
Optimal shift partitioning of pharmacies

Giovanni Andreattaa, Luigi De Giovannia, Paolo Serafinib

aUniversity of Padova, Department of Mathematics
bUniversity of Udine, Department of Mathematics and Computer Science

Abstract

The pharmacy service requires that some pharmacies are always available and
shifts have to be organized: a shift corresponds to a subset of pharmacies that
must be open 24 hours a day on a particular week. Under the requirement
that each pharmacy belongs to exactly one shift and the assumption that users
minimize the distance to the closest open pharmacy during each shift, we want to
determine a partition of the pharmacies into a given number of shifts, such that
the total distance covered by users is minimized. It may be also required that
shift cardinalities are balanced. We discuss different versions and the related
computational complexity, showing that the problem is NP-Hard in general. A
set packing formulation is presented and solved by branch-and-price, together
with a fast solution technique based on a tabu search. They have been applied
to real and random instances showing that (i) the set packing formulation is
very tight and often exhibits no integrality gap; (ii) the branch-and-price solves
problems of practical relevance to optimality in a reasonable amount of time
(order of minutes); (iii) the tabu search finds optimal or near-optimal solutions
in order of seconds.

Keywords: Shift Partitioning, Computational Complexity, Branch-and-Price
2000 MSC: 90B80, 90C10, 90C90

1. Introduction

Pharmacies in Italy are privately owned and managed. However, due to the
particular service they have to provide, pharmacies are subject to special rules
that usual shops do not have to obey. For instance, opening a new pharmacy can
be allowed only if the ratio pharmacy/population is below a certain threshold
and if a new pharmacy can be opened, municipalities are requested to suggest the
most convenient location for the community. Moreover, people must be granted
that some pharmacies, not too far away, are always available for service, day
and night and also on holidays.

To meet this request, pharmacies on large territorial units mutually agree
to establish shifts of duty on a rotational basis. A shift lasts a week and during
this week the pharmacy must be open 24 hours (although for safety reasons
they are locked at night and let customers in only on motivated request). Once
all pharmacies have carried out their duty the same shift pattern is repeated.

Preprint submitted to Computers and Operations Research September 29, 2014

Essentially the problem is to decide which pharmacies have to carry out their
duty in the same week with the idea that these pharmacies must be sufficiently
spread over the territory. As already remarked, the pharmacy locations are
fixed and cannot be changed. The number of shifts is also usually fixed in
advance, even if in principle it could change. Clearly a higher number of shifts
corresponds to a lighter burden for the pharmacies but to a poorer service to
the community.

In mathematical terms one has to partition the set of pharmacies into a
fixed number of subsets such that a suitable indicator is minimized, taking into
account geographical distances and population sizes. Although facility location
problems have been the subject of a very large literature, this particular problem
in which locations are already fixed but we have to decide which facilities to
open in each shift, seems not yet investigated. In a companion paper [2] a
special version of this mathematical problem restricted to graphs that are trees
has been investigated showing that the problem is polynomial and providing
an algorithm for its solution. We show in this paper that the mathematical
problem is in general NP-hard. For general questions related to computational
complexity the reader is referred for instance to [6].

A problem related to pharmacies is dealt with in [11], where the duty lasts
only one day and there is no partition of the pharmacies since the frequency at
which a pharmacy must be open depends on the local population. Furthermore
they have to take care that, due to the different Turkish rules, pharmacies can
be opened and closed at any time and without any restriction on the sites.

The paper is organized as follows. In Section 2 we provide a mathematical
definition of the problem. Then in Section 3 we investigate the computational
complexity of some versions of the problem. In Section 4 we present a set packing
formulation with exponentially many variables. A branch-and-price approach
for this formulation is presented in Section 5, where the pricing subproblem is
modeled as a p-median problem with side constraints. In Subsection 5.4 we also
present a fast tabu search heuristic to obtain good solutions used as upper bound
in the branch-and-price search. A compact Mixed Integer Linear Programming
(MILP) model is presented in Section 6. In Section 7 we show a comprehensive
set of computational results for real case instances and for random artificial
instances. In these tests we compare the two exact methods and the heuristic.
Finally we provide some remarks in Section 8.

2. Problem statement

Let F be the set of facilities, i.e., pharmacies and let n = |F |. Let C be the
set of locations of customers. In each location i ∈ C there is a population of pi
customers. For each pair i ∈ C, j ∈ F , let dij be the distance between i and j.
For every subset J ⊂ F , let

di(J) := min
j∈J

dij

be the distance of customers in i from the set J .

2

During a shift some pharmacies must be open. Each pharmacy is open
in exactly one shift. Once all pharmacies have completed their duties, the
same set of shifts is repeated cyclically. Note that this set of shifts must be
a partition of the n pharmacies. Let us call any set of shifts satisfying this
partition requirement a shift partition. The number of shifts is a fixed numberH
which is agreed beforehand by all pharmacies. Although not strictly necessary,
it is usually required that the shifts are balanced. In this case the number of
pharmacies in each shift is either ⌊n/H⌋ or ⌈n/H⌉.

We use as an indicator of the quality of a shift partition J1, J2, . . . , JH the
total distance traveled by the customers, assuming that, (i) each customer goes
to the closest pharmacy, and (ii) on the average every customer goes to a phar-
macy the same number of times in each shift. Assumption (i) is typical in
location analysis. Furthermore, due to the type of service pharmacies provide,
and taking into account that we are specially interested in the night and holiday
service, assumption (i) is typically met in practice. In any case, if a customer
prefers going to a distant pharmacy, this extra distance is the choice of the
customer and should not be ‘charged’ to the shift quality. Hence it is natural
that an indicator takes into account the distance di(J) as defined above. As
for assumption (ii), it may be difficult (and beyond the scope of this paper) to
know in advance when and if customers will go to pharmacies. Hence we assume
that all population behaves in the same way and we consider the simple and
equivalent case such that a single customer goes exactly once to a pharmacy in
each shift. Observe that, if more specific information on customer behavior is
available, it can be used to properly weight the population size pi. Under these
assumptions, the distance associated to a shift J is

d(J) =
∑

i∈C

pi di(J)

and the total distance traveled by customers, i.e., the cost of the shift partition,
may be expressed as

∑

h∈[H]

d(Jh) (1)

(where [H] := {1, . . . , H}). Clearly we want to minimize (1) for all feasible
shift partitions. From now on we use the more general term facility instead of
pharmacy.

We observe that every customer has to travel at least the sum of the distances
to the H closest facilities, no matter what the shift partition is. Let ∆i be the
sum of the distances from location i to its H closest facilities. We call utopian
optimum the quantity

∑

i∈C pi∆i. Every shift partition cost is lower bounded
by the utopian optimum.

There are instances for which the optimal solution is the utopian optimum.
It has been proved in [2] that if all customer locations and all facilities are the
vertices of a tree (or equivalently of a graph with tree metrics) then there exists
a partition meeting the utopian optimum and therefore it must be optimal. The
tree structure is fundamental for this result. A simple example showing that

3

the utopian optimum and the optimum cost can be different is a circuit with
four vertices, three shifts, unit edge lengths and unit populations. Its utopian
optimum is equal to 8 (each vertex-customer has as closest vertices-facilities
itself, the vertex at right and the vertex at left, for a total distance of 2, which
multiplied by four vertices-customers gives 8). However, it is easy to see that
in each shift partition two customers have distance 2 but the other two have
distance 3 for a total of 10.

We observe also that minimizing an indicator like (1) does not prevent some
di(Jh) to be too large in the optimal shift partition with respect to some accep-
tance threshold. Note that, in at least one shift, each customer has to travel
to the H-th closest facility whose distance to location i we denote by Di, i.e.,
maxh∈[H] di(Jh) ≥ Di always hold. Hence by ‘too large’ we mean a value di(Jh)
much higher than Di. In this case we may want to bound di(Jh): we will come
back to this point later.

3. Computational complexity results

In presenting the computational complexity results we consider the case of
unit populations for the sake of simplicity. All results but one will show NP-
hardness for the problems, and this clearly implies NP-hardness also for the
problems with generic populations. The only polinomiality result remains valid
also by extending the problem to generic populations. Let us formally define
the problems.

LOCATION PARTITIONING: Given a set F of facilities and a set C of cus-
tomers, distances dij ≥ 0, i ∈ C, j ∈ F , an integerH ≤ n, a numberK, is there a
partition of F into subsets J1, J2, . . . , JH , such that

∑

h∈[H]

∑

i∈C minj∈Jh
dij ≤

K?

BALANCED LOCATION PARTITIONING: Given a set F of facilities and a
set C of customers, distances dij ≥ 0, i ∈ C, j ∈ F , an integer H ≤ n,
a number K, is there a partition of F into subsets J1, J2, . . . , JH , such that
|Jh| ∈ {⌊n/H⌋ , ⌈n/H⌉} for any h, and

∑

h∈[H]

∑

i∈C minj∈Jh
dij ≤ K?

Both problems can be further specialized according to the assumptions we
make on distances dij and on customer and facility sets. We consider the fol-
lowing three versions of the problems in order of decreasing generality:

(a) distances dij are nonnegative;

(b) customer locations and facilities are two subsets (not necessarily disjoint)
of the vertices of a given graph and the dij are the shortest distances with
respect to nonnegative edge lengths of the graph;

(c) as in (b) but the two subsets coincide and include all the vertices of the
graph.

Theorem 1. LOCATION PARTITIONING is NP-complete for H ≥ 3 and for
all three versions.

4

Figure 1: Domatic number equal to 3

Proof: First note that for version (a) the instance size is Ω(n |C|) due to the list
of distances dij and for versions (b) and (c) is Ω(n) due to the list of edge lengths.
Since the solution size is O(n logn) and computing

∑

h∈[H]

∑

i∈C minj∈Jh
dij

takes time O(n |C|), checking a yes-instance is polynomial with respect to the
input length. Hence the problem is in NP.

We prove the NP-completeness via a transformation from DOMATIC NUM-
BER [4, 6, p. 190]. We recall that, given a graph G = (V,E), DOMATIC NUM-
BER asks whether there exists a partition of V into at least H dominating
subsets. We also recall that a subset of vertices is dominating if each vertex of
G is either in the subset or is adjacent to some vertex in the subset. DOMATIC
NUMBER is NP-complete for H ≥ 3.

Given an instance of DOMATIC NUMBER we build an instance of LO-
CATION PARTITIONING, version (c), as follows (refer to Figure 1): each
graph vertex becomes both a customer and a facility and each edge has unit
length. The cardinality of the partition is H and the threshold K is set to
K = (H − 1) |V |.

Given a feasible instance of DOMATIC NUMBER, we partition the facilities
accordingly. For each customer the cost of this partition is H − 1 and so this is
a feasible solution for LOCATION PARTITIONING.

Given a feasible solution for LOCATION PARTITIONING, we note that for
each customer the distance is zero for exactly one subset of the partition, whereas
for all other subsets the distance is at least one. Hence the cost for each customer
is at least H − 1 and the total cost is at least (H − 1) |C| = (H − 1) |V |. On
the other hand, by assumption, the total cost is at most (H − 1) |V |. Therefore
it is exactly equal to (H − 1) |V |. All customers must have the same cost
H − 1, otherwise some customer would have a cost less than H − 1 and this is
impossible. The cost H−1 for each customer implies that each partition subset
is a dominating set.

Since LOCATION PARTITIONING version (c) is a particular case of the
other versions, all three versions are NP-complete. �

The case H = 2 presents different complexity results according to the ver-
sion. As we are going to prove, version (c) is polynomial, whereas the other
versions are NP-complete.

Theorem 2. Versions (a) and (b) of LOCATION PARTITIONING are NP-

5

(a) (b)

Figure 2: Transformation from MAXCUT to LOCATION PARTITIONING, H = 2

complete for H = 2.

Proof: We prove the NP-completeness via a transformation from MAX CUT
[6, p. 210]. Given a graph G = (V,E) on which we want to solve MAX CUT
we build an instance of LOCATION PARTITIONING version (b) on a graph
G′ obtained from G as follows (refer to Figure 2): each edge e = (i, j) ∈ E is
replaced in G′ by the pair of edges (i, k), (k, j) where k is a new vertex for each
edge. The set of vertices in G′ is the union of the two sets, V ′ coincident with V
and V ′′ whose elements correspond to the edges in E. Then set F = V ′, C = V ′′

and assign unit length to each edge in G′. This is version (b) of LOCATION
PARTITIONING.

Any bipartition of V corresponds to a bipartition of facilities in G′. If an
edge e ∈ E is in the induced cut in G the corresponding customer in G′ has
cost 2. If it is not, the cost is at least 4. However, we may freely assume that
we are dealing with maximal cuts, i.e., no vertex is in the same partition set
together with all its neighbors (in this case it could be moved to the other set
thereby increasing the cut). This means that the cost of a customer whose
corresponding edge is not in the cut is exactly 4.

Hence if there are r edges in the maximal cut the total cost of the corre-
sponding shift partition is 2 r+4 (|E| − r) = 4 |E| − 2 r and finding a maximum
cut is the same as finding a bipartition of minimum cost.

Since LOCATION PARTITIONING version (b) is a particular case of version
(a), also version (a) is NP-complete. �

Theorem 3. LOCATION PARTITIONING, version (c), is polynomial for H =
2.

Proof: For each vertex select the shortest edge incident to that vertex. Break
ties according to a fixed arbitrary total order on the edges. Some edges can be
selected twice. The selected edges do not form cycles and therefore the vertices
can be bicolored with respect to the selected edges, i.e., they can be partitioned
into two shifts. Hence a customer has zero length to travel in one shift and
the shortest possible distance in the other shift, meeting the utopian optimum.
Hence in time O(|E|) we have found the optimum. �

6

Figure 3: Transformation from LOCATION PARTITIONING to BALANCED LOCATION

PARTITIONING

We note that the utopian optimum is reached also if we consider generic
population values. Therefore the problem remains polynomial also with generic
populations. As far as the balanced case is concerned we have the following
result.

Theorem 4. BALANCED LOCATION PARTITIONING is NP-complete for
all three versions if H ≥ 3, and for versions (a) and (b) if H = 2.

Proof: The problem is in NP by the same arguments as in Theorem 1. We prove
the NP-completeness via a transformation from LOCATION PARTITIONING.
Given an instance of this problem we build an instance of BALANCED LOCA-
TION PARTITIONING as follows: we create H copies of LOCATION PAR-
TITIONING. Let us denote as F ℓ and Cℓ, ℓ = 0, 1, . . . , H − 1, the copies of
facilities and customers respectively, so that in BALANCED LOCATION PAR-
TITIONING the facility set is ∪ℓF

ℓ and the customer set is ∪ℓC
ℓ. The distances

between customers and facilities within each copy are the given distances dij of
LOCATION PARTITIONING. The distances between customers and facilities
of different copies are a large number D > H |C| maxij dij . The required num-
ber of subsets in the partition is still H and the threshold is HK. Note that
we may assume that for the case H ≥ 3 we are dealing with version (c) and for
the case H = 2 we are dealing with version (b). Refer to Figure 3 where version
(c) is depicted with H = 3.

We now show how, given a feasible instance of LOCATION PARTITION-
ING, we build a feasible instance of BALANCED LOCATION PARTITION-
ING. Let us denote the subsets of the partition for LOCATION PARTITION-
ING as J0, J1, . . . , JH−1. Let us denote as Jℓ

h ⊂ F ℓ the respective copies in
BALANCED LOCATION PARTITIONING. Then we partition the subsets in

7

BALANCED LOCATION PARTITIONING as

H−1
⋃

ℓ=0

Jℓ
(ℓ+h) mod H h = 0, 1, . . . , H − 1 .

In other words we pick up a different subset of the partition from each copy in
order to build a partition subset in the larger problem. Hence the cardinality
of each partition subset is

H−1
∑

ℓ=0

|Jℓ
(ℓ+h) mod H | =

H−1
∑

ℓ=0

|J(ℓ+h) mod H | = |F | ,

so that the partition is balanced. The cost of the instance within each copy is
at most K. Hence the cost of the instance is at most H K.

We now show that given a feasible instance of BALANCED LOCATION
PARTITIONING we build a feasible instance of LOCATION PARTITIONING.
In any feasible partition of the BALANCED LOCATION PARTITIONING each
partition subset must hit a facility in each copy, otherwise the cost of the parti-
tion would exceed the threshold H K because some customer should go to some
facility at distance D. Hence each copy is partitioned in H subsets. Note that
each copy can be partitioned in a different way. Let Dℓ, ℓ = 0, . . . , H − 1, the
cost of each copy given by the induced partitions. The cost of BALANCED
LOCATION PARTITIONING is by assumption

∑

ℓ D
ℓ ≤ H K. Hence in at

least one copy ℓ we have a partition with cost Dℓ at most K. �

We conclude this section by pointing out that LOCATION PARTITION-
ING, version (c), is polynomial for any H if the underlying graph is a tree as
shown in [2] and also if it is a graph with a tree metric.

4. A set packing formulation

Let us denote by J be the set of all possible shifts, defined either as J := 2F

if all the facility subsets can be considered (LOCATION PARTITIONING), or
as J := J0, where J0 =

{

J ∈ 2F : |J | ∈
{⌊

n
H

⌋

,
⌈

n
H

⌉}}

, in the balanced case.
For any facility subset J ∈ J , let us define the variable

x(J) =

{

1 if J is chosen for a shift in a shift partition ,
0 otherwise ,

and let a(J) be the incidence vector of J , i.e.,

aj(J) =
{

1 if j ∈ J ,
0 otherwise .

Hence the (BALANCED) LOCATION PARTITIONING problem can be mod-

8

eled as
min

∑

J∈J

d(J)x(J) ,

∑

J∈J

aj(J)x(J) ≤ 1 , j ∈ F ,

∑

J∈J

x(J) ≥ H ,

x(J) ∈ {0, 1} , J ∈ J .

(2)

Note that, instead of considering the ‘natural’ set partitioning formulation
with constraints

∑

J∈J
aj(J)x(J) = 1 and

∑

J∈J
x(J) = H , we have chosen a

set packing formulation with inequalities. In fact, as we will discuss later, the
proposed model has exponentially many variables and can be solved by column
generation approaches, and set packing formulations are generally preferred to
set partitioning ones [e.g., 3].

The set packing formulation (2) is valid thanks to the following

Theorem 5. Given an optimal solution of (2), it is possible to derive an equiv-
alent solution with all inequalities active.

Proof: Let us first consider the non-balanced case J = 2F . Adding facilities to
a set J does not increase its cost d(J) (and very likely the cost is decreased).
Hence, for any solution which does not cover all facilities, we may build another
solution covering all facilities with cost not worse than the previous one. If
the number of shifts is higher than H , we can iteratively merge two subsets to
build a new solution not worse than the original one and with exactly H shifts.
Indeed for any two disjoint subsets J ′ and J ′′ we have

d(J ′ ∪ J ′′) ≤ d(J ′) ∧ d(J ′ ∪ J ′′) ≤ d(J ′′) =⇒

d(J ′ ∪ J ′′) ≤ 2 d(J ′ ∪ J ′′) ≤ d(J ′) + d(J ′′) .

It follows that, starting from the given optimal solution of (2), we can obtain
another solution, with all constraints active, which is also optimal since it is not
worse than the given optimal one.

As for the balanced case J = J0, we consider two cases: either n is multiple
of H or not.

If n is multiple of H , by a simple counting argument any feasible shift par-
tition must have H shifts and cover all facilities, so that all the constraints in
the given optimal solution are active.

If n is not a multiple ofH then let H0 be the number of subsets of cardinality
⌊n/H⌋ and let H1 be the number of subsets of cardinality ⌈n/H⌉ in the given
optimal solution. Assume that there are k extra sets, i.e.,

H0 +H1 = H + k . (3)

Note that H0 ≥ k (otherwise, from (3), H1 > H and this is impossible), and,
in order to obtain a new solution with exactly H shifts, we may delete k sets of

9

cardinality ⌊n/H⌋ and put their elements one by one into the remaining H0 − k
sets, so that these sets become of cardinality ⌈n/H⌉. For this to be possible we
need to show that H0 is sufficiently large and, more precisely, that

H0 − k ≥ k
⌊ n

H

⌋

. (4)

To this end, let r = ⌈n/H⌉ − n/H = ⌊n/H⌋ + 1 − n/H . From the packing
constraints (first set of inequalities in (2)) we have

H0

⌊ n

H

⌋

+H1

⌈ n

H

⌉

= H0 (
n

H
+r−1)+H1 (

n

H
+r) = (H+k) (

n

H
+r)−H0 ≤ n

which implies

H0 ≥ k (
n

H
+ r) +H r ≥ k (

n

H
+ r)

and
H0 − k ≥ k (

n

H
+ r − 1) = k

⌊ n

H

⌋

,

which is the needed relation (4). Hence building the new balanced solution with
exactly H shifts is possible. Now, the cost of the new solution can be obtained
from the given one by subtracting the non-negative costs of the r deleted shifts
and by substituting the costs of the r shifts with augmented cardinality with a
new cost. As each of these shifts is obtained by adding one facility, the new cost
is not worse than the previous one, so that the overall cost of the new solution
is not worse than the given one. Finally, if not all facilities are covered, we may
add the non covered facilities to the sets of smaller cardinality. This is clearly
possible without violating the balancing constraint since n < H ⌈n/H⌉, and
allow us obtaining another balanced solution, with all constraints active, which
is also optimal since it is not worse than the given optimal one. �

The proposed model (2) has an exponential number of variables and a
branch-and-price approach based on solving its linear relaxation by column gen-
eration has been developed, as described in the next section.

5. Solving the set packing model by branch-and-price

Model (2) is solved by a branch-and-price procedure using the components
described in the following.

5.1. Initial set of variables

The initial set of variables is given by a greedy procedure that starts from
empty shifts and iteratively adds a facility to a shift, until all the facilities are
assigned. At each iteration, the facility and the shift are chosen as follows: for
each pair of not-yet-assigned facility j and shift k, we compute the decrement of
the cost of k obtained by adding j to k, and we select the pair associated to the
largest decrement. In order to obtain feasible solutions for the balanced case,
the number of facilities in each initial shift is determined a-priori, and shifts are
not considered once they are completed.

10

5.2. Pricing subproblem

Noting that the binary requirement for variables x(J) can be relaxed as
x(J) ≥ 0, the dual of the continuous relaxation of (2) is

max −
∑

j∈F

vj +H u ,

−
∑

j∈F

aj(J) vj + u ≤ d(J) , J ∈ J ,

u ≥ 0, vj ≥ 0 , j ∈ F .

(5)

Hence the pricing problem at the root node consists in solving

w = min
J∈J

{

d(J) +
∑

j∈J

vj
}

(6)

and checking whether w ≥ u. If so, we have reached optimality of the relaxation,
otherwise we must introduce a set Ĵ corresponding to the minimum in (6) into
the master problem, i.e., problem (2) restricted to a subset of shifts, and iterate.

Problem (6) to be solved at the root node is the p-median problem [8, 9, 10].
Unfortunately the p-median problem is NP-hard [6, p. 220], but the classical
MILP model performs reasonably well and there is available a large number of
good heuristics. The fact that the p-median problem is polynomial for fixed p
(i.e., if p does not enter the instance definition), which is the case for balanced
shifts, does not help very much for computational purposes [12]. It remains a
hard problem. Further, at nodes different from the root one, side constraints
related to branching decisions have to be considered.

Since actually we don’t need the exact optimum of (6) but we may carry
out the computation with any Ĵ such that u > d(Ĵ) +

∑

j∈F aj(Ĵ) yj , it is
computationally convenient to price with a fast heuristic and, only in case the
heuristic fails, we resort to an exact pricing procedure.

For heuristic pricing we have developed a simple local search procedure. It
starts from a random (in case balanced) shift J chosen as the current solution,
and it obtains perturbed neighbor solutions J ′ by adding a facility k /∈ J (J ′ :=
J∪{k}), removing a facility h ∈ J (J ′ := J\{h}), and swapping two facilities k /∈
J and h ∈ J (J ′ := J \ {h} ∪ {k}). In the balanced case, just the perturbations
yielding to shifts with feasible cardinality are considered. Neighbor solutions
are evaluated according to two criteria in a lexicographic fashion: the number
of violated branching constraints (as we will discuss later) and the value of the
pricing function in (6). If the best neighbor solution J ′ is better than the current
one, J ′ becomes the new current solution and the algorithm iterates, otherwise
the algorithm stops returning the local minimum J ′.

The exact pricing procedure is based on the following classical MILP model
where the variable tj ∈ {0, 1} denotes if facility j is chosen and variable sij
denotes if the customer i goes to facility j. Due to the objective function
each customer always goes to the closest open facility. For the (BALANCED)

11

LOCATION PARTITIONING the pricing problem at the root node is

min
∑

j∈F

(vj tj +
∑

i∈C

pi dij sij) ,

∑

j∈F

sij = 1 , i ∈ C ,

(

⌊n/H⌋ ≤
∑

j∈F

tj ≤ ⌈n/H⌉ , h ∈ [H] ,
)

sij ≤ tj , j ∈ F, i ∈ C ,

tj ∈ {0, 1} , sij ≥ 0 , j ∈ F, i ∈ C .

(7)

Note that the binary variables sij have been relaxed. As already remarked,
the customers in each location go to the closest open facility and, if the optimal
solution of (7) has fractional sij values, this means that more than one facility
are at the minimum cost for customers in location i. However, if this is the
case, no fractional solution can be a vertex solution and the simplex method
will output just a binary solution.

Branching requirements are handled by adding further constraints, as we
will discuss later. Similarly, the pricing problem allows us to easily control the
generation of sets J in (7) if additional constraints are needed. For example, as
observed before, we may be interested in generating shifts inducing limited travel
lengths, and therefore we can impose a threshold Di on the distances traveled
by customers in location i. This can be realized by adding the constraint

∑

j∈F

sij dij ≤ Di , i ∈ C ,

to (7), and the property that sij need not to be imposed binary a priori is still
preserved.

5.3. Branching strategy

Thanks to Theorem 5, an optimal solution to (2) exists corresponding to a
set partition and we can apply the Ryan and Foster branching rule [13], which
performs better than branching on variables x and allows us to consider the
branching choices in the pricing subproblems without additional constraints on
the master problem.

The rule is based on the fact that a solution to (2) is integral if and only if,
for each pair of constraints related to facilities i and j, the sum

X̃ij =
∑

J∈J :i∈J,j∈J

x(J)

of the values of the variables x contained in both constraints is integral, i.e.,
either 1, if and only if the two facilities are “packed” in the same shift, or 0
if and only if the two facilities are “packed” in different shifts. Hence, given
a fractional solution, we select two constraints such that 0 < X̃ij < 1 (in our

12

implementation, i and j are selected such that X̃ij is as close to 0.5 as possible).

Then we create two branches by forcing X̃ij to, respectively, 1 (“same” branch)
or 0 (“different” branch), which can be done directly in the pricing problem (6),
by imposing the additional constraints, respectively, ti = tj or ti + tj ≤ 1. As
a consequence, the slave problem to be solved at each node of the branch-and-
bound tree is (7) with a set of additional branching constraints related to the
node itself and its predecessors. Again, these additional constraints preserve
the property that sij need not to be imposed binary a priori.

The same constraints should be satisfied by the solution provided by the local
search heuristic for pricing. To this end, as we have mentioned above, instead of
forbidding non-feasible solutions (which may lead to poor neighborhoods), we
penalize them with the number of violated branching constraints: the better is
a neighbor solution, the less branching constraints it violates or, the number of
violations being equal, the smallest is the value of the objective function in (6).
Of course, if the returned local optimum is not a feasible shift, heuristic pricing
fails and we resort to the exact procedure.

5.4. Upper Bound procedure

As we will see in the next section devoted to computational results, the
relaxation of model (2) provides a tight lower bound for the (BALANCED)
LOCATION PARTITIONING problem. Further speed up may be obtained by
quickly generating a good initial incumbent solution and, hence, a good initial
upper bound. To this end, we propose a straightforward implementation of a
tabu search [7] heuristic.

The initial solution is the shift partition given by the greedy procedure de-
scribed in Subsection 5.1. Given a shift partition, represented with the subsets
of facilities corresponding to shifts, neighbor solutions are obtained by trans-
ferring a facility to an alternative shift, or by swapping facilities belonging to
different shifts. Starting from the initial solution, all possible neighbors are gen-
erated and evaluated. Then, the algorithm moves to the best neighbor, in case
updating the value of the best available solution, and iterates. The search stops
after K (parameter to be calibrated) consecutive iterations that do not improve
over the best solution. At each iteration, the best neighbor may be worst than
the current solution, leading to possible loops (the algorithm may come back to
an already visited solution and indefinitely cycle). To avoid cycling, tabu search
excludes from the neighborhood the solutions related to more recent moves [see
7]: in our case, we exclude the solutions obtained by transferring or swapping
facilities involved in the last T (parameter to be calibrated) moves, unless they
are better than the best available solution.

6. A MILP compact formulation

We have also taken into account a compact formulation for the (BAL-
ANCED) LOCATION PARTITIONING problem, with binary variables zjh to
denote whether facility j is open on shift h or not, and binary variables yijh to

13

denote whether customer i goes to facility j on shift h or not. The MILP model
is

min
∑

h∈[H]

∑

i∈C

∑

j∈F

pi dij yijh ,

∑

h∈[H]

zjh = 1 , j ∈ F ,

∑

j∈F

yijh = 1 , i ∈ C, h ∈ [H] ,

yijh ≤ zjh , i ∈ C, j ∈ F, h ∈ [H] ,
(

⌊n/H⌋ ≤
∑

j∈F

zjh ≤ ⌈n/H⌉ , h ∈ [H] ,
)

zjh ∈ {0, 1} , yijh ≥ 0 , i ∈ C, j ∈ F, h ∈ H .

(8)

Note that the binary variables yijh have been relaxed. By the objective
function, the customers in each location go to the closest open facility and, as
for model (7), the simplex method will output a binary solution.

The advantage of this compact model with respect to the column generation
model of the previous section relies on the fact that it can be simply fed to any
MILP solver without additional implementation effort. On the other hand the
lower bound provided by the integrality relaxation of (8) is much poorer than
the one given by the relaxation of (2), therefore leading to a larger branch-and-
bound tree.

Indeed, it turns out that the lower bound of the relaxation of (8) is equal
to the utopian optimum. For each customer i ∈ C let Ji be the set of the H
closest facilities to i. Put zjh = 1/H for all j and h and yijh = 1/H if j ∈ Ji,
0 otherwise. Then we have

∑

h∈[H] zjh = 1 and
∑

j∈F yijh =
∑

j∈Ji
1/H = 1.

The other constraints are trivially satisfied and this solution is feasible for the
relaxation of (8). Moreover the objective function value is

∑

h∈[H]

∑

i∈C

∑

j∈F

pi dij yijh =
∑

h∈[H]

∑

i∈C

∑

j∈Ji

pi dij
1

H
=

∑

i∈C

pi
∑

j∈Ji

∑

h∈[H]

dij
1

H
=

∑

i∈C

pi
∑

j∈Ji

dij =
∑

i∈C

pi∆i ,

i.e., the utopian optimum. This is also a lower bound for any feasible frac-
tional solution. Indeed, if we denote wij =

∑

h yijh, the constraints of (8)
imply wij ≤ 1 and

∑

j wij = H . The objective function can be rewritten as
∑

i∈C pi
∑

j∈F dij wij , which is minimized by assigning, for each i, the value 1
to variables wij corresponding to the H minimum values dij .

As we will see in the section devoted to computational results, although
solving model (8) with state-of-the-art solvers is competitive with (2) on small
instances, it becomes prohibitively slow on medium size instances, due to the
worse lower bound of the relaxation, the high number of variables and the high
degree of symmetry.

14

In order to decrease the degree of symmetry we consider a subset {j1, j2 . . . jH}
of facilities and add to (8) the following symmetry breaking constraints:

r
∑

h=1

zjrh = 1 , r ∈ [H] , (9)

meaning that pharmacy j1 has to be included in shift 1, j2 in shift 1 or 2, j3 in
shift 1, 2 or 3 and so on. The constraints are more effective (i.e. there is no other
solution obtained by simply permuting the shifts) if facilities j1, . . . , jH are in
different shifts. Heuristically we may think that this situation is more likely to
happen if the facilities in (9) are chosen as: j1 is the facility that minimizes the
total weighted distance from every customer, j2 the second best facility and so
on until facility jH .

7. Computational results

In the previous sections we have described three ways of computing a solution
for the (BALANCED) LOCATION PARTITIONING problem. Two of them
are exact and are based on MILP formulations. The first one is the branch-
and-price procedure described in Sections 4 and 5 (referred to as “B&P”) and
the second one is the compact MILP model (8) using the symmetry-breaking
constraints (9) as described in Section 6 (referred to as “Compact”) . The third
one is heuristic and is the tabu search procedure (“TS”) described in Subsection
5.4. These three methods have been tested on all instances described next thus
providing a comparison among the methods.

The branch-and-price algorithm has been implemented in C++, using the
Scip 2.1.1 framework [1] and Cplex 12.6 as linear programming engine. The
compact model (8) with constraints (9) was directly solved by Cplex 12.6 as
MILP solver using default settings. Both branch-and-price and Cplex use the
value of the initial incumbent solution given by the upper bound procedure de-
scribed in Subsection 5.4. Results in the following tables refer to a single thread
on Intel Dual Core 2.7 GHz CPU with 4 GB RAM. According to preliminary
calibration, tabu search parameters have been set to K = min{10 · |F |, 500} and
T = min{|F |/3, 21}, where |F | is the number of facilities.

We have two classes of instances: the first class is based on real data drawn
from local Pharmacy Associations in Italy, the second class is made of ran-
domly generated instances. All instances can be found at [5], with all necessary
instructions.

Concerning the first class of instances, two instances in this set refer to
two sub-areas of the Padova province (instances PD1 and PD2) and two other
instances refer to two sub-areas of the Friuli-Venezia Giulia region (instances
FVG1 and FVG2). Both the Padova province and the Friuli-Venezia Giulia
region are located in North-Eastern Italy.

Instance PD1 has 55 customer locations and 55 pharmacies (one per loca-
tion), PD2 has 49 locations and 49 pharmacies (again one per location), FVG1
has 20 locations and 23 pharmacies (one per location but two locations with two

15

and three pharmacies respectively) and FVG2 has 97 locations and 97 pharma-
cies, one per location. Different population sizes are usually not taken into
account by the local Pharmacy associations and therefore we have run these
instances by taking pi = 1, for all i ∈ C. However, we did have available the
population sizes for the two instances of the Padova province and so we have
run these instances also by considering the actual populations.

According to Pharmacy association requirements, the instances PD1 and
PD2 have 11 shifts and the instances FVG1 and FVG2 have 9 shifts. However,
for the sake of completeness of the computational tests, we have considered
the cases with 3, 6, 9 and 11 shifts (except for FVG2), both balanced and
unbalanced.

In Tables 1, 2, 3 and 4 we report the computational results for the first class
of instances. In these tables each row refers to one instance only. For each
solution method we report the computing time in seconds indicated by “t” and
the gap indicated by “g”. In more detail the gap for the B&P and the compact
method is the integrality gap (measured as a percentage), i.e., the difference
between the optimal value and the optimal value of the integrality relaxation
divided by the former value and multiplied by 100, whereas the gap for the tabu
search is its relative error, i.e., the difference between the tabu search value and
the optimal value divided by the optimal value and multiplied by 100. When
the gap is exactly zero we write the figure “0” in the tables. When the gap is
so small that its two digit approximation is zero we write instead “0.00”.

We have set a time limit of four hours for this first class of instances. Table 1
refers to the unbalanced case with unit populations, Table 2 to the balanced case
with unit populations, Table 3 to the unbalanced case with actual populations
and Table 3 to the balanced case with actual populations. Note that the branch-
and-price procedure uses random components (the initial solution of the pricing
heuristic): it has been run 10 times and average results are shown. As already
remarked, we have run only the Padova province instances for the case of actual
populations.

Some instances, marked with (*) and (**) in the tables, could not be solved
within the time limit. For the instances marked with (*) the gap has been
computed by using the known optimal value obtained by the other method. For
the instances marked with (**) the optimal value is not available and the gap
has been computed by using the best known dual value.

B&P has been able to solve all the proposed instances within the time limit
(and using fairly less than half an hour in almost all cases), with the only
exception of the large FVG2 instance (which could not be solved by Cplex
neither). This is mostly due to the tightness of the set packing formulation
(2): the value of its integrality relaxation is often equal to the optimal integer
value, and, in the remaining cases, it is very close to it. Beyond the large FVG2
instance, Cplex fails in solving five additional cases related to PD1 instance
with 11 and 9 shifts. This is to be ascribed to a poorer integrality relaxation of
the compact formulation (the gap is up to 0.92% and just in a few cases below
0.1%) as well as to the model size. Concerning computational times, Cplex is
normally faster for the small FVG1 instance and when 3 shifts are considered,

16

whereas B&P works better with larger numbers of shifts. We notice also that
B&P running times are sensible to population size, with doubled figures (on
average) for the case of actual population size.

The second class of instances are random instances generated as follows.
We have separately considered versions (a), (b) and (c) of the problem (refer to
Section 3). For each instance we have generated a certain number of independent
uniformly distributed random points in a unit square. The distance dij between
any two points is an integer number obtained by rounding the Euclidean distance
between the two points multiplied by 100. For each instance of version (a) we
have generated a set C of points as customer locations and a set F of points as
facilities. For each instance of version (b) we have generated a set C of points
as customer locations and, among these points, we have randomly selected a
subset F of points as facility locations. For each instance of version (c) we have
generated a set F of points, each one being both a location and a facility. Hence
we have implicitly assumed that the underlying graphs for versions (b) and (c)
are complete graphs with arc lengths given by Euclidean distances.

We have chosen 12 different instance types by varying (|C|, |F |, H) for ver-
sions (a) and (b) as: (20, 10, 5), (40, 20, 5), (40, 20, 10), (60, 30, 5), (60, 30, 10),
(60, 30, 20), (80, 40, 5), (80, 40, 10), (80, 40, 20), (100, 50, 5), (100, 50, 10), (100,
50,20), and 14 different instance types for version (c) as (20, 20, 5), (20, 20, 10),
(40, 40, 5), (40, 40, 10), (40, 40, 20), (60, 60, 5), (60, 60, 10), (60, 60, 20), (80, 80, 5),
(80, 80, 10), (80, 80, 20), (100, 100, 5), (100, 100, 10), (100, 100,20). For each in-
stance type we have generated 10 random instances.

The 10 random instances are stochastically independent. However, the k-th
instance of each group of 10 is related to the k-th instance of all other groups,
because the random points in the unit square have been generated with the same
seed. Hence, e.g., the 20 points of the k-th instance of the group (20, 20, h′) are
a subset of the 40 points of the k-th instance of the group (40, 40, h′′) (for any
h′, h′′), and similarly the 40 points of the k-th instance of the group (40, 40, h′)
are a subset of the 60 points of the k-th instance of the group (60, 60, h′′), and
so on.

All instances have been computed both for the unbalanced case and for
the balanced case and also both with unit populations and with varying pop-
ulations. In the latter case the populations are uniformly distributed random
numbers between 10 and 100. As before the populations of the 10 instances are
stochastically independent and the k-th instances of each group have the same
populations for the common locations.

Due to the large amount of computation required for all these parameter
combinations, we have reduced the time limit to 1800 seconds.

The parameters defining the instances and related computational results are
reported in Tables 5, 6, 7 and 8. In the tables for the second class of instances
each row refers to the ten instances of each group. On each row we report, as
before, two output data, i.e., the computing time in seconds (t) and the gap
(g) as a percentage. However, differently from the real data, these values are
averages over the ten instances. In case not all ten instances could be solved
within the time limit the average is computed only with respect to the solved

17

instances. Moreover, we indicate also the number of instances which could be
solved within the time limit of 1800 seconds in the column labeled with “s”
(for “solved”). Clearly this is unnecessary for the tabu search method. On
some entries of these columns the number of solved instances is preceded by
a number in a smaller font and within parenthesis. This number refers to the
number of instances whose integrality relaxation could be solved within the time
limit only when this number is smaller than ten. In the vast majority of cases
the integrality relaxations of all ten instances could be solved within the time
limit and therefore in these cases the number ‘10’ is not reported.

Table 5 refers to the unbalanced case with unit populations, Table 6 to
the balanced case with unit populations, Table 7 to the unbalanced case with
varying populations and Table 8 to the balanced case with varying populations.
Again, some instances are marked with (*) and (**), with the same meaning
as before. Moreover, in some cases, marked with “n.a.” (not available), no
relaxation could be solved within the time limit and the related gap could not
be computed.

The results confirm the trend observed for the first class of instances. A
general pattern which emerges from the computations is that the compact MILP
model performs better than the B&P algorithm for small instances, whereas
the opposite happens with large instances. The number of shifts plays also an
important role. Generally, by increasing the number of shifts the compact model
tends to have prohibitive running times and B&P is the only option for an exact
solution. This is particularly evident for the quite large instances with 80 and
100 locations for both facilities and customers, where none of the 10 instances
with few shifts could be solved by the B&P whereas the other instances with
more shifts could not be solved by the compact model.

As expected form the theory, the integrality relaxation gap for the column
generation model is almost negligible and for the small and medium size in-
stances is just zero most of the times. In spite of this fact, the running times
remain high, at least for the medium and large size instances. Looking at the
time spent for solving the LP at the root node of the branch-and-bound tree
(this data is not reported on the tables) we have observed that in almost all
instances, whenever the gap is exactly zero, then roughly 99% of the comput-
ing time is spent at the root node. This means that the branching strategy
is effective in finding the integral solution. Apparently, the column generation
procedure is time consuming and this is no surprise since it relies on an NP-hard
problem and may also require a very large number of columns (which are not
always found by the heuristic) before reaching optimality. When the gap is not
zero, though small, the time spent in searching the branch-and-bound tree is
comparable to the time spent in solving the root node.

As already observed for real instances, the impact of the population sizes
has dramatic effect on the running times of the B&P model. On the average the
running times increase between one and two times, whereas the running times
of the compact model decrease. However, the pattern according to which B&P
is faster for larger instances with larger number of shifts is preserved. The tabu
search times are almost unaffected by the populations sizes.

18

As for the question of balanced vs unbalanced instances the running times
for the unbalanced B&P are slightly worse than the balanced cases. This is an
expected result because the number of possible subsets to be generated is much
higher for the unbalanced case.

We also note that the tabu search procedure is very fast in determining very
good solutions. In almost all instances the error was less than 1% and, normally,
between 0 and 0.3%, which, for practical purposes may be totally acceptable,
and the solution is found quite quickly, at least in comparison to the exact
methods (order of seconds for medium-size instances and a few minutes for the
large ones). It is also true that, for the kind of problem we are considering,
i.e., finding a solution that is eventually implemented to last for a long time,
computations taking several hours can also be considered acceptable and the
pursue of a ‘very good’ and ‘certified’ solution makes more sense.

8. Conclusions

Starting from real cases related to pharmacy opening-shifts planning, we
have addressed the problem of determining an optimal distribution of facilities
(pharmacies) into a given number of subsets with the aim of minimizing the
overall distance traveled by customers to reach the closest facility in each sub-
set. The problem merges the requirements of partitioning problems (facilities
have to be partitioned into shifts) and location problems (shifts should minimize
distances) and, to the best of our knowledge, it is new to Operations Research
literature. We have called it LOCATION PARTITIONING problem and we
have studied its computational complexity, taking also into account a possible
variant of practical relevance called BALANCED LOCATION PARTITION-
ING, where the difference between shift cardinalities is at most 1.

For both variants, we have considered three sub-cases depending on how the
distances between customers and facilities (pharmacies) are defined, as we briefly
recall here: (a) distances are simply non-negative, (b) customers and facilities
are located on a network and distances are the length of the shortest paths, (c) as
in (b), with both customers and facilities located in every nodes. Starting from
the NP-completeness of the DOMATIC NUMBER problem, we have shown that
for both the balanced and the non-balanced variants, the problem is NP-Hard if
the number of shifts H ≥ 3, independently from distance definition. For the case
H = 2, complexity may depend on both the variant and the distance definition:
the problem is always NP-Hard in case (a) and (b), while the non-balanced case
(c) is polynomial.

In order to solve some real cases issued by local Pharmacists’ associations in
Italy, we have proposed two alternative MILP models: a set packing formulation
with an exponential number of binary variables associated to possible shifts,
and a compact formulation with binary variables related to the assignment of
facilities to shifts. For the first formulation, we have devised a branch-and-price
algorithm using, for pricing, a local search heuristic and an exact formulation
as p-median problem with side constraints.

19

The second model has been directly solved by Cplex. The two formulations,
as well as a tabu search heuristic, have been also tested on a set of randomly
generated instances, involving both balanced and unbalanced variants, the three
problem sub-cases, and unit or varying population size. The proposed branch-
and-price procedure solves to proven optimality all the real cases under study
but one large instance with 97 locations and facilities, thanks to the good quality
of the integrality relaxation, whose value is very close (and often equal) to the
optimal integer solution. Running times are longer than Cplex on the compact
formulation if the number of shift is small but remain stable or even decrease
with more shifts, where Cplex running times tend to become prohibitively large.
Concerning the tabu search heuristic, it can be used to quite quickly obtain near
optimal solutions and to tackle large instances.

The results show that LOCATION PARTITIONING problems, even if they
are NP-Hard, can be solved in cases of practical relevance, at least for medium-
size instances. Also, there is room for reducing running times and increasing
the size of solvable instances by, for example, improving the pricing heuristic or
by stabilizing the column generation, which is beyond the scope of the paper
and may be the object of further research. From a theoretical point of view, the
study of case (c) of the BALANCED LOCATION PARTITIONING problem
with H = 2 would complete the discussion on computational complexity, and it
is the object of ongoing investigation.

[1] T. Achterberg. 2009. SCIP: Solving constraint integer programs. Mathe-
matical Programming Computation 1:1 1–41.

[2] G. Andreatta, L. De Giovanni and P. Serafini. 2014. Optimal Shift
Coloring of Trees. Operations Research Letters 42 251–256. DOI:
10.1016/j.orl.2014.04.004.

[3] C. Barnhart, E.L. Johnson, G.L. Nemhauser, M.W.P. Savelsberg and P.H.
Vance. 1998. Branch-and-Price: Column Generation for Solving Huge In-
teger Programs. Operations Research 46 316–329.

[4] E.J. Cockayne and S.T. Hedetniemi. 1975. Optimal domination in graphs.
IEEE Trans. Circuits and Systems 22 855–857.

[5] L. De Giovanni. 2014. Location partitioning instances. Retrieved:
July 25th, 2014, http://www.math.unipd.it/∼luigi/LPP/LocationPar

titioningInstances.zip.

[6] M. R. Garey and D. S. Johnson. 1979. Computers and Intractability: A
guide to the theory of NP-completeness. W. H. Freeman and Co., San Fran-
cisco.

[7] F. Glover and M. Laguna. 1997. Tabu search. Kluwer Academic, Boston.

[8] S. L. Hakimi. 1964. Optimum locations of switching centers and the abso-
lute centers and medians of a graph. Operations Research 12 450–459.

20

[9] S. L. Hakimi. 1965. Optimum distribution of switching centers in a com-
munication network and some related graph theoretic problems. Operations
Research 13 462–475.

[10] P. B. Mirchandani and R. Francis, editors. 1990. Discrete location theory.
Wiley-Interscience Series in Discrete Mathematics and Optimization. John
Wiley & Sons, Inc., New York.

[11] Ö. Özpeynirci and E. Aǧlamaz. 2012. Mathematical Models for Pharmacy
Duty Scheduling, in: Proceedings of ECCO 2012 - 25th Conference of Euro-
pean Chapter on Combinatorial Optimization, April 26-28, 2012, Antalya,
Turkey.

[12] J. Reese. 2006. Solution methods for the p-median problem: An annotated
bibliography. Networks 48(3) 125–142.

[13] D. Ryan and B.A. Foster. 1981. An integer programming approach to
scheduling, in: Computer Scheduling of Public Transport Urban Passenger
Vehicle and Crew Scheduling, A. Wren, ed., North Holland, Amsterdam, p.
269–280.

21

Instance type B&P Compact TS
Name |C| |F | H t g t g t g

FVG1 20 23 3 0.12 0 0.08 0.24 0.18 0
FVG1 20 23 6 1.25 0 0.25 0.15 0.39 0
FVG1 20 23 9 0.54 0 0.17 0 0.53 0.35
FVG1 20 23 11 0.32 0 0.22 0 0.83 0

PD1 49 49 3 11.71 0 0.36 0.54 1.28 0
PD1 49 49 6 86.15 0 731.07 0.64 13.86 0.26
PD1 49 49 9 79.01 0 3345.76 0.65 14.69 0.18
PD1 49 49 11 229.91 0.03 (*) 0.85 16.42 0.19

PD2 55 55 3 1227.17 0 0.71 0.11 2.18 0
PD2 55 55 6 717.06 0 878.43 0.32 7.02 0.18
PD2 55 55 9 589.47 0.01 1316.88 0.22 15.70 0.12
PD2 55 55 11 81.82 0 938.84 0.16 40.33 0.06

FVG2 97 97 9 (**) 0.01 (**) 0.50 191.30 0.47

Table 1: First class of instances - unbalanced case - unit populations

Instance type B&P Compact TS
Name |C| |F | H t g t g t g

FVG1 20 23 3 0.10 0 0.11 0.24 0.18 0
FVG1 20 23 6 0.52 0 0.48 0.33 0.41 0
FVG1 20 23 9 0.59 0 0.19 0 0.34 0.25
FVG1 20 23 11 0.47 0 0.26 0 0.41 0

PD1 49 49 3 6.32 0 0.56 0.54 2.26 0
PD1 49 49 6 166.16 0 544.13 0.74 3.60 0.36
PD1 49 49 9 147.60 0.01 3772.67 0.64 7.67 0.13
PD1 49 49 11 201.86 0.02 (*) 0.83 19.48 0.19

PD2 55 55 3 466.17 0 7.93 0.11 2.03 0
PD2 55 55 6 375.83 0 1764.58 0.32 15.64 0.07
PD2 55 55 9 525.92 0.02 2988.89 0.24 26.59 0.09
PD2 55 55 11 94.27 0 879.89 0.18 32.64 0.08

FVG2 97 97 9 (**) 0.01 (**) 0.52 127.95 0.44

Table 2: First class of instances - balanced case - unit populations

22

Instance type B&P Compact TS
Name |C| |F | H t g t g t g

PD1 49 49 3 918.19 0 1.11 0.59 1.60 0.23
PD1 49 49 6 213.33 0 471.10 0.64 6.78 0.34
PD1 49 49 9 492.60 0.00 (*) 0.65 25.18 0.11
PD1 49 49 11 485.51 0.02 (*) 0.92 19.62 0.19

PD2 55 55 3 1231.28 0 0.67 0.03 2.56 0.03
PD2 55 55 6 907.04 0 903.42 0.26 13.77 0.09
PD2 55 55 9 233.53 0 602.61 0.14 20.73 0.19
PD2 55 55 11 174.01 0 556.11 0.11 63.00 0.03

Table 3: First class of instances - unbalanced case - actual population sizes

Instance type B&P Compact TS
Name |C| |F | H t g t g t g

PD1 49 49 3 11.57 0.00 1.37 0.59 1.59 0
PD1 49 49 6 225.12 0 1018.55 0.70 11.25 0.13
PD1 49 49 9 264.35 0.01 13747.77 0.64 13.92 0.18
PD1 49 49 11 344.51 0.02 (*) 0.88 17.11 0.20

PD2 55 55 3 1170.04 0 0.63 0.03 2.28 0.03
PD2 55 55 6 1969.45 0.01 4637.51 0.27 9.45 0.15
PD2 55 55 9 1133.06 0.01 1688.85 0.18 28.14 0.19
PD2 55 55 11 107.48 0 540.23 0.13 38.51 0.05

Table 4: First class of instances - balanced case - actual population sizes

23

Instance type B&P Compact TS
version |C| |F | H s t g s t g t g

(a) 20 10 5 10 0.11 0 10 0.04 0.01 0.08 0

(a) 40 20 5 10 4.10 0 10 0.53 0.09 0.87 0.04
(a) 40 20 10 10 0.70 0.01 10 1.43 0.12 1.10 0.06

(a) 60 30 5 10 19.55 0 10 2.08 0.09 1.28 0.05
(a) 60 30 10 10 9.47 0 10 15.73 0.08 5.17 0.05
(a) 60 30 20 10 2.74 0 10 200.77 0.26 21.43 0.15

(a) 80 40 5 10 97.39 0 10 30.01 0.23 4.53 0.16
(a) 80 40 10 10 51.39 0 9 140.52 0.14 25.99 0.11
(a) 80 40 20 10 13.31 0 8 554.81 0.18 65.21 0.05

(a) 100 50 5 10 592.41 0.01 10 316.48 0.27 11.41 0.18
(a) 100 50 10 10 302.70 0 4 927.24 0.18 54.46 0.14
(a) 100 50 20 10 72.07 0 1 1416.46 0.27 176.84 0.04

(b) 20 10 5 10 0.14 0 10 0.03 0 0.08 0

(b) 40 20 5 10 2.12 0 10 0.58 0.08 0.56 0.07
(b) 40 20 10 10 0.88 0.01 10 2.11 0.12 1.09 0.03

(b) 60 30 5 10 14.58 0 10 6.83 0.18 1.62 0.08
(b) 60 30 10 10 8.19 0 10 38.89 0.07 5.45 0.11
(b) 60 30 20 10 2.56 0 10 162.73 0.27 21.27 0.03

(b) 80 40 5 10 80.48 0 10 52.09 0.27 4.34 0.13
(b) 80 40 10 10 62.38 0 9 370.39 0.18 22.28 0.08
(b) 80 40 20 10 15.19 0 7 847.86 0.15 60.67 0.08

(b) 100 50 5 10 343.12 0 10 166.81 0.26 13.62 0.20
(b) 100 50 10 10 178.53 0 1 71.97 0.20 57.05 0.10
(b) 100 50 20 10 52.48 0 0 (*) 0.28 202.07 0.10

(c) 20 20 5 10 0.58 0 10 0.15 0.04 0.36 0.07
(c) 20 20 10 10 0.63 0 10 0.70 0.09 0.59 0.03

(c) 40 40 5 10 24.56 0 10 26.01 0.19 2.38 0.14
(c) 40 40 10 10 15.10 0 10 141.60 0.10 9.29 0.09
(c) 40 40 20 10 10.27 0 8 417.51 0.17 32.37 0.07

(c) 60 60 5 10 784.32 0 10 109.69 0.20 9.30 0.17
(c) 60 60 10 10 218.96 0 5 1178.47 0.19 40.86 0.22
(c) 60 60 20 10 68.13 0 1 1779.41 0.10 173.06 0.07

(c) 80 80 5 0 (*) 0 10 504.18 0.18 30.16 0.21
(c) 80 80 10 4 1641.49 0 0 (*) 0.25 103.15 0.32
(c) 80 80 20 9 537.82 0 0 (*) 0.20 373.26 0.17

(c) 100 100 5 (4) 0 (*) 0 6 800.55 0.17 62.34 0.26
(c) 100 100 10 (0) 0 (*) n.a. 0 (*) 0 280.35 0.79
(c) 100 100 20 (3) 1 1783.50 0 0 (*) 0.06 1015.64 0.41

Table 5: Random instances - unbalanced case - unit populations

24

Instance type B&P Compact TS

version |C| |F | H s t g s t g t g

(a) 20 10 5 10 0.13 0 10 0.04 0.01 0.05 0

(a) 40 20 5 10 2.11 0.00 10 0.66 0.20 0.47 0.00
(a) 40 20 10 10 1.07 0 10 1.54 0.09 0.60 0.02

(a) 60 30 5 10 14.60 0 10 2.74 0.09 1.24 0.03
(a) 60 30 10 10 9.24 0 10 16.35 0.08 3.77 0.03
(a) 60 30 20 10 4.27 0 10 194.97 0.26 10.03 0.13

(a) 80 40 5 10 84.93 0.00 10 30.79 0.27 4.52 0.02
(a) 80 40 10 10 70.26 0.00 9 184.05 0.15 11.65 0.06
(a) 80 40 20 10 15.62 0 10 126.24 0.03 30.95 0.07

(a) 100 50 5 10 527.81 0.01 10 511.83 0.32 11.99 0.10
(a) 100 50 10 10 282.74 0.01 5 849.75 0.19 38.51 0.05
(a) 100 50 20 10 91.88 0.00 1 1725.29 0.27 110.16 0.19

(b) 20 10 5 10 0.13 0 10 0.04 0.00 0.05 0

(b) 40 20 5 10 2.01 0 10 0.52 0.09 0.42 0.02
(b) 40 20 10 10 1.05 0 10 1.18 0.02 0.63 0.03

(b) 60 30 5 10 14.80 0.00 10 8.85 0.21 1.08 0.07
(b) 60 30 10 10 7.71 0 10 69.04 0.09 3.29 0.02
(b) 60 30 20 10 3.70 0 10 183.35 0.27 9.96 0.19

(b) 80 40 5 10 130.77 0.00 10 88.52 0.31 3.91 0.12
(b) 80 40 10 10 45.80 0.00 9 436.31 0.18 12.56 0.04
(b) 80 40 20 10 12.92 0 10 273.20 0.04 30.45 0.15

(b) 100 50 5 10 399.28 0.01 10 417.80 0.35 9.15 0.14
(b) 100 50 10 10 314.10 0.00 1 122.77 0.21 37.03 0.09
(b) 100 50 20 10 73.02 0.00 1 1733.84 0.30 97.46 0.13

(c) 20 20 5 10 0.53 0 10 0.14 0.08 0.35 0.07
(c) 20 20 10 10 0.48 0 10 0.41 0.03 0.81 0.09

(c) 40 40 5 10 22.03 0 10 27.21 0.19 1.92 0.17
(c) 40 40 10 10 15.34 0 10 87.12 0.10 4.58 0.07
(c) 40 40 20 10 5.40 0.00 10 51.61 0.03 15.41 0.13

(c) 60 60 5 10 747.65 0 10 247.40 0.22 11.40 0.13
(c) 60 60 10 10 208.22 0.00 4 1253.30 0.24 29.78 0.16
(c) 60 60 20 10 35.70 0 1 1545.28 0.10 91.44 0.02

(c) 80 80 5 (9) 0 (*) 0 7 595.64 0.18 28.95 0.14
(c) 80 80 10 6 1301.21 0.00 0 (*) 0.28 106.87 0.28
(c) 80 80 20 10 440.09 0.00 0 (*) 0.17 264.97 0.09

(c) 100 100 5 (4) 0 (*) 0 5 1387.03 0.13 58.64 0.32
(c) 100 100 10 0 (*) n.a. 0 (*) 0.00 206.11 0.81
(c) 100 100 20 2 1611.00 0.00 0 (*) 0.20 540.32 0.23

Table 6: Random instances - balanced case - unit populations

25

Instance type B&P Compact TS
version |C| |F | H s t g s t g t g

(a) 20 10 5 10 0.19 0 10 0.06 0.02 0.08 0.04

(a) 40 20 5 10 3.51 0 10 0.57 0.05 0.95 0.03
(a) 40 20 10 10 2.10 0 10 2.33 0.17 1.12 0.07

(a) 60 30 5 10 37.25 0.00 10 2.75 0.08 1.23 0.08
(a) 60 30 10 10 19.10 0.00 10 16.06 0.07 6.16 0.04
(a) 60 30 20 10 5.06 0 10 155.33 0.28 21.34 0.21

(a) 80 40 5 10 213.48 0.00 10 22.31 0.22 4.46 0.16
(a) 80 40 10 10 75.58 0.00 10 111.64 0.13 18.99 0.13
(a) 80 40 20 10 29.05 0 8 903.14 0.17 61.57 0.05

(a) 100 50 5 9 1066.26 0.01 10 113.82 0.23 10.88 0.11
(a) 100 50 10 9 454.64 0.00 9 579.17 0.16 57.57 0.13
(a) 100 50 20 10 83.80 0 1 1573.98 0.23 160.24 0.05

(b) 20 10 5 10 0.24 0 10 0.05 0.04 0.08 0.11

(b) 40 20 5 10 3.49 0 10 0.58 0.09 0.88 0.02
(b) 40 20 10 10 2.33 0 10 1.72 0.07 1.12 0.09

(b) 60 30 5 10 29.16 0.00 10 4.56 0.14 1.27 0.10
(b) 60 30 10 10 12.56 0 10 33.92 0.08 6.29 0.06
(b) 60 30 20 10 4.19 0 10 218.89 0.28 21.28 0.10

(b) 80 40 5 10 246.25 0.00 10 24.18 0.24 5.09 0.22
(b) 80 40 10 10 104.62 0.00 9 86.92 0.16 18.01 0.11
(b) 80 40 20 10 26.75 0 6 610.32 0.15 67.67 0.04

(b) 100 50 5 10 603.93 0 10 78.42 0.23 12.02 0.27
(b) 100 50 10 9 307.82 0.00 6 437.44 0.18 51.03 0.16
(b) 100 50 20 10 91.74 0 1 889.35 0.27 209.93 0.10

(c) 20 20 5 10 0.73 0 10 0.15 0.05 0.51 0.14
(c) 20 20 10 10 1.16 0 10 0.73 0.10 0.61 0.04

(c) 40 40 5 10 51.39 0 10 3.57 0.14 2.03 0.14
(c) 40 40 10 10 30.92 0.00 10 82.70 0.09 8.29 0.09
(c) 40 40 20 10 15.45 0.00 9 377.39 0.16 31.01 0.09

(c) 60 60 5 (9) 7 1026.45 0 10 40.69 0.12 10.22 0.16
(c) 60 60 10 10 400.69 0.00 7 365.49 0.17 45.32 0.21
(c) 60 60 20 10 106.07 0.00 4 987.96 0.10 155.59 0.12

(c) 80 80 5 (8) 0 (*) 0.00 8 98.86 0.17 30.29 0.15
(c) 80 80 10 (2) 0 (*) 0 0 (*) 0.06 137.72 0.49
(c) 80 80 20 6 874.73 0.00 0 (*) 0.17 383.49 0.16

(c) 100 100 5 (0) 0 n.a. n.a. 6 312.02 0.15 68.31 0.28
(c) 100 100 10 (0) 0 n.a. n.a. 0 (*) 0.01 266.90 0.77
(c) 100 100 20 (0) 0 n.a. n.a. (0) 0 (n.a.) (n.a.) 819.77 1.41

Table 7: Random instances - unbalanced case - different population sizes

26

Instance type B&P Compact TS

version |C| |F | H s t g s t g t g

(a) 20 10 5 10 0.22 0 10 0.06 0.02 0.05 0.04

(a) 40 20 5 10 2.79 0 10 0.91 0.13 0.50 0.02
(a) 40 20 10 10 1.70 0 10 1.77 0.09 0.62 0.11

(a) 60 30 5 10 23.13 0 10 3.38 0.07 1.22 0.02
(a) 60 30 10 10 14.49 0 10 17.78 0.07 3.76 0.14
(a) 60 30 20 10 5.50 0 10 175.15 0.28 9.95 0.05

(a) 80 40 5 10 183.80 0.00 10 25.43 0.25 4.04 0.07
(a) 80 40 10 10 60.21 0 10 131.50 0.16 12.17 0.04
(a) 80 40 20 10 21.63 0 10 250.24 0.06 30.46 0.10

(a) 100 50 5 10 1001.70 0.01 10 200.59 0.28 10.53 0.14
(a) 100 50 10 10 373.65 0.00 8 470.55 0.18 43.22 0.06
(a) 100 50 20 10 104.25 0 1 1449.22 0.24 130.50 0.10

(b) 20 10 5 10 0.20 0 10 0.05 0.00 0.05 0

(b) 40 20 5 10 2.42 0 10 0.62 0.09 0.54 0.02
(b) 40 20 10 10 1.80 0 10 1.29 0.03 0.61 0

(b) 60 30 5 10 40.85 0.01 10 5.64 0.17 1.13 0.10
(b) 60 30 10 10 13.59 0 10 37.63 0.10 3.62 0.02
(b) 60 30 20 10 5.67 0 10 247.71 0.28 9.95 0.13

(b) 80 40 5 10 244.77 0.01 10 28.16 0.28 4.65 0.06
(b) 80 40 10 10 86.47 0.00 9 82.39 0.16 11.41 0.02
(b) 80 40 20 10 19.37 0 9 281.45 0.04 30.21 0.15

(b) 100 50 5 7 940.70 0.01 10 140.40 0.31 10.34 0.09
(b) 100 50 10 9 322.24 0.01 9 700.74 0.20 44.68 0.10
(b) 100 50 20 10 93.94 0 1 1003.83 0.30 108.61 0.14

(c) 20 20 5 10 0.67 0 10 0.16 0.06 0.34 0
(c) 20 20 10 10 0.73 0 10 0.51 0.06 0.62 0.09

(c) 40 40 5 10 42.52 0 10 5.10 0.14 1.86 0.13
(c) 40 40 10 10 52.40 0.00 10 27.54 0.10 5.26 0.07
(c) 40 40 20 10 11.23 0 10 110.94 0.05 16.20 0.15

(c) 60 60 5 9 1188.49 0 10 89.86 0.19 10.72 0.11
(c) 60 60 10 10 350.79 0.00 7 572.96 0.21 37.72 0.21
(c) 60 60 20 10 109.09 0.00 4 1030.58 0.10 98.39 0.03

(c) 80 80 5 (8) 0 (*) 0.00 9 363.20 0.17 34.43 0.17
(c) 80 80 10 (6) 1 1779.12 0 0 (*) 0.13 99.42 0.47
(c) 80 80 20 9 603.46 0.00 0 (*) 0.15 250.05 0.11

(c) 100 100 5 (0) 0 n.a. n.a. 5 731.22 0.11 78.93 0.35
(c) 100 100 10 (0) 0 n.a. n.a. 0 (*) 0.01 192.98 0.77
(c) 100 100 20 (5) 1 1351.07 0 (0) 0 n.a. n.a. 572.78 0.87

Table 8: Random instances - balanced case - different population sizes

27

