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Abstract

In this paper we provide the existence of classical solutions to stationary mean field game
systems in the whole space RN , with coercive potential and aggregating local coupling, under
general conditions on the Hamiltonian. The only structural assumption we make is on the
growth at infinity of the coupling term in terms of the growth of the Hamiltonian. This re-
sult is obtained using a variational approach based on the analysis of the non-convex energy
associated to the system. Finally, we show that in the vanishing viscosity limit mass concen-
trates around the flattest minima of the potential. We also describe the asymptotic shape of
the rescaled solutions in the vanishing viscosity limit, in particular proving the existence of
ground states, i.e. classical solutions to mean field game systems in the whole space without
potential, and with aggregating coupling.
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1 Introduction

We consider a class of ergodic Mean-Field Games systems set on the whole space RN with un-
bounded decreasing coupling: our problem is, given ε > 0 and M > 0, to find a constant λ ∈ R
for which there exists a couple (u,m) ∈ C2(RN )×W 1,p(RN ), for any p > 1, solving

−ε∆u+H(∇u) + λ = f(m) + V (x)

−ε∆m− div(m∇H(∇u)) = 0 on RN ,∫
RN m = M.

(1.1)

The aim of this work is two-fold. Firstly, for any fixed ε > 0, we prove the existence of classical
ground states of (1.1). Secondly, we study their behavior in the vanishing viscosity limit ε→ 0.

The Hamiltonian H : RN → R is strictly convex, H ∈ C2(RN \ {0}) and has superlinear
growth: we assume that there exist CH > 0, K > 0 and γ > 1 such that, for all p ∈ RN ,

CH |p|γ −K ≤ H(p) ≤ CH |p|γ ,
∇H(p) · p−H(p) ≥ K−1|p|γ −K and |∇H(p)| ≤ K|p|γ−1.

(1.2)

The coupling term f : [0,+∞)→ R is a locally Lipschitz continuous function such that there exist
Cf > 0 and K > 0 for which

−Cfmα −K ≤ f(m) ≤ −Cfmα +K, (1.3)

with

0 < α <
γ

N(γ − 1)
=
γ′

N
, (1.4)

where γ′ = γ
γ−1 is the conjugate exponent of γ.

Finally, we assume that the potential V is a locally Hölder continuous function, and that there
exist b > 0 and a constant CV > 0 such that

C−1
V (max{|x| − CV , 0})b ≤ V (x) ≤ CV (1 + |x|)b. (1.5)

Note that the requirement of V to be non-negative is not crucial, we just need it to be bounded
from below.

Mean-Field Games (MFG) is a recent theory that models the behaviour of a very large num-
ber of indistinguishable rational agents aiming at minimizing a common cost. The theory was
introduced in the seminal works by Lasry, Lions [23, 24, 25, 26] and by Huang, Caines, Malhamé
[19], and has been rapidly growing during the last decade due to its mathematical challenges and
several potential applications (from economics and finance, to engineering and models of social
systems). In the ergodic MFG setting, the dynamics of a typical agent is given by the controlled
stochastic differential equation

dXs = −vsds+
√

2ε dBs, s > 0,

where vs is the control and Bs is a Brownian motion, with initial state given by a random variable
X0. The cost (of long-time average form) is given by

lim
T→∞

1

T
E
∫ T

0

[L(vs) + V (Xs) + f(m(Xs))]ds,

where the Lagrangian L is the Legendre transform of H (see (2.1)) and m(x) denotes the density
of population of small agents at a position x ∈ RN . A typical agent minimizes his own cost, and
the density of its corresponding distribution law L(Xs) converges as time s→∞ to a stationary
density µ, which is independent of the initial distribution L(X0). In an equilibrium regime, µ
coincides with the population density m. This equilibrium is encoded from the PDE viewpoint
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in (1.1): a solution u of the Hamilton-Jacobi-Bellman equation gives an optimal control for the
typical agent in feedback form ∇H(∇u(·)), and the Kolmogorov equation provides the density m
of the agents playing in an optimal way.

The two key points of our setting are the following: firstly, the cost is monotonically decreasing
with respect to the population distribution m, namely agents are attracted toward congested areas.
A large part of the MFG literature focuses on the study of systems with competition, namely when
the coupling in the cost is monotonically increasing; this assumption is essential if one seeks for
uniqueness of equilibria, and it is in general crucial in many existence and regularity arguments,
see, e.g [18], and references therein. On the other hand, models with aggregation like (1.1) have
been considered in few cases, see [10, 13, 14, 15, 16].

Secondly, the state of a typical agent here is the whole euclidean space RN . Usually, the
analysis of (1.1) is carried out in the periodic setting, in order to avoid boundary issues and the
non-compactness of RN . Few investigations are available in the truly non-periodic setting: see
[30] for time-dependent problems, [2] for the case of bounded controls, [17] for some regularity
results and [3] for the Linear-Quadratic framework. We observe that the non-compact setting is
even more delicate for stationary (ergodic) problems like (1.1): a stable long-time regime of a
typical player is ensured if the Brownian motion is compensated by the optimal velocity vs. In
other words, if a force that drives players to bounded states is missing, dissipation eventually leads
their distribution to vanish on the whole RN . This phenomenon is impossible if the state space is
compact. The main issue here is that the behaviour of the optimal velocity vs(·) = ∇H(∇u(·)) is a
priori unknown, and depends in an implicit way on V and the distribution m itself. Note that V (·)
represents the spatial preference of a single agent; if it grows as |x| → ∞, it discourages agents
to be far away from the origin. At the PDE level, this will compensate the lack of compactness
of RN . Let us mention that even without the coupling term f(mα), the ergodic control problem
in unbounded domains has received a considerable attention, see e.g. [4, 20, 21] and references
therein.

In our analysis, we exploit the variational nature of the system (1.1), which has been pointed
out already in the first papers on MFG, see [25], or the more recent work [28]. Indeed, solutions
to (1.1) can be put in correspondence with critical points of the following energy

E(m,w) :=


∫
RN

mL
(
−w
m

)
+ V (x)m+ F (m) dx if (m,w) ∈ Kε,M ,

+∞ otherwise,
(1.6)

where F (m) =
∫m

0
f(n)dn for m ≥ 0 and F (m) = 0 for m ≤ 0 and

L
(
−w
m

)
:=


supp∈RN (−p·wm −H(p)) if m > 0,

0 if m = 0, w = 0,

+∞ otherwise.

(1.7)

Note that mL(− · /m) reads as the Legendre transform of mH(·). The constraint set is defined as

Kε,M :=
{

(m,w) ∈ L1(RN ) ∩ Lq(RN )× L1(RN ) s.t.

ε

∫
RN

m(−∆ϕ) dx =

∫
RN

w · ∇ϕdx ∀ϕ ∈ C∞0 (RN ),∫
RN

mdx = M, m ≥ 0 a.e.

}
with q =

{
N

N−γ′+1 γ′ ≤ N
γ′ γ′ > N.

(1.8)

Under assumption (1.3) on the coupling term, the energy E is not convex. Condition (1.4)
is necessary for the problem eε(M) := min(m,w)∈Kε,M E(m,w) to be well-posed. Indeed, consider
any (m0, w0) ∈ Kε,M such that m0 has compact support. An easy computation shows that if
α > γ′/N , then

E(σ−Nm0(σ−1·), σ−(N+1)w0(σ−1·))→ −∞
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as σ → 0, so E is not bounded from below on Kε,M . We show that (1.4) is indeed sufficient for
eε(M) to be finite, and allows to look for ground states of (1.1). This will be accomplished by a
study of the Sobolev regularity of the Kolmogorov equation, see in particular Section 2.2. Note
that the critical case α = γ′/N is more delicate, and requires additional analysis. We also mention
that another critical exponent is intrinsic in (1.1): if α > γ′/(N − γ′), one has to expect non-
existence of solutions (see [13]). We refer to our case as the subcritical case, in analogy with the
L2-subcritical regime in nonlinear Schrödinger equations with prescribed mass (see [13, Remark
2.9] for additional comments). The analogy can be made precise in the purely quadratic framework,
that is when H(p) = 1

2 |p|
2. Indeed, as observed in [23, 24], the so-called Hopf-Cole transformation

permits to reduce the number of unknowns in the system. Setting v2(x) := m(x) = ce−
u(x)
ε , with

c normalizing constant, then v is a solution to

−2ε2∆v + (V (x)− λ)v = −f(v2)v

with
∫
RN v

2(x)dx = M . Then the energy reads E(v) =
∫
RN ε

2|∇v|2 + 1
2V (x)v2 + 1

2F (v2)dx.
In our approach, to construct solutions to (1.1), we look for minimizers (m,w) ∈ Kε,M of

the energy (1.6). These minimizers can be obtained by classical direct methods, by using in
particular estimates and compactness in some Lp space for elements (m,w) in Kε,M with bounded
action, i.e. which satisfy

∫
RN mL

(
− w
m

)
dx ≤ C, obtained in Section 2.2. Then, the existence

of a solution (uε, λε) of the HJB equation in (1.1) is obtained by considering another functional
with linearized coupling (around the minimizer) and the associated dual functional in the sense of
Fenchel-Rockafellar (as in [8]). One has to take care of the interplay between u and m as |x| → ∞.
To handle the lack of a priori regularity on the function m, we first regularize the problem, by
applying standard regularizing convolution kernels on the coupling (see Section 3). We construct
minimizers (mk, wk) of the regularized energy and associated solutions (uk,mk) of the regularized
version of (1.1). Then, in order to come back to the initial problem, we provide some new a priori
uniform L∞ bounds on mk, which in turn imply a priori uniform bounds on |∇uk| and (local)
Hölder regularity of mk that is uniform in k. This key a priori bound is provided by Theorem 4.1

Note that we will consider classical solutions to this system (with a slight abuse of terminology),
that is (u,m) ∈ C2(RN ) ×W 1,p(RN ), for all p > 1. The existence result, proved in Section 4, is
the following.

Theorem 1.1. Under the assumptions (1.2), (1.3), (1.4) and (1.5), for every ε > 0 there exists
a classical solution (uε,mε, λε) ∈ C2(RN ) ×W 1,p(RN ) × R, for all p > 1, to (1.1). Moreover,
(mε,−mε∇H(∇uε)) is a minimizer in the set Kε,M of the energy (1.6).

We observe (see Remarks 3.5, 4.2) that Theorem 1.1 holds under more general conditions on
H and f , that is, if there exist CH , Cf > 0 and K > 0 such that

C−1
H |p|

γ −K ≤ H(p) ≤ CH(|p|γ + 1), −Cfmα −K ≤ f(m) ≤ C−1
f mα +K, (1.9)

where α satisfies (1.4).
In the second part of the work, in Section 5, we analyze the behavior of the triple (uε, λε,mε)

coming from a minimizer of E as ε→ 0, under the assumptions (1.2), (1.3). From the viewpoint of
the model, this amounts to remove the Brownian noise from the agents’ dynamics. Heuristically,
if the diffusion becomes negligible, one should observe aggregation of players (induced by the
decreasing monotonicity of coupling in the cost) towards minima of the potential V , that are the
preferred sites. Moreover, in the case V has a finite number of minima and polynomial behavior
(that is, when (1.13) holds) we specialize the result showing that the limit procedure selects the
more stable minima of V , implying e.g. full convergence in the case that there exists a unique
flattest minimum.

In order to bring as much as possible information to the limit, we consider an appropriate
rescaling of m,u, namely

m̄ε(·) = ε
Nγ′

γ′−αNm(ε
γ′

γ′−αN ·+xε), ūε(·) = ε
Nα(γ′−1)−γ′

γ′−αN

(
u(ε

γ′
γ′−αN ·+xε)− u(xε)

)
, (1.10)
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for all ε > 0. The rescaling is designed so that (ūε, m̄ε) solves a MFG system where the non-
linearities have the same behavior of the original ones, i.e. Hε ∼ |p|γ as p→∞, but the coefficient
in front of the Laplacian is equal to one for all ε, see (5.19). Moreover, the couple ūε, m̄ε is
associated to a minimizer of a rescaled energy Eε, see (5.23). It turns out that in this rescaling
process, the potential V becomes

Vε(·) = ε
Nαγ′
γ′−αN V (ε

γ′
γ′−αN ·),

and vanishes (locally) as ε → 0. Therefore, as one passes to the limit, the potential cannot
compensate anymore the lack of compactness of RN , and the convergence of m̄ε in L1(RN ) has
to be proven by other methods. Heuristically, the aggregating force should be strong enough
to overcome the dissipation effect, but the clustering point can be hard to predict by lack of
spatial preference. This is why we also have to translate in (1.10) by xε. We will select xε to be
the minimum of uε: heuristically, being uε the value function, this is the point where most of the
players should be located. In order to recover compactness for the sequence m̄ε, we implement some
ideas of the celebrated concentration-compactness method [27]. This principle states intuitively
that if loss of compactness occurs, m̄ε splits in (at least) two parts which are going infinitely far
away from each other, that is

m̄ε ∼ χBR(0)m̄ε + χRN\B2R(0)m̄ε, (1.11)

with R→∞,
∫
χBR(0)m̄ε ∼ a and

∫
χRN\B2R(0)m̄ε ∼M−a for some a ∈ (0,M) (a third possibility

might happen, but it is easily ruled out here by local estimates). This induces a splitting in the
energy E , that is

inf∫
m=M

Eε & inf∫
m=a
Eε + inf∫

m=M−a
Eε. (1.12)

One then exploits a special feature of Eε, which is called sub-additivity:

inf∫
m=M

Eε < inf∫
m=a
Eε + inf∫

m=M−a
Eε,

that makes (1.12) impossible. While sub-additivity is easy to prove for Eε (see Lemma 5.5), the
splitting (1.12) requires technical work, in particular due to the presence of the term mL(−w/m)
in Eε, that becomes increasingly singular as m approaches zero (a simple cut-off as in (1.11) is not
useful). The property (1.12) is proven in Theorem 5.6. It relies on the Brezis-Lieb lemma and
a perturbation argument. The L1 convergence of m̄ε enables us to obtain the full convergence
of (ūε, m̄ε) to a limit MFG system. By a uniform control of the decay of m̄ε as |x| → ∞, that
comes from a Lyapunov function built upon ūε, energy arguments and the crucial L∞ estimate of
Theorem 4.1, we are also able to keep track of xε. In terms of the non-rescaled density mε, xε is
the point around which most of the mass is located.

The second main result of this work is stated in the following two theorems. The first one is
about concentration of mε.

Theorem 1.2. Under the assumptions of Theorem 1.1, there exist sequences ε→ 0 and xε, such
that for all η > 0 there exists R and ε0 for which for all ε < ε0,∫

|x−xε|≤Rε
γ′

γ′−αN
mε dx ≥M − η.

Moreover, xε → x̄, where V (x̄) = 0, i.e. x̄ is a minimum of V .
If, in addition, V has the form

V (x) = h(x)

n∏
j=1

|x− xj |bj , C−1
V ≤ h(x) ≤ CV on RN , (1.13)

for some xj ∈ RN , and bj > 0 (with
∑n
j=1 bj = b), then xε → xi, with i ∈ {j = 1, . . . , n | bj =

maxk bk}.
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Secondly, we describe the asymptotic profile of (ūε, m̄ε) as ε → 0. Note that as a byproduct
we obtain the existence of solutions to MFG systems without potential.

Theorem 1.3. Up to subsequences, (ūε, m̄ε) converges in C1
loc(RN )×Cloc(RN )∩Lp(RN ), for all

p ≥ 1, to a solution (ū, m̄) of
−∆u+ CH |∇u|γ + λ = −Cfmα

−∆m− CHγ div(m|∇u|γ−2∇u) = 0∫
RN m = M.

(1.14)

The function ū is globally Lipschitz continuous on RN , and there exists c1, c2 > 0 such that
0 < m̄(x) ≤ c1e−c2|x|.

Finally, if w̄ = −CHγm̄|∇ū|γ−2∇ū, then

E0(m̄, w̄) = min
{
E0(m,w) | (m,w) ∈ K1,M , m(1 + |y|b) ∈ L1(RN )

}
, (1.15)

where

E0(m,w) =

∫
RN

CL
|w|γ′

mγ′−1
− 1

α+ 1
mα+1dy. (1.16)

We finally observe that by analogous methods, one can prove existence of solutions to more
general potential-free MFG systems, see Remark 5.9.

Notation

We will intend for classical solution to the system (1.1), a triple (u,m, λ) ∈ C2(RN )×W 1,p(RN )×R,
for all p > 1.
For any given p > 1, we will denote by p′ = p

p−1 the conjugate exponent of p, p∗ = Np
N−p if p < N

and p∗ = +∞ if p ≥ N .
For all R > 0, x ∈ RN , BR(x) := {y ∈ RN : |x− y| < R}. We will denote by ωN := |B1(0)|.
Finally, C,C1,K,K1, . . . denote (positive) constants we need not to specify.

Acknowledgements. The authors are partially supported by the Fondazione CaRiPaRo
Project “Nonlinear Partial Differential Equations: Asymptotic Problems and Mean-Field Games”
and PRAT CPDA157835 of University of Padova “Mean-Field Games and Nonlinear PDEs”.

2 Some preliminary regularity results

Let L be the Legendre transform of H, i.e.

L(q) = H∗(q) = sup
p∈RN

[p · q −H(p)], q ∈ RN . (2.1)

The assumptions on H guarantee the following (see, e.g., [11, Proposition 2.1]).

Proposition 2.1. There exist CL, C1, C2 > 0 depending on CH and on γ such that ∀ p, q ∈ RN ,

i) L ∈ C2(RN \ {0}) and it is strictly convex,

ii) 0 ≤ CL|q|γ
′ ≤ L(q) ≤ CL(|q|γ′ + 1),

iii) ∇L(q) · q − L(q) ≥ C1|q|γ
′ − C−1

1 ,

iv) C1q|γ
′−1 − C−1

1 ≤ |∇L(q)| ≤ C−1
1 (|q|γ′−1 + 1).

v) C2|p|γ−1 − C−1
2 ≤ |∇H(p)| ≤ C−1

2 (|p|γ−1 + 1).

We will use the following (standard) result on Hölder functions vanishing at infinity.
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Lemma 2.2. Suppose that m ≥ 0, ‖m‖C0,θ(RN ) ≤ ch, for some θ, ch > 0, and
∫
RN mdx < ∞.

Then, m(x)→ 0 as |x| → ∞. Moreover, if∫
|x|≥R

mdx < η

for some η,R > 0, then

max
|x|≥R

m(x) ≤ Cη
θ

θ+N , (2.2)

where C > 0 depends only on ch, N .

Proof. By contradiction, suppose that there exists δ > 0 and a sequence |xn| → ∞ such that
m(xn) > δ for all n. We may also assume that |xn+1| ≥ |xn|+1 for all n. By the Hölder regularity
assumption,

m(x) ≥ m(xn)− ch|x− xn|θ ≥
δ

2
,

provided that x ∈ Br(xn), and rθ ≤ δ
2ch

. Choose r = min{1,
(

δ
2ch

) 1
θ }, so thatBr(xn)∩Br(xm) = ∅

for all n 6= m. Then, ∫
RN

mdx ≥
∑
n∈N

∫
Br(xn)

mdx ≥
∑
n∈N

δ

2
|Br(0)| = +∞

that is impossible.
As for the second part, let M := max|x|≥Rm(x) = m(x̄), |x̄| ≥ R (note that such a maximum

is achieved as a consequence of the first part of the lemma). As before,

m(x) ≥ m(x̄)− ch|x− x̄|θ ≥
M

2

for all x ∈ Br(x̄), where r =
(
M
2ch

)1/θ

. Therefore,

η >

∫
|x|≥R

mdx ≥ M

4
|Br(x̄)| = M

4
|B1(0)|

(
M

2ch

)N/θ
,

and (2.2) follows.

We recall the following well known result, proved in [7, Theorem 1].

Theorem 2.3. Let fn → f a.e. in RN and assume that ‖fn‖Lp(RN ) ≤ C for all n and for some
p ∈ [1,+∞). Then

lim
n

[‖fn‖pLp(RN )
− ‖fn − f‖pLp(RN )

] = ‖f‖p
Lp(RN )

.

From classical elliptic regularity, we have the following result.

Proposition 2.4. Let p > 1 and m ∈ Lp(RN ) be such that∣∣∣∣∫
RN

m∆ϕdx

∣∣∣∣ ≤ K‖∇ϕ‖Lp′ (RN ) for all ϕ ∈ C∞0 (RN )

for some K > 0. Then, m ∈W 1,p(RN ) and there exists C > 0 depending only on p, such that

‖∇m‖Lp(RN ) ≤ C K.
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Proof. Fix any R > 1. Let ψ ∈ C∞0 (B2(0)), ϕ(Rx) := ψ(x) (so, ϕ ∈ C∞0 (B2R(0))) and v(x) :=
m(Rx) on RN . Then,

∣∣∣∣∣
∫
B2(0)

v∆ψ dx

∣∣∣∣∣ = R2−N

∣∣∣∣∣
∫
B2R(0)

m∆ϕdy

∣∣∣∣∣ ≤ KR2−N

(∫
B2R(0)

|∇ϕ|p
′
dy

)1/p′

= KR1−N+N/p′

(∫
B2(0)

|∇ψ|p
′
dx

)1/p′

≤ KR1−N/p‖ψ‖W 1,p′ (B2(0)).

Hence, by [1, Theorem 6.1], v ∈ W 1,p(B1(0)) and there exists a constant C, depending on p
(but not on R), such that

‖∇v‖Lp(B1(0)) ≤ ‖v‖W 1,p(B1(0)) ≤ C(KR1−N/p + ‖v‖Lp(B2(0))).

Therefore,

(∫
BR(0)

|∇m|p dy

)1/p

= RN/p−1

(∫
B1(0)

|∇v|p dx

)1/p

≤ C

K +RN/p−1

(∫
B2(0)

|v|p dx

)1/p


= C(K +R−1‖m‖Lp(B2R(0))).

Letting R→∞, we get that |∇m| ∈ Lp(Rn) and the desired estimate.

2.1 The Hamilton-Jacobi-Bellman equation on the whole space

In this section we provide some a priori regularity estimates and existence results for Hamilton-
Jacobi-Bellman equations in the whole spaces of ergodic type. In particular we will consider
families of Hamilton-Jacobi-Bellman equations

−∆un +Hn(∇un) + λn = Fn(x)− fn(x) on RN (2.3)

where Fn − fn is locally Hölder continuous, λn ∈ R are equibounded in n, that is |λn| ≤ λ and
fn ∈ L∞(RN ), with ‖fn‖∞ ≤ cf for some cf > 0 independent of n. Moreover Hn is for every n an
Hamiltonian which satisfies (1.2), with constants γ and CH independent of n; finally, there exists
CF ≥ 0 and b ≥ 0 independent of n such that

C−1
F (max{|x| − CF , 0})b ≤ Fn(x) ≤ CF (1 + |x|)b ∀n and ∀x ∈ RN . (2.4)

Note that, differently from assumption (1.5) for the potential V , the function Fn can also be
bounded, if b = 0.

Theorem 2.5. Let un ∈ C2(RN ) be a sequence of classical solutions of the HJB equations (2.3).
Then there exists a constant K > 0 depending on CH , CF , cf , γ,N, λ such that

|∇un(x)| ≤ K(1 + |x|)
b
γ , (2.5)

where b ≥ 0 is the growth of Fn appearing in (2.4) and γ is the growth of Hn appearing in (1.2).

Proof. Without loss of generality we may consider Hn(p) = CH |p|γ for all n and p. Indeed, every
vn solves

−∆un + CH |∇un|γ + λn = Fn(x)− fn(x) + CH |∇un|γ −Hn(∇un) on RN ,

and since |CH |∇un|γ − Hn(∇un)| ≤ CH by (1.2), we can redefine fn to include CH |∇un|γ −
Hn(∇un), which then satisfies the bound ‖fn‖∞ ≤ cf + CH .
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We first claim that if v ∈ C2(B2(0)) satisfies

| −∆v + CH |∇v|γ | ≤ k on B2(0)

for some k > 0, then we have for any r ∈ [1,∞],

‖∇v‖Lr(B1(0)) ≤ C̃, (2.6)

where C̃ depends only on k,CH , γ,N, r. If r ∈ [1,∞), this is proven in [22, Theorem A.1], see
also [12, Theorem 19]. The case r =∞ follows by classical elliptic regularity, since if r in (2.6) is
large enough, then −∆v is bounded in Lq(B3/2(0)) for some q > N , and the statement follows by
Sobolev embeddings.

In view of these considerations, the gradient bound (2.5) easily follows if b = 0. For the case
b > 0, fix x0 ∈ RN , and let δ = (1 + |x0|)−b/γ

′
. Let

vn(y) := δ
2−γ
γ−1un(x0 + δy) on RN .

Then, vn solves

−∆vn + CH |∇vn|γ = δγ
′
(Fn(x0 + δy)− fn(x0 + δy)− λn).

Since δ ≤ 1,

δγ
′
|Fn(x0 + δy)− fn(x0 + δy)− λn| ≤

CF (3 + |x0|)b + cf + λ

(1 + |x0|)b
≤ C1

for all y ∈ B2(0) by (2.4) and the bound on fn.
Therefore, by the first claim,

‖∇vn‖L∞(B1(0)) ≤ C̃,

for all n. In particular, choosing y = 0,

|∇un(x0)| = δ−
1

γ−1 |∇vn(0)| ≤ C̃(1 + |x0|)b/γ ,

and the desired estimate follows.

Moreover, we prove the following a priori estimates on bounded from below solutions to (2.3).

Theorem 2.6. Let un ∈ C2(RN ) be a family of uniformly bounded from below classical solutions
to (2.3), that is for which there exists C > 0 such that un ≥ −C for every n.

If b = 0 in (2.4), we moreover assume that there exists δ > 0 and R > 0 independent of n such
that

Fn(x)− fn(x)− λn > δ > 0, for all |x| > R. (2.7)

Then there exists C > 0 such that

un(x) ≥ C|x|1+ b
γ − C−1, ∀n ∈ N, x ∈ RN , (2.8)

where b ≥ 0 is the growth power appearing in (2.4) and γ is the growth power appearing in (1.2).

Proof. The proof is based on the same argument as in [4, Proposition 3.4], we sketch it briefly for
completeness. Since un is bounded from below we can assume un ≥ 0, up to addition of constant
C (without changing the equation).

We assume by contradiction that (2.8) does not hold. Then there exist sequences xl and unl ,

such that |xl| > 2R, |xl| → +∞, and
unl (xl)

|xl|
1+ b

γ
→ 0. Let al = |xl|

2 and we define the function

vl(x) =
1

a
1+ b

γ

l

unl(xl + alx).
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By Theorem 2.5, we get that |∇unl(x)| ≤ K(1+ |x|)
b
γ . Therefore, vl, |∇vl| are uniformly bounded.

Moreover, vl is a solution to

−a
b
γ−1

l ∆vl +Hnl(a
b
γ

l ∇v
l) + λnl = Fnl(xl + alx)− fnl(xl + alx).

In particular, recalling (1.2), we get that vl is a supersolution to

−a
b
γ−1−b
l ∆vl + CH |∇vl|γ ≥ a−bl (−λnl + Fnl(xl + alx)− fnl(xl + alx)) .

Note that, for every l sufficiently large, by (2.4) and by (2.7) (in the case b = 0) the right hand
side of the equation

a−bl (−λnl + Fnl(xl + alx)− fnl(xl + alx)) > 0

for x such that |x| ≤ 1.
Moreover, passing eventually to a subsequence, we get that vl → v locally uniformly in n and

a
b
γ−1−b
l → 0. So v is a supersolution to CH |∇v|γ ≥ δ > 0 in B(0, 1) with homogeneous boundary

conditions (since v ≥ 0). By comparison, recalling the explicit formula of the solution to the
eikonal equation |∇f |γ = C in B(0, 1) with homogeneous boundary conditions, we conclude that

v(x) ≥ C
1
γ (1 − |x|) for all x such that |x| ≤ 1. Moreover, by uniform convergence, we get that,

eventually enlarging C and taking l sufficiently large, vl(x) ≥ C
1
γ (1 − |x|) for all x with |x| ≤ 1,

in particular vl(0) ≥ C
1
γ . Recalling the definition of vl, we get that vl(0) → 0, which yields a

contradiction.

Define
λ̄n := sup{λ ∈ R : (2.3) has a solution un ∈ C2(RN )}.

Theorem 2.7. Assume that for every n the function Fn− fn is bounded from below uniformly in
n.

(i) λ̄n < ∞, for every n, and there exists, for every n, a solution un ∈ C2(RN ) to (2.3) with
λn = λ̄n. Moreover

λ̄n := sup{λ ∈ R : (2.3) has a subsolution un ∈ C2(RN )}.

(ii) If Fn satisfies (2.4), with b > 0, then, for every n, the solution un to (2.3) with λn = λ̄n is
unique up to addition of constants and satisfies (2.8).

(iii) If Fn ≡ 0, and there exists δ > 0 independent of n such that

lim sup
|x|→+∞

fn(x) + λ̄n < −δ < 0, (2.9)

then for every n there exists a solution to (2.3) with λn = λ̄n which satisfies (2.8) with b = 0.

Proof. (i). The proof of this result can be obtained by a straightforward adaptation of the proof
of Theorem 2.1 in [4], using the a priori estimates on the gradient given in Theorem 2.5. Observe
that actually in [4] it is required a stronger assumption on the regularity of Fn − fn, in particular
local Lipschitz continuity. This assumption is used to derive a priori estimates on the gradient of
solutions by using the so called Bernstein method (see Appendix A in [4]), which depends also on
the L∞ norm of ∇(Fn− fn). In our case we can weaken this assumption to just Hölder continuity
(so still ensuring classical elliptic regularity) since we are using a priori estimates on the gradient
given in Theorem 2.5, which depends only on the L∞ norm of Fn − fn, and are obtained in [22]
by the so called integral Bernstein method.

(ii). For the proof we refer to [20] (see also [4] and [11]). In particular in [20], it is proved that
un is bounded from below. By looking at the proof, it is easy to check that, due to the uniformity
in n of the norms of coefficients, the bound can be taken independent of n, and by Theorem 2.6
we get the estimate on the growth.
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(iii). By adapting the argument in [4, Theorem 2.6], we get that there exists a bounded from
below solution to (2.3) with λn = λ̄n, with bound uniform in n. Then using Theorem 2.6, we get
the estimate on the growth. We give a brief sketch of the proof of the existence of a bounded from
below solution. For every R > 0, we consider the ergodic problem{

−∆uRn +Hn(∇uRn ) + λRn = −f |x| < R

uRn (x)→ +∞ |x| → R.
(2.10)

Using the result in [5], we get that for every R > 0 there exists a unique λRn and a unique up to
addition of constant solution uRn ∈ C2(BR).

First of all we claim that limR λ
R
n = λ̄n. It is easy to check that if R′ > R, then λR

′

n ≤ λRn ,
and moreover that λRn ≥ λ̄n. So, the sequence λRn is converging as R → +∞ to some λ?n ≥ λ̄n.
Moreover, by the same argument as in Theorem 2.5, we get that for every compact K ⊂ RN , there
exists a constant C > 0 such that |∇uRn | ≤ C in K for every R sufficiently large and for all n.
Without loss of generality we can assume that uRn (0) = 0 for every R. So, using the gradient bound,
and elliptic regularity, we conclude that uRn is bounded in C2(K) by some constant independent
of R. Hence, by Ascoli-Arzelà Theorem, and via a diagonalization procedure, we get that uRn
converges locally in RN , with un ∈ C2(RN ). Moreover, un is a solution to (2.3), with λ = λ?n.
Recalling the characterization of λ̄n and the fact that λ?n ≥ λ̄n, we conclude that λ?n = λ̄n.

Then, we consider xRn ∈ BR such that uRn (xRn ) = min|x|≤R u
R
n . Recalling that uRn is a solution

to (2.10), we get by computing the equation at xRn and by recalling that Hn(0) ≤ 0, that

λRn + f(xRn ) ≥ Hn(0) + λRn + f(xRn ) ≥ 0.

Using condition (2.9), and recalling that λRn → λ̄n, we get that there exists a compact set K
(independent of R and of n) and R0 > 0 such that for all R > R0, xRn ∈ K.

Recalling that uRn (0) = 0 and |∇uRn | ≤ C in K with C independent of n,R, we conclude that
uRn (xR) ≥ −C for some constant C independent of n,R. But, this implies, since uRn (x) ≥ uRn (xRn )
for every R, that passing to the limit un(x) ≥ −C, with C independent of n.

2.2 A priori estimates for the Kolmogorov equation

In this section we provide general a priori estimates for couples (m,w) ∈ (L1(RN )∩W 1,q(RN ))×
L1(RN ) such that

∫
RN m(x) = M and −ε∆m+ divw = 0 where

q =

{
γ′ γ′ ≥ N

N
N−γ′+1 γ′ < N.

(2.11)

Lemma 2.8. Let β ≤ Nq
N−q , for q < N , and β < +∞ for q ≥ N . We define 1 ≤ r ≤ β as follows

1

r
=

1

γ′
+

(
1− 1

γ′

)
1

β
. (2.12)

Then, there exists a constant C, depending only on N and β, such that

‖m‖W 1,r(RN ) ≤ C

(
1

εγ′

∫
RN

m
∣∣∣w
m

∣∣∣γ′ dx+M

) 1
γ′

‖m‖
1
γ

Lβ(RN )
(2.13)

≤ C

(
CL
εγ′

∫
RN

mL
(
−w
m

)
dx+M

) 1
γ′

‖m‖
1
γ

Lβ(RN )
,

where CL = CL(CH , γ) is the constant appearing in Proposition 2.1.
We now assume that

1 < β < 1 +
γ′

N
. (2.14)
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Then, there exists δ > 0 such that

‖m‖(1+δ)β

Lβ(RN )
≤ C 1

εγ′
M (1+δ)β−1

(∫
RN

m
∣∣∣w
m

∣∣∣γ′ dx) ≤ CCL 1

εγ′
M (1+δ)β−1

∫
RN

mL
(
−w
m

)
dx,

(2.15)
where the constant C depends only on γ, N , and β.

Proof. Since m ∈ W 1,q(RN ), by Sobolev embedding and interpolation, we get that m ∈ Lβ(RN ).
Using −ε∆m+ divw = 0, we get for all ϕ ∈ C∞0 (RN ),

ε

∫
RN
∇m · ∇ϕdx =

∫
RN

w · ∇ϕdx.

Using Holder inequality, recalling (2.12), we obtain∣∣∣∣1ε
∫
RN

w · ∇ϕdx
∣∣∣∣ ≤ ∫

RN

1

ε

∣∣∣w
m

∣∣∣m 1
γ′m

1− 1
γ′ |∇ϕ|dx

≤
(

1

εγ′

∫
RN

m
∣∣∣w
m

∣∣∣γ′ dx) 1
γ′

‖m‖
1
γ

Lβ(RN )
‖∇ϕ‖Lr′ (RN ).

Therefore, we get that for all ϕ ∈ C∞0 (RN ),∣∣∣∣∫
RN
∇m · ∇ϕdx

∣∣∣∣ ≤ ( 1

εγ′

∫
RN

m
∣∣∣w
m

∣∣∣γ′ dx) 1
γ′

‖m‖
1
γ

Lβ(RN )
‖∇ϕ‖r′ .

We apply then Proposition 2.4 and we obtain that m ∈W 1,r(RN ) and that there exists a constant
C, depending only on r, such that

‖∇m‖Lr(RN ) ≤ C
(

1

εγ′

∫
RN

m
∣∣∣w
m

∣∣∣γ′ dx) 1
γ′

‖m‖
1
γ

Lβ(RN )
. (2.16)

From this inequality, using Proposition 2.1 and recalling that by interpolation, since ‖m‖L1(RN ) =

M , ‖m‖Lr(RN ) ≤ ‖m‖
1
γ

Lβ(RN )
M

1
γ′ , we conclude the desired inequality (2.13).

Now we fix η such that

1

η
=

(
1

r
− 1

N

)
N

N + 1
+ 1− N

N + 1
=

N

N + 1

1

r
.

Note that, by a simple computation using (2.12), we get 1
η −

1
β = N

N+1
1
βγ′

(
β − 1− γ′

N

)
, therefore,

by (2.14), we conclude that that η > β. By Gagliardo Nirenberg inequality, and recalling that
‖m‖1 = M , we get

‖m‖Lη(RN ) ≤ C‖∇m‖
N
N+1

Lr(RN )
M

1
N+1 . (2.17)

Since η > β, by interpolation we get that there exists θ > 1 such that ‖m‖θLβ(RN ) ≤ ‖m‖Lη(RN )M
θ−1.

Actually
1

θ
=

(
1− 1

β

)
(N + 1)

1

1 +N
(

1− 1
β

)(
1− 1

γ′

) .
So, we substitute in (2.17) and (2.16) and we get, elevating both terms to γ′N+1

N ,

‖m‖θγ
′ N+1
N

Lβ(RN )
≤ C 1

εγ′
Mγ′(θN+1

N −1)

(∫
RN

m
∣∣∣w
m

∣∣∣γ′ dx) ‖m‖ γ′γLβ(RN )
. (2.18)
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Now, since θ > 1, by (2.14), we get

θγ′
N + 1

N
− γ′

γ
=

βγ′

N(β − 1)
= β +

β

β − 1

[
γ′

N
+ 1− β

]
> 0.

Therefore we deduce (2.15) from (2.18) with

δ =
1

β − 1

[
γ′

N
+ 1− β

]
. (2.19)

Corollary 2.9. For every r < q, there exists C > 0 depending on N , γ′ and r such that

‖m‖W 1,r(RN ) ≤
C

εγ′

(
CL

∫
RN

mL
(
−w
m

)
dx+ εγ

′
M

)
. (2.20)

Moreover, if γ′ > N (so q > N), then m ∈ C0,θ(RN ) and

‖m‖C0,θ(RN ) ≤
C

εγ′

(
CL

∫
RN

mL
(
−w
m

)
dx+ εγ

′
M

)
. (2.21)

Proof. For q ≥ N (equivalently γ′ ≥ N), we fix r < q and we choose β which satisfies (2.12) for
such r. By Sobolev embedding theorem, W 1,r(RN ) is continuously embedded in Lβ(RN ). So,
there exists C depending on N and r such that ‖m‖Lβ(RN ) ≤ C‖m‖W 1,r(RN ). Using inequality
(2.13), we get

‖m‖Lβ(RN ) ≤
C

εγ′

(∫
RN

m
∣∣∣w
m

∣∣∣γ′ dx+ εγ
′
M

)
.

If we substitute again in (2.13) we get

‖m‖W 1,r(RN ) ≤
C

εγ′

(∫
RN

m
∣∣∣w
m

∣∣∣γ′ dx+ εγ
′
M

)
.

In particular for q > N , we can choose r > N and by Sobolev embedding theorem we get that
there exists θ = 1− N

r and a constant C > 0 depending on N and r such that

‖m‖C0,θ(RN ) ≤ C

εγ′

(∫
RN

m
∣∣∣w
m

∣∣∣γ′ dx+ εγ
′
M

)
≤ C

εγ′

(
CL

∫
RN

mL
(
−w
m

)
dx+ εγ

′
M

)
.

For q < N , we fix r < q, and choose the corresponding β in (2.12), that satisfies β < N
N−γ′ .

Hence we conclude again from inequality (2.13).

3 Regularization procedure and existence of approximate
solutions for ε > 0

3.1 The regularized problem

We consider the following approximation of the system (1.1),
−ε∆u+H(∇u) + λ = fk[m](x) + V (x),

−ε∆m− div(m∇H(∇u)) = 0,∫
RN mdx = M,

(3.1)
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where

fk[m](x) = f(m ? χk) ? χk(x) =

∫
RN

χk(x− y)f

(∫
RN

m(z)χk(y − z)dz
)
dy (3.2)

and χk, for k > 0, is a sequence of standard symmetric mollifiers approximating the unit as k →∞.
We observe that fk[m](x) is the L2-gradient of a C1 potential Fk : L1(RN ) → R, defined as

follows

Fk[m] :=

∫
RN

F (m ? χk(x))dx, (3.3)

where F (m) =
∫m

0
f(n)dn for m ≥ 0 and F (m) = 0 for m ≤ 0. Note that using Jensen inequality

and (1.3), we get that for all m ∈ L1(RN ) such that m ≥ 0, and
∫
RN m(x)dx = M ,

− Cf
α+ 1

∫
RN

mα+1(x)dx−KM ≤ Fk[m] ≤ − Cf
α+ 1

∫
RN

(m ? χk(x))
α+1

dx+KM. (3.4)

In order to construct solutions to the system, we follow a variational approach and we associate
to (3.1) a energy, as already described in the introduction. We define the energy

Ek(m,w) :=


∫
RN

mL
(
−w
m

)
+ V (x)mdx+ Fk[m] if (m,w) ∈ Kε,M ,

+∞ otherwise,
(3.5)

where Kε,M is defined in (1.8) and L is defined in (1.7). We recall that the exponent q appearing
in the definition of Kε,M is

q =

{
N

N−γ′+1 γ′ ≤ N
γ′ γ′ > N.

Therefore, q ≤ γ′. Observe that, if q < N , q∗ = qN
N−q = N

N−γ′ , and that q∗ > 1 + γ′

N > 1 + α by

(1.4). If q = γ′ ≥ N , then we let q∗ = +∞.

3.2 A priori estimates and energy bounds

In this section, we provide bounds from below for the energy Ek, assuring in particular that the
minimum problem is well defined.

Lemma 3.1. Let (m,w) ∈ Kε,M . Then

Ek(m,w) ≥ −K − Cε−
γ′αN
γ′−αN (3.6)

where C,K > 0 are constants depending only on N,M,CL, γ, α,M .
In particular there exists finite

ek,ε(M) = inf
(m,w)∈Kε,M

Ek(m,w).

Proof. Recalling that V ≥ 0, estimate (3.4) and applying (2.15) with α = β − 1, we get

Ek(m,w) ≥
∫
RN

mL
(
−w
m

)
dx− Cf

α+ 1

∫
RN

mα+1 dx−KM

≥ Cεγ
′
M1−(1+δ)(1+α)‖m‖(1+α)(1+δ)

Lα+1 − 1

α+ 1
‖m‖(1+α)

Lα+1 −KM

≥ −Cδε−
γ′
δ

(
1

(δ + 1)(α+ 1)

)1+ 1
δ

−KM

where C is a constant depending only on N,M,CL, γ, α and

δ =
1

α

[
γ′

N
− α

]
. (3.7)
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Therefore, substituting in the energy, we get

Ek(m,w) ≥ −C (γ′ − αN)

αN
ε
− γ′αN
γ′−αN

(
αN

γ′(α+ 1)

) γ′
γ′−αN

−KM,

which gives the desired inequality.

We get also a priori bounds on minimizers and minimizing sequences.

Proposition 3.2. Let (m,w) ∈ Kε,M such that ek,ε(M) ≥ Ek(m,w) − η, for some positive η.
Then ∫

RN
m
∣∣∣w
m

∣∣∣γ′ dx ≤ Cε− γ′Nα
γ′−Nα +K, (3.8)

‖m‖α+1
Lα+1(RN )

≤ Cε−
γ′Nα
γ′−Nα +K, (3.9)

for some C,K positive constants which depends only on α,N, V, CL, η.

Proof. First of all we observe that there exists C ≥ 0 depending on M,CL, CV such that

ek,ε(M) ≤ C. (3.10)

Let m = ce−|x|, where c is chosen to have
∫
Rn mdx = M , and w = ε∇m, so that (m,w) ∈ Kε,M .

By assumption (1.5), we get that
∫
Rn mV (x)dx ≤ C for some constant C > 0, by (3.4) that

Fk[m] ≤ KM and by the properties of L in Proposition 2.1, we have that
∫
Rn mL(−w/m)dx ≤

( ε
γ′

cγ′
+ CL)M . So, in conclusion ek,ε(M) ≤ Ek(m,w) ≤ C as required.

Note that if (m,w) ∈ Kε,M , and eε(M) ≥ E(m,w)− η, for some positive η, then, by (3.4), by
the fact that V ≥ 0, and by the properties of L in Proposition 2.1, we get

C + η ≥ eε(M) + η ≥ Ek(m,w) ≥
∫
RN

m
∣∣∣w
m

∣∣∣γ′ − Cf
α+ 1

mα+1 dx −KM. (3.11)

We apply (2.15) with α = β − 1, and we obtain

C + η +KM ≥
∫
RN

m
∣∣∣w
m

∣∣∣γ′ − Cf
α+ 1

mα+1 dx

≥ Cεγ
′
M1−(1+δ)(1+α)‖m‖(1+α)(1+δ)

Lα+1 − Cf
α+ 1

‖m‖(1+α)
Lα+1 .

Recall that δ + 1 = γ′

αN (can be computed using (2.19)), so γ′

δ = γ′Nα
γ′−Nα . Note that if we choose

A sufficiently large (depending on δ,M,Cf , CL), we get that

Cεγ
′
M1−(1+δ)(1+α)(ε−

γ′
δ A)1+δ − Cf

α+ 1
(ε−

γ′
δ A) ≥ C + η +KM,

from which we conclude that ‖m‖(1+α)
Lα+1 ≤ ε−

γ′
δ A, and so estimate (3.9) holds. Estimate (3.8)

comes from (3.9) and (3.11).

3.3 Existence of a solution

We are now in the position to show existence of minimizers of the energy Ek in the class Kε,M for
every ε,M > 0.
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Proposition 3.3. For every ε > 0 and M > 0, there exists a minimizer (mk, wk) ∈ Kε,M of Ek,
that is

Ek(mk, wk) = inf
(m,w)∈Kε,M

Ek(m,w).

Moreover, for every minimizer (mk, wk) ∈ Kε,M of Ek, there holds

mk(1 + |x|)b ∈ L1(RN ), wk(1 + |x|)b/γ ∈ L1(RN ), (3.12)

and there exist constants C > 0 and K, independent of ε and k, such that∫
RN

mk

∣∣∣∣wkmk

∣∣∣∣γ′ dx+

∫
RN

mkV (x) dx+ ‖mk‖α+1
Lα+1(RN )

≤ Cε−
γ′αN
γ′−Nα +K. (3.13)

Proof. Let (mn, wn) ∈ Kε,M be a minimizing sequence, that is Ek(mn, wn) → ek,ε(M). This
implies that, choosing n sufficiently large, Ek(mn, wn) ≤ eε(M) + 1. From this and (3.4) we get∫

RN
mnL

(
−wn
mn

)
dx+

∫
RN

V (x)mn dx ≤ Ek(mn, wn) +
Cf
α+ 1

∫
RN

mα+1
n dx+KM

≤ ek,ε(M) + 1 +
Cf
α+ 1

∫
RN

mα+1
n +KM. (3.14)

By Proposition 3.2, we get that

‖mn‖Lα+1 +

∫
RN

m1−γ′
n |wn|γ

′
dx ≤ Cε−

γ′αN
γ′−αN +K.

We conclude also that ∫
RN

V (x)mn(x)dx ≤ Cε−
γ′αN
γ′−αN +K,

for some C,K > 0. These estimates will imply (3.13), after passing to the limit, using Fatou
lemma.

Moreover, by Corollary 2.9, we have that there exists Cε > 0 depending on ε such that for all
r < q,

‖mn‖W 1,r(RN ) ≤ Cε.

Moreover, due to Sobolev embeddings, we get that for all s < q∗, then ‖mn‖Ls(RN ) ≤ Cε. In
addition, by applying Holder inequality, we get that there exists C > 0∫

RN
|wn|

γ′α+γ′
γ′+α dx ≤ C

(∫
RN

m1−γ′
n |wn|γ

′
dx

) α+1
γ′+α

‖mn‖
γ′−1

(α+1)(γ′+α)

Lα+1(RN )
.

By these estimates and Sobolev compact embeddings, we get that eventually extracting a
subsequence via a diagonalization procedure, mn → mk weakly in W 1,r(RN ) for all r < q and
strongly in Ls(K) for all 1 ≤ s < q∗ and for every compact K ⊂ RN , and wn → wk weakly in

L
γ′α+γ′
γ′+α (RN ). By using the fact that

∫
RN V (x)mn(x)dx ≤ Cε and (1.5), we get that we get that

for all R > 1,

Cε ≥
∫
RN

mn(x)V (x)dx ≥
∫
|x|>R

mn(x)V (x)dx ≥ CRb
∫
|x|>R

mn(x)dx.

So for every ε > 0 fixed and all η > 0, there exists R > 0 for which
∫
|x|>Rmn(x)dx ≤ η: up

to extracting a subsequence we get that mn → mk in L1(RN ), and so
∫
RN mk(x)dx = M . By

boundedness of mn in Ls(RN ) for all 1 ≤ s < q∗, we then have mn → mk strongly in Lα+1(RN ).
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Finally, observe that from (3.13), using (1.5), we conclude that mk(1 + |x|b) ∈ L1(RN ). Moreover,
we get that∫

RN
|wk| dx ≤

∫
RN
|wk|(1 + |x|)b/γ dx ≤

(∫
RN

|wk|γ
′

mγ′−1
k

dx

)1/γ′ (∫
RN

mk(1 + |x|)b dx
)1/γ

,

and so wk(1 + |x|)b/γ ∈ L1(RN ).
Therefore the convergence is sufficiently strong to assure that (mk, wk) ∈ Kε,M . We conclude

that (mk, wk) is a minimum of the energy, by the lower semicontinuity with respect to weak
convergence of the functional

∫
RN mL

(
− w
m

)
+ V (x)mdx and by using the fact that Fk[mn] →

Fk[mk], since mn → mk strongly in Lα+1(RN ).

Using the minimizers we constructed in Proposition 3.3, we prove existence of a classical
solution to (3.1).

Proposition 3.4. There exists a classical solution (uk,mk, λk) to (3.1) that satisfies for some
constant Ck,ε > 0 the following inequalities

|∇uk(x)| ≤ Ck,ε(1 + |x|
b
γ ) uk(x) ≥ C−1

k,ε(1 + |x|1+ b
γ )− Ck,ε. (3.15)

Finally there exist C,K > 0 not depending on ε, k such that

−K − Cε−
γ′αN
γ′−αN ≤ λk ≤ Cε−

γ′αN
γ′−αN +K. (3.16)

Proof. Let (mk, wk) be a minimizer of Ek. Define the space of test functions

A = Ab,γ :=

{
ψ ∈ C2(RN ) : lim sup

|x|→∞

|∇ψ(x)|
|x|b/γ

<∞, lim sup
|x|→∞

|∆ψ(x)|
|x|b

<∞

}
. (3.17)

Note that we also have, for all ψ ∈ A,

lim sup
|x|→∞

|ψ(x)|
|x|b/γ+1

<∞.

We claim that

−ε
∫
RN

mk∆ψ dx =

∫
RN

wk∇ψ dx ∀ψ ∈ A. (3.18)

Indeed, consider a radial smooth cutoff function χ(x) which is identically equal to one in B1(0) and
identically zero in RN \B2(0). Set χR(x) := χ(x/R); we have |∇χR| ≤ C R−1 and |∆χR| ≤ C R−2

on RN for some positive constant C.
Since the equality ε∆mk = divwk holds in the weak sense on RN , we may multiply it by χRψ

with ψ ∈ A and integrate by parts to obtain

−ε
∫
B2R

mk(χR∆ψ + 2∇ψ · ∇χR + ψ∆χR) dx =

∫
B2R

wk · (χR∇ψ + ψ∇χR). dx (3.19)

Note that for some positive C,∫
RN
|wk∇ψ| dx ≤ C

∫
RN
|wk|(1 + |x|)b/γ dx <∞,

∫
RN

mk|∆ψ| dx ≤ C
∫
RN

mk(1 + |x|)b dx <∞

by the integrability properties (3.12). Moreover,∫
R≤|x|≤2R

mk|ψ||∆χR| dx ≤ C
∫
R≤|x|≤2R

mk
(1 + |x|)b/γ+1

R2
dx

≤ C1

∫
R≤|x|≤2R

mk(1 + |x|)b/γ−1 dx→ 0 as R→∞,
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because b/γ − 1 ≤ b. Reasoning in a similar way, we also have that
∫
R≤|x|≤2R

mk∇ψ · ∇χR and∫
R≤|x|≤2R

wk · ψ∇χR converge to zero as R →∞. Equality (3.18) then follows by passing to the

limit in (3.19).
Therefore, recalling the integrability properties of mk, wk obtained in Proposition 3.3, the

problem of minimizing Ek on Kε,M is equivalent to minimize Ek on K, where

K := {(w,m) ∈ (L1∩W 1,r)(RN )×L
γ′(α+1)

γ′+α (RN ) : (w,m) satisfies (3.12), (3.18), m ≥ 0,

∫
RN

m = M}

for some r < q. As in [8, Proposition 3.1], convexity of L implies that (mk, wk) is also a minimizer
of the following convex functional on K:

J̃(m,w) =

∫
RN

mL
(
−w
m

)
+ (V (x) + fk[mk])mdx.

We now aim to prove that

sup{λM : −ε∆ψ +H(∇ψ) + λ ≤ V (x) + fk[mk] on RN for some ψ ∈ A} = min
(w,m)∈K

J̃(m,w).

(3.20)
We proceed as in [9, Theorem 3.5]: setting

L(m,w, λ, ψ) := J̃(m,w) +

∫
RN

εm∆ψ + w∇ψ − λmdx+ λM,

we have
min

(m,w)∈K
J̃(m,w) = min

(m,w)
sup

(λ,ψ)∈R×A
L(m,w, λ, ψ),

where the minimum in the right hand side has to be intended among couples (m,w) ∈ (L1 ∩
W 1,r)(RN )× L

γ′(α+1)

γ′+α (RN ) for some r < q, satisfying (3.12). Note that L(·, ·, λ, ψ) is convex, and
L(m,w, ·, ·) is linear. Moreover, since L(·, ·, λ, ψ) is weak-* lower semi-continuous, we can use the
min-max theorem (see [6, Theorem 2.3.7]), to get

min
(m,w)

sup
(λ,ψ)∈R×A

L(m,w, λ, ψ) = sup
(λ,ψ)∈R×A

min
(m,w)

L(m,w, λ, ψ) =

sup
(λ,ψ)∈R×A

min
(m,w)

∫
RN

mL
(
−w
m

)
+ (V (x) + fk[mk])m+ εm∆ψ + w∇ψ − λmdx+ λM =

sup
(λ,ψ)∈R×A

∫
RN

min
(m,w)∈R×RN

mL
(
−w
m

)
+ (V (x) + fk[mk])m+ εm∆ψ + w∇ψ − λmdx+ λM,

where the interchange of the min and the integration is possible by standard results in convex
optimisation. By computation, min(m,w)∈R×RN mL

(
− w
m

)
+(V (x)+fk[mk])m+εm∆ψ+w∇ψ−λm

is zero whenever ε∆ψ−H(∇ψ)−λ+(V (x)+fk[mk]) is positive, and it is −∞ otherwise. Therefore,
we have proven (3.20).

By Theorem 2.7, i), ii), there exists uk ∈ C2(RN ) such that

−ε∆uk +H(∇uk) + λk = V (x) + fk[mk] on RN , (3.21)

and which satisfies

|∇uk(x)| ≤ Ck,ε(1 + |x|)
b
γ uk(x) ≥ Ck,ε|x|

b
γ+1 − C−1

k,ε

for some Ck,ε > 0.
Moreover,

ε|∆uk(x)| ≤ |H(∇uk(x))|+ |λk|+ V (x)− fk[mk] ≤ Ck,ε(1 + |x|)b on RN
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so uk ∈ A. Thus, the supremum in the left hand side of (3.20) is achieved by λk, and it holds true
that

λkM = J̃(mk, wk) = Ek(mk, wk) +

∫
RN

fk[mk]mk dx− F [mk]. (3.22)

This gives in particular (3.16), using Lemma 3.1, estimates (3.10) and recalling Proposition 3.2
and assumptions (1.3), (3.2) and (3.4).

We now use (3.22), (3.21) and (3.18) with ψ = uk to get

0 =

∫
RN

(
L

(
−wk
mk

)
+ V (x)−mα

k − λk
)
mk dx =

∫
RN

(
L

(
−wk
mk

)
− ε∆uk +H(∇uk)

)
mk dx

=

∫
RN

(
L

(
−wk
mk

)
+H(∇uk) +∇uk ·

wk
mk

)
mk dx,

that implies
wk
mk

= −∇H(∇uk) on the set {mk > 0}.

Hence, the Kolmogorov equation ε∆mk + div(mk∇H(∇uk)) = 0 holds in the weak sense, and by
elliptic regularity we conclude that (uk,mk, λk) is a classical solution to (1.1).

Remark 3.5. Note that if we assume that the local term f satisfies (1.9) instead of (1.3), then
the same argument as above applies. In particular there exists a classical solution (uk,mk, λk) to
(3.1) such that

|∇uk(x)| ≤ Ck,ε(1 + |x|
b
γ ) uk(x) ≥ C−1

k,ε(1 + |x|1+ b
γ )− Ck,ε,∫

RN
mα+1
k dx,

∫
RN

mk(x)V (x)dx ≤ Cε−
γ′αN
γ′−αN +K.

We finally prove that every mk is bounded from above in RN (this is not obvious from Propo-
sition 3.4 unless γ′ > N). Note that the following result does not provide uniform bounds with
respect to k. These will be produced in Theorem 4.1 using a much more involved argument.

Proposition 3.6. Let (uk,mk, λk) be as in Proposition 3.4. Then, mk is bounded in L∞(RN ).

Proof. Let φ(x) = uk(x)p, for p > 1 to be chosen later. Using the fact that uk is a classical
solution to the HJB equation, we get

− ε∆φ+∇H(∇uk) · ∇φ = pup−1
k

(
−∆uk − (p− 1)

|∇uk|2

uk
+∇H(∇uk) · ∇uk

)
= pup−1

k

(
−∆uk +H(∇uk)− (p− 1)

|∇uk|2

uk
−H(∇uk) +∇H(∇uk) · ∇uk

)
= pup−1

k

(
−(p− 1)

|∇uk|2

uk
−H(∇uk) +∇H(∇uk) · ∇uk − λ+ fk[mk] + V

)
. (3.23)

Observe that by (1.2), (1.5), (3.15) and the fact that fk[mk] is bounded on RN , there exist large
R and C such that

G(x) = −(p− 1)
|∇uk|2

uk
−H(∇uk) +∇H(∇uk) · ∇uk − λ+ fk[mk] + V (x)

≥ K−1|∇uk|γ − (p− 1)
|∇uk|2

uk
−K − λ+ fk[mk] + V (x)

≥ (p− 1)|∇uk|γ
(

1

K(p− 1)
− |∇uk|

2−γ

uk

)
− C + C−1

V |x|
b ≥ 1 for all |x| > R.
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Hence, again by (3.15), for all |x| > R

−ε∆φ+∇H(∇uk) · ∇φ ≥ c|x|(1+b/γ)(p−1).

In view of [29, Proposition 2.6], we have |x|(1+b/γ)(p−1)mk ∈ L1(RN ). Recall now that |∇H(∇uk)| ≤
C(1+ |x|)

b
γ′ by (3.15). Therefore, by choosing p large enough, |∇H(∇uk)|smk ∈ L1(RN ) for some

s > N . We conclude boundedness of mk in L∞ by [29, Theorem 3.5].

4 Existence of a solution to the MFG system for ε > 0

Our aim is to pass to the limit k →∞ for solutions to (3.1).

4.1 A priori L∞ bounds

We need first a priori L∞ bounds on mk that are independent w.r.t. k. These will be achieved by
a blow-up argument, as proposed in [13] for systems set on the flat torus TN . Here, the unbounded
space RN and the presence of the unbounded term V make the argument much more involved
than the one in [13]. To control the points xk ∈ RN where mk(xk) possibly explodes, some delicate
estimates on the decay (in L1) of its renormalization will be produced.

We provide a more general result, that will be used also in the rescaled framework (Section 5).
Let rk, sk, tk be bounded sequences of positive real numbers.

Theorem 4.1. Let (uk, λk,mk) be a classical solution to the mean field game system
−∆u+ rγkH(r−1

k ∇u) + λk = gk[m] + skV (tkx),

−∆m− div(mrγ−1
k ∇H(r−1

k ∇u)) = 0,∫
RN mdx = M,

where gk : L1(RN )→ L1(RN ) are so that for all m ∈ L∞(RN ) ∩ L1(RN ) and for all k,

‖gk[m]‖L∞(RN ) ≤ K(‖m‖αL∞(RN ) + 1) (4.1)

for some K > 0. Suppose also that for all k, uk is bounded from below and mk is bounded from
above on RN . Then, there exists a constant C independent of k such that

‖mk‖L∞ ≤ C.

Proof. We argue by contradiction, so we assume that

sup
RN

mk = Lk → +∞.

We divide the proof in several steps.
Step 1: rescaling of the solutions.
Let

µk := L−βk β = α
γ − 1

γ
> 0.

So, observe that µk → 0 as k → 0. Since uk is bounded by below, up to adding a suitable constant
we can assume that minRN uk = 0. We define the following rescaling{

vk(x) = µ
2−γ
γ−1

k uk(µkx) + 1

nk(x) = L−1
k mk(µkx).

Note that 0 ≤ nk(x) ≤ 1. Moreover, due to (1.4),∫
RN

nk(x)dx = ML
αN(γ−1)

γ −1

k → 0, (4.2)
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and min vk = 1. We define

Hk(q) = µ
γ
γ−1

k rγkH(r−1
k µ

1
1−γ
k q), so ∇Hk(q) = µkr

γ−1
k ∇H(r−1

k µ
1

1−γ
k q).

Recalling (1.2) we have that for all q ∈ RN ,

CH |q|γ −K ≤ Hk(q) ≤ CH(|q|γ + 1),

|∇Hk(q))| ≤ CH |q|γ−1,

∇Hk(q) · q −Hk(q) ≥ K−1|q|γ −K.
(4.3)

Moreover, we define

g̃k(x) = µ
γ
γ−1

k gk[mk](µkx).

Recalling that 0 ≤ mk ≤ Lk, by (4.1) we get that for all x and for all k,

|g̃k(x)| ≤ µ
γ
γ−1

k K(Lαk + 1) ≤ 2K (4.4)

where we used the fact that µk = L−βk with β = αγ−1
γ . Finally, we let

λ̃k = µ
γ
γ−1

k λk =
1

Lαk
λk

and we observe that
|λ̃k| ≤ C. (4.5)

Finally, let

Vk(x) = µ
γ
γ−1

k skV (µktkx).

By assumption (1.5), we get

skµ
γ
γ−1

k C−1
V (max{|tkµkx| − CV , 0})b ≤ Vk(x) ≤ CV (1 + σk|x|b), (4.6)

where

σk := µ
γ
γ−1 +b

k skt
b
k → 0 as k →∞.

In particular we also have the following bound from below for Vk,

Vk(x) ≥
C−1
V

2b
σk|x|b for all |x| ≥ 2CV (tkµk)−1. (4.7)

An easy computation shows that by rescaling we have that (vk, nk, λ̃k) is a solution to{
−∆vk +Hk(∇vk) + λ̃k = g̃k(x) + Vk(x),

−∆nk − div(nk∇Hk(∇vk)) = 0.
(4.8)

Step 2: a priori bounds on the rescaled solution to the Hamilton-Jacobi equation.
We observe that by Theorem 2.5 and (4.6), there exists C > 0, independent of k, such that

|∇vk(x)| ≤ C(1 + σ
1
γ

k |x|
b
γ ) on RN . (4.9)

We recall that we assumed vk(x̂k) = min vk = 1. Since vk is a classical solution to (4.8), at a
minimum point x̂k we have, by (4.3), (4.4), (4.5) and (4.7),

σk|x̂k|b ≤ C.

Therefore, by using this estimate and (4.9), since |vk(0)| ≤ |vk(x̂k)| + |x̂k| sup|y|≤|x̂k| |∇uk(y)| we
obtain

|vk(0)| ≤ 1 + C(1 + σ
1
γ

k |x̂k|
1+ b

γ ) ≤ C1(1 + σ
− 1
b

k )
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and then again by (4.9),

|vk(x)| ≤ C(1 + σ
− 1
b

k + σ
1
γ

k |x|
b
γ+1) on RN . (4.10)

Let χ be a smooth function χ : [0,+∞) → [0,+∞) such that χ ≡ 0 in (0, 1/2) ∪ (3/2,+∞),
χ(1) > 0 and that |χ′|, |χ′′| ≤ 1. We fix x̃ ∈ RN such that |x̃| > 4CV (tkµk)−1, and we denote by

w(x) = κσ
1
γ

k |x̃|
1+ b

γ χ

(
|x|
|x̃|

)
where κ ≥ 0 has to be chosen. We have that w(x) ≤ vk(x) for all x such that |x| ≥ 3

2 |x̃| or
|x| ≤ 1

2 |x̃|. Moreover, for x such that 1
2 |x̃| ≤ |x| ≤

3
2 |x̃| we have |x| > 2CV (µktk)−1, so using the

estimates (4.3), (4.4), (4.5) and (4.7),

−∆w +Hk(∇w) + λ̃k − g̃k(x)− Vk(x) ≤ κNσ
1
γ

k |x̃|
b
γ−1 + CHκ

γσk|x̃|b + C −
C−1
V

2b
σk|x̃|b.

Note that there exist κ > 0 small and C2 > 0 large, depending only CV and CH and not on |x̃|,
k, such that the right-hand side of the last expression is negative if

σk|x̃|b ≥ C2

(this also implies that tkµk|x̃| > 4CV , as required). The test function w is then a subsolution of
the HJB equation in (4.8), therefore by comparison we get that,

vk(x̃) ≥ κχ(1)σ
1
γ

k |x̃|
1+ b

γ .

By arbitrariness of x̃ we conclude that, for some C > 0,

vk(x) ≥ Cσ
1
γ

k |x|
b
γ+1 for all σk|x|b ≥ C2. (4.11)

Step 3: estimates on the (approximate) maxima of nk.
We now fix 0 < δ << 1 and xk such that nk(xk) = 1 − δ. Two possibilities may arise: either
limk σk|xk|b = +∞ up to some subsequence, or there exists C > 0 such that σk|xk|b ≤ C. We
rule out the second possibility by contradiction. Suppose indeed that there exists C > 0 such
that σk|xk|b ≤ C. By (4.9), |∇vk| ≤ C on B2(xk) for some C > 0. Therefore, using the fact
that nk solves the second equation in (4.8), the elliptic estimates in Proposition 2.4, (4.3), the

interpolation inequality ‖n‖q ≤ ‖n‖1/q1 ‖n‖
1−1/q
∞ and the fact that 0 ≤ nk ≤ 1, we get for all q > 1,

‖nk‖W 1,q(B1(xk)) ≤ C(1 + ‖∇Hk(∇vk)‖L∞(B2(xk)))‖nk‖
1/q
L1(B2(xk)) ≤ Cq (4.12)

for some Cq > 0 depending on q. This implies, choosing q > N , that for all θ ∈ (0, 1) there exists Cθ
depending on θ (but not on k) such that ‖nk‖C0,θ(B1(xk)) ≤ Cθ. Recalling that nk(xk) = 1− δ, we

can fix r < 1 such that nk(x) ≥ 1
2 for all x ∈ Br(xk). It is sufficient to choose r = C

−1/θ
θ (1/2−δ)1/θ.

Therefore we have, by (4.2),

0 <
1

2
ωNr

N ≤
∫
Br(xk)

nk(x)dx ≤
∫
RN

nk(x)dx = ML
αN(γ−1)

γ −1

k → 0.

This gives a contradiction. Then we deduce that, up to a subsequence,

lim
k
σk|xk|b = +∞. (4.13)

Step 4: construction of a Lyapunov function.
Let φ(x) = vk(x)p, for p > 1 to be chosen later. Using the fact that vk is a classical solution to

22



(4.8) (arguing as in (3.23)) we get

−∆φ+∇Hk(∇vk) · ∇φ = pvp−1
k

(
−∆vk − (p− 1)

|∇vk|2

vk
+∇Hk(∇vk) · ∇vk

)
= pvp−1

k

(
−(p− 1)

|∇vk|2

vk
−Hk(∇vk) +∇Hk(∇vk) · ∇vk − λ̃k + g̃k(x) + Vk(x)

)
.

We denote by

Gk(x) = −(p− 1)
|∇vk|2

vk
−Hk(∇vk) +∇Hk(∇vk) · ∇vk − λ̃k + g̃k(x) + Vk(x). (4.14)

Using the previous computation and the fact that nk is a solution to (4.8), we get, by integrating
by parts, that

0 =

∫
RN

nk(x) (−∆φ(x) +∇Hk(∇vk(x)) · ∇φ(x)) dx = p

∫
RN

nk(x)Gk(x)φ
p−1
p (x)dx.

Therefore from this, for every Λ > 0 we get∫
{φ(x)≥Λp}

nk(x)Gk(x)φ
p−1
p (x)dx = −

∫
{φ(x)≤Λp}

nk(x)Gk(x)φ
p−1
p (x)dx. (4.15)

Observe that by (4.3), (4.4), (4.5) and (4.7) we get that for all tkµk|x| ≥ 2CV ,

Gk(x) ≥ K−1|∇vk|γ − (p− 1)
|∇vk|2

vk
−K − λ̃k + g̃k(x) + Vk(x)

≥ (p− 1)|∇vk|γ
(

1

K(p− 1)
− |∇vk|

2−γ

vk

)
− C + CV σk|x|b. (4.16)

We first claim that by (4.9) and (4.11), 1
K(p−1) −

|∇vk|2−γ
vk

is positive if σk|x|b ≥ C2, eventually

enlarging C2 in (4.11). Indeed,

|∇vk(x)|2−γ

vk(x)
≤ C

[
1 + σ

1
γ

k |x|
b
γ

]2−γ

[
σ

1
γ

k |x|
b
γ

]
|x|

≤ CH
p− 1

(4.17)

whenever σk|x|b is large enough. This implies that for all σk|x|b ≥ C2, by (4.16) we have Gk(x) ≥
−C. On the other hand, again by the gradient bounds in (4.9) we have that |∇vk(x)| ≤ C(1+C2)
on the set σk|x|b ≤ C2, so (4.16) and min vk = 1 again guarantee that Gk(x) ≥ −C3. In conclusion,
there exists C > 0 such that

Gk(x) ≥ −C ∀x ∈ RN .

Therefore, going back to (4.15), recalling (4.2), we obtain that

∫
{φ(x)≥Λp}

nk(x)Gk(x)

(
φ(x)

Λp

) p−1
p

dx ≤ C
∫
{φ(x)≤Λp}

nk(x)dx ≤ C
∫
RN

nk(x)dx

= CMµ
−N+ γ

α(γ−1)

k → 0 (4.18)

as k →∞.
Note that by (4.16) and (4.17), if x is such that Gk(x) ≤ 0, then necessarily σk|x|b ≤ C

for some C > 0. Hence, by (4.10), we get that vk(x) ≤ C3(1 + σ
− 1
b

k ). Therefore if we choose

Λ = Λk = Kσ
− 1
b

k for a sufficiently large K > 0, we get that Gk(x) > 0 in the set {x|φ(x) ≥ Λp}.
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Step 5: integral estimates on nk.
Arguing as in the end of Step 4, we may choose K big enough so that Gk(x) ≥ 1 in the set

{x|φ(x) ≥ Λpk}, where Λk = Kσ
− 1
b

k . If k is sufficiently large, by (4.11) and (4.13) it follows that
for some C > 0,

vk(x) ≥ Cσ
1
γ

k |xk|
1+ b

γ in B1(xk), and

B1(xk) ⊆ {x|φ(x) ≥ Λpk}.

Therefore, we may conclude that

∫
{φ(x)≥Λpk}

nk(x)Gk(x)

(
φ(x)

Λpk

) p−1
p

dx ≥ C

σ 1
γ

k |xk|
1+ b

γ

σ
− 1
b

k

p−1 ∫
B1(xk)

nk(x)dx

≥ C
(
σ

1
γ

k |xk|
b
γ

)p−1 ∫
B1(xk)

nk(x)dx, (4.19)

that together with (4.18) gives ∫
B1(xk)

nk(x)dx ≤
(
σ

1
γ

k |xk|
b
γ

)1−p

(4.20)

for all k large.
Reasoning as in Step 3 (see in particular (4.12)), by Proposition 2.4, (4.3), (4.9) and (4.20),

we get that for all q > 1,

‖nk‖W 1,q(B1/2(xk)) ≤ C(1 + ‖∇Hk(∇vk)‖L∞(B1(xk)))‖nk‖
1/q
L1(B1(xk))

≤ C4

[
1 +

(
σ

1
γ

k |xk|
b
γ

)γ−1
](

σ
1
γ

k |xk|
b
γ

)(1−p)/q

≤ 1,

whenever p is such that γ − 1 + (1 − p)/q < 0 and k is large (recall that we are supposing

σ
1
γ

k |xk|
b
γ → +∞).

Therefore, we may conclude as in Step 3: choosing q > N , for some θ ∈ (0, 1) there exists Cθ
such that ‖nk‖C0,θ(B1/2(xk)) ≤ Cθ. Since nk(xk) = 1− δ, we can fix r < 1 such that nk(x) ≥ 1

2 for

all x ∈ Br(xk). Finally, by (4.2)

0 <
1

2
ωNr

N ≤
∫
Br(xk)

nk(x)dx ≤
∫
RN

nk(x)dx = ML
αN(γ−1)
γ−1

k → 0.

That gives a contradiction and rules out the possibility that σk|xk|b → +∞. Therefore, Lk → +∞
is impossible.

4.2 Existence of a solution to the MFG system

Using the a priori bounds we obtained, we can pass to the limit in k in the MFG system (3.1) to
get a solution to (1.1) for every ε > 0.

Proof of Theorem 1.1. First, by Proposition 3.4, the existence for all k of a classical solution
(uk,mk, λk) to (3.1) follows. By (3.16), up to passing to a subsequence we have that λk → λε.

Note that by Propositions 3.4 and 3.6, uk and mk are bounded by below and above respectively,
so due to Theorem 4.1 (with g[m] = fk[m] and rk = sk = tk = 1 for all k), we get that there
exists Cε > 0 independent of k (but eventually on ε > 0) such that ‖mk‖L∞(RN ) ≤ Cε. Using

Theorem 2.5, this implies that |∇uk(x)| ≤ Cε(1 + |x|
b
γ ), for some Cε independent of k. We
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can normalize uk(0) = 0 and using Ascoli-Arzelá theorem we can extract by a diagonalization
procedure a sequence uk such that uk → uε locally uniformly in RN . Moreover, by using the
estimates and the equation we have that actually uk → uε locally uniformly in C1. Note that,
denoting by xk a minimum point of uk on RN , we have by the HJB equation that

H(0) + λk − fk[mk](xk) ≥ V (xk).

Coercivity (1.5) of V and uniform boundedness of λk and fk[mk] guarantee that xk remains
bounded, in particular that uk ≥ −C on RN by gradient bounds. Theorem 2.6 then applies, in

particular uk(x) ≥ C|x|1+ b
γ − C−1 for all k. This implies, passing to the limit, that

uε(x) ≥ C|x|1+ b
γ − C−1 on RN . (4.21)

By the elliptic estimates in Proposition 2.4, we get that mk → mε locally uniformly in C0,α

for all α ∈ (0, 1) and weakly in W 1,p(BR) for every p > 1 and R > 0. Therefore we get that uε is a
solution in the viscosity sense of the Hamilton-Jacobi equation, by stability with respect to uniform
convergence, and mε is a weak solution to the Fokker-Planck equation, by strong convergence of
∇uk → ∇uε. Finally this implies, again by using the regularity of the HJB equation, that uk → uε
locally uniformly in C2. Therefore, uε,mε solve in classical sense the system (1.1).

Now we show that
∫
RN mε(x)dx = M . We have that mk → mε locally uniformly in C0,α for

every α ∈ (0, 1). Moreover, due to (3.13) and to (1.5), we get that for all R > 1,

Cε ≥
∫
RN

mk(x)V (x)dx ≥
∫
|x|>R

mk(x)V (x)dx ≥ CRb
∫
|x|>R

mk(x)dx.

This implies that
∫
|x|≤Rmk(x)dx ≥M −CεR−b and then by uniform convergence we get that for

every ε > 0, and η > 0, there exists R > 0 such that∫
|x|≤R

mε(x)dx ≥M − η.

From this we can conclude that mk → mε in L1(RN ), that is
∫
RN mε(x)dx = M . By boundedness

of mk in L∞, it also follows that mk → mε in Lα+1(RN ).
Finally, we get that if wε = −mε∇H(∇uε), then (mε, wε) ∈ Kε,M , due to the second equation

in (1.1). Moreover, we have that if mk → m strongly in Lα+1(RN ), then, due to the Lebesgue
dominated convergence theorem and (3.4), F (mk ? χk) → F (m) strongly in L1(RN ). This im-
plies that the energy Ek Γ-converges to the energy E , from which we conclude that (mε, wε) is a
minimizer of E in the set Kε,M .

Remark 4.2. Note that by the very same arguments, recalling Remark 3.5, we have the existence
of solutions also in the more general case that condition (1.9) is satisfied.

We conclude proving some estimates on the solution (uε,mε, λε) given in Theorem 1.1 that
will be useful in the following.

Corollary 4.3. Let (uε,mε, λε) be as in Theorem 1.1. There exist constants C,C1, C2,K,K1,K2 >
0 independent of ε such that∫

RN
mε|∇uε|γdx+

∫
RN

mα+1
ε dx+

∫
RN

mε(x)V (x)dx ≤ Cε−
γ′αN
γ′−αN +K (4.22)

−K1 − C1ε
− γ′αN
γ′−αN ≤ λε ≤ K2 − C2ε

− γ′αN
γ′−αN . (4.23)

Proof. We observe that, by the arguments in the proof of Theorem 1.1, mk → mε and |∇uk| →
|∇uε| almost everywhere, and using the fact that V (x) ≥ 0, we have that by Fatou lemma∫
RN mε(x)|∇uε|γdx ≤ lim infk

∫
RN mk(x)|∇uk|γdx,

∫
RN mε(x)V (x)dx ≤ lim infk

∫
RN mk(x)V (x)dx

and
∫
RN m

α+1
ε dx ≤ lim infk

∫
RN m

α+1
k dx. So inequality (3.13) gives immediately (4.22).
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Now we prove (4.23). Note that the estimate from below is a direct consequence of (3.16).

So, it remains to show that λε ≤ C2 − C2ε
− γ′αN
γ′−αN . Recalling that formula (3.22) holds and∫

f(m)m− F (m) ≤ 2KM by (1.3), it is sufficient to show that

inf
(m,w)∈Kε,M

E(m,w) ≤ −C2ε
− γ′αN
γ′−αN + C2 (4.24)

where C2 is a constant depending only on N,M,CL, γ, α, V . We construct a couple (m,w) ∈ Kε,M
as follows. First of all we consider a smooth function φ : [0,+∞)→ R which solves the following
ordinary differential equation {

φ′(r) = −φ(r)(1 + φ(r)α)
1
γ′

φ(0) = 1
2 .

Then, it is easy to check that 0 < φ(r) ≤ 1
2e
−r. We define m(x) = Aφ(τ |x|), where A, τ are

constants to be fixed, and w(x) = ε∇m(x).
First of all we impose

M =

∫
RN

m(x)dx =
A

τN

∫
RN

φ(|y|)dy =
A

τN
C−1,

recalling that φ is exponentially decreasing. So A = MτNC, where C−1 =
∫
RN φ(|y|)dy.

Observe also that∫
RN

mα+1(x)dx = Mα+1ταNCα+1

∫
RN

φα+1(|y|)dy = Mα+1ταNCα+1Cα (4.25)

where Cα =
∫
RN φ

α+1(|y|)dy.
We check, recalling that the growth condition (1.5), that the following holds∫

RN
m(x)V (x)dx = MC

∫
RN

V
(y
τ

)
φ(|y|)dy = C1

1

τ b
, (4.26)

where K is a constant depending on N , φ, C0.
Moreover, we compute, recalling that φ solves the ODE

|w|γ
′

=

∣∣∣∣∣ετm
(

1 +
1

MαCατNα
mα

) 1
γ′
∣∣∣∣∣
γ′

= εγ
′
τγ
′
mγ′

(
1 +

1

MαCατNα
mα

)
. (4.27)

We consider the energy at (m,w)

E(m,w) =

∫
RN

mL
(
−w
m

)
+ F (m) +mV (x) dx

Observe that by (1.3), F (m) ≤ − Cf
α+1m

α+1 +Km. Using Proposition 2.1, and computation (4.27)
and (4.25), we get∫

RN
mL

(
−w
m

)
+ F (m) dx ≤

∫
RN

mL
(
−w
m

)
dx− Cf

α+ 1

∫
RN

mα+1 dx+KM

≤ CL
∫
RN

m
|w|γ′

mγ′
dx+ (CL +K)M − Cf

α+ 1

∫
RN

mα+1 dx

= CLε
γ′τγ

′
(
M +

∫
RN

1

MαCατNα
mα+1dx

)
+ (CL +K)M − Cf

α+ 1

∫
RN

mα+1

= CLε
γ′τγ

′
M + (CL +K)M −

(
Cf
α+ 1

− εγ
′
τγ
′−Nα

MαCα

)∫
RN

mα+1 dx

= (MCL +MCCα)εγ
′
τγ
′
− Cf
α+ 1

Mα+1Cα+1Cατ
αN + (CL +K)M.
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We choose now τ such that τ = 1
aε
− γ′
γ′−Nα , where a is sufficiently large, in such a way that∫

RN
mL

(
−w
m

)
dx+ F (m) dx ≤ −Cε−

γ′Nα
γ′−Nα + C

where C is a constant depending on α,CL,M . Substituting this in the energy and recalling (4.26),
we get the desired inequality.

5 Concentration phenomena

In the second part of this work, we are interested in the asymptotic analysis of solutions to (1.1)
when ε→ 0.

5.1 The rescaled problem

We consider the following rescaling
m̃(y) := ε

Nγ′
γ′−αNm(ε

γ′
γ′−αN y),

ũ(y) := ε
Nα(γ′−1)−γ′

γ′−αN u(ε
γ′

γ′−αN y)

λ̃ := ε
Nαγ′
γ′−αN λ.

(5.1)

We introduce the rescaled potential

Vε(y) = ε
Nαγ′
γ′−αN V (ε

γ′
γ′−αN y). (5.2)

Note that by (1.5), we get

C−1
V ε

Nαγ′
γ′−αN (max{|ε

γ′
γ′−αN y| − CV , 0})b ≤ Vε(y) ≤ CV ε

Nαγ′
γ′−αN (1 + ε

γ′
γ′−αN |y|)b. (5.3)

The rescaled coupling term is given by

fε(m̃(y)) = ε
Nαγ′
γ′−αN f

(
ε
− Nγ′
γ′−αNm(ε

γ′
γ′−αN y)

)
. (5.4)

Note that, using (1.3), we obtain that

−Cfmα −Kε
Nαγ′
γ′−αN ≤ fε(m) ≤ −Cfmα +Kε

Nαγ′
γ′−αN , (5.5)

Then we get that
lim
ε→0

fε(m) = −Cfmα uniformly in [0,+∞). (5.6)

Moreover, we define Fε(m) =
∫m

0
fε(n)dn if m ≥ 0 and 0 otherwise, and we get

− Cf
α+ 1

mα+1 −Kε
Nαγ′
γ′−αNm ≤ Fε(m) ≤ − Cf

α+ 1
mα+1 +Kε

Nαγ′
γ′−αNm. (5.7)

We define also the rescaled Hamiltonian

Hε(p) = ε
Nαγ′
γ′−αNH

(
ε
−Nα(γ′−1)

γ′−αN p

)
. (5.8)

By (1.2),

CH |p|γ − ε
Nαγ′
γ′−αNK ≤ Hε(p) ≤ CH |p|γ ,

|∇Hε(p)| ≤ K|p|γ−1.
(5.9)
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So, we get that
lim
ε→0

Hε(p) = H0(p) := CH |p|γ uniformly in RN . (5.10)

Moreover, if we assume that ∇Hε is locally bounded in C0,γ−1(RN ), then

∇Hε(p)→ ∇H0(p) =
CH
γ
|p|γ−2p locally uniformly.

We can define Lε as in (1.7), with Hε in place of H and we obtain that condition (5.9) gives
that there exists CL > 0 such that

CL|q|γ
′
≤ Lε(q) ≤ CL|q|γ

′
+ ε

Nαγ′
γ′−αN CL (5.11)

which in turns gives that

Lε(q)→ L0(q) = CL|q|γ
′

uniformly in RN . (5.12)

The rescalings (5.13) lead to the following rescaled system
−∆ũε +Hε(∇ũε) + λ̃ε = fε(m̃ε) + Vε(y)

−∆m̃ε − div(m̃ε∇Hε(∇ũε)) = 0∫
RN m̃ε = M.

(5.13)

Existence of a triple (ũε, m̃ε, λ̃ε) solving the previous system is an immediate consequence of
Theorem 1.1. We first start by stating some a priori estimates.

Lemma 5.1. There exist C,C1, C2 > 0 independent of ε such that the following holds

−C1 ≤ λ̃ε ≤ −C2, (5.14)∫
RN

m̃ε|∇ũε|γdy +

∫
RN

m̃ε(y)Vε(y)dy + ‖m̃ε‖α+1
Lα+1(RN )

≤ C, (5.15)

‖m̃ε‖L∞(RN ) ≤ C. (5.16)

Proof. Estimates (4.23), (4.22) give (5.14), (5.15) by rescaling.

We apply Theorem 4.1 with g[m](x) = fε(m(x)), rk = ε
Nα(γ′−1)

γ′−αN , sk = ε
Nαγ′
γ′−αN and tk = ε

γ′
γ′−αN ,

which are all bounded sequences, and we obtain (5.16).

Using the a priori bounds on the solutions to (5.13), we want to pass to the limit ε→ 0. The
problem is that these estimates are not sufficient to assure that there is no loss of mass, namely
that the limit of m̃ε has still L1-norm equal to M . Therefore, we need to translate the reference
system at a point around which the mass of m̃ε remains positive. This will be done as follows.

Let yε ∈ RN be such that
ũε(yε) = min

RN
ũε(y), (5.17)

note that this point exists due to (4.21).
We will denote by {

ūε(y) = ũε(y + yε)− ũε(yε)
m̄ε(y) = m̃ε(y + yε).

(5.18)

Note that (ūε, m̄ε, λ̃ε) is a classical solution to
−∆ūε +Hε(∇ūε) + λ̃ε = fε(m̄ε) + Vε(y + yε)

−∆m̄ε − div(m̄ε∇Hε(∇ūε)) = 0∫
RN m̄ε = M,

(5.19)

and in addition ūε(0) = 0 = minRN ūε.
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5.2 A preliminary convergence result

In this section, we provide some preliminary convergence results, where we are not preventing
possible loss of mass in the limit. First of all we need some a priori estimates on the solutions to
(5.19).

Proposition 5.2. Let (ūε, m̄ε, λ̃ε) be as in (5.18). Then there exists a constant C > 0 independent
of ε such that the following hold

ε
(Nα+b)γ′
γ′−Nα |yε|b ≤ C and 0 ≤ Vε(y + yε) ≤ C(ε

(Nα+b)γ′
γ′−Nα |y|b + 1), (5.20)

|∇ūε(y)| ≤ C(1 + |y|)
b
γ and ūε(y) ≥ C|y|1+ b

γ − C−1, (5.21)∫
BR(0)

m̄ε(y)dy ≥ C ∀R ≥ 1. (5.22)

Finally, if w̄ε = −m̄ε∇Hε(∇ūε), then (m̄ε, w̄ε) is a minimizer in the set K1,M of the energy

Eε(m,w) =

∫
RN

mLε

(
−w
m

)
+ Vε(y + yε)m+ Fε(m) dy, (5.23)

where Lε and Fε are defined in Section 5.1.

Proof. Since ūε is a classical solution, we can compute the equation in y = 0, obtaining

Hε(0) + λ̃ε ≥ fε(m̄ε(0)) + V (yε).

Using the a priori estimates (5.14), (5.16), (5.9) and the assumption (5.5), (5.3), this implies that

ε
(Nα+b)γ′

γ′−Nα |yε|b ≤ C, and then, again by assumption (5.3), that (5.20) holds.
Using estimates (5.14), (5.16), and (5.20), we conclude by Theorem 2.5 that estimate (5.21)

holds.
Again by the equation computed at y = 0, recalling that Hε(0)→ 0 and Vε ≥ 0 and estimate

(5.14), we deduce that −fε(m̄ε(0)) ≥ −C2 > 0. So, by assumption (5.5), we get that there
exists C > 0 indipendent of ε, such that m̃ε(0) > C > 0. Using the estimates (5.21) and
(5.16), by Proposition 2.4, we get that there exists a positive constant depending on p such that
‖m̄ε‖W 1,p(B2(0)) ≤ Cp for all p > 1. This, by Sobolev embeddings, gives that ‖m̄ε‖C0,α(B2(0)) ≤ Cα
for every α ∈ (0, 1) and for some positive constant depending on α. We choose now R0 ∈ (0, 1]
such that m̄ε ≥ C/2 in BR0

(0), using the Cα estimate and the fact that m̄ε(0) > C > 0. This
implies immediately that

∫
BR0

(0)
m̄ε(y)dy ≥ C/2|BR0

| > 0. This gives the estimate (5.22), for all

radii bigger than R0.
Finally the fact that (m̄ε, w̄ε) is a minimizer of (5.23) in K1,M follows from Theorem 1.1, by

rescaling.

We get the first convergence result.

Proposition 5.3. Let (ūε, m̄ε, λ̃ε) be the classical solution to (5.19) constructed above. Up to
subsequences, we get that λ̃ε → λ̄, and

ūε → ū, m̄ε → m̄, ∇ūε → ∇ū, ∇Hε(∇ūε)→ ∇H0(∇ū) (5.24)

locally uniformly, where ū ≥ 0 = ū(0), and (ū, m̄, λ̄) is a classical solution to{
−∆ū+H0(∇ū) + λ̄ = −Cfm̄α + g(x)

−∆m̄− div(m̄∇H0(∇ū)) = 0
(5.25)

for a continuous function g such that 0 ≤ g(x) ≤ C on RN for some C > 0.
Moreover, there exist a ∈ (0,M ], C,K, κ > 0 such that

∫
RN m̄dx = a, and

ū(x) ≥ C|x| − C, |∇ū| ≤ K on RN ,
∫
RN

eκ|x|m̄(x)dx < +∞. (5.26)
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Proof. First of all observe that, since V is a locally Hölder continuous function, then (5.20) implies
that, up to subsequence, Vε(x + yε) → g(x), locally uniformly as ε → 0, where g is a continuous
function such that 0 ≤ g(x) ≤ C, for some C > 0.

Using the a priori estimate (5.21), and recalling that ūε is a classical solution to (5.19), by
classical elliptic regularity theory we obtain that ūε is locally bounded in C1,α in every compact set,
uniformly with respect to ε. So, up to extracting a subsequence via a diagonalization procedure,
we get that

ūε → ū, ∇ūε → ∇ū, ∇Hε(∇ūε)→ ∇H0(∇ū)

locally uniformly, and λ̃ε → λ̄. Using the estimates (5.21) and (5.16), by Proposition 2.4, and
by Sobolev embeddings, for every compact set K ⊂ RN , we have that ‖m̄ε‖C0,α(K) ≤ CK,α for
every α ∈ (0, 1) and for some positive constant depending on α and K. So, up to extracting a
subsequence via a diagonalization procedure, we get that m̄ε → m̄ locally uniformly.

So, we can pass to the limit in (5.19) and obtain that (ū, m̄, λ̄) is a solution to (5.25), which is
classical by elliptic regularity theory.

Using (5.22) and locally uniform convergence, we get that there exists a ∈ (0,M ] such that∫
RN m̄dy = a.

Observe that ū is a solution to

−∆ū+H0(∇ū) + λ̄ = −Cfm̄α + g(x).

By Theorem 2.5, we get that there exists a constant K depending on sup g and −λ̄ such that
|∇ū| ≤ K. Moreover, by construction ū ≥ 0.

Since m̄ is Hölder continuous, and such that
∫
RN m̄dx = a ∈ (0,M ], by Lemma 2.2, we get that

m̄→ 0 as |x| → +∞. Therefore, we get that lim inf |x|→+∞(−m̄α(x)+g(x)− λ̄−H0(0)) ≥ −λ > 0.
So, by Theorem 2.6, recalling that by construction ū(0) = 0 ≤ ū(y), we get that ū satisfies

ū(x) ≥ C|x| − C (5.27)

for some C > 0.
To conclude, consider the function Φ(x) = eκū(x). We claim that we can choose κ > 0 such

that there exist R > 0 and δ > 0 with

−∆Φ +∇H0(∇ū) · ∇Φ > δΦ |x| > R. (5.28)

Indeed, since ū solves the first equation in (5.25) , we get

−∆Φ +∇H0(∇ū) · ∇Φ ≥ κ(−λ̄− κ|∇ū|2 − m̄α)Φ.

Using (5.27) and m̄→ 0 as |x| → +∞, we obtain the claim. Reasoning as in [21, Proposition 4.3],
or [29, Proposition 2.6], we get that

∫
RN e

κūm̄dx < +∞, which concludes the estimate (5.26).

Remark 5.4. With estimates (5.26) in force, the pointwise bounds stated in [29, Theorem 6.1]
hold, namely there exist positive constants c1, c2, such that

m̄(x) ≤ c1e−c2|x| on RN .

5.3 Concentration-compactness

In this section we show that actually there is no loss of mass when passing to the limit as in
Proposition 5.3. In order to do so, we apply a kind of concentration-compactness argument.

First of all we show that the functional Eε(m,w) enjoys the following subadditivity property.
Let us denote

ẽε(M) = min
(m,w)∈KM

Eε(m,w).
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Recalling (3.6) and (4.24), and the rescaling (5.1), we get that for every M > 0 there exist
C1(M), C2(M),K1,K2 > 0 depending on M (and on the other constants of the problem) but not
on ε such that there holds

−C1(M)−K1ε
Nαγ′
γ′−Nα ≤ ẽε(M) ≤ −C2(M)−K2ε

Nαγ′
γ′−Nα . (5.29)

Lemma 5.5. For all a ∈ (0,M), there exist ε0 = ε0(a) and a constant C = C(a,M) ≥ 0
depending only on a,M and the data (not on ε), such that C(M,M) = 0 = C(0,M), C(a,M) > 0
for 0 < a < M and

ẽε(M) ≤ ẽε(a) + ẽε(M − a)− C(a,M) ∀ε ≤ ε0. (5.30)

Proof. We assume that a ≥M/2 (otherwise it suffices to replace a with M − a).
Let c > 1 and B > 0. For all admissible couples (m,w) ∈ KB we have, recalling (5.7),

ẽε(cB) ≤ Eε(cm, cw) =

∫
RN

cmLε

(
−w
m

)
+ Fε(cm) + cVε(x+ yε)mdx

= cEε(m,w) +

∫
RN

Fε(cm)− cFε(m) dx

≤ cEε(m,w)− c(cα − 1)Cf
α+ 1

∫
RN

mα+1 dx+ 2KcBε
Nαγ′
γ′−Nα . (5.31)

Let now (mn, wn) be a minimizing sequence of Eε in KB , such that Eε(mn, wn) ≤ ẽε(B)+ C2(B)
4

where C2(B) is the constant appearing in (5.29), which depends on B and on the data of the
problem. Recalling that Vε ≥ 0 and Lε ≥ 0, and estimate (5.7), we get that

ẽε(M) +
C2(B)

4
≥ Eε(mn, wn) ≥

∫
RN

Fε(mn) dx ≥ − Cf
α+ 1

∫
Rn
mα+1 dx−KBε

Nαγ′
γ′−Nα .

Using (5.29), we get, for all ε sufficiently small,

Cf
α+ 1

∫
RN

mα+1
n dx ≥ 3C2(B)

4
−Kε

Nαγ′
γ′−αN >

C2(B)

2
> 0.

So, this estimate in particular holds for a minimizer of Eε. Therefore in (5.31) we get, taking
(m,w) to be a minimizer of Eε (which exists by Proposition 5.2)

ẽε(cB) < cẽε(B)− c(cα − 1)
C2(B)

2
+ 2KcBε

Nαγ′
γ′−Nα . (5.32)

Using (5.32) with B = a and c = M/a we get

ẽε(M) <
M

a
ẽε(a)− M

a

[(
M

a

)α
− 1

]
C2(a)

2
+ 2KMε

Nαγ′
γ′−Nα .

If a = M/2, this permits to conclude, choosing ε sufficiently small (depending on a). If a > M/2,
we use (5.32) with B = M − a and c = a/(M − a) to get (multiplying everything by M−a

a )

M − a
a

ẽε(a) < ẽε(M − a)−
[(

a

M − a

)α
− 1

]
C2(M − a)

2
+ 2K(M − a)ε

Nαγ′
γ′−Nα

< ẽε(M − a)−
[(

a

M − a

)α
− 1

]
C2(M − a)

2
+ 2KMε

Nαγ′
γ′−Nα ≤ ẽε(M − a) + 2KMε

Nαγ′
γ′−Nα .
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So putting to together the last two inequalities we get

ẽε(M) <
M

a
ẽε(a)− M

a

[(
M

a

)α
− 1

]
C2(a)

2
+ 2KMε

Nαγ′
γ′−Nα

= ẽε(a) +
M − a
a

ẽε(a)− M

a

[(
M

a

)α
− 1

]
C2(a)

2
+ 2KMε

Nαγ′
γ′−Nα

< ẽε(a) + ẽε(M − a)− M

a

[(
M

a

)α
− 1

]
C2(a)

2
+ 4KMε

Nαγ′
γ′−Nα

≤ ẽε(a) + ẽε(M − a)− M

a

[(
M

a

)α
− 1

]
C2(a)

4

for ε sufficiently small (depending on a).

Theorem 5.6. Let (m̄ε, w̄ε) be the minimizer of Eε as in Proposition 5.2. Let ū, m̄ as in Propo-
sition 5.3, so that m̄ε → m̄, w̄ε → w̄ = −m̄∇H0(∇ū) locally uniformly, and m̄ satisfies the
exponential decay (5.26). Then, ∫

RN
m̄dx = M. (5.33)

Proof. Assume by contradiction that
∫
RN m̄ dx = a, with 0 < a < M . We fix ε0(a) as in Lemma

5.5, and we consider from now on ε ≤ ε0(a). Let c̄ > 0 be such that m̄ ≤ c̄e−|x| (such c̄ exists by
Remark 5.4).
For R sufficiently large (to be chosen later), we define

νR(x) =

{
c̄e−R |x| ≤ R
c̄e−|x| |x| > R.

(5.34)

So in particular m̄(x) ≤ νR(x) for |x| > R.
We observe that as R→ +∞∫

Rn
νR(x)dx = c̄ωNe

−RRN +

∫
RN\BR

c̄e−|x| dx ≤ Ce−RRN → 0. (5.35)

Since m̄ε → m̄ and ∇Hε(∇ūε) → ∇H0(∇ū) locally uniformly, there exists ε0 = ε0(R) such
that for all ε ≤ ε0,

|m̄ε − m̄|+ |∇Hε(∇ūε)−∇H0(∇ū)| ≤ c̄e−R |x| ≤ R. (5.36)

We observe that for all ε ≤ ε0,

m̄ε − m̄+ 2νR ≥ νR(x) ∀x ∈ RN . (5.37)

Indeed, if |x| > R, then m̄ε − m̄ + 2νR ≥ m̄ε + νR ≥ νR, since m̄ ≤ νR. On the other hand, if
|x| ≤ R, then by (5.36) m̄ε − m̄ + 2νR ≥ −c̄e−R + 2c̄e−R = c̄e−R = νR. From (5.37) we deduce
that

|m̄ε − m̄| ≤ m̄ε − m̄+ 2νR. (5.38)

Moreover, since m̄ε → m̄ a.e. by Theorem 2.3, recalling that
∫
RN m̄εdx = M ,

∫
Rn m̄ = a and

using (5.35) and (5.38), we have that∫
RN

(m̄ε − m̄+ 2νR)dx = M − a+ 2

∫
RN

νRdx→M − a as R→ +∞, (5.39)

lim
ε→0

∫
RN

m̄α+1
ε dx =

∫
RN

m̄α+1dx+ lim
ε→0

∫
RN
|m̄ε − m̄|α+1dx (5.40)

≤
∫
RN

m̄α+1dx+ lim
ε→0

∫
RN

(m̄ε − m̄+ 2νR)α+1dx.
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We claim that

Eε(m̄ε, w̄ε) ≥ Eε(m̄, w̄) + Eε(m̄ε − m̄+ 2νR, w̄ε − w̄ + 2∇νR) + oε(1) + oR(1), (5.41)

where oε(1) is an error such that limε→0 oε(1) = 0.
We consider the function (m,w) 7→ mLε

(
− w
m

)
. This is a convex function in (m,w). We

compute ∇w
(
mLε

(
− w
m

))
= −∇Lε

(
− w
m

)
, so in particular by (5.11) we get

CL

∣∣∣w
m

∣∣∣γ′−1

− C−1
L ε

Nα(γ′−1)

γ′−αN ≤ |∇w
(
mLε

(
−w
m

))
| ≤ C−1

L

∣∣∣w
m

∣∣∣γ′−1

+ C−1
L ε

Nα(γ′−1)

γ′−αN . (5.42)

Moreover, ∂m
(
mLε

(
− w
m

))
= Lε

(
− w
m

)
+ w

m · ∇Lε
(
− w
m

)
, therefore, again by (5.11) we get

CL

∣∣∣w
m

∣∣∣γ′ − C−1
L ε

Nα(γ′−1)

γ′−αN ≤ |∂m
(
mLε

(
−w
m

))
| ≤ C−1

L

∣∣∣w
m

∣∣∣γ′ + C−1
L ε

Nα(γ′−1)

γ′−αN . (5.43)

Note that∫
RN

Vε(y+yε)m̄ε dx =

∫
RN

Vε(y+yε)m̄ dx+

∫
RN

Vε(y+yε)(m̄ε−m̄+2νR) dx−2

∫
RN

Vε(y+yε)νR dx.

Recalling the estimate (5.20) and the definition of νR, we have

2

∫
RN

Vε(y + yε)νR dx ≤ CRb+Ne−R.

Hence we obtain∫
RN

Vε(y+yε)m̄ε dx ≥
∫
RN

Vε(y+yε)m̄ dx+

∫
RN

Vε(y+yε)(m̄ε−m̄+2νR) dx−CRb+Ne−R. (5.44)

By (5.40) and (5.7) we get∫
RN

Fε(m̄ε) dx ≥ −
Cf
α+ 1

∫
RN

m̄α+1
ε dx−KMε

Nαγ′
γ′−αN

≥ − Cf
α+ 1

∫
RN

m̄α+1 dx− Cf
α+ 1

∫
RN

(m̄ε − m̄+ 2νR)α+1 dx+ oε(1)

≥
∫
RN

Fε(m̄) dx+

∫
RN

Fε(m̄ε − m̄+ 2νR) dx+ oε(1). (5.45)

Finally, we estimate the kinetic terms in the energy. Splitting∫
RN

m̄εLε

(
− w̄ε
m̄ε

)
dx =

∫
BR

m̄εLε

(
− w̄ε
m̄ε

)
dx+

∫
RN\BR

m̄εL

(
− w̄ε
m̄ε

)
dx,

we proceed by estimating separately the two terms.

Estimates in RN \BR.
First of all, note that by (5.26), (5.9) and (5.11), we get that Lε

(
− w̄
m̄

)
= Lε(∇H0(∇ū)) ≤ C

for come constant C > 0, just depending on the data. Moreover, recalling that m̄ ≤ c̄e−|x|, we get
that, eventually enlarging C,∫

RN\BR
m̄Lε

(
− w̄
m̄

)
dx ≤ C

∫
|x|>R

e−|x|dx ≤ CRNe−R. (5.46)

By convexity of the function (m,w) 7→ mL
(
− w
m

)
, we get that∫

RN\BR
m̄εL

(
− w̄ε
m̄ε

)
dx ≥

∫
RN\BR

(m̄ε − m̄+ 2νR)Lε

(
− w̄ε − w̄ + 2∇νR
m̄ε − m̄+ 2νR

)
dx

+

∫
RN\BR

∂m

(
(m̄ε − m̄+ 2νR)Lε

(
− w̄ε − w̄ + 2∇νR
m̄ε − m̄+ 2νR

))
(m̄− 2νR) dx (5.47)

+

∫
RN\BR

∇w
[
(m̄ε − m̄+ 2νR)Lε

(
− w̄ε − w̄ + 2∇νR
m̄ε − m̄+ 2νR

)]
· (w̄ − 2∇νR) dx. (5.48)
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We recall that |w̄| = m̄|∇H0(∇ū)| ≤ Cm̄ by (5.26) and |∇νR| ≤ CνR by definition. Moreover,
by (5.21) and (5.9),

|w̄ε| = m̄ε|∇Hε(∇ūε)| ≤ Cm̄ε[(1 + |x|)
b
γ ]γ−1 ≤ C1m̄ε(1 + |x|)

b
γ′ .

Using the triangular inequality we get the following, where the constant C can change from line
to line, ∣∣∣∣ w̄ε − w̄ + 2∇νR

m̄ε − m̄+ 2νR

∣∣∣∣ ≤ m̄ε|∇Hε(∇ūε)|
m̄ε − m̄+ 2νR

+
m̄|∇H0(∇ū)|
m̄ε − m̄+ 2νR

+
CνR

m̄ε − m̄+ 2νR
(5.49)

≤ Cm̄ε(1 + |x|)
b
γ′

m̄ε − m̄+ 2νR
+

Cm̄

m̄ε − m̄+ 2νR
+

CνR
m̄ε − m̄+ 2νR

≤ C(1 + |x|)
b
γ′

on RN \ BR(0), where we used respectively the fact that m̄ε − m̄ + 2νR ≥ m̄ε, m̄ ≤ νR and that
m̄ε − m̄+ 2νR ≥ νR.

Now, using (5.43) and (5.49), we can estimate (5.47), and by (5.42) and (5.49) we can estimate
(5.48). Indeed, we get∫
RN\BR

∣∣∣∣∂m((m̄ε − m̄+ 2νR)Lε

(
− w̄ε − w̄ + 2∇νR
m̄ε − m̄+ 2νR

))∣∣∣∣ |m̄−2νR| dx ≤ C
∫
RN\BR

(1+|x|)bνR(x)dx

and∫
RN\BR

∣∣∣∣∇w [(m̄ε − m̄+ 2νR)Lε

(
− w̄ε − w̄ + 2∇νR
m̄ε − m̄+ 2νR

)]∣∣∣∣ (|w̄|+2|∇νR|)dx ≤ C
∫
RN\BR

(1+|x|)
b
γ νR(x)dx,

because w̄ ≤ Cm̄ on RN . Therefore, we may conclude, possibly enlarging C, that∫
RN\BR

m̄εL

(
− w̄ε
m̄ε

)
dx

≥
∫
RN\BR

(m̄ε − m̄+ 2νR)Lε

(
− w̄ε − w̄ + 2∇νR
m̄ε − m̄+ 2νR

)
dx− C

∫
RN\BR

(1 + |x|)bνR(x)dx

≥
∫
RN\BR

(m̄ε − m̄+ 2νR)Lε

(
− w̄ε − w̄ + 2∇νR
m̄ε − m̄+ 2νR

)
dx− CRN+be−R. (5.50)

Finally, putting together (5.46) and (5.50), we have, choosing C suffficiently large∫
RN\BR

m̄εLε

(
− w̄ε
m̄ε

)
dx ≥

∫
RN\BR

m̄Lε

(
− w̄
m̄

)
dx

+

∫
RN\BR

(m̄ε − m̄+ 2νR)Lε

(
− w̄ε − w̄ + 2∇νR
m̄ε − m̄+ 2νR

)
dx− CRN+be−R. (5.51)

Estimates in BR. Again by convexity of the function (m,w) 7→ mL
(
− w
m

)
, we get that∫

BR

m̄εL

(
− w̄ε
m̄ε

)
dx ≥

∫
BR

m̄Lε

(
− w̄
m̄

)
dx

+

∫
BR

∂m

(
m̄Lε

(
− w̄
m̄

))
(m̄ε − m̄) dx+

∫
BR

∇w
[
m̄Lε

(
− w̄
m̄

)]
· (w̄ε − w̄) dx. (5.52)

We now estimate (5.52). We recall that
∣∣ w̄
m̄

∣∣ ≤ |∇H0(∇ū)| ≤ K and also |∇Hε(∇ūε)| ≤ K for
all ε ≤ ε0(R). Then, using this fact and (5.42) and (5.43) and recalling (5.36), we get∫

BR

∣∣∣∂m (m̄Lε (− w̄
m̄

))∣∣∣ |m̄ε − m̄| dx =

∫
BR

|∂m (m̄Lε (∇H0(∇ū)))| |m̄ε − m̄| dx ≤ Ce−RRN
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and∫
BR

|∇w [m̄Lε (∇H0(∇ū))]| (|∇Hε(∇uε)||m̄ε − m̄|+ |∇Hε(∇ūε)−∇H0(∇ū)|m̄) dx ≤ Ce−RRN .

This implies that for all ε ≤ ε0(R)∫
BR

m̄εL

(
− w̄ε
m̄ε

)
dx ≥

∫
BR

m̄Lε

(
− w̄
m̄

)
dx− Ce−RRN . (5.53)

Now we observe that by (5.11),∫
BR

(m̄ε−m̄+2νR)Lε

(
− w̄ε − w̄ + 2∇νR
m̄ε − m̄+ 2νR

)
dx ≤ C

∫
BR

[∣∣∣∣ w̄ε − w̄ + 2∇νR
m̄ε − m̄+ 2νR

∣∣∣∣γ′ + 1

]
(m̄ε−m̄+2νR)dx.

By (5.38) we get that m̄ε−m̄+2νR ≤ |m̄ε−m̄|+2νR ≤ Ce−R, eventually enalarging C. Moreover,
reasoning as in (5.49), we get∣∣∣∣ w̄ε − w̄ + 2∇νR

m̄ε − m̄+ 2νR

∣∣∣∣ ≤ |∇Hε(∇ūε)|
|m̄ε − m̄|

m̄ε − m̄+ 2νR
+
|∇Hε(∇ūε)−∇H0(∇ū)|

m̄ε − m̄+ 2νR
m̄ ≤ C

where we used that ∇νR = 0 for |x| < R, that |∇Hε(∇ūε)| ≤ K, that by (5.38) |m̄ε−m̄|
m̄ε−m̄+2νR

≤ 1,
|∇Hε(∇ūε)−∇H0(∇ū)|

m̄ε−m̄+2νR
≤ C by (5.37) and (5.36). So, we conclude that∫
BR

(m̄ε − m̄+ 2νR)Lε

(
− w̄ε − w̄ + 2∇νR
m̄ε − m̄+ 2νR

)
dx ≤ Ce−RRN . (5.54)

Putting together (5.53) and (5.54) we get, choosing C suffficiently large and for all ε ≤ ε0(R),∫
BR

m̄εLε

(
− w̄ε
m̄ε

)
dx ≥

∫
BR

m̄Lε

(
− w̄
m̄

)
dx

+

∫
BR

(m̄ε − m̄+ 2νR)Lε

(
− w̄ε − w̄ + 2∇νR
m̄ε − m̄+ 2νR

)
dx− CRNe−R. (5.55)

Therefore, summing up (5.55), (5.51), (5.44) and (5.45), we conclude for all ε ≤ ε0(R),

Eε(m̄ε, w̄ε) ≥ Eε(m̄, w̄) + Eε(m̄ε − m̄+ 2νR, w̄ε − w̄ + 2∇νR) + oε(1)− CRb+Ne−R. (5.56)

Let now cR = M−a
M−a+2

∫
RN νRdx

. We have that cR → 1 as R → +∞ and cR < 1. In particular,

(cR(m̄ε − m̄+ 2νR), cR(w̄ε − w̄+ 2∇νR)) ∈ KM−a. By the same computation as in (5.31), we get

cREε(m̄ε − m̄+ 2νR, w̄ε − w̄ + 2∇νR)

= Eε(cR(m̄ε−m̄+2νR), cR(w̄ε−w̄+2∇νR))+

∫
RN

cRFε(m̄ε−m̄+2νR)−Fε(cR(m̄ε−m̄+2νR)) dx

≥ Eε(cR(m̄ε − m̄+ 2νR), cR(w̄ε − w̄ + 2∇νR))

+ cR
cαR − 1

α+ 1
Cf

∫
RN

(m̄ε − m̄+ 2νR)α+1dx− 2K

(
M − a+ 2

∫
RN

νRdx

)
ε
Nαγ′
γ′−Nα . (5.57)

Observe that by (5.15) there exists C independent of ε such that

0 ≤
∫
RN

(m̄ε − m̄+ 2νR)α+1dx ≤ (‖m̄ε‖α+1 + ‖m̄‖α+1 + ‖2νR‖α+1)α+1 ≤ C.
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Therefore, (5.57) reads (recalling that cR < 1 and enlarging the constants C,K),

cREε(m̄ε − m̄+ 2νR, w̄ε − w̄ + 2∇νR)

≥ Eε(cR(m̄ε − m̄+ 2νR), cR(w̄ε − w̄ + 2∇νR)) + cR
cαR − 1

α+ 1
C −KMε

Nαγ′
γ′−Nα

≥ ẽε (M − a) + cR
cαR − 1

α+ 1
C −KMε

Nαγ′
γ′−Nα .

Using this inequality, and using the fact that Eε(m̄ε, w̄ε) = ẽε(M) and that Eε(m̄, w̄) ≥ ẽε(a),
we obtain from (5.56)

ẽε(M) ≥ ẽε(a) + ẽε (M − a) + (1− cR)Eε(m̄ε − m̄+ 2νR, w̄ε − w̄ + 2∇νR)

+CcR
cαR − 1

α+ 1
−KMε

Nαγ′
γ′−Nα + oε(1)− CRb+Ne−R

Moreover by (5.29) we get that there exist K = K(M − a) > 0 such that Eε(m̄ε − m̄+ 2νR, w̄ε −
w̄ + 2∇νR) ≥ −K, therefore the previous inequality gives

ẽε(M) ≥ ẽε(a) + ẽε (M − a)− (1− cR)K + CcR
cαR − 1

α+ 1
+ oε(1)− CRb+Ne−R. (5.58)

By Lemma 5.5, we get that

ẽε(M) ≤ ẽε(a) + ẽε (M − a)− C(a,M),

where C(a,M) > 0 for a < M and C(M,M) = 0. This implies in particular that

0 > −C(a,M) ≥ −(1− cR)K + CcR
cαR − 1

α+ 1
+ oε(1)− CRb+Ne−R.

Recalling that cR → 1 as R → +∞, this gives a contradiction, choosing R sufficiently large and
ε < ε0(R).

An immediate corollary of the previous theorem is the following convergence result.

Corollary 5.7. Let (ūε, m̄ε, λ̃ε) and (ū, m̄, λ̄) be as in Proposition 5.3. Then,

m̄ε → m̄ in L1(RN ) and Lα+1(RN ). (5.59)

Finally for all η > 0, there exist R > 0 and ε0 such that for all ε ≤ ε0,∫
B(0,R)

m̄εdx ≥M − η. (5.60)

Proof. By Proposition 5.3 we get that m̄ε → m̄ almost everywhere, and by Theorem 5.6,
∫
RN m̄ε =

M =
∫
RN m̄. This implies the convergence in L1(RN ). Indeed, by Fatou lemma

2M ≤ lim inf
ε

∫
RN

m̄ε + m̄− |m̄ε − m̄|dx ≤ 2M − lim sup
ε

∫
RN
|m̄ε − m̄| dx.

Moreover, recalling (5.16), we get that

‖m̄ε − m̄‖α+1
Lα+1(RN )

≤ ‖m̄ε − m̄‖L1(RN )(‖m̄‖L∞(RN ) + ‖m̄ε‖L∞(RN ))→ 0.

Finally observe that for all R, by Remark 5.4,∫
BR(0)

m̄εdy ≥
∫
BR(0)

m̄dy −
∫
BR(0)

|m̄ε − m̄|dy ≥M − CRN−1e−R −
∫
RN
|m̄ε − m̄|dy.

So, using the L1 convergence we conclude the desired estimate.
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5.4 Existence of ground states.

In this subsection we aim at proving that as ε goes to zero, (ūε, m̄ε, λ̃ε) converges to a solution of
the limiting MFG system (1.14), without potential terms. In particular, we will prove Theorem
1.3.

We first need a Γ-convergence type result, proved in the following lemma.

Lemma 5.8. Let (mε, wε), (m,w) ∈ K1,M be such that mε → m in L1 ∩ Lα+1(RN ) and wε ⇀ w
weakly in Lq(RN ) for some q > 1. Then

lim inf
ε
Eε(mε, wε) ≥ E0(m,w), (5.61)

where E0 is defined in (1.16).
Let (m,w) ∈ K1,M be such that m(1 + |y|b) ∈ L1(RN ). Then

lim
ε
Eε(m(· − yε), w(· − yε)) ≤ E0(m,w). (5.62)

Proof. We recall that Lε(q) → CL|q|γ
′

uniformly in RN by (5.11) and Fε(m) → − 1
α+1m

α+1

uniformly in [0,+∞) by (5.7). Moreover we observe that the energy E0 is lower semicontinuous
with respect to weak Lq convergence of w and strong Lα+1 ∩ L1 convergence of m. Since V ≥ 0,
we get that

lim inf
ε
Eε(mε, wε) ≥ lim inf

ε

∫
RN

mεLε

(
−wε
mε

)
+ Fε(mε) dx

≥ lim inf
ε

∫
RN

CLm
1−γ′
ε |wε|γ

′
− Cf
α+ 1

mα+1
ε dx

≥
∫
RN

CLm
1−γ′ |w|γ

′
− Cf
α+ 1

mα+1 dx = E0(m,w).

Now we observe that for all m such that m(1 + |y|b) ∈ L1(RN ), using (5.3), we get that

lim
ε→0

∫
RN

m(y + yε)Vε(y + yε)dy ≤ lim
ε
CV ε

Nαγ′
γ′−αN

∫
RN

(1 + |y|)bm(y)dy = 0. (5.63)

Therefore, recalling again the uniform convergence of Lε(q)→ CL|q|γ
′

and Fε(m)→ − 1
α+1m

α+1,
we conclude (noting that if we translate m,w of yε the energy E0 remains the same)

lim
ε
Eε(m(· − yε), w(· − yε)) = E0(m,w) + lim

ε→0

∫
RN

m(y + yε)Vε(y + yε)dy ≤ E0(m,w).

Proof of Theorem 1.3. We first show that (ū, m̄) obtained in Proposition 5.3 are associated to
minimizers of an appropriate energy, without potential term, so that (1.15) holds.

Note that (m̄, w̄) ∈ K1,M where w̄ = −m̄∇H0(∇ū), due to Proposition 5.3 and Theorem 5.6
and m̄(1 + |y|b) ∈ L1(RN ) by the exponential decay (5.26). Moreover m̄ε → m̄ in L1 ∩ Lα+1 by
Corollary 5.7 and w̄ε = −m̄ε∇Hε(∇ūε) → w̄ = −m̄∇H0(∇ū) locally uniformly (by Proposition

5.3) and weakly in L
γ′(α+1)

γ′+α by the same argument as in the proof of Theorem 3.3.
Let now (m,w) ∈ K1,M be such that m(1 + |y|b) ∈ L1(RN ). Using the minimality of (m̄ε, w̄ε),

(5.61) and (5.62), we conclude that

E0(m,w) ≥ lim
ε
Eε(m(· − yε), w(· − yε)) ≥ lim

ε
Eε(m̄ε, w̄ε) ≥ E0(m̄, w̄).

This implies (1.15).

To obtain the first part of the theorem, that is the existence of a solution to (1.14), we need
to prove that the function g appearing in Proposition 5.3 is actually zero on RN . To do that, we
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derive a better estimate on the term Vε(y+ yε), in particular we show that Vε(y+ yε)→ 0 locally
uniformly in RN .

By minimality of (m̄ε, w̄ε) and (m̄, w̄), (5.11), (5.7) and (5.63) we get that

Eε(m̄ε, w̄ε) ≤ Eε(m̄(·+ yε), w̄(·+ yε))

≤ E0(m̄, w̄) +

∫
RN

m̄(y + yε)Vε(y + yε)dy + Cε
Nαγ′
γ′−Nα ≤ E0(m̄ε, w̄ε) + C1ε

Nαγ′
γ′−Nα .

Again using (5.7) and (5.11) we get

E0(m̄ε, w̄ε) + C1ε
Nαγ′
γ′−Nα ≤

∫
RN

m̄εLε

(
− w̄ε
m̄ε

)
+ Fε(m̄ε)dy + Cε

Nαγ′
γ′−αNM + Cε

Nαγ′
γ′−Nα .

So, putting together the last two inequalities, we conclude that∫
RN

m̄εVε(y + yε)dy ≤ Cε
Nαγ′
γ′−Nα . (5.64)

Recalling (5.2), this implies that for all R > 0, we get

C−1
V (max{ε

γ′
γ′−αN |yε| − ε

γ′
γ′−αNR− CV , 0})b

∫
B(0,R)

m̄εdy ≤ C.

Using (5.60), we conclude that there exists C > 0 such that

ε
γ′

γ′−αN |yε| ≤ C. (5.65)

In turns this gives, recalling again (5.2), that

0 ≤ Vε(y + yε) ≤ CV ε
Nαγ′
γ′−αN (1 + ε

γ′
γ′−αN |y|+ ε

γ′
γ′−αN |yε|)b ≤ Cε

Nαγ′
γ′−αN (1 + |y|)b

which implies that Vε(y + yε)→ 0 locally uniformly.

Remark 5.9. If H and f satisfy the growth conditions (1.2) and (1.3), arguing as before one has
that there exists a classical solution to the potential-free version of (1.1),

−∆u+H(∇u) + λ = f(m)

−∆m− div(∇H(∇u)m) = 0∫
RN m = M.

(5.66)

In addition, (m,−∇H(∇u)m) is a minimizer of

(m,w) 7→
∫
RN

mL
(
−w
m

)
+ F (m)dx

among (m,w) ∈ K1,M , m(1 + |y|b) ∈ L1(RN ). This can be done as follows: start with a sequence
(uδ,mδ, λδ) solving 

−∆uδ +H(∇uδ) + λδ = f(mδ) + δ|x|b

−∆mδ − div(∇H(∇uδ)mδ) = 0∫
RN mδ = M.

(5.67)

with δ = δn → 0. Such a sequence exists by Theorem 1.1. The problem of passing to the limit
in (5.67) to obtain (5.66) is the same as passing to the limit in (5.13), and it is even simpler: in
(5.13), one has to be careful as the Hamiltonian Hε and the coupling fε vary as ε→ 0 (still, they
converge uniformly), while in (5.67) they are fixed, and only the potential is vanishing. We observe
that b > 0 could be chosen arbitrarily, the perturbation δ|x|b always disappears in the limit. Still,
the limit m,u somehow retains a memory of b in terms of energy properties: m minimizes an
energy among competitors satisfying m(1 + |y|b) ∈ L1(RN ).
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Remark 5.10. We stress that uniqueness of solutions for (1.14) does not hold in general; for
example, a triple (u,m, λ) solving the system may be translated in space to obtain a full family of
solutions. On the other hand, a more subtle issue is the uniqueness of m in the second equation
(with ∇u fixed), that is, if (u,m1, λ) and (u,m2, λ) are solutions, then m1 ≡ m2. This property is
intimately related to the ergodic behaviour of the optimal trajectory dXs = −∇H0(∇u(Xs))ds+√

2ε dBs (see, for example, [11] and references therein). It is well-known that uniqueness for the
Kolmogorov equation is guaranteed by the existence of a so-called Lyapunov function; in our
cases, it can be checked that u itself (or increasing functions of u, as in (5.28)) acts as a Lyapunov
function, so uniqueness of m and ergodicity holds for (1.14) and (1.1).

5.5 Concentration of mass

The last problem we address is the localization of the point yε, to conclude the proof of Theorem
1.2. Rewriting (5.60) in view of (5.1) and (5.18), we get that for all η > 0 there exist R, ε0 such
that for all ε ≤ ε0, ∫

B(ε
γ′

γ′−αN yε,ε
γ′

γ′−αN R)

m(x)dx ≥M − η, (5.68)

where m is the classical solution to (1.1) given in Theorem 1.1, and m̄ε(y) = ε
Nγ′

γ′−αNm(ε
γ′

γ′−αN y+

ε
γ′

γ′−αN yε).

By (5.65), we know that, up to subsequences, ε
γ′

γ′−αN yε → x̄. Our aim is to locate this point,
which is the point where mass concentrates. We need a preliminary lemma stating the existence
of suitable competitors that will be used in the sequel.

Lemma 5.11. For all ε ≤ ε0, there exists (m̂ε, ŵε) ∈ K1,M that minimize

(m,w) 7→
∫
RN

mLε

(
−w
m

)
+ Fε(m) dy (5.69)

among (m,w) ∈ K1,M , m(1 + |y|b) ∈ L1(RN ). Moreover, for some positive constants c1, c2
independent of ε,

m̂ε(y) ≤ c1e−c2|y| on RN . (5.70)

Proof. The existence of (m̂ε, ŵε) is stated in Remark 5.9, together with a solution (ûε, m̂ε, λ̂ε) to
the associated MFG system as the optimality conditions (see (5.71) below). To obtain the uniform
exponential decay, we can argue by Lyapunov functions as in Proposition 5.3; here, we have to be
careful, since the argument in Proposition 5.3 mainly require

fε(m̂ε)− λ̂ε −Hε(0) ≥ −λ̂ε/2 > 0

outside some fixed ball Br(0). This claim can be proved as follows: first, −λ̂ε is bounded away
from zero for ε small. Indeed,

λ̂εM =

∫
RN

m̂εLε

(
− ŵε
m̂ε

)
+ fε(m̂ε)m̂ε dy ≤ Eε(m̄ε, w̄ε) + oε(1) ≤ −C.

The inequality follows by minimality of (m̂ε, ŵε) and (m̄ε, w̄ε), and (rescaled) (4.24).
We now prove that m̂ε decays as |x| → ∞ uniformly in ε. Note that ŵε = −∇Hε(∇ûε)m̂ε,

where (ûε, m̂ε, λ̂ε) solves 
−∆ûε +Hε(∇ûε) + λ = fε(m̂ε)

−∆m̂ε − div(∇Hε(∇ûε)m̂ε) = 0∫
RN m̂ε = M.

(5.71)

39



We derive local estimates for ûε and m̂ε. We shift the x-variable so that ûε(0) = 0 = minRN ûε
for all ε. Choose p > N such that

α <
γ′

p
<
γ′

N
.

If one considers the HJB equation solved by ûε, recalling (5.5) and (5.9), Theorem 2.5 gives the
existence of C > 0 such that

‖∇ûε‖L∞(B2R(x0)) ≤ K(‖m̂ε‖αL∞(B4R(x0)) + 1)
1
γ .

Note that C > 0 does not depend on ε and x0. Turning to the Kolmogorov equation, again by
(5.9) and Proposition 2.4,

‖m̂ε‖W 1,p(BR(x0)) ≤ C(‖∇ûε‖γ−1
L∞(B2R(x0)) + 1)‖mε‖Lp(B2R(x0)).

By the previous L∞ estimate on ∇uε and interpolation of the Lp norm of m between L1 and L∞

we get

‖m̂ε‖W 1,p(BR(x0)) ≤ C(‖m̂ε‖
α
γ′

L∞(B4R(x0)) + 1)‖m̂ε‖1/pL1(B4R(x0))‖m̂ε‖1−1/p
L∞(B4R(x0)).

Recall that ‖m̂ε‖L1(B4R(x0)) ≤ M ; then, since p > N , by Sobolev embeddings we obtain that for
some β > 0,

‖m̂ε‖C0,β(BR(x0)) ≤ C(‖m̂ε‖
α
γ′

L∞(RN )
+ 1)‖m̂ε‖1−1/p

L∞(RN )
. (5.72)

First, since C does not depend on x0, this yields ‖m̂ε‖L∞(RN ) ≤ C, by the choice of p < γ′/α.
Secondly, plugging back this estimate into (5.72), we conclude ‖m̂ε‖C0,β(RN ) ≤ C.

Then, using these estimates, we get that up to subsequences, λ̂ε → λ̂, ûε → û locally uniformly
in C1, and m̂ε → m̂ locally uniformly, where (û, m̂, λ̂) is a solution to (5.25) with g ≡ 0. Arguing
exactly as in Proposition 5.3, we get that ũ, m̃ satisfy the estimates (5.26) (eventually modifying
the constants). Moreover

∫
RN m̂ dx = a ∈ (0,M ]. Observe now that Lemma 5.5 and Theorem 5.6

hold also for the energy (5.69), since it coincides with the energy Eε without the potential term∫
RN Vεmdx. Therefore we can apply Theorem 5.6 to m̂, to conclude that actually

∫
RN m̂ dx = M .

So, by Corollary 5.7, we obtain that for all η > 0, there exist R > 0 and ε0 such that for all ε ≤ ε0,∫
B(0,R)

m̂εdx ≥M − η. (5.73)

By (5.72) and (5.73), using Lemma 2.2, we get that

fε(m̂ε) ≥
λ̂ε
4

outside a ball Br(0). Since Hε(0)→ 0, the claim

fε(m̂ε)− λ̂ε −Hε(0) ≥ −λ̂ε/2 > 0 (5.74)

outside a ball Br(0) follows. As previously mentioned, me may now proceed and conclude as in
Proposition 5.3; basically, (5.74) implies that x 7→ ekûε(x) acts as a Lyapunov function for m̂ε for
some small k > 0, giving

c

∫
RN

ek|x|−k1m̂ε ≤
∫
RN

ekûεm̂ε ≤ C

for all ε small, that easily implies the pointwise exponential decay (5.70) of m̂ε by Hölder regularity
of m̂ε itself.

For general potentials, the point where mass concentrates is a minimum for V .

40



Proposition 5.12. Up to subsequences, ε
γ′

γ′−αN yε → x̄, where V (x̄) = 0, i.e. x̄ is a minimum of
V .

Proof. Fix a generic z ∈ RN and observe that (m̂ε(· + z), ŵε(· + z)) is still a minimizer of∫
mLε

(
− w
m

)
+ Fε(m). By minimality of (m̄ε, w̄ε) and of (m̂ε(·+ z), ŵε(·+ z)), we get that∫

RN
m̄εLε

(
− w̄ε
m̄ε

)
+ Fε(m̄ε)dy +

∫
RN

m̄ε(y)Vε(y + yε)dy = Eε(m̄ε, w̄ε)

≤ Eε(m̂ε(·+ z), ŵε(·+ z)) ≤
∫
RN

m̄εLε

(
− w̄ε
m̄ε

)
+ Fε(m̄ε) +

∫
RN

m̂ε(y + z)Vε(y + yε)dy.

In particular this gives that∫
RN

m̄ε(y)Vε(y + yε)dy ≤
∫
RN

m̂ε(y + z)Vε(y + yε)dy =

∫
RN

m̂ε(y)Vε(y + yε − z)dy ∀z ∈ RN .

(5.75)
Recalling the rescaling of Vε and of m̄ε in (5.1), this is equivalent to∫

RN
m(x)V (x)dx ≤

∫
RN

m̂ε(y)V (ε
γ′

γ′−αN y + ε
γ′

γ′−αN yε − ε
γ′

γ′−αN z)dy ∀z ∈ RN (5.76)

wherem is the classical solution to (1.1) given in Theorem 1.1, such that m̄ε(y) = ε
Nγ′

γ′−αNm(ε
γ′

γ′−αN y+

ε
γ′

γ′−αN yε).

By (5.65), we get that up to passing to a subsequence, ε
γ′

γ′−αN yε → x̄ for some x̄ ∈ RN . Then
by (5.68), we get that

lim inf
ε→0

∫
RN

m(x)V (x)dx ≥ lim inf
ε→0

∫
B(ε

γ′
γ′−αN yε,ε

γ′
γ′−αN R)

m(x)V (x)dx ≥ (M − η)V (x̄). (5.77)

We fix z̄ such that V (z̄) = 0 and we choose in (5.76) z = yε − ε−
γ′

γ′−αN z̄. We have, by the
Lebesgue convergence theorem and (5.70),

lim sup
ε→0

∫
RN

m̂ε(y)V (ε
γ′

γ′−αN y + z̄)dy ≤ lim sup
ε→0

c1

∫
RN

e−c2|y|V (ε
γ′

γ′−αN y + z̄)dy = 0. (5.78)

By (5.77), (5.78) and (5.76), we conclude V (x̄) = 0.

If we assume that the potential V has a finite number of minima and polynomial behavior,

that is, it satisfies assumption (1.13), then we get that at the limit ε
γ′

γ′−αN yε selects at the limit
the more stable minima of V , as we will show in the next proposition.

Proposition 5.13. Assume that V satisfies assumption (1.13). Then, up to subsequences, there
holds that

ε
γ′

γ′−αN yε → xi as ε→ 0

where i ∈ {j = 1, . . . , n, | bj = maxk bk}.

Proof. By Proposition 5.12, we know that up to subsequences, ε
γ′

γ′−αN yε → xι for some ι = 1, . . . n.
It remains to prove that bι = maxi bi. Assume by contradiction that it is not true, and then
bι < maxi bi.
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We compute for j ∈ 1, . . . n, recalling the uniform exponential decay of m̂ε given in (5.70),∫
Rn
m̂ε(y + yε − ε−

γ′
γ′−αN xj)Vε(y + yε)dy =

∫
Rn
m̂ε(y)Vε(y + ε

− γ′
γ′−αN xj)dy

≤ CV ε
γ′Nα
γ′−Nα

∫
Rn
m̂ε(y)ε

bjγ
′

γ′−Nα |y|bj
∏
i6=j

|ε
γ′

γ′−Nα y − xi + xj |bidy

≤ Cε
γ′(Nα+bj)

γ′−Nα

∫
Rn
m̂ε(y)|y|bj

∏
i6=j

|y − xi + xj |bidy ≤ Cε
γ′(Nα+bj)

γ′−Nα (5.79)

Note in particular that we can choose in the previous inequality bj = maxi bi.

We get from (5.75) applied to z = yε− ε−
γ′

γ′−αN xj , where j is such that bj = maxi bi, and from
(5.79) the following improvement of (5.64)∫

B(0,R)

m̄εVε(y + yε)dy ≤
∫
RN

m̂ε(y + yε − ε−
γ′

γ′−αN xj)Vε(y + yε)dy ≤ Cε
(Nα+max bi)γ

′

γ′−Nα (5.80)

for all R ≥ 0. We choose R > 0 sufficiently large such that
∫
B(0,R)

m̄εdy ≥ M
2 . Recalling the

rescaling of V , (5.80) implies that

Cε
max bjγ

′

γ′−Nα ≥ M

2
C−1
V min

y∈B(0,R)

n∏
j=1

|ε
γ′

γ′−Nα y + ε
γ′

γ′−Nα yε − xj |bj . (5.81)

Note that for ε sufficiently small |ε
γ′

γ′−Nα y+ε
γ′

γ′−Nα yε−xj | ≥ δ > 0 for all i 6= ι and all y ∈ B(0, R).
So, by (5.81) we get that there exists C > 0 for which

min
y∈B(0,R)

|ε
γ′

γ′−Nα y + ε
γ′

γ′−Nα yε − xι|bι ≤ Cε
max bjγ

′

γ′−Nα

and then

|ŷε − ε−
γ′

γ′−Nαxι|bι = min
y∈B(0,R)

|y + yε − ε−
γ′

γ′−Nαxι|bι ≤ Cε
(max bj−bι)γ

′

γ′−Nα → 0 (5.82)

for some ŷε ∈ B(yε, R). Let zε = ŷε − yε ∈ B(0, R). Up to subsequences we can assume that
zε → z̄ ∈ B(0, R).

We use now (5.80), recalling assumption (1.13), we get that

Cε
max bjγ

′

γ′−Nα ≥ C−1
V

∫
B(0,R)

m̄ε(y)

n∏
j=1

|ε
γ′

γ′−Nα y + ε
γ′

γ′−Nα yε − xj |bjdy

≥ c1ε
bιγ
′

γ′−Nα

∫
B(0,R)

m̄ε(y)|y − zε + ŷε − ε−
γ′

γ′−Nαxι|bιdy.

In particular this implies that

lim
ε→0

∫
B(0,R)

m̄ε(y)|y − zε + ŷε − ε−
γ′

γ′−Nαxι|bιdy = 0. (5.83)

Recalling that m̄ε → m̄ locally uniformly (see (5.24)), that ŷε− ε−
γ′

γ′−Nαxι → 0 by (5.82), and
that zε → z̄, we get

lim
ε→0

∫
B(0,R)

m̄ε(y)|y − zε + ŷε − ε−
γ′

γ′−Nαxι|bιdy =

∫
B(0,R)

m̄(y)|y − z̄|bιdy > 0.

This gives a contradiction with (5.83).
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As a consequence of the previous results, we can conclude with the

Proof of Theorem 1.2. Setting xε = ε
γ′

γ′−αN yε, it suffices to recall (5.68) and Propositions 5.12,
5.13.
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