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MINIMIZERS OF THE p-OSCILLATION FUNCTIONAL

ANNALISA CESARONI, SERENA DIPIERRO, MATTEO NOVAGA, AND ENRICO VALDINOCI

Abstract. We define a family of functionals, called p-oscillation functionals, that can be
interpreted as discrete versions of the classical total variation functional for p = 1 and of the
p-Dirichlet functionals for p > 1. We introduce the notion of minimizers and prove existence
of solutions to the Dirichlet problem. Finally we provide a description of Class A minimizers
(i.e. minimizers under compact perturbations) in dimension 1.
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1. Introduction

Given Ω ⊆ R
n, the classical quadratic Dirichlet energy

(1.1)

∫

Ω
|∇u(x)|2 dx

and its generalization to any homogeneous energy of the form

(1.2)

∫

Ω
|∇u(x)|p dx, p ∈ [1,+∞)
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constitute the foundation of the modern analysis and of the calculus of variations (see e.g.
the Introduction in [10] for a detailed historical overview). In particular, the minimization of
the functional in (1.1) with prescribed boundary data is related to harmonic functions, while
the functional in (1.2) gives rise to the p-Laplace operator. In general, the functionals in (1.1)
and (1.2) are the main building blocks for a number of problems in elasticity, heat conduction,
population dynamics, etc.

In the recent years, suitable generalizations of the functionals in (1.1) and (1.2) have been
taken into account in the literature, with the aim of modeling situations in which different
scales come into play. Besides the natural mathematical curiosity, this type of problems is
motivated by several concrete applications in which the setting is not scale invariant: for
instance, in the digitalization process of images with tiny details (e.g. fingerprints, tissues,
layers, etc.) the use of different scales allows the preservation of fine structures, precise
elements and irregularities of the image in the process of removing white noises, and this
constitutes an essential ingredient in the process of improving the quality of the data without
losing important information.

In this paper, we consider a discrete version of the functionals in (1.1) and (1.2) in which
the gradient is replaced by an oscillation term in a ball of fixed radius. On the one hand, this
new functional retains the property of attaining minimal value on constant functions, hence
oscillatory functions cause an increasing of the energy values. On the other hand, this new type
of functionals is nonlocal, since any modification of the function at a given point influences
the energy density in a fixed ball. Differently than other kinds of nonlocal functions studied
in the literature, the one that we study here is not scale invariant, since the radius of the ball
on which the oscillation is computed provides a natural threshold of relevant magnitudes.

More precisely, the mathematical framework in which we work is the following. For any
function u ∈ L1

loc(R
n), x ∈ R

n and r > 0, we define the oscillation of u in Br(x) as

osc
Br(x)

u := sup
Br(x)

u− inf
Br(x)

u.

It can be checked by using the definition that a triangular inequality holds: namely, for all
v, u ∈ L1

loc(R
n) and λ, µ > 0,

osc
Br(x)

(λu+ µv) 6 λ osc
Br(x)

(u) + µ osc
Br(x)

(v).

Given p > 1 and an open set Ω ⊆ R
n, we introduce the functional

(1.3) Er,p(u,Ω) :=

∫

Ω

(

osc
Br(x)

u

)p

dx,

which we will denote as the p-oscillation functional. This functional is p-homogeneous, and it
is also convex, due to the triangular inequality and the convexity of the map [0,+∞) ∋ r 7→ rp.
Therefore it is lower semicontinuous in L1

loc, see e.g. [8]. Moreover, we observe that for convex
functionals, weak and strong lower semicontinuity coincide (see e.g. Theorem 9.1 in [3]).

Furthermore, we notice that if u is not locally bounded, then Er,p(u,Ω) = +∞.

When p = 1, this functional can be interpreted as a discrete version (at scale r) of the total
variation functional (see [1]). Indeed, it can be proved that Er,1(u,Ω) Γ-converges as r → 0 to

TV (u,Ω) :=







∫

Ω
|∇u(x)| dx, if u ∈ BV (Ω),

+∞, if u 6∈ BV (Ω),
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see [6, Proposition 3.5].

We introduce the definition of minimizers for the functionals Er,p, in which competitors are
fixed in a neighborhood of width r of the boundary. The reason for this choice in the definition
of minimizers is due to the fact that the scale r associated to the functional has to be taken
into account in order not to trivialize the notion of Class A minimizers (see the forthcoming
Proposition 3.2).

We start with some preliminary definitions. Given r > 0, we let

Ω⊕Br :=
⋃

x∈Ω

Br(x) = (∂Ω ⊕Br) ∪ Ω = (∂Ω⊕Br) ∪ (Ω⊖Br),

where Ω⊖Br := Ω \

(

⋃

x∈∂Ω

Br(x)

)

= Ω \
(

(∂Ω)⊕Br

)

.

(1.4)

Definition 1.1 (Minimizers and Class A minimizers). Let Ω be a open bounded set in R
n.

We say that u ∈ L1(Ω) is a minimizer in Ω for Er,p if

Er,p(u,Ω) 6 Er,p(u+ ϕ,Ω)

for any ϕ ∈ L1(Ω) with ϕ = 0 in Ω \ (Ω ⊖Br), where Ω⊖Br is defined in (1.4).
Also, we say that u ∈ L1

loc(R
n) is a Class A minimizer if it is a minimizer in any ball of Rn.

In this paper we are interested in the analysis of the main properties of such minimizers.
We start providing in Section 2 a compactness result, which we can state as follows:

Proposition 1.2. Let Ω be a open bounded set in R
n, p > 1 and uk be a sequence of minimizers

of Er,p(·,Ω) such that uk → u in L1(Ω). Then, u is a minimizer of Er,p(·,Ω ⊖Br).
In particular, if uk is a sequence of Class A minimizers such that uk → u in L1

loc(R
n), then

u is a Class A minimizer.

Then, in Section 3 we analyze the relation between the functional Er,1 and a nonlocal
perimeter functional. The framework in which we work goes as follows: if E ⊆ R

n is a
measurable set, then we denote

(1.5) Perr(E,Ω) :=
1

2r
Er,1(χE ,Ω) =

1

2r
L
n
(

(

(∂E)⊕Br

)

∩ Ω
)

where (∂E) ⊕Br is defined in (1.4).
The definition of Perr is inspired by the classical Minkowski content (which would be re-

covered in the limit, see e.g. [6,7]). In particular, for sets with compact and (n− 1)-rectifiable
boundaries, the functional in (1.5) may be seen as a nonlocal approximation of the classical
perimeter functional, in the sense that

lim
rց0

Perr(E) = H
n−1(∂E).

Then, we point out the following result:

Theorem 1.3. If the function u is a minimizer of Er,1(·,Ω) then for a.e. s ∈ R the level

set {u > s} is a minimizer for Perr in Ω⊖Br. Viceversa, if for a.e. s ∈ R the level set {u > s}
is a minimizer for Perr in Ω then u is a minimizer of Er,1(·,Ω).

We provide additional results on Perr in [4]. See [2, 6–9] for a number of related problems
and results.
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One of the main results of this paper is about the existence of solutions to the Dirichlet
problem:

Theorem 1.4. Let Ω ⊆ R
n be a bounded open set, and uo ∈ L∞(Ω ⊕ Br). Then, there

exists u ∈ L∞(Ω ⊕ Br) with u = uo in (Ω ⊕ Br) \ Ω and ‖u‖L∞(Ω⊕Br) 6 ‖uo‖L∞(Ω⊕Br) such

that Er,p(u,Ω) 6 Er,p(v,Ω) for any v ∈ L1
loc(Ω ⊕Br) with v = uo in (Ω⊕Br) \ Ω.

Finally, if n = 1 and uo ∈ L∞(Ω⊕Br) is monotone, there exists a minimizer u that is also

monotone.

This result is proved in Section 4. Finally, in Section 5 we provide a description for Class A
minimizers in dimension 1. More precisely, we collect the results that we obtain in the following
statement:

Theorem 1.5. Let n = 1. Then, the following holds:

(1) If u is a Class A minimizer for the functional Er,p for some p > 1, then u is monotone.

(2) Every monotone function is a Class A minimizer for Er,1.

(3) Every monotone function u such that u(x) = Cx + φ(x) for some C ∈ R and φ ∈
L1
loc(R) which is 2r-periodic is a Class A minimizer for Er,p for any p > 1.

(4) If u is a Class A minimizer for Er,p for some p > 1 and u is strictly monotone, then

there exist C 6= 0 and φ ∈ L1
loc(R) which is 2r-periodic such that u(x) = Cx+ φ(x).

A related problem which is left open is about the validity of rigidity results for Class A
minimizers in dimension greater than 1. In particular, it could be interesting to study an
analogous of the Bernstein problem for the 1-oscillation functional, in analogy with the classical
total variation functional. For p > 1, rigidity type results should be in analogy with classical
Liouville type theorems for p-Dirichlet functionals.

Notation. In the sup and inf notation, we mean the “essential supremum and infimum” of the
function (i.e., sets of null measure are neglected). Moreover we shall identify a set E ⊆ R

n

with its points of density one and ∂E with the topological boundary of the set of points of
density one. Finally for any u : I ⊂ R → R monotone function, we will always identify u with
its right continuous representative.

2. Compactness of minimizers

Here we prove the compactness result on the minimizers of the oscillation functional stated
in Proposition 1.2.

Proof of Proposition 1.2. Let Ω′ := Ω ⊖ Br and ϕ such that suppϕ = Ω′ ⊖ Br, and we claim
that

(2.1) Er,p(u+ ϕ,Ω′) > Er,p(u,Ω
′).

For this, we define u∗k := (u − uk)χΩ′ + uk. Then we observe that for a.e. x ∈ Ω and for all
p > 1

(

osc
Br(x)

u∗k

)p

6 max

{

(

osc
Br(x)

uk

)p

,
(

osc
Br(x)

u
)p
}

and
(

osc
Br(x)

u
)p

6 lim inf
k

(

osc
Br(x)

uk

)p

.

(2.2)
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Using (2.2), we compute
∫

Ω
( osc
Br(x)

u∗k)
p dx 6

∫

Ω
( osc
Br(x)

uk)
p dx+

∫

Ω
max(0, ( osc

Br(x)
u)p − ( osc

Br(x)
uk)

p) dx

=

∫

Ω
( osc
Br(x)

uk)
p dx+ ωk,

where

(2.3) ωk → 0 as k → +∞.

Therefore, we get, by construction and using the minimality of uk,

Er,p(u+ ϕ,Ω′)− Er,p(u,Ω
′) = Er,p(u

∗
k + ϕ,Ω′)− Er,p(u

∗
k,Ω

′)

> Er,p(u
∗
k + ϕ,Ω′)− Er,p(uk,Ω

′)− ωk > −ωk.

As a consequence, sending k → +∞ and recalling (2.3), we obtain (2.1). �

3. Relation with the Minkowski perimeter

In this section we discuss the relation between the p-Dirichlet functional in (1.3) and the
Minkowski perimeter in (1.5). Namely, we have the following generalized coarea formula
which relates the functional Er,1 with the functional Perr (see formulas (4.3) and (5.7) in [9]
for similar formulas in very related contexts).

Lemma 3.1. It holds that

(3.1)

∫

Ω
osc
Br(x)

u dx = 2r

∫ +∞

−∞
Perr({u > s},Ω) ds.

The coarea formula and the previous Proposition 1.2 provide a link between local minimizers
of Er,1(·,Ω) and the local minimization of Perr in Ω of the level sets, according to Theorem 1.3
that we now prove.

Proof of Theorem 1.3. In all the proof, we will take v to be equal to u outside Ω⊖Br, i.e. v =
u+ φ, with φ vanishing outside Ω⊖Br.

First, we assume that for a.e. s ∈ R the level set {u > s} is a minimizer for Perr in Ω.
Then Perr

(

{u > s},Ω) 6 Perr
(

{v > s},Ω) for a.e. s ∈ R, which combined with the coarea
formula in (3.1) gives that

∫

Ω
osc
Br(x)

u dx 6

∫

Ω
osc
Br(x)

v dx.

This shows that u is a local minimizer of Er,1(·,Ω), as desired.
Viceversa, assume now that u is a local minimizer of Er,1(·,Ω). Given t ∈ R and λ > 0, we

define

(3.2) uλ,s(x) :=
1

2
+ max

{

min

{

λ
(

u(x)− s
)

,
1

2

}

, −
1

2

}

.

We claim that

(3.3) uλ,s is a minimizer of Er,1(·,Ω).

To prove this, we need to combine different ideas appearing in the literature in different
contexts. On the one hand, arguing as in Proposition 3.2 of [6], one sees that the procedure of
taking min and max (as in (3.2)) makes the energy decrease. On the other hand, this procedure
in general changes the boundary data hence the minimization in the appropriate class may get
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lost (to picture this phenomenon, one can think at the one dimensional case in which u1(x) = x

and u2(x) = −x may have minimal properties, but the energy of max{u1(x), u2(x)} = |x| may
be lowered by horizontal cuts).

Hence, to overcome this difficulty, we will adopt a strategy developed in Lemma 3.5 of [12] to
consider specifically the horizontal cuts. To this end, we first notice that, for any constant c ∈
R,

(3.4) osc
Br(x)

u = osc
Br(x)

min{u, c} + osc
Br(x)

max{u, c}.

This fact is a direct consequence of the definition.
Now, for any φ supported in Ω⊖Br, using (3.4) and the minimality of u, we find that

∫

Ω
osc
Br(x)

min{u, c} dx +

∫

Ω
osc
Br(x)

max{u, c} dx

=

∫

Ω
osc
Br(x)

u dx 6

∫

Ω
osc
Br(x)

(u+ φ) dx

=

∫

Ω
osc
Br(x)

(u+ c+ φ) dx =

∫

Ω
osc
Br(x)

(

min{u, c} +max{u, c} + φ
)

dx.

(3.5)

We also observe that by the triangular inequality

(3.6) osc
Br(x)

(

min{u, c} +max{u, c} + φ
)

6 osc
Br(x)

min{u, c} + osc
Br(x)

(

max{u, c} + φ
)

.

In a similar way, we see that

(3.7) osc
Br(x)

(

min{u, c} +max{u, c} + φ
)

6 osc
Br(x)

max{u, c} + osc
Br(x)

(

min{u, c} + φ
)

.

Inserting (3.6) into (3.5) and simplifying one term, we obtain that

(3.8)

∫

Ω
osc
Br(x)

max{u, c} dx 6

∫

Ω
osc
Br(x)

(

max{u, c} + φ
)

.

Similarly, plugging (3.7) into (3.5) and simplifying one term, we see that

(3.9)

∫

Ω
osc
Br(x)

min{u, c} dx 6

∫

Ω
osc
Br(x)

(

min{u, c} + φ
)

.

From (3.8), we find that max{u, c} is a minimizer with respect to the perturbation φ, while
from (3.9) it follows that min{u, c} is also a minimizer with this perturbation. These consid-
erations and (3.2) imply (3.3), as desired.

Now we observe that, for a.e. s ∈ R, we have that

(3.10) {u = s} has zero Lebesgue measure,

otherwise the disjoint union of these sets would have locally infinite Lebesgue measure, and
therefore

(3.11) uλ,s converges to χ{u>s} in L1
loc(R

n), as λ→ +∞.

So, thanks to Proposition 1.2, we conclude from (3.3) that χ{u>s} is a local minimizer in Ω⊖
Br. �

As a consequence of Theorem 1.3, we obtain the next proposition, which explains why in
the definition of minimizer in Definition 1.1 we allow competitors in a neighborhood of width r
of the boundary.
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Proposition 3.2. Let u ∈ L1
loc(R

n) such that for every ball B

Er,1(u,B) 6 Er,1(u+ ϕ,B)

for any ϕ ∈ L1(Rn) with ϕ = 0 in R
n \B.

Then u is necessarily constant.

Proof. By Theorem 1.3 it holds that, for a.e. s ∈ R, Es = {u > s} satisfies the property that
for any measurable set F ⊆ R

n with F \B = Es \B it holds that

Perr(Es, B) 6 Perr(F,B).

So, by [4, Proposition 1.3], either Es = ∅ or Es = R
n. As a consequence u is constant, as

desired. �

4. Existence for the Dirichlet problem

We provide here the proof of Theorem 1.4 about Dirichlet problem for the functional Er,p

and the one-dimensional monotonicity property.

Proof of Theorem 1.4. The existence result is a straightforward application of the direct method,
recalling that the functional is weak lower semicontinuous. Also, since cutting a function at
the level ±L decreases its oscillation, we can reduce our competitors to bounded functions
with L∞ norm bounded by ‖uo‖L∞(Ω⊕Br).

Suppose now that n = 1 and uo is nondecreasing, and let Ω = (a, b), for some b > a ∈ R.
First of all, we show that a minimizer would not overcome the value of uo(b) inside (a, b).
Namely, given any u : (a− r, b+ r) → R, with u = uo for x ∈ (a− r, a) ∪ (b, b+ r), we set

(4.1) ϑu(x) :=

{

min{uo(b), u(x)} if x ∈ (a, b)
u(x)(= uo(x)) if x ∈ (a− r, a] ∪ [b, b+ r).

By construction u(x) > ϑu(x) for all x ∈ (a − r, b + r). We claim that, for any interval I ⊆
(a− r, b+ r),

(4.2) osc
I
ϑu 6 osc

I
u.

It is easy to check using definitions that if x, y ∈ (a, b), then there holds

(4.3) |ϑu(x)− ϑu(y)| 6 |u(x)− u(y)|.

Indeed if either both u(x), u(y) > uo(b), or u(x), u(y) 6 uo(b) there is nothing to prove. If
u(x) > uo(b) > u(y), then ϑu(x) = uo(b) and ϑu(y) = u(y), so

|ϑu(x)− ϑu(y)| = uo(b)− u(y) 6 u(x)− u(y) = |u(x) − u(y)|.

Therefore we get that for all I ⊆ (a, b), then (4.2) holds.
Assume now that for some ε > 0 small, either (a− ε, a+ ε) ⊆ I or (b− ε, b+ ε) ⊆ I. Then

we observe that infI u = infI ϑu, so recalling that u > ϑu, we conclude again that (4.2) holds.
Notice that, as a consequence of (4.2),

(4.4) if u is a minimizer, then so is ϑu.

Let u : (a − r, b + r) → R be a minimizer. So, u = uo in (a − r, a] ∪ [b, b + r). Moreover,
eventually replacing u with ϑu, we can assume that u 6 uo(b) in (a, b).

We denote by ηu the nondecreasing envelope of u, defined as

(4.5) ηu(x) := sup
τ∈(a−r,x]

u(τ).
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By definition ηu > u, therefore infI ηu > infI u, for all I ⊆ (a − r, b + r). Moreover, by
monotonicity of uo and since u 6 uo(b) in (a, b), we get that ηu = uo in (a− r, a] ∪ [b, b+ r).

So ηu is a competitor for the minimizer u. We claim that ηu is also a minimizer, namely

(4.6) Er,p(u, (a, b)) > Er,p(ηu, (a, b)).

To this end, we show that, for any x ∈ (a, b),

(4.7) osc
(x−r,x+r)

ηu 6 osc
(x−r,x+r)

u.

First of all we observe that for almost every x, there holds osc(x−r,x+r) ηu = ηu(x+r)−ηu(x−r).
We may suppose that ηu(x−r) < ηu(x+r), otherwise we would have that osc(x−r,x+r) ηu =

0 6 osc(x−r,x+r) u, as desired.
We observe that

(4.8) for any y ∈ (a− r, x− r], ηu(x+ r) > ηu(x− r) > ηu(y) > u(y).

We claim that

(4.9) sup
(x−r,x+r)

ηu = sup
(x−r,x+r)

u.

To check this, let us assume, for a contradiction, that

sup
(x−r,x+r)

ηu > sup
(x−r,x+r)

u.

Then, for any y ∈ (x− r, x + r), we have that u(y) 6 ηu(x + r) − α, for some α > 0. Up to
changing α > 0, this holds true also for any y ∈ (a− r, x+ r), thanks to (4.8). Consequently,
by (4.5),

ηu(x+ r) = sup
y∈(a−r,x+r]

u(y) 6 ηu(x+ r)− α,

which is of course a contradiction, which establishes (4.9). This gives also (4.7), recalling that
ηu > u.

Then, from (4.7) we deduce (4.6). Hence, ηu is a minimizer, and it is monotone, as desired.
�

Remark 4.1. We stress that the minimizer given by Theorem 1.4 is not necessarily unique
(not even when p > 1). Also, when n = 1, it is not necessarily monotone (not even when uo
is monotone). Finally, it is not necessarily continuous (not even when uo is analytic).

We consider for example, Ω := (−1, 1) ⊂ R, r := 3 and uo(x) := x. Notice that, for
any x ∈ (−1, 1), it holds that x − 3 < −1 and x+ 3 > 1. Accordingly, if v coincides with uo
outside (−1, 1), then

sup
(x−3,x+3)

v > uo(x+ 3) = x+ 3 inf
(x−3,x+3)

v 6 uo(x− 3) = x− 3,

which implies that osc(x−3,x+3) v > (x + 3) − (x − 3) = 6, and thus E3,p(v, (−1, 1)) > 2 · 6p.
This says that any function u that coincides with uo outside (−1, 1) and satisfies

sup
(−1,1)

u 6 1 and inf
(−1,1)

u > −1

is a minimizer in the sense of Theorem 1.4.
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Remark 4.2. It is interesting to point out that the “inverse problem” in Theorem 1.4 is not
well posed, in the sense that a minimizer u does not determine uniquely the datum uo. For
instance, while the null functions is obviously a minimizer for null data, it may also be a
minimizer for nontrivial data.

Assume e.g. that n = 1 and Ω = (a, b) for some b > a, and

uo(x) :=

{

1 if x ∈
(

a− r, a− r
2

]

,

0 if x ∈
(

a− r
2 , a
]

∪ [b, b+ r).

In this case the null function u in (a, b), extended to uo in (a−r, a]∪ [b, b+r) is a minimizer
according to Theorem 1.4. For this, we observe that if v = uo in (a − r, a] ∪ [b, b + r)
and x ∈

(

a, a+ r
2

)

, it holds that
{

a− r
2

}

∈ (x− r, x+ r), and therefore “v sees the jump of uo
in such interval”, that is, for any x ∈

(

a, a+ r
2

)

,

osc
(x−r,x+r)

v > 1.

This implies that

(4.10) Er,p(v, (a, b)) >

∫ a+ r

2

a

(

osc
(x−r,x+r)

v

)p

dx >
r

2
.

Now, the null function u extended to uo in (a− r, a]∪ [b, b+ r) satisfies, for any x ∈
(

a, a+ r
2

)

,

osc(x−r,x+r) u = 1 and, for any x ∈
(

a+ r
2 , b
)

, osc(x−r,x+r) u = 0. Consequently, we have that

Er,p(u, (a, b)) =

∫ a+ r

2

a

(

osc
(x−r,x+r)

v

)p

dx =
r

2
.

By comparing this with (4.10), we conclude that u is a minimizer, as desired.

5. Rigidity properties of minimizers in dimension 1

In this section, we provide some rigidity results about Class A minimizers in dimension 1
for the functional Er,p, both in the cases p = 1 and p > 1.

We start with the following result:

Proposition 5.1. Let u ∈ L1
loc(R) be a Class A minimizer for the functional Er,p, for some p >

1. Then u is monotone.

Proof. We suppose by contradiction that u is not monotone. First of all, we observe that u
has to be locally bounded.

For any x ∈ R, we denote by

u(x) := sup
ε>0

inf
(x−ε,x+ε)

u 6 u(x) := inf
ε>0

sup
(x−ε,x+ε)

u.

Note that, for any Lebesgue point x, we get that u(x) 6 u(x) 6 u(x).
Moreover, for any Lebesgue point x of u, it holds that

(5.1) inf
(x−ε,x+ε)

u 6 u(x) 6 sup
(x−ε,x+ε)

u.

To check (5.1), we argue by contradiction and we suppose, for instance, that there exists δ > 0
such that

sup
(x−ε,x+ε)

u− u(x) = −δ < 0.
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Thus, for every ε̃ ∈ (0, ε),
sup

(x−ε̃,x+ε̃)
u 6 u(x)− δ.

From this we deduce that

lim
ε̃→0

1

ε̃

∫ x+ε̃

x−ε̃

|u(y)− u(x)| dy > δ > 0,

which is in contradiction with the fact that x is a Lebesgue point for u. This proves (5.1).
Now, since u is not monotone, we can suppose that there exist a < b such that

(5.2) [u(a), u(a)] ∩ [u(b), u(b)] 6= ∅ and osc
(a,b)

u > 0.

In virtue of (5.2), we let
c ∈ [u(a), u(a)] ∩ [u(b), u(b)]

and define the function

(5.3) ũ(x) :=

{

u(x) if x < a and x > b,

c if x ∈ [a, b].

Then, we get that
osc
Br(x)

ũ 6 osc
Br(x)

u for any x ∈ R
n.

Now, we observe that, if a, b are given by (5.2), then necessarily

(5.4) b− a 6 2r.

Indeed, if on the contrary b−a > 2r, for all x ∈ (a+r, b−r), we have that oscBr(x) ũ = 0, thanks
to (5.3). On the other hand, since osc(a,b) u > 0 (recall (5.2)), there exists a set E ⊆ (a+r, b−r)
of positive measure such that oscBr(x) u > 0 for all x ∈ E. Hence, we would get that

Er,p(ũ, (a+ r, b− r)) < Er,p(u, (a+ r, b− r)),

which contradicts the minimality of u. This proves (5.4).
Now, we fix a and b to be the maximal ones for which (5.2) holds true (namely, we suppose

that it is not possible to find another couple a′ and b′ such that a′ < a, b′ > b and (5.2) is
satisfied). In this case, we can show that

(5.5) either u(x) > c for any x < a and u(x) < c for any x > b,

(5.6) or u(x) < c for any x < a and u(x) > c for any x > b.

Indeed if we were not in this situation, then the maximality of the couple a, b would be
contradicted.

From now on, we suppose that (5.5) is satisfied (being the case (5.6) completely analogous).
Since osc(a,b) u > 0 (in virtue of (5.2)), we get that there exists an interval (α, β) ⊂⊂ (a, b)
such that either sup(α,β) u > c or inf(α,β) u < c.

Assume for instance that sup(α,β) u > c and fix any x ∈ (a + r, α + r). Then, we have

that a < x− r < α, and so necessarily x+ r > b > β, due to (5.4). In this way, we have that

osc
Br(x)

u = sup
(x−r,x+r)

u− inf
(x−r,x+r)

u > sup
(α,β)

u− inf
(x−r,x+r)

u > c− inf
(b,x+r)

u = osc
Br(x)

ũ.

This implies that
Er,p(ũ, (a+ r, α+ r)) < Er,p(u, (a+ r, α + r)),
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which is in contradiction with the fact that u is a Class A minimizer. This completes the
proof of Proposition 5.1. �

In particular, in the case p = 1 we have the following characterization of Class A minimizers:

Theorem 5.2. A function u ∈ L1
loc(R) is a Class A minimizer for Er,1 if and only if it is

monotone.

Proof. Assume first that u ∈ L1
loc(R) is a Class A minimizer. Then, by Proposition 5.1, we

conclude that u is monotone.
Let now assume that u is a monotone function and we prove that u is a Class A minimizer.

First of all, we observe that if v ∈ L1
loc(R), then, for almost every x ∈ R, there holds

(5.7) osc
(x−r,x+r)

v > |v(x+ r)− v(x− r)|,

with equality if v is monotone. Indeed, arguing as in (5.1), we get that at all the Lebesgue
points x of v, it holds that

inf
(x,x+r)

v 6 v(x) 6 sup
(x,x+r)

v,

and similarly

inf
(x−r,x)

v 6 v(x) 6 sup
(x−r,x)

v,

which imply (5.7).
Now, we fix an interval (a, b) ⊆ R with b−a > 2r and we take a function v ∈ L1

loc(R) which
coincides with u outside (a+ r, b− r). Using (5.7) and making suitable changes of variables,
we obtain that

∫ b

a

osc
(x−r,x+r)

v dx >

∫ b

a

∣

∣v(x+ r)− v(x− r)
∣

∣ dx

>

∣

∣

∣

∣

∫ b

a

(

v(x+ r)− v(x− r)
)

dx

∣

∣

∣

∣

=

∣

∣

∣

∣

∫ b+r

b−r

v(y) dy −

∫ a+r

a−r

v(y) dy

∣

∣

∣

∣

=

∣

∣

∣

∣

∫ b+r

b−r

u(y) dy −

∫ a+r

a−r

u(y) dy

∣

∣

∣

∣

=

∣

∣

∣

∣

∫ b

a

(

u(x+ r)− u(x− r)
)

dx

∣

∣

∣

∣

=

∫ b

a

∣

∣u(x+ r)− u(x− r)
∣

∣ dx

=

∫ b

a

osc
(x−r,x+r)

u dx

where the last two equalities come from the fact that u is monotone, and (5.7) has been
used once again in this case. This shows that u is a Class A minimizer, and so the proof of
Theorem 5.2 is completed. �

In the case p > 1 we do not have a complete description of Class A minimizers, but we can
state the following two results:



12 A. CESARONI, S. DIPIERRO, M. NOVAGA, AND E. VALDINOCI

Proposition 5.3. Let p > 1. Let u ∈ L1
loc(R) be a monotone function such that u(x) =

Cx + φ(x), for some C ∈ R and φ ∈ L1
loc(R) which is 2r-periodic. Then u is a Class A

minimizer for Er,p.

Proof. We observe that, by the definition of u, for a.e. x ∈ R,

(5.8) osc
(x−r,x+r)

u = |C(x+ r) + φ(x+ r)− C(x− r)− φ(x− r)| = 2|C|r.

Now, we fix an interval (a, b) ⊆ R and a function v ∈ L1
loc(R) which coincides with u out-

side (a + r, b − r). Reasoning as in the proof of Theorem 5.2, since u is monotone, one can
prove that

∫ b

a

osc
(x−r,x+r)

v dx >

∫ b

a

osc
(x−r,x+r)

u dx.

Using this and the Jensen inequality, we get that

1

b− a

∫ b

a

(

osc
(x−r,x+r)

v

)p

dx >

(

1

b− a

∫ b

a

osc
(x−r,x+r)

v dx

)p

>

(

1

b− a

∫ b

a

osc
(x−r,x+r)

u dx

)p

= (2|C|r)p,

where in the last equality we used (5.8). This permits to conclude that
∫ b

a

(

osc
(x−r,x+r)

v

)p

dx > (b− a)(2|C|r)p =

∫ b

a

(

osc
(x−r,x+r)

u

)p

dx,

and so u is a Class A minimizer for Er,p, as desired. �

Proposition 5.4. Let p > 1. Let u ∈ L1
loc(R) be a Class A minimizer for Er,p. Suppose that u

is strictly monotone. Then, there exist C 6= 0 and φ ∈ L1
loc(R) which is 2r-periodic, such that

u(x) = Cx+ φ(x).

Proof. We suppose that u is strictly increasing (being the other case similar). We fix a < b such
that b−a > 2r, and we take a function ψ ∈ C∞(R) such that ψ = 0 in (−∞, a+r]∪[b−r,+∞).
Then, for every δ ∈ R such that u+ δψ is still nondecreasing in (a, b), we get that

∫ b

a

(

osc
(x−r,x+r)

(u+ δψ)

)p

dx >

∫ b

a

(

osc
(x−r,x+r)

u

)p

dx,

since u is a Class A minimizer. Namely, we see that
∫ b

a

(

u(x+ r)− u(x− r) + δ(ψ(x + r)− ψ(x− r))
)p

dx >

∫ b

a

(

u(x+ r)− u(x− r)
)p
dx.

This implies that

p

∫ b

a

(

u(x+ r)− u(x− r)
)p−1

(

ψ(x+ r)− ψ(x− r)
)

dx = 0.

Hence, recalling that ψ = 0 in (−∞, a+ r] ∪ [b− r,+∞), this gives that
∫ b−r

a+r

(u(x)− u(x− 2r))p−1 ψ(x) dx −

∫ b−r

a+r

(u(x+ 2r)− u(x))p−1 ψ(x) dx = 0.
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As a consequence, using the fact that u is strictly monotone, we get the following condition
on u:

(5.9) u(x+ 2r)− u(x) = u(x)− u(x− 2r) for a.e. x ∈ R.

Let now C(x) := u(x)− u(x− 2r). Then, we have that C(x) > 0 for all x, and C(x+ 2kr) =
C(x) for all k ∈ Z. Also, from (5.9) we get that, for every k ∈ Z,

(5.10) u(x+ 2kr) = u(x) + k[u(x)− u(x− 2r)] = u(x) + kC(x).

We claim now that

(5.11) C(x) ≡ C, for some C > 0.

To prove (5.11), we assume on the contrary that there exist x1, x2 such that |x1 − x2| < 2r
and C(x1) > C(x2). We fix k0 ∈ N sufficiently large such that C(x1) >

k+1
k
C(x2) for all k ∈ N

such that k > k0. Then, for all k > k0, using (5.10), and recalling that u is strictly monotone
and that x2 + 2(k + 1)r > x1 + 2kr, we get

u(x1) + kC(x1) = u(x1 +2kr) < u(x2 +2(k+1)r) = u(x2) + (k+1)C(x2) < u(x2) + kC(x1).

This implies that u(x1) < u(x2), and therefore x1 < x2, which gives that C is monotone. But
this is in contradiction with the fact that C is 2r-periodic, and so (5.11) is proved.

Now we define the function φ(x) := u(x)− C
2rx. We have that φ ∈ L1

loc(R). Moreover, using
(5.10), we check that φ is a 2r-periodic function:

φ(x+ 2kr) = u(x+ 2kr)−
C

2r
x−

C

2r
2kr = u(x) + kC −

C

2r
x− Ck = φ(x).

Hence, the proof of Proposition 5.4 is complete. �

With this, we can now summarize the previous results, thus completing the proof of Theo-
rem 1.5.

Proof of Theorem 1.5. The claim in (1) follows from Proposition 5.1 whereas the claim in (2)
is a consequence of Theorem 5.2. Furthermore, the claim in (3) is warranted by Proposition 5.3
and the one in (4) follows from Proposition 5.4. �

References

[1] Luigi Ambrosio, Nicola Fusco, and Diego Pallara, Functions of bounded variation and free

discontinuity problems, Oxford Mathematical Monographs, The Clarendon Press, Oxford
University Press, New York, 2000.

[2] M. Barchiesi, S. H. Kang, T. M. Le, M. Morini, and M. Ponsiglione, A variational model

for infinite perimeter segmentations based on Lipschitz level set functions: denoising while

keeping finely oscillatory boundaries, Multiscale Model. Simul. 8 (2010), no. 5, 1715–1741,
DOI 10.1137/090773659. MR2728706

[3] H. H. Bauschke and P. L. Combettes, Convex analysis and monotone operator theory

in Hilbert spaces, CMS Books in Mathematics/Ouvrages de Mathématiques de la SMC,
Springer, New York, 2011. With a foreword by Hédy Attouch. MR2798533

[4] A. Cesaroni, S. Dipierro, M. Novaga, and E. Valdinoci, Minimizers for nonlocal perimeters

of Minkowski type, To appear in Calc. Var. Partial Differential Equations, arxiv preprint
2017, https://arxiv.org/abs/1704.03195.

[5] A. Cesaroni and M. Novaga, Isoperimetric problems for a nonlocal perimeter of Minkowski

type, Geom. Flows 2 (2017), 86–93. MR3733869



14 A. CESARONI, S. DIPIERRO, M. NOVAGA, AND E. VALDINOCI

[6] A. Chambolle, A. Giacomini, and L. Lussardi, Continuous limits of discrete

perimeters, M2AN Math. Model. Numer. Anal. 44 (2010), no. 2, 207–230, DOI
10.1051/m2an/2009044. MR2655948

[7] A. Chambolle, S. Lisini, and L. Lussardi, A remark on the anisotropic outer Minkowski

content, Adv. Calc. Var. 7 (2014), no. 2, 241–266, DOI 10.1515/acv-2013-0103.
MR3187918

[8] A. Chambolle, M. Morini, and M. Ponsiglione, A nonlocal mean curvature flow and its

semi-implicit time-discrete approximation, SIAM J. Math. Anal. 44 (2012), no. 6, 4048–
4077, DOI 10.1137/120863587. MR3023439

[9] , Nonlocal curvature flows, Arch. Ration. Mech. Anal. 218 (2015), no. 3, 1263–
1329, DOI 10.1007/s00205-015-0880-z. MR3401008

[10] Richard Courant, Dirichlet’s principle, conformal mapping, and minimal surfaces,
Springer-Verlag, New York-Heidelberg, 1977. With an appendix by M. Schiffer; Reprint
of the 1950 original. MR0454858

[11] S. Dipierro, M. Novaga, and E. Valdinoci, On a Minkowski geometric flow in the plane,
arxiv preprint 2017, https://arxiv.org/abs/1710.05236.

[12] M. Novaga and E. Paolini, Regularity results for some 1-homogeneous functionals, Nonlin-
ear Anal. Real World Appl. 3 (2002), no. 4, 555–566, DOI 10.1016/S1468-1218(01)00048-7.
MR1930621

[13] E. Valdinoci, A fractional framework for perimeters and phase transitions, Milan J. Math.
81 (2013), no. 1, 1–23, DOI 10.1007/s00032-013-0199-x.


	1. Introduction
	2. Compactness of minimizers
	3. Relation with the Minkowski perimeter
	4. Existence for the Dirichlet problem
	5. Rigidity properties of minimizers in dimension 1
	References

