last two inequalities we get

e(M) < () - 2 [(M) = 1} 022(“) +2KMev Ve
a

i M (M) Ol
a a a 2
M [ M\“ !
<é(a)+é(M—a)—— [() —1] Ca(a) + AK Mev-Na
a a 2
~ M [/ M\* Ca(a
<eé.la)+eé.(M—a)— o {(a) - 1} Zi )
for € sufficiently small (depending on a). O

Theorem 5.6. Let (m.,w.) be the minimizer of £ as in Proposition 5.2. Let @,m as in Propo-
sition 5.3, so that me — m, W, — w = —mVHy(Va) locally uniformly, and m satisfies the
exponential decay (5.26). Then,
mdr = M. (5.33)
RN
Proof. Assume by contradiction that [,y mdz = a, with 0 < a < M. We fix ¢(a) as in Lemma

5.5, and we consider from now on ¢ < gg(a). Let & > 0 be such that m < ée~!*! (such ¢ exists by
Remark 5.4).
For R sufficiently large (to be chosen later), we define

ce ® |z| <R
= - 5.34
vr(z) {ce"“ |z| > R. ( )

So in particular m(x) < vg(x) for || > R.
We observe that as R — +oo

/ vr(z)dr = cwye RN —|—/ ce”leldz < CemBRN — 0. (5.35)
n RN\BR

Since m. — m and VH.(Va.) — VHy(Va) locally uniformly, there exists g = eg(R) such
that for all € < ¢,

|me —m| + |VH.(Va.) — VHy(Va)| <ce ®  |z| <R. (5.36)
We observe that for all ¢ < g¢,
me — M+ 2vg > vi(x) vz € RV, (5.37)

Indeed, if |z| > R, then m. — m + 2vg > M. + Vg > Vg, since m < vg. On the other hand, if
|z] < R, then by (5.36) m. — m + 2vg > —ce F + 2¢e 8 = ce ™ = vg. From (5.37) we deduce
that

|me —m| < me —m + 2vg. (5.38)

Moreover, since m. — m a.e. by Theorem 2.3, recalling that f]RN medr = M, fRn m = a and
using (5.35) and (5.38), we have that

/ (Mme — M+ 2vg)de = M—a+2/ vrdr - M —a as R — 400, (5.39)
RN RN
lim [ moTlde = m*de + lim e —m|*Tdx (5.40)
e—0 RN RN e—0 RN
< mtdx + lim (e — m + 2vR)* T da.
RN e—0 RN
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We claim that
Ec(Me, W) > E(m,w) + E(Me — M+ 2vg, We — W + 2VVR) + 0.(1) + og(1), (5.41)

where o.(1) is an error such that lim._,o0.(1) = 0.

We consider the function (m,w) — mL. (—%). This is a convex function in (m,w). We
compute V,, (mL6 (f%))

—VL. (f%), so in particular by (5.11) we get

v -1 Na(y'—1)

e 2w (o () 1265

Moreover, O,, (ng (—%)) =L, (—ﬂ) + = VL, (— ), therefore, again by (5.11) we get

w
m m

¥ =1 Na(y/—-1)
1‘3’ FOpleTa L (5.42)
m

w
CL’—
m

!’
"y Na(y'—1

Ot <o (mL (-2)) 12 0F

1 ‘w ’v’ Na(y'-1)
m

w Naly —1)
C ‘— Cile=am . 5.43
L|— +Cp e (5.43)

Note that

/N Ve(y+ye)me do = /N Ve(y+y:)m d:ch/N Ve(y+ye) (me—m+2vR) d:z:—2/ Ve(y+ye )vr dz.
R R R

RN

Recalling the estimate (5.20) and the definition of vg, we have

2 [ Vily+ye)vrdr < OR"Ne M.
RN

Hence we obtain
/ Ve(y-I-ye)mgda:Z/ Vg(y—i—ye)mdx—s—/ Ve(y+ye) (me—m+2vg) de—CR" Ne R, (5.44)
RN RN RN

By (5.40) and (5.7) we get

C _Navy'
/ Fg(mg) dx > — ! / T?L?-H dr — KMEWJ'V*&N
RN a—+1 RN

oy C
> _ 7Oc+ld _ f / = o ) a—‘rld 1
- aJrl/]RNm v a+1 sz(mE m+2vk) v+ 0(1)

z/RN Fg(m)der/RN F.(m. —m+2vg)de +o-(1). (5.45)

Finally, we estimate the kinetic terms in the energy. Splitting

meL, (—w5> dr = meL, (_w5> dx —|—/ meL (— wE) dx,
RN me Br me RN\Bgr me

we proceed by estimating separately the two terms.

Estimates in RY \ Bj.

First of all, note that by (5.26), (5.9) and (5.11), we get that L. (—2) = L.(VHy(Va)) < C
for come constant C' > 0, just depending on the data. Moreover, recalling that m < ée~1*l, we get
that, eventually enlarging C,

/ mL. (—@) de < C e 1*ldy < ORNe R, (5.46)
RN\Bp m |z|>R

By convexity of the function (m,w) — mL (—ﬂ), we get that

m

0 b — W + 2V
/ . (_ w) de > / (e — 0+ 205) L (_W) de
RN\Bpg Mg RN\Bp me —m + 2VR

_ _ we —w + 2Vvg _
- . — 2vp)L, | ———m8M8M——= —2vR)d A4
+/]RN\BR 19) ((m m+ 2vR) ( E— )) (m —2vg)dx (5.47)

T — 77 We — W+ 2Vvg -
+ /RN\BR Vi {(ms —m + 2vg)Le <m—m+2y3ﬂ - (w — 2VvR) dz. (5.48)
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We recall that |@] = m|VHy(Va)| < Cm by (5.26) and |Vrvg| < Crg by definition. Moreover,
by (5.21) and (5.9),

b
7

(w.| = me| VH.(Vae)| < Crnc[(1+ [2]) 7] < Crme (1 + |2])7 .

Using the triangular inequality we get the following, where the constant C' can change from line
to line,

We — W+ 2Vvp < me|VH: (V)| n m|VHy(Va)| n Cvr
Mme—m+2vg |~ m.—m+2vg  m.—m+2vg M. —m+ 2R
_ Cime(1+ \z)) > Crm Cur .

< C(1 ¥
S —mton T —mran T —mrors S CUF )

(5.49)

on RY \ Bg(0), where we used respectively the fact that m. — m + 2vg > m., m < vg and that
me —m + 2vg > VR.

Now, using (5.43) and (5.49), we can estimate (5.47), and by (5.42) and (5.49) we can estimate
(5.48). Indeed, we get

/ O ((me — 17+ 2vg) Le (—“’E_U’HV”R» ’ lim—2vg| de < c/ (1+|z]) v (z)de
RM\Bp Me — 1M+ 2 EN\Bp

and

b2 ) .
/ Vo {(mg — i+ 2vg) L. <_“’_ Wt V”Rﬂ ‘ (l@|+2|Vvg|)dz < c/ (1+|2]) 5 va(2)dz,
RN\Bgr me 7m+2I/R RN\Bgr

because w < Cm on RY. Therefore, we may conclude, possibly enlarging C, that

/ oL <w> da
]RN\BR me
> / (me —m + 2vp
RN\Br
We —w + 2VR

> T —m 4+ 20p) L. [ ————— =" ) do — CRN e~ B, (5.50
/]RN\BR(m mn VR) ( me—m—i-ZVR) v © ( )

L. <_w5 —w+ 2Vvg

de —C 1 b d
mg_m+21/R> x RN\BR( +|x|) VR((E) z

Finally, putting together (5.46) and (5.50), we have, choosing C suffficiently large

/ e Le (—?) dz > / L. (—?) da
RN\Bgr me RN\Bgr m
Do — 0 + 2
+ / (e —m + 2vg) L. (—W) dx — CRN*be~ R (5.51)
RN\Bp me — M + 2UR

Estimates in Bg. Again by convexity of the function (m,w) — mL (—' )7 we get that

(5o w3
+ /BR Om (mLa (—%)) (Me —m) dz + /BR Vo [mLE (—%)} - (we —w) dz.  (5.52)

We now estimate (5.52). We recall that | 2| < |[VHo(Va)| < K and also [VH(Vi.)| < K for
all € < eo(R). Then, using this fact and (5.42) and (5.43) and recalling (5.36), we get

om (mLe (=S| e —m| dze = | |0 (ML (VHo(Va)))| e — m| dz < Ce RRN
m
Bgr B

R

34



and

/ |V [MmLe (VHo(Va))]| (IVH.(Vue)||me —m| + |VH. (Vi) — VHy(Va)|m) de < Ce ™ #RN.
Br

This implies that for all € < gq(R)

/ meL (—%) dx > / mL. (—?) dx — Ce BRN. (5.53)
Br me Br m

Now we observe that by (5.11),

De — @ + 2V v —w + 2V
J T e e e L el I e
Br me —m + 2UR Br Mme — M + 2UR

’Y/

+ 1| (m.—m~+2vg)dz.

By (5.38) we get that m. —m+2vg < |m.—m|+2vg < Ce &, eventually enalarging C. Moreover,
reasoning as in (5.49), we get

We — W + 2VR
me —m + 2UR

C

m

IN

75 — £ 76 - H U
< |VH.(Va.) - | B m| n |VH EVu )7 VHy(Va)|
me —m + 2UR me —m + 2vR

where we used that Vvr = 0 for |z| < R, that |VH.(Vi.)| < K, that by (5.38) % <1,
[VH:(Vae)-VHo(VA)| < 7 by (5.37) and (5.36). So, we conclude that

me—m—+2vgr

75 —w 2 —
/ (M. —m + 2uR) L. (—W) dr < Ce PRV, (5.54)
Br Me —m + 2UR

Putting together (5.53) and (5.54) we get, choosing C suffficiently large and for all € < g¢(R),

meL, <_w€> dr > / mL, (—g) dx
Br me Br m
Do — 1 + 2
+/ (e — 1 + 2vR) Le (W‘f) dz — CRNe R, (5.55)
Br mes —mm + QVR
Therefore, summing up (5.55), (5.51), (5.44) and (5.45), we conclude for all € < gg(R),

Eo (e, W) > E(m, W) + (e — T 4 2uR, We — W + 2VvR) + 0.(1) — CRV™Ne . (5.56)

M—a
M—a+2 f]RN vrdx

(cr(me — M+ 2vR), cr(W. — W+ 2VvR)) € Kpr—q. By the same computation as in (5.31), we get

Let now cg = . We have that cp — 1 as R — 400 and cp < 1. In particular,

cr€(Me — M + 2R, W — W + 2VvR)
= 55(cR(m€—m+2z/R),cR(ws—w+2VuR))+/RN crF. (e —m+2vgR) — Fo(cgr(me —m+2vR)) dx
> & (cgr(me —m + 2vR), cr(we — w + 2VvR))
g —1
a+1

Na~'

Cf/ (me —m + 2vR)*Mdr — 2K (M —a+ 2/ VRdl‘> g =Na.  (5.57)
RN RN

+ CRr
Observe that by (5.15) there exists C' independent of € such that

0 S /N(me —m + 2VR)04+1dI S (||m5||a+1 + ||mHa+1 _|_ ||2VR||(X+1)Q+1 S C
R
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Therefore, (5.57) reads (recalling that ¢cg < 1 and enlarging the constants C, K),

CRSs(ﬁLE —m+ 2vR, W — W + QVI/R)

—1 Na~’
> & (cr(me — M + 2vR), cr(we — w 4 2VrR)) + CRCR+ I C— KM{—:W’*;\/M
«

Q1 Nay'
> & (M —a) + (:RCO’fJr ~C - KMe7 5,

Using this inequality, and using the fact that & (m.,w:) = é-(M) and that & (m,w) > é.(a),
we obtain from (5.56)

(M) >é.(a)+é. (M —a)+ (1 —cr)ée(me: —m+ 2ug,w. —w + 2VrR)
o 1 Nu'y'
+CcRCR — KMev-~Na +0.(1) — CRVTNe B
a+1

Moreover by (5.29) we get that there exist K = K(M — a) > 0 such that & (m. —m + 2vpg, W. —
w + 2Vvg) > — K, therefore the previous inequality gives

c%—1

é-(M) >é.(a)+é. (M —a)— (1 —cgr)K + Cep aR+ o Hoe(l) - CRMHNe~ R, (5.58)

By Lemma 5.5, we get that
é-(M) <é.(a)+é. (M —a)—Cla, M),

where C'(a, M) > 0 for a < M and C(M, M) = 0. This implies in particular that

(e}

0>—-Ca,M)>—-(1—-cp)K + C’cRc(f_:ll +0.(1) — CR"*Ne R,

Recalling that crg — 1 as R — +o00, this gives a contradiction, choosing R sufficiently large and
e < egp(R). O

An immediate corollary of the previous theorem is the following convergence result.

Corollary 5.7. Let (e, me, :\s) and (@, m, \) be as in Proposition 5.8. Then,
Me — M in LYRY) and LoTHRYN). (5.59)

Finally for all n > 0, there exist R > 0 and €y such that for all € < g,
/ medx > M — 1. (5.60)
B(0,R)

Proof. By Proposition 5.3 we get that m. — m almost everywhere, and by Theorem 5.6, f]R N Me =
M = fRN m. This implies the convergence in L*(RY). Indeed, by Fatou lemma

2M < liminf me +m — |me — m|de < 2M — limsup/ |me — m| de.
RN

> RN €
Moreover, recalling (5.16), we get that
[me — m”zi_il(RN) < lme — m|| L1y ([ oo mvy + (7] oo rv)) — 0.

Finally observe that for all R, by Remark 5.4,

/ medy > / mdy — / |me —m|dy > M — CRN e H — / |me — m|dy.
Br(0) Br(0) Br(0) RN

So, using the L' convergence we conclude the desired estimate. O
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5.4 Existence of ground states.

In this subsection we aim at proving that as £ goes to zero, (e, M, Ac) converges to a solution of
the limiting MFG system (1.14), without potential terms. In particular, we will prove Theorem
1.3.

We first need a I'-convergence type result, proved in the following lemma.

Lemma 5.8. Let (me,w.), (m,w) € K1, be such that m. — m in L* N L*TY(RY) and w, — w
weakly in LYRN) for some ¢ > 1. Then

liminf & (me, we) > E(m, w), (5.61)

where & is defined in (1.16).
Let (m,w) € K1.ar be such that m(1 + |y®) € LY(RYN). Then

ligné’s(m(~ —ye),w(- —ye)) < E(m,w). (5.62)

Proof. We recall that L.(q) — Cplg|”" uniformly in RN by (5.11) and F.(m) — —a%rlma“
uniformly in [0,400) by (5.7). Moreover we observe that the energy & is lower semicontinuous
with respect to weak L9 convergence of w and strong Lt N L' convergence of m. Since V > 0,

we get that

liminf & (me, we) > liminf meL, (_ws) + F.(m.) dx
€ € RN me
B 11—+ ! Cf a+1
> lim inf Crm. "7 |we|” — ——m&" " dx
£ RN o+ 1
11—+ ! Cr ot
> Crm 7 w|? — ——m* " dx = E(m,w).
RN « + 1

Now we observe that for all m such that m(1 + |y|°) € L'(RY), using (5.3), we get that

Na~'
lim [ m(y+ye)Ve(y + ye)dy < lim Cyer’=o~ / (1+[y))'m(y)dy = 0. (5.63)
e—0 RN € RN
Therefore, recalling again the uniform convergence of L.(q) — CL\qP' and F.(m) — fa%_lmo‘ﬂ,

we conclude (noting that if we translate m,w of y. the energy &) remains the same)

lim & (m(- = ye), w(- = ye)) = Eo(m, w) + lim [ m(y +ye)Ve(y + ye)dy < Eo(m, w).

e—0 RN
O

Proof of Theorem 1.3. We first show that (@,m) obtained in Proposition 5.3 are associated to
minimizers of an appropriate energy, without potential term, so that (1.15) holds.

Note that (m,w) € K1, p where w = —mVHy(Va), due to Proposition 5.3 and Theorem 5.6
and m(1 + |y|®) € LY (RY) by the exponential decay (5.26). Moreover m. — m in L' N LY+ by
Corollary 5.7 and w. = —m:VH.(Vi.) - w = —mV Hy(Va) locally uniformly (by Proposition

'(at1)
5.3) and weakly in L% by the same argument as in the proof of Theorem 3.3.
Let now (m,w) € K1, a be such that m(1+ |y[°®) € LY(RY). Using the minimality of (., w.),
(5.61) and (5.62), we conclude that

Eo(myw) > lm & (m(- — ye), w(- — ye)) > lim & (e, we) > Eo(m, W).
This implies (1.15).

To obtain the first part of the theorem, that is the existence of a solution to (1.14), we need
to prove that the function g appearing in Proposition 5.3 is actually zero on RY. To do that, we
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derive a better estimate on the term V¢ (y + y.), in particular we show that V.(y + y.) — 0 locally
uniformly in RY.
By minimality of (m.,w.) and (m,w), (5.11), (5.7) and (5.63) we get that

Ee(Me,we) < E(M( + Ye), (- + ye))
Na~' Na~'
S gO(ma 7I]) + / m(y + ys)‘/s(y + ys)dy + Cer'—Na S 5O(m57 we) + CIE'Y/*NQ .
]RN
Again using (5.7) and (5.11) we get
_ -~ Nay' _ We _ Nay' Na~y'
50(77%’ we) + Ciev—Ne < MeLle | —— | + Fa(me)dy + Ce7—oN M + Cer'—Ne.
RN €
So, putting together the last two inequalities, we conclude that
Noay'
meVe(y + yeo )dy < Cer’=Na, (5.64)
RN
Recalling (5.2), this implies that for all R > 0, we get
O (ma{e 72w |y | — e 728 R— Oy, o})b/ edy < C.
B(0,R)

Using (5.60), we conclude that there exists C' > 0 such that

e7 % |ye| < C. (5.65)

In turns this gives, recalling again (5.2), that

Moo ,“’/ - b Hev b
0<Ve(y+ye) <Cver—oN (1+ev—oN|y[ 4+ e7=aN |ye|)” < Cev=on (1 + |y])
which implies that V.(y + y.) — 0 locally uniformly. O

Remark 5.9. If H and f satisfy the growth conditions (1.2) and (1.3), arguing as before one has
that there exists a classical solution to the potential-free version of (1.1),

—Au+ H(Vu) + A= f(m)
—Am — div(VH(Vu)m) =0 (5.66)
Jpn m =M.

In addition, (m,—VH(Vu)m) is a minimizer of

(m,w) — mL (,E

. ) + F(m)dx

m
among (m,w) € K1.ar, m(1+|y|’) € LY(RY). This can be done as follows: start with a sequence
(us, mg, As) solving

—Aus + H(Vus) + Xs = f(ms) + 5|x‘b

—Am5 - diV(VH(Vu(;)mg) =0

fRN mes = M.

with § = d,, — 0. Such a sequence exists by Theorem 1.1. The problem of passing to the limit
in (5.67) to obtain (5.66) is the same as passing to the limit in (5.13), and it is even simpler: in
(5.13), one has to be careful as the Hamiltonian H. and the coupling f. vary as ¢ — 0 (still, they
converge uniformly), while in (5.67) they are fixed, and only the potential is vanishing. We observe
that b > 0 could be chosen arbitrarily, the perturbation §|x|® always disappears in the limit. Still,
the limit m,u somehow retains a memory of b in terms of energy properties: m minimizes an
energy among competitors satisfying m(1 + |y|*) € L}(RY).

(5.67)
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Remark 5.10. We stress that uniqueness of solutions for (1.14) does not hold in general; for
example, a triple (u, m, \) solving the system may be translated in space to obtain a full family of
solutions. On the other hand, a more subtle issue is the uniqueness of m in the second equation
(with Vu fixed), that is, if (u,m1, ) and (u, ms, \) are solutions, then m; = msy. This property is
intimately related to the ergodic behaviour of the optimal trajectory dX, = —VHy(Vu(X;))ds +
V2 dBy (see, for example, [11] and references therein). It is well-known that uniqueness for the
Kolmogorov equation is guaranteed by the existence of a so-called Lyapunov function; in our
cases, it can be checked that u itself (or increasing functions of u, as in (5.28)) acts as a Lyapunov
function, so uniqueness of m and ergodicity holds for (1.14) and (1.1).

5.5 Concentration of mass

The last problem we address is the localization of the point y., to conclude the proof of Theorem
1.2. Rewriting (5.60) in view of (5.1) and (5.18), we get that for all > 0 there exist R, e such
that for all € < ¢,

/ » " m(z)de > M —n, (5.68)
B

(Emyg,amR)

N ! !
where m is the classical solution to (1.1) given in Theorem 1.1, and m.(y) = 7 —oN m(e TN Y+

’

TN ).

’
~

By (5.65), we know that, up to subsequences, e -«¥y. — Z. Our aim is to locate this point,
which is the point where mass concentrates. We need a preliminary lemma stating the existence
of suitable competitors that will be used in the sequel.

Lemma 5.11. For all € < gq, there exists (1he, We) € K1 m that minimize

(m,w) — mL. (—E) + F.(m)dy (5.69)
RN m
among (m,w) € Kin, m(l + |y|*) € LYRY). Moreover, for some positive constants ci,cz
independent of €,
me(y) < crec2lVl on RY. (5.70)

Proof. The existence of (M., w.) is stated in Remark 5.9, together with a solution (dc, M., Ac) to
the associated MFG system as the optimality conditions (see (5.71) below). To obtain the uniform
exponential decay, we can argue by Lyapunov functions as in Proposition 5.3; here, we have to be
careful, since the argument in Proposition 5.3 mainly require

fa(mb‘) _5‘8 - HE(O) > —5\5/2 >0

outside some fixed ball B,.(0). This claim can be proved as follows: first, —A. is bounded away
from zero for € small. Indeed,

RN Me

AM = M. L. (— 71”5) + fe(ing)me dy < E (e, w.) 4 0-(1) < —C.

The inequality follows by minimality of (7i., W) and (., W, ), and (rescaled) (4.24).
We now prove that 7h. decays as |z| — oo uniformly in e. Note that . = —VH (Vi ),

where (e, M, Ac) solves
_Aaa + Ha(Vﬁs) +A= fe(ms)
—Am, — div(VH:(Vig)me) =0 (5.71)
flRN me = M.
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We derive local estimates for @, and m.. We shift the z-variable so that i.(0) = 0 = mingw e
for all e. Choose p > N such that

! !
a<l<l.
P N

If one considers the HJB equation solved by i, recalling (5.5) and (5.9), Theorem 2.5 gives the
existence of C' > 0 such that
. . 1
Ve Lo (Bar(z0)) < K (IhellToe (Byp(zo) T 17

Note that C' > 0 does not depend on ¢ and xy. Turning to the Kolmogorov equation, again by
(5.9) and Proposition 2.4,

. L r-1
e lwr (B (z0)) < C(”vus”sz(Bm(xo)) + Dllmell e (Ban(w0))-

By the previous L™ estimate on Vu, and interpolation of the L” norm of m between L' and L>
we get

. X AT NS | Lopl-1
e llwr o5y < CUIMEN L (5 enyy T DIl 5o 17 | o)

Recall that ||| 11(B,x(z0)) < M; then, since p > N, by Sobolev embeddings we obtain that for
some [ > 0,
. A AT L ol—1
||ms||C°vf’(BR(xo)) < C(Hma”Loo(RN) + 1)||m5||Loo({1§N)- (5.72)

First, since C' does not depend on xg, this yields ||[77[| @~y < C, by the choice of p < 7'/a.
Secondly, plugging back this estimate into (5.72), we conclude |[rh [|co.s@ny < C.

Then, using these estimates, we get that up to subsequences, \. — A, 4. — @ locally uniformly
in C!, and 1. — 7 locally uniformly, where (4, 17, ;\) is a solution to (5.25) with g = 0. Arguing
exactly as in Proposition 5.3, we get that @, m satisfy the estimates (5.26) (eventually modifying
the constants). Moreover [,y 7 dz = a € (0, M]. Observe now that Lemma 5.5 and Theorem 5.6
hold also for the energy (5.69), since it coincides with the energy £. without the potential term
Jgn Vemdz. Therefore we can apply Theorem 5.6 to 7, to conclude that actually [y 1 dz = M.
So, by Corollary 5.7, we obtain that for all > 0, there exist R > 0 and ¢¢ such that for all ¢ < g,

/ medr > M — 1. (5.73)
B(0,R)

By (5.72) and (5.73), using Lemma 2.2, we get that

A
A~ > i
fe(ms) =
outside a ball B,.(0). Since H.(0) — 0, the claim
fomg) — Ae — H(0) > =X./2 >0 (5.74)

outside a ball B,.(0) follows. As previously mentioned, me may now proceed and conclude as in
Proposition 5.3; basically, (5.74) implies that z — % (®) acts as a Lyapunov function for ., for

some small k£ > 0, giving
c/ ek‘w‘_klmg §/ ekaffng <C
RN RN

for all € small, that easily implies the pointwise exponential decay (5.70) of . by Holder regularity
of . itself. O

For general potentials, the point where mass concentrates is a minimum for V.
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Proposition 5.12. Up to subsequences, e 0w Ye — T, where V(Z) =0, i.e. T is a minimum of

V.

De(- + z)) is still a minimizer of

Proof. Fix a generic 2 € RY and observe that (m.(- + 2),
(-4 2), W (- + 2)), we get that

[mL. (—%) + F.(m). By minimality of (m.,w.) and of (1

We

MeLe < > + F, (ms dy + / me V (y + ye)dy = gs(mmwe)
RN Me

wf) FE(me) + [ ey + 2)Vely + ye)dy.

€ RN

S gs(me(+z)ams(+z)) S msLs <_
RN
In particular this gives that

me(W)Ve(y+ye)dy < | me(y+2)Vely+y)dy= | me(y)Vely+y. —2)dy  VzeRY.

RN RN RN
(5.75)
Recalling the rescaling of V. and of m. in (5.1), this is equivalent to

/17Mxﬂ%xﬂx§ o (y)V (7R y 4 e e Ny, — e W )y V2 e RN (5.76)
RN RN

N 7 ’
where m is the classical solution to (1.1) given in Theorem 1.1, such that m.(y) = g7 —aN m(e STy y+

'Y/
ey —aN ys)

By (5.65), we get that up to passing to a subsequence, e oN ye — & for some € RY. Then
by (5.68), we get that

1mm4mmwwmymmé . L om@V(@)de > (M- n)V(E).  (5.77)

e—0 e—0 (smyg,st)

We fix z such that V(z) = 0 and we choose in (5.76) 2 = y. — & 7o~ z. We have, by the
Lebesgue convergence theorem and (5.70),

lim sup me(y)V (e TNy Z)dy < limsup ¢; / e~y (e TNy Z)dy = 0. (5.78)
e—0 RN e—0 RN
By (5.77), (5.78) and (5.76), we conclude V(Z) = 0.
O

If we assume that the potential V' has a finite number of minima and polynomial behavior,

that is, it satisfies assumption (1.13), then we get that at the limit P ye selects at the limit
the more stable minima of V', as we will show in the next proposition.

Proposition 5.13. Assume that V satisfies assumption (1.13). Then, up to subsequences, there
holds that

’

-0
gV -aNy. — x; ase—0

where i € {j =1,...,n, | b; = maxy, by }.

Proof. By Proposition 5.12, we know that up to subsequences, eT N Ye — x, forsomet=1,...n
It remains to prove that b, = max; b;. Assume by contradiction that it is not true, and then
b, < max; b;.
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We compute for j € 1,...n, recalling the uniform exponential decay of 7. given in (5.70),

’ ’

. —_ ) __
Mme(y+ye —e 7N )Vo(y + yo )dy = me(y)Ve(y +& 7N x;)dy
R™ Rn
. ’
< CV57:LW e (y)er—Ne 7N°‘|y|b H|€“’,7N°‘y_xz d
Rn ’L;ﬁj
v/ (Na+bj) v (Natb;)
< O veme / e )yl [[ Iy — w1 + 25" dy < C= 7~ (5.79)

i#]

Note in particular that we can choose in the previous inequality b; = max; b;.

’
~

We get from (5.75) applied to z = y. —e "=~ x;, where j is such that b; = max; b;, and from
(5.79) the following improvement of (5.64)

(Na+maxb;)~'

N N (Wofmaxby)y!
Lo Ve 9y S [ ey e T Ve dy < 0 (ss0)
0,R R

for all R > 0. We choose R > 0 sufficiently large such that fB(o R) medy > % Recalling the
rescaling of V', (5.80) implies that

max b] ’y

7 M 1 7 b
Cer=Na” > ?C yerél(lélR H ler=Na *Nay fev e Ye — x| (5.81)

Note that for € sufficiently small |£W’1Nay—|—€v’jNa y.—xj| > 6 >0foralli+#.andally € B(0, R).
So, by (5.81) we get that there exists C' > 0 for which

max bj'y

¢ < Cegr-Na

min |e7-Ne —Nay—i—&” —Naye —x,|°
y€B(0,R)

and then

(max b —b)vy!

b = bo< CeT 7 Na T 50 (5.82)

!

— Y

min_ |y+y.—¢e 7~
y€B(0,R)

/
. S
|y€ —¢g -Neg,

for some §. € B(ye, R). Let z. = §. —y. € B(0,R). Up to subsequences we can assume that
ze = Z € B(0, R).
We use now (5.80), recalling assumption (1.13), we get that

maxbj'y, n
—1 - b;
Ce7—~a > Cy mg(y)H|sw—N~y+sw—zv~y5—xj\ i dy
0,R =1
b,y 4

> c1ev ~Ne / me(y)|y_ze+ga_57”’/_
B(0,R)

dy.

In particular this implies that

lim me(Y)|ly— 2ze + e —& 7~
e—0 B(0,R)

‘dy = 0. (5.83)

Recalling that m. — m locally uniformly (see (5.24)), that g. —e™ T Nag, =0 by (5.82), and
that z. — z, we get

: - - T . b
ti [y - g - Ty = [ )y - ol dy > o
=70JB(0.R) B(0,R)

This gives a contradiction with (5.83). O
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As a consequence of the previous results, we can conclude with the

’

Proof of Theorem 1.2. Setting x. = eTow Ye, it suffices to recall (5.68) and Propositions 5.12,

5.13. 0
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