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Abstract. We develop a potential theory approach for some degenerate parabolic op-

erators in non-divergence form and with non-smooth coefficients, which are modeled on
smooth Hörmander vector fields. We prove necessary and sufficient Wiener-type tests

for the regularity of boundary points. As a consequence we obtain, in particular, a cone-

type criterion. We also investigate the related boundary value problem and the Hölder
regularity at the boundary.

1. Introduction

Let X1, X2, . . . , Xp be a system of real smooth vector fields which are defined in some
bounded open set D0 ⊂ RN , and satisfy the Hörmander’s condition in D0, i.e.

rank Lie{X1, . . . , Xp}(x) = N at every point x ∈ D0.

Denote by d the related Carnot-Carathéodory control distance. Let us also fix D a bounded
open set compactly contained in D0, and −∞ < T1 < T2 < +∞. We want to consider the
family of partial differential operators in the form

(1.1) H =

p∑
i,j=1

ai,j(z)XiXj +

p∑
j=1

bj(z)Xj − ∂t, for z = (x, t) ∈ D×]T1, T2[,

where ai,j , bj are d-Hölder continuous functions in D0×]T1, T2[, and the matrix (ai,j)i,j is
symmetric and uniformly positive definite.

Hörmander-type operators arise in many theoretical and applied settings sharing a sub-
Riemannian underlying geometry, for instance in mathematical models for finance, control
theory, geometric measure theory, pseudohermitian and CR geometry (see, e.g., [29, 1, 16,
9, 33, 28, 34]; see also [8] and the references therein).

We want to study the Cauchy-Dirichlet problem associated withH with a potential theory
approach. We are interested in regularity properties at the boundary for the generalized
Perron-Wiener-Brelot-Bauer solutions (PW-solutions, in short) to the Dirichlet problem for
H in generic bounded open sets Ω ⊂ RN+1 compactly contained in D×]T1, T2[. In particular,
our aim is to prove necessary and sufficient conditions for the regularity of a boundary point
in term of Wiener-type series, i.e. involving capacities of suitable compact sets which are
ring-shaped with respect to d-Gaussians.

We recall that Wiener criteria are much more delicate for evolutive operators than for
the stationary counterpart. Even for the heat operator, Wiener-type characterizations have
quite a long history. To the best of our knowledge, the first attempt in this direction is due
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to Pini in [39] where he proved a sufficient condition in the 1-dimensional case for particular
open sets. Then, in [32] Landis proved a characterization for the regularity in terms of a
suitable series of caloric potentials. After the proof by Lanconelli of the necessary condition
for the regularity in [24], the proper analogue of the classical Wiener criterion for the heat
equation was finally proved by Evans and Gariepy in [14].
It is well-known that all the elliptic operators (with reasonable coefficients in the non-
divergence case; see also [23] for recent developments) share the same regular points with
the Laplacian, whereas Petrowski showed in [38] explicit counterexamples of this fact even
for constant coefficients parabolic operators. This feature makes more interesting the study
of the variable coefficients case. Several necessary and sufficient conditions have been investi-
gated for classical parabolic operators both in divergence and non divergence form, also with
different degree of regularity for the coefficients (see, e.g., the references [32, 37, 25, 26, 27]).
The Evans-Gariepy Wiener test was extended to parabolic operators in divergence form with
smooth variable coefficients by Garofalo and Lanconelli in [19], and with C1-Dini continuous
coefficients by Fabes-Garofalo-Lanconelli in [15].

In sub-Riemannian settings, as far as we know, the only Evans-Gariepy Wiener criterion
is due to Garofalo and Segala in [20] for the heat equation on the Heisenberg group. We
mention also the papers [40, 22] for Wiener test of Landis-type for a class of Kolmogorov
equations. In these papers, the precise knowledge of the fundamental fundamental solution
plays a crucial role. A different approach, inspired by [25, 26], has been carried out in [30]
(see also [31, 42]) for a class of hypoelliptic diffusion operators. In [30] it is showed that
Wiener-type tests can be derived starting just from the following key ingredient: Gaussian
bounds of the fundamental solution with respect to a distance satisfying doubling condition
and segment property. Let us mention more literature, always in settings of sub-Riemannian
type, concerning the boundary behavior of nonnegative solutions to evolution equations in
sufficiently regular domains (see, e.g., [10, 11, 17, 35] and the references therein).

Here we would like to pursue further the approach of [31, 30] by considering the case of
the non-hypoelliptic operators in the non-divergence form (1.1). Even if the estimates in
[31, 30] are basically independent of the smoothness of the coefficients, an approach based
on the approximation of H via smooth operators seems to be not efficient with respect to
the notions of PW-solution and of regularity of a boundary point (see Remark 2.1). Hence,
we have to go through the classical axioms of potential theory for our non-smooth operator.
Once we have in hands the notion of H-regularity, we are going to prove the following

Theorem 1.1. Let z0 = (x0, t0) ∈ ∂Ω, and λ ∈]0, 1[.

(i) If there exists 0 < a ≤ a0 and b > b0 such that

(1.2)

+∞∑
h,k=1

Ca
(
Ωhk(z0, λ)

)∣∣∣B (x0,
√
λk
)∣∣∣λbh = +∞

then the point z0 is H-regular.
(ii) If the point z0 is H-regular, then

(1.3)

+∞∑
h,k=1

Cb
(
Ωhk(z0, λ)

)∣∣∣B (x0,
√
λk
)∣∣∣λah = +∞

for every b ≥ β0 and 0 < a ≤ a0.
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The positive numbers a0 ≤ b0 ≤ β0 are structural constants depending just on the vector fields
X1, . . . , Xp, on the eigenvalue bounds for the matrix (ai,j)i,j, and on the Hölder norms of
ai,j , bj.

Here |E| denotes the Lebesgue measure of E ⊂ RN , B(x0, r) denotes the d-ball centered
at x0 of radius r, Ca stands for a suitable notion of capacity which is going to be stated
precisely in subSection 3.2, and the compact sets Ωhk(z0, λ) are defined in (4.1).

We remark that, as in [30], the sufficient condition (1.2) and the necessary condition
(1.3) are different. On the other hand, all the quantities and the objects appearing in our
Wiener series depend on the underlying metric, and not on the fundamental solution of the
specific operator H. In fact, the lack of the precise behavior of the fundamental solution for
Hörmander operators is one of the main obstacles for proving a characterization of Evans-
Gariepy-Wiener type. Furthermore, with respect to the hypoelliptic case in [30], the presence
of non-smooth coefficients forces us to follow a different approach for the proof of part (ii).
As a consequence, the necessary condition (1.3) turns out to be slightly weaker in comparison
with [30, Theorem 1.1]. We refer to Section 4 for the details of the technical reasons. We
just mention here that this is due to the lack of suitable Riesz-type representations for H-
superharmonic functions, which indeed represents one of the main difficulties faced in this
paper.

As a corollary of the above Theorem 1.1, we can show that a suitable notion of metric
cone condition ensures the regularity of the boundary point. Moreover, the presence of such
a cone condition allows us to derive Hölder estimates of the PW-solution HΩ

ϕ up to the
boundary.

Corollary 1.2. Assume Ω satisfies the exterior d-cone condition at z0, according to Defi-
nition 4.2. Then

z0 is H-regular.

If ϕ ∈ C(∂Ω,R) satisfies in addition that [ϕ]z0,δ = supr>0 supd̂(z,z0)≤r
|ϕ(z)−ϕ(z0)|

rδ
< ∞ for

some δ > 0, then there exist 0 < α0 ≤ 1 and c > 0 such that

|HΩ
ϕ (z)− ϕ(z0)| ≤ c [ϕ]z0,δ

(
d̂(z0, z)

)α0

for all z ∈ Ω.

We can use the the PW-solution, together with fundamental solution of H constructed
in [8], to actually solve the related boundary value problem in the following sense.

Corollary 1.3. Let E be the set of points of ∂Ω such that (1.2) is satisfied for some 0 <
a ≤ a0 and b > b0. Then, for every continuous datum ϕ on ∂Ω and for every d-Hölder
continuous function f in a neighborhood of Ω, there exists

u ∈ C(Ω ∪ E) ∩ C2
X(Ω) such that

{
Hu = f in Ω,

u = ϕ on E.

In particular the above statement holds true even letting E be the set of points of ∂Ω where
the exterior d-cone condition is satisfied.

Remark 1.4. A weaker result than Corollary 1.3 was proved in [42]. We stress that, from
Corollary 1.3, we can deduce the existence of a unique solution to the Cauchy-Dirichlet
problem related to H in the following cylindrical domains. Suppose Ω = A×]t1, t2[ is a
bounded open set compactly contained in D×]T1, T2[ satisfying

∀x0 ∈ ∂A ∃ r0, θ0 > 0 such that |B(x0, r) rA| ≥ θ0|B(x0, r)| for all 0 < r ≤ r0.
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Then, for every continuous function ϕ on ∂pΩ and for every d-Hölder continuous function

f in a neighborhood of Ω, there exists a unique solution u ∈ C(Ω ∪ ∂pΩ) ∩ C2
X(Ω) to the

problem {
Hu = f in Ω,

u = ϕ on ∂pΩ.

We will recall the classical definition of parabolic boundary ∂pΩ in subSection 2.2.

The paper is organized as follows. In Section 2 we fix the main objects we are going to
deal with and from which we can build the Potential Theory for our operators. In Section
3 we define the appropriate harmonic space of C2

X -functions, and we prove that suitable
extensions of the operators H endow the strip RN×]T1, T2[ with a structure of β-harmonic
space satisfying the Doob convergence property. In Section 4 we finally prove Theorem
1.1, Corollary 1.2, and Corollary 1.3. In subSection 4.1, about the necessary condition
for the regularity, we construct a special nonnegative hyperharmonic function by using a
superposition of Riesz potentials with respect to a prototype operator, and then we invoke
the classical potential theoretic notion of thinness. In subSection 4.2, for the sufficient
condition and for the corollaries, we also show as intermediate steps an estimate of the
modulus of continuity at the boundary for the PW-solution in Proposition 4.1, and a Hölder
estimate of a suitable Wiener function in Proposition 4.3 under the d-cone condition.

2. Preliminaries and recallings

Even though we want to study boundary value problems in bounded sets, our approach
requires to exploit global objects. That is why we need to extend suitably the operator H in
RN+1. This is possible thanks to the results in [8, Section 2-19]. In this section we are going
to briefly recall the procedure. Then, we will introduce the main needed objects, namely
the fundamental solution and the Green function for sets on which we can actually solve the
Cauchy-Dirichlet problem.

2.1. Extension and global fundamental solution. It is possible to construct a sys-
tem of smooth Hörmander vector fields X̃1, X̃2, . . . , X̃m in RN (m = p + N) coinciding
in D with the system {X1, . . . , Xp, 0, . . . , 0}, and outside D0 with the Euclidean system
{0, . . . , 0, ∂x1

, . . . , ∂xN }. Moreover, this can be done in such a way that the relative Carnot-

Carathéodory control distance d̃ satisfies:

(D1) the d̃-topology is the Euclidean topology, (RN , d̃) is complete and, for every fixed

x ∈ RN , d̃(x, ξ) → ∞ if (and only if) ξ → ∞ with respect to the usual Euclidean
norm;

(D2) (RN , d̃) is a doubling metric space w.r.t. the Lebesgue measure, i.e. there exists a
constant cd̃ > 1 such that∣∣∣B̃(x, 2r)

∣∣∣ ≤ cd̃ ∣∣∣B̃(x, r)
∣∣∣ , ∀x ∈ RN , ∀r > 0;

(D3) (RN , d̃) has the segment property, i.e., for every x, y ∈ RN there exists a continuous
path γ : [0, 1]→ RN such that γ(0) = x, γ(1) = y and

d̃(x, y) = d̃(x, γ(t)) + d̃(γ(t), y) ∀t ∈ [0, 1].
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We stress that (D2) provides a global doubling condition for the extended vector fields, while
general Hörmander vector fields satisfies usually just a local doubling condition thanks to
the results in [36]. We also remark that any control distance satisfies the segment property
(D3) (see, e.g., [13]). Throughout the paper we will simply write X1, . . . , Xm, d instead of

X̃1, . . . , X̃m, d̃. Let us also denote d̂((x, t), (x′, t′)) = (d(x, x′)4 + (t− t′)2)
1
4 , and B̂(z, r) the

relative parabolic balls.

If E ⊆ RN+1, we denote by CβX(E) the space of functions u : E → R such that

‖u‖CβX(E) := sup
E
|u|+ sup

z 6=z′∈E

|u(z)− u(z′)|
d̂(z, z′)β

<∞.

Moreover, C2+β
X (E) denotes the space of functions u : E → R which belong to CβX(E)

together with any Lie-derivative along the vector fields X1, . . . , Xm up to second order, and

along ∂t up to first order. Analogously one defines C2+β
X,loc(E).

Once we have extended the vector fields, we can also extend the operator. In fact, if we
have

Λ−1|η|2 ≤
p∑

i,j=1

ai,j(z)ηiηj ≤ Λ|η|2 ∀η ∈ Rp, ∀z ∈ D0×]T1, T2[,

‖ai,j‖CαX(D0×]T1,T2[), ‖bj‖CαX(D0×]T1,T2[), ≤ k
for some positive constants k, Λ ≥ 1, and α ∈ (0, 1), then we can extend the operator H in
(1.1) to an operator

H̃ =

m∑
i,j=1

ãi,j(z)XiXj +

m∑
j=1

b̃j(z)Xj − ∂t, for z ∈ RN+1,

coinciding with H in D×]T1, T2[ and with the heat operator in (RN rD0) × R. Moreover

the coefficients of H̃ can be built such that

Λ−1|η|2 ≤
m∑

i,j=1

ãi,j(z)ηiηj ≤ Λ|η|2 ∀η ∈ Rm, ∀z ∈ RN+1,(2.1)

‖ãi,j‖CαX(RN+1), ‖b̃j‖CαX(RN+1), ≤ k̃ = Ck.(2.2)

Again, the ~ will be always dropped. In [8, Theorem 10.7] it is proved that such extended
operators have a global fundamental solution Γ ( C2+α

X out of the diagonal of RN+1×RN+1)
satisfying two sided Gaussian-type estimates on strips. Precisely, denoting the d-Gaussian
(with exponent a > 0) by

Ga(z, ζ) = Ga(x, t, ξ, τ) =

{
0 if t ≤ τ,

1
|B(x,

√
t−τ)| exp

(
−ad

2(x,ξ)
t−τ

)
if t > τ,

we have the existence of positive constants a0 ≤ b0 and, for any open and bounded time
interval I, the existence of C0 = C0(I) > 0 such that

(2.3)
1

C0
Gb0(z, ζ) ≤ Γ(z, ζ) ≤ C0 Ga0(z, ζ), ∀z, ζ ∈ RN × I.

The constants a0, b0, C0 depend on the original vector fields, and on the constants Λ, α, k in
(2.1) and (2.2). We denote by

S = RN×]T1, T2[.
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When we don’t make further comments, the constant C0 will stand for C0 ( ]T1, T2[ ).

2.2. Solvability and Green functions. For the uniqueness of the solutions of the Cauchy-
Dirichlet problem, as well as for future applications, we are going to need the following
maximum principle in the class C2

X :
let Ω be an open set, whose closure is contained in a strip RN × I. For a fixed T ∈ I let us
define ΩT = {(x, t) ∈ Ω | t < T} and ∂TΩ = {(x, t) ∈ ∂Ω | t < T}. If u ∈ C2

X(Ω) satisfies

(2.4)


Hu ≥ 0 in ΩT ,

lim supΩT3z→ζ u(z) ≤ 0 for every ζ ∈ ∂TΩ,

lim supΩT3z→∞ u(z) ≤ 0 if ΩT is unbounded,

then u ≤ 0 in ΩT .

The scheme for proving such a maximum principle is classical. The non-classical difficulty
relies on the regularity class C2

X : we refer the reader to [8, Theorem 13.1] for the proof,
which is based on the maxima propagation result for C2

X -functions proved in [4].
Let us now take a bounded open set A ⊂ RN , and consider the cylinder C = A×]t1, t2[ for
some t1 < t2. It is possible to define the parabolic boundary of a cylinder, namely

∂pC = (∂A× [t1, t2]) ∪
(
A× {t1}

)
.

With these notations, we shall say that C is H-solvable if, for every continuous function ϕ
on ∂pC, there exists a solution u = uϕ to

u ∈ C2
X(C) ∩ C(C ∪ ∂pC), Hu = 0 in C, u = ϕ on ∂pC.

Such a solution, if it exists, has to be unique by the aforementioned maximum principle.
We also denote A ⊂ RN to be H-solvable if, for every t1 < t2, the cylinder A×]t1, t2[ is
H-solvable.
In [42, Theorem 4.1] it has been proved that C is H-solvable if any point of ∂pC satisfies an
exterior d-cone condition, i.e. if, for any (x0, t0) ∈ ∂pC, there exist M0, r0, θ0 > 0 such that

(2.5) |{x ∈ B(x0,M0r) : (x, t0 − r2) /∈ C}| ≥ θ0|B(x0,M0r)| for all 0 < r ≤ r0.

The proof is based on a regularization technique for the operator coefficients (see the details
in [8, Section 14]), on interior Schauder estimates [7], and on careful uniform estimates at the
boundary for the solutions of smooth operators under condition (2.5) (see also [31, Theorem
9.1]).

Remark 2.1. We would like to comment on the approach we have just mentioned. A suitable
regularization for the operator and an approximation procedure via the solutions of the related
smooth operators are powerful tools. One can thus obtain a solution for the non-smooth
operator as limit of solutions, and also regularity at the boundary if the boundary estimates
are stable in the approximation. On the other hand, as we will see in the next section, we can
develop a Potential Theory for our non-smooth operator H. As a consequence, we will have
the notion of generalized PW-solution and of H-regularity in the classical Perron-Wiener
sense. It seems to be troublesome to understand whether such a PW-solution appears as the
limit of a sequence of approximated PW-solutions, and also whether the H-regularity of a
boundary point says something about the behavior of this sequence. Therefore, we will deal
with the proof of Theorem 1.1 with a direct approach, by working directly with the non-smooth
operator H.
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There exist bounded open sets A ⊂ RN such that A×]t1, t2[ satisfies condition (2.5) at
any parabolic boundary point and for any t1 < t2, which says in our notations that there
exist H-solvable sets. It is enough (see [31, Proposition 6.1]) that, for every x0 ∈ ∂A, there
exist r0, θ0 > 0 such that

(2.6) |B(x0, r) rA| ≥ θ0|B(x0, r)| for all 0 < r ≤ r0.

Under this condition, the set A is H-solvable. There are, actually, plenty of sets fulfilling
this requirement. As a matter of fact, for any bounded open set B ⊂ RN and for every
δ > 0 there exist two H-solvable sets Aδ, A

δ such that

(2.7) {x ∈ B : d(x, ∂B) > δ} ⊆ Aδ ⊆ B ⊆ Aδ ⊆ {x ∈ RN : d(x,B) < δ}.

Following [31, Theorem 6.5], the idea for the proof is to cut away from B small metric balls
centered on ∂B.
Proceeding as in [8, Theorem 16.3 and Lemma 16.4] (see also [5]), we have the existence of
a Green function G = GA related to H-solvable sets A. More precisely, G is a continuous
function on the set {(z, ζ) ∈ (A×R)×(A×R) : z 6= ζ}, and it satisfies 0 ≤ G ≤ Γ. Moreover,
for every fixed ζ ∈ A × R, the function G(·, ζ) ∈ C2

X(A × R \ {ζ}) solves H(G(·, ζ)) = 0 in

A × R \ {ζ}, G(·, ζ) = 0 in ∂A × R. Also, for every ϕ ∈ C(A) such that ϕ = 0 in ∂A, and
for every fixed τ ∈ R, the function

u(x, t) =
∫
A
G(x, t, ξ, τ)ϕ(ξ) dξ, x ∈ A, t > τ,

is continuous on A× [τ,+∞[ and it solves

Hu = 0 in A×]τ,+∞[, u = 0 in ∂A× [τ,+∞[, u(·, τ) = ϕ in A.

In the proof of part (i) of Theorem 1.1 it will be important to derive precise estimates for the
Green functions of H-solvable sets scaling accordingly to the metric d. Let us fix now these
sets. Thanks to (2.7), for every z0 ∈ RN+1 and for every 0 < r there exists a H-solvable
set D(x0, r) satisfying B(x0,

1
2r) ⊆ D(x0, r) ⊆ B(x0, r). For every M ≥ e and r > 0 small

enough, we fix

(2.8) Cz0(M, r) = D
(
x0,
√
r log (M)

)
×]t0 − r, t0 + r[

and we denote by G(z0,M, r; z, ζ) the Green function of D
(
x0,
√
r log (M)

)
restricted to

Cz0(M, r).

3. Potential theory for H

In this section we show that H endows the strip S = RN×]T1, T2[ with a structure of β-
harmonic space. The potential theory we want to exploit has to deal with the C2

X -functions.
Given an open set Ω ⊂ S we denote by H(Ω) the family of the H-harmonic functions on Ω.
For our purposes this is given by

H(Ω) = {u ∈ C2
X(Ω) |Hu = 0 in Ω}.

Clearly Ω 7→ H(Ω) is a sheaf of functions on S, which is harmonic since H(Ω) is a linear
subspace of C(Ω) (hereafter we use the standard notation of Potential Theory in Abstract
Harmonic Spaces, as presented, e.g., in [12]).
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A bounded open set V ⊂ S is called H-regular if, for every continuous function ϕ : ∂V → R,
there exists a function u : V → R, H-harmonic in V and such that

lim
V 3x→y

u(x) = ϕ(y) for every y ∈ ∂V.

Thanks to the Maximum Principle in (2.4), this function u is unique, and nonnegative
whether ϕ ≥ 0. It will be denoted by HV

ϕ . Then, if V is an open H-regular set and z ∈ V ,
the map

ϕ 7→ HV
ϕ (z)

defines a linear and positive functional on C(∂V ). As a consequence, there exists a nonneg-
ative Radon measure µVz supported on ∂V such that

HV
ϕ (z) =

∫
∂V

ϕ(ζ) dµVz (ζ) ∀ ϕ ∈ C(∂V ).

We call µVz the H-harmonic measure related to V and z. A function u : Ω→]−∞,∞] will
be called H-hyperharmonic in Ω if u is lower semi-continuous and

u(z) ≥
∫
∂V

u(ζ) dµVz (ζ) ∀ z ∈ V,

for every H-regular open set V ⊂ V ⊆ Ω. The last condition is equivalent to ask the
following

HV
ϕ ≤ u in V ∀ϕ ∈ C(∂V ) with ϕ ≤ u|∂V .

We shall denote by H∗(Ω) the family of the H-hyperharmonic functions in Ω. If u ∈ H∗(Ω)
and u < +∞ in a dense subset of Ω, then we say that u is H-superharmonic in Ω and we
write u ∈ H(Ω).
In order to have the structure of β-harmonic space, we need some axioms to be satisfied.
The axiom of positivity is trivial for us since the function u ≡ 1 is H-harmonic and strictly
positive in S.
The axiom of separation can be proved as in [31, Proposition 3.6], by using the presence of
the fundamental solution Γ. The fact that, for any fixed ζ ∈ S, Γ(·, ζ) ∈ C2

X(S r {ζ}) is
a H-superharmonic function (actually a H-potential) can be proved as in [31, Proposition
3.4]. Also the Green function G(·, ζ) related to a H-solvable set is then H-superharmonic.
Moreover, if ν is a nonnegative Radon measure with compact support, we have

(3.1) Γ ∗ ν(·) :=

∫
S

Γ(·, ζ) dν(ζ) ∈ H∗(S).

As a matter of fact, the lower semicontinuity comes just from Fatou lemma and, since
Γ(·, ζ) ∈ H(S), we also get from Tonelli theorem that

Γ ∗ ν(z) =

∫
S

Γ(z, ζ) dν(ζ) ≥
∫
S

∫
∂V

Γ(ζ ′, ζ) dµVz (ζ ′) dν(ζ) =

∫
∂V

Γ ∗ ν(ζ ′) dµVz (ζ ′)

for all z ∈ V , and for all H-regular open sets V ⊂ V ⊆ S. The fact that Riesz-type functions
as Γ ∗ ν are H∗-functions will be crucial for us in the proof of Theorem 1.1 in Section 4.
For the axiom of convergence in the sense of Doob, we have to prove that the limit of any
increasing sequence of H-harmonic functions in an open set O ⊆ S is H-harmonic whenever
it is finite in a dense subset of O. It is well-known that this can be proved straightforwardly
once one has in hands a parabolic Harnack inequality. For our non-smooth operators (1.1)
the validity of suitable scale invariant Harnack inequalities has been proved in [8, Theorem
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15.1], as an ending point of a series of investigations [2, 3, 5, 7, 42, 31] (and references
therein).
The last axiom we have to satisfy is the so-called axiom of regularity : we need that the
family of H-regular subsets of S forms a basis for the Euclidean topology. In the case of
smooth coefficients, the hypoellipticity and the non-totally degeneracy of the Hörmander-
type operators allow to trigger the procedure by Bony in [6]. Since we want to deal with
operators with non-smooth coefficients, we are going to argue carefully by regularization
(the same regularization procedure we have briefly mentioned before Remark 2.1). We are
now going to show this fact in details. To this purpose let us consider, for ε > 0, suitable
regularized operators

Hε =

m∑
i,j=1

aεi,j(x, t)XiXj +

m∑
k=1

bεk(x, t)Xk − ∂t,

where aεi,j , b
ε
k are smooth and uniformly convergent on compact sets to ai,j , bk, as ε → 0+.

This regularization can be constructed in such a way that the CαX -norm of aεi,j , b
ε
k is taken

under control as ε → 0+ (as well as the ellipticity constants of aεi,j): this is proved in [8,
Theorem 14.2] via an ad hoc mollification, i.e. a convolution with the fundamental solution
of
∑
X2
j − ∂t. Fix now a point z0 = (x0, t0) ∈ S. If we denote the vector fields Xj =∑

k σj,k(x)∂xk , the Hörmander condition implies in particular that the matrix σt(x0)σ(x0)
cannot be the zero matrix. Without loss of generality, we can think (σt(x0)σ(x0))1,1 > 0.
We can consider, by continuity and by uniform convergence, an open neighborhood U of z0

where

(3.2) inf
z=(x,t)∈U

(
σt(x)Aε(z)σ(x)

)
1,1
≥ 1

2Λ
inf

(x,t)∈U
(σt(x)σ(x))1,1 ≥

1

4Λ
(σt(x0)σ(x0))1,1

for all ε. In U we can construct a basis of neighborhoods of z0 as in [6], i.e. bounded sets
with Lipschitz boundary as Vρ,M = B((x0 + Me1, t0),M + ρ) ∩ B((x0 −Me1, t0),M + ρ)
(for suitable M,ρ > 0). For any ε > 0, the Dirichlet problem{

Hεv = 0 in Vρ,M ,

v = ϕ on ∂Vρ,M

can be classically solved for any ϕ ∈ C(∂Vρ,M ). In fact, the hypoellipticity of the operators
Hε allows to solve such problem via elliptic regularization and the exterior ball property of
the sets Vρ,M allows to build Hε-barrier functions which guarantee the continuity up to the
boundary of the solutions (see, e.g, [6, Théorème 5.2]). Let us call uε the unique solutions
of such problems. The family (uε)ε is equibounded by max∂Vρ,M |ϕ|. Moreover, by [7] we
have the interior Schauder estimates

‖uε‖C2,αX (K) ≤ C ‖uε‖∞

in any compact set K ⊂ Vρ,M , with C independent of ε (it depends just on the ellipticity
constants, and the d-Hölder modulus of the operator coefficients). Thus, uε converges to a
function u in C2

X , as ε → 0+. In particular u ∈ H(Vρ,M ). In order to say that Vρ,M are
H-regular, we have to prove that u is continuous up to the boundary and it attains there
the datum ϕ. It is enough to see that, for any point ζ ∈ ∂Vρ,M the modulus of continuity
of uε at ζ is independent of ε. This is possible since we can find Hε-barrier functions which
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are independent of ε. More precisely, there exist M0, ρ0 such that, for every M ≥ M0 and
ρ ≤ ρ0 and for every point ζ = (y, s), the Hopf-type barrier

h(x, t) = e−Cr
2

− e−C(‖x−ξ0‖2+(t−τ0)2)

is a Hε-barrier for all ε > 0. Here r2 = ‖y − ξ0‖2 + (s− τ0)2, the point (ξ0, τ0) is such that

B((ξ0, τ0), r) r {ζ} ∩ Vρ,M = ∅. In order to check this is an actual barrier function (that is
Hεh ≤ 0 in an open neighborhood Uζ of ζ) we have to exploit (3.2) and the definition of
Vρ,M . The constant C and the neighborhood Uζ depend on the smoothness of the vector
fields, on Λ, and on the boundedness of bj (but not on ε). This concludes the proof that
(Vρ,M )ρ≤ρ0,M≥M0

is a H-regular basis of neighborhoods of z0.

3.1. Potential theory tools. We have thus proved that the operator H endows the strip
S with a structure of β-harmonic space satisfying the Doob convergence property. As a
consequence, for any bounded open set Ω with Ω ⊆ S, the Dirichlet problem{

Hu = 0 in Ω,

u|∂Ω = ϕ

has a generalized solution HΩ
ϕ , in the Perron-Wiener sense, for every continuous function

ϕ : ∂Ω→ R. Therefore we can define the notion of regularity for a boundary point. A point

z0 ∈ ∂Ω is called H-regular if

lim
Ω3z→z0

HΩ
ϕ (z) = ϕ(z0) for every ϕ ∈ C(∂Ω).

Classical characterizations for the regularity are available in β-harmonic spaces. Some of
them are related with the notion of balayage. We recall the definition for the convenience
of the reader. In what follows we agree to let lim infζ→z w(ζ) = supV ∈Uz (infV w) being Uz
a basis of neighborhoods of z.

Definition 3.1. Given a nonnegative H-hyperharmonic function u0 in S, and a subset E
of S, we denote the H-reduced function of u0 on E as

REu0
= inf{v : v ∈ H(S), v ≥ 0 in S, v ≥ u0 in E}.

We can thus define the H-balayage of u0 on E as

R̂Eu0
(z) = lim inf

ζ→z
REu0

(ζ), z ∈ S.

We denote by U0R̂Eu0
the balayage with respect to the harmonic space restricted to U0.

It will be important for us (see (4.9) below) to control the modulus of continuity of the

PW-solution in terms of a series of balayage functions R̂Kn1 for suitable compact sets Kn

(see also [31, Theorem 5.2]). Moreover, it will be crucial the classical notion of thinness (see,
e.g., [12, pg. 149]) in the proof of part (ii) of Theorem 1.1.

Definition 3.2. A set E ⊂ S is said to be H-thin at ζ0 ∈ S if there exist two open
neighborhoods V0 ⊂ U0 of ζ0 and a nonnegative H-hyperharmonic function u0 on U0 such
that

U0R̂E∩V0
u0

(ζ0) < u0(ζ0).
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Since we are in a β-harmonic space, we can always consider u0 ≡ 1 in the previous
definition (see [12, Proposition 6.3.2]). Moreover, the following characterization holds true
in β-harmonic spaces by [12, Theorem 6.3.3]:

(3.3) z0 ∈ ∂Ω is H-regular if and only if S r Ω is not H-thin at z0.

The fact we are dealing with evolutive operators allows us the see that RN×{t ≥ t0} is always
H-thin at points z0 = (x0, t0). As a matter of fact, if we denote w = infε>0 χ{t>t0−ε} and
we notice that the characteristic functions χ{t>t0−ε} are H-superharmonic by the maximum
principle in (2.4), we have

R̂
RN×{t≥t0}
1 (z0) ≤ lim inf

z→z0
w(z) = 0 < 1.

Hence, since the union of two sets which are thin at z0 is thin at z0 by [12, Theorem 6.3.1],
we have that

(3.4) (S r Ω) ∩ {t < t0} is H-thin at z0 =⇒ S r Ω is H-thin at z0.

3.2. Gaussian capacities. We also fix the definition of capacity Ca with respect to the
Gaussian Ga. Let us denote by F(RN+1) the collection of the compact subsets of RN+1.
For F ∈ F(RN+1), we denote byM+(F ) the set of nonnegative Radon measures supported
on F . For any a > 0, we define

Ca(F ) = sup

{
µ(F ) : µ ∈M+(F ), and Ga ∗ µ(z) =

∫
Ga(z, ζ)dµ(ζ) ≤ 1 ∀z ∈ S

}
.

The following properties holds true (see e.g. [18, Chapter 1, Section 2]):

(i) Ca(F ) <∞ for any F ∈ F(RN+1);
(ii) if F1, F2 ∈ F(RN+1) with F1 ⊆ F2, then Ca(F1) ≤ Ca(F2);
(iii) for every F ∈ F(RN+1) there exists µF = µFa ∈M+(F ) with Ga ∗ µF ≤ 1 in RN+1

such that

µF (F ) = Ca(F );

(iv) if F ⊆ ∪k∈NFk with F, Fk ∈ F(RN+1), then Ca(F ) ≤
∑
k∈N Ca(Fk).

The measure µFa is called Ga-equilibrium measure of F , and the function Ga ∗ µF is called
a Ga-equilibrium potential of F . Moreover, if a ≤ b, we have Gb ≤ Ga and thus

(3.5) Ca(F ) ≤ Cb(F ) ∀F ∈ F(RN+1).

4. Proof of the main results

Fix a bounded open set Ω compactly contained in S, and let a0 ≤ b0 be the positive
constants in (2.3). In this section we finally prove Theorem 1.1, Corollary 1.2, and Corollary
1.3. Theorem 1.1 consists of two parts, and it deals with the relation between the regularity
of z0 = (x0, t0) ∈ ∂Ω and the behavior of the Gaussian capacities of the compact sets

Ωhk(z0, λ) =

{
ζ = (ξ, τ) ∈ S r Ω : λk+1 ≤ t0 − τ ≤ λk,(4.1)

(
1

λ

)h−1

≤ exp

(
d2(x0, ξ)

t0 − τ

)
≤
(

1

λ

)h
, d̂(z0, ζ) ≤

√
λ

}
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for h, k ∈ N. For part (i) (concerning the sufficient condition for the regularity), we go
through the approach outlined in [30] where we exploit suitable estimates of the Green
kernels of subSection 2.2. For part (ii) (the necessary condition), we need to implement a
completely new strategy with respect to [30].

4.1. Proof of part (ii). General potential theory provides the link between the regularity
and the divergence of a certain series of balayage functions (see, e.g., [31, Proposition 4.12]).
In the case of smooth coefficients, one can then use the representation of the balayage as
Riesz-potential (namely the convolution of Γ with the relevant Riesz measure). The Gaussian
estimates for Γ give then the divergence of a series of the type (1.3). This strategy has been
followed in [30]. Here we deal with non-divergence operators with non-smooth coefficients:
a new difficulty arises in trying to follow the same approach, due to the lack of suitable
Riesz-type representations for H-superharmonic functions. To avoid this problem, we shall
make use of the Riesz measures of a prototype (smooth) operator of the type 1

β

∑
X2
j − ∂t.

Let us then take

β =
b0
a0
≥ 1, and denote Hβ =

1

β

m∑
j=1

X2
j − ∂t.

The operator H1 =
∑
X2
j − ∂t falls in the class of operators H we are considering (since

Λ ≥ 1). Therefore its fundamental solution Γ1 satisfies the Gaussian estimates (2.3) in S.
It is easy to see that the fundamental solution of Hβ , which we are going to denote by Γβ ,
is a rescaled version of Γ1, i.e.

Γβ((x, t), (ξ, τ)) = Γ1

((
x,

1

β
t

)
,

(
ξ,

1

β
τ

))
.

For all z = (x, t), ζ = (ξ, τ) ∈ Sβ := RN×]βT1, βT2[⊇ S, we have then

1

C0
Gb0

((
x,

1

β
t

)
,

(
ξ,

1

β
τ

))
≤ Γβ(z, ζ) ≤ C0 Ga0

((
x,

1

β
t

)
,

(
ξ,

1

β
τ

))
.

From the definitions of d-Gaussians and since β ≥ 1, we can recognize that

Gb0

((
x,

1

β
t

)
,

(
ξ,

1

β
τ

))
≥ Gb0β(z, ζ), and

Ga0

((
x,

1

β
t

)
,

(
ξ,

1

β
τ

))
≤ cdβ

Q
2 Ga0β(z, ζ),

where cd is the doubling constant and Q is the relative homogeneous dimension. Hence we
get

(4.2)
1

C0
G b20
a0

(z, ζ) ≤ Γβ(z, ζ) ≤ C0cdβ
Q
2 Gb0(z, ζ) ≤ C2

0cdβ
Q
2 Γ(z, ζ), ∀z, ζ ∈ S.

Thus, the fundamental solution of the prototype operator Hβ is (up to a structural constant)
below all the fundamental solutions Γ of the operators H in our class, and it lies above a

d-Gaussian with exponent
b20
a0

. Our aim is to prove part (ii) exactly with the choice

β0 =
b20
a0
≥ b0.
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We are going to argue by contradiction. So, for a fixed z0 ∈ ∂Ω and λ ∈ (0, 1), suppose that

(4.3)

+∞∑
h,k=1

Cb
(
Ωhk(z0, λ)

)∣∣∣B (x0,
√
λk
)∣∣∣λah < +∞

for some b ≥ β0 and 0 < a ≤ a0. We want to exploit this in order to find a nonnegative
H-hyperharmonic function u on a suitable neighborhood of z0 such that

(4.4) lim inf
(SrΩ)∩{t<t0}3z→z0

u(z) > u(z0).

We will recall that this fact implies the H-thinness of (SrΩ)∩{t < t0} at z0, and therefore
the non-regularity of z0. A similar strategy of proof has been used by Lanconelli in [27,
Teorema 3.3], where he compared regularity criteria with respect to two different classical
parabolic operators in terms of the difference of their quadratic forms. Here we construct
the desired H-hyperharmonic function u with a superposition of Riesz-potentials of the type
Γ ∗ µβ , where µβ are Riesz measures of suitable Hβ-balayage functions.
Let us see the proof in details. For any h, k ∈ N, there exists a compact set Ehk ⊂ S with
the following properties

(4.5)


Ωhk(z0, λ) ⊂ int

(
Ehk
)
,

Cβ0

(
Ehk
)
≤ Cβ0

(
Ωhk(z0, λ)

)
+ λkQ,

supζ∈Ehk Ga0(z0, ζ) ≤ Cλ λa0h

|B(x0,
√
λk)| , for some positive Cλ indipendent of h, k.

The constant Cλ might depend on λ, z0, and structural quantities (a0, Q, . . .). One can in
fact make the choice

Ehk =
(
Ωhk(z0, λ)

)
1
m

:=

{
ζ ∈ S : ∃ζ̄ ∈ Ωhk(z0, λ) with d̂(ζ, ζ̄) ≤ 1

m

}
for some m = m(h, k, λ). The fact that Ωhk(z0, λ) ⊂ int

(
Ehk
)

is trivial with this choice.
Recalling that

sup
ζ∈Ωhk(z0,λ)

Ga0(z0, ζ) ≤ λa0(h−1)∣∣∣B (x0,
√
λk+1

)∣∣∣ ≤ cd

λa0+Q
2

λa0h∣∣∣B (x0,
√
λk
)∣∣∣ ,

the third required property can be proved in a straightforward way from the definition of
Ehk for all m big enough (i.e. by increasing suitably the constant cd

λa0+
Q
2

, for m bigger than

some m1(h, k, λ)). On the other hand, the second property follows from the fact that

Cβ0

(
Ωhk(z0, λ)

)
= inf

m
Cβ0

((
Ωhk(z0, λ)

)
1
m

)
which holds true since Ωhk(z0, λ) =

⋂
m

(
Ωhk(z0, λ)

)
1
m

(see [18, Remark at pg. 155]). Once we have established the existence of Ehk , we can consider

the Hβ-balayage V βh,k := R̂
Ehk
1 . Since Hβ has smooth coefficients, by [31, Proposition 8.3]

we can represent V βh,k as the Riesz potential Γβ ∗ µβh,k almost everywhere in S, for some

nonnegative Radon measure µβh,k supported in Ehk . Moreover we have

(4.6) V βh,k = Γβ ∗ µβh,k ≡ 1 in int
(
Ehk
)
⊃ Ωhk(z0, λ).
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We can now define, for l ∈ N, the function ul : S → [0,+∞] as

ul =

+∞∑
k=2l

+∞∑
h=1

Γ ∗ µβh,k.

By (3.1) we know that ul ∈ H∗(S). We have also(
B̂(z0, λl) r Ω

)
∩ {t < t0} ⊆

+∞⋃
k=2l

+∞⋃
h=1

Ωhk(z0, λ).

Hence, for every z ∈
(
B̂(z0, λl) r Ω

)
∩{t < t0}, we can consider k̄, h̄ such that z ∈ Ωh̄

k̄
(z0, λ),

and we get

(4.7) ul(z) ≥ Γ ∗ µβ
h̄,k̄

(z) ≥ 1

cdC2
0β

Q
2

Γβ ∗ µβ
h̄,k̄

(z) =
1

cdC2
0β

Q
2

by (4.2) and (4.6). On the other hand, we claim that

lim
l→+∞

ul(z0) = 0.

In fact, by (2.3) and (4.5) we have

ul(z0) ≤
+∞∑
k=2l

+∞∑
h=1

µβh,k
(
Ehk
)

sup
ζ∈Ehk

Γ(z0, ζ) ≤ C0

+∞∑
k=2l

+∞∑
h=1

µβh,k
(
Ehk
)

sup
ζ∈Ehk

Ga0(z0, ζ)

≤ C0Cλ

+∞∑
k=2l

+∞∑
h=1

µβh,k
(
Ehk
) λa0h∣∣∣B (x0,

√
λk
)∣∣∣ .

Furthermore, by (4.2) and [30, Corollary 2.4] we have µβh,k
(
Ehk
)

=: CHβ
(
Ehk
)
≤ c Cβ0

(
Ehk
)

for some structural positive constant c. Therefore, by using (4.5) and the doubling condition,
we get

ul(z0) ≤ C0Cλc

+∞∑
k=2l

+∞∑
h=1

Cβ0

(
Ehk
) λa0h∣∣∣B (x0,

√
λk
)∣∣∣

≤ C0Cλc

+∞∑
k=2l

+∞∑
h=1

(
Cβ0

(
Ωhk(z0, λ)

)
+ λkQ

) λa0h∣∣∣B (x0,
√
λk
)∣∣∣

≤ C0Cλc

+∞∑
k=2l

+∞∑
h=1

Cβ0

(
Ωhk(z0, λ)

) λa0h∣∣∣B (x0,
√
λk
)∣∣∣ +

cdC0Cλc

|B (x0, 1)|

+∞∑
k=2l

+∞∑
h=1

λk
Q
2 λa0h.

We recall that b ≥ β0 and 0 < a ≤ a0, and also Cβ0
≤ Cb by (3.5). Thus we have

ul(z0) ≤ C0Cλc

+∞∑
k=2l

+∞∑
h=1

Cb
(
Ωhk(z0, λ)

) λah∣∣∣B (x0,
√
λk
)∣∣∣ +

cdC0Cλc

|B (x0, 1)|

+∞∑
k=2l

+∞∑
h=1

λk
Q
2 λa0h.

The double series at the r.h.s. are both convergent: the second one just because λ < 1,
whereas the convergence of the first is our assumption (4.3). The claim is then proved, since
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we can make the r.h.s. as small as we want for large l. Thus, we can take l0 ∈ N such that

ul0(z0) <
1

cdC2
0β

Q
2

.

Hence, we deduce from (4.7) that

lim inf
(SrΩ)∩{t<t0}3z→z0

ul0(z) ≥ inf(
B̂(z0,λl0 )rΩ

)
∩{t<t0}

ul0 ≥
1

cdC2
0β

Q
2

> ul0(z0).

The nonnegativeH-hyperharmonic function ul0 does the job we were looking for in (4.4). On

the other hand, if we put s = cdC
2
0β

Q
2 , we can consider the nonnegative H-hyperharmonic

function v defined by

v(z) = s · ul0(z).

We have by (4.7) that v ≥ 1 in
(
B̂(z0, λ

l0) r Ω
)
∩ {t < t0} = ( (S r Ω) ∩ {t < t0}) ∩

B̂(z0, λ
l0). Therefore

R̂
( (SrΩ)∩{t<t0})∩B̂(z0,λ

l0 )
1 (z0) ≤ R( (SrΩ)∩{t<t0})∩B̂(z0,λ

l0 )
1 (z0) ≤ v(z0) < 1,

which means by definition that (S r Ω) ∩ {t < t0} is H-thin at z0. This fact, together with
(3.3) and (3.4), is telling us that z0 is not H-regular for Ω. This completes the proof of part
(ii).

4.2. Proof of part (i), and corollaries. To prove part (i) we first estimate the modulus
of continuity of the PW-solution in terms of a Wiener function, which is then estimated
with a series involving capacitary terms. Although this approach is rather delicate, we have
the possibility to follow the quantitative proof in [30]. We summarize the needed estimate
in the following proposition. We first fix some notations. Let us introduce the function

Sba(λ; z0, z) =
∑

N3k≤ log d̂2(z0,z)
log λ

+∞∑
h=1

Ca
(
Ωhk(z0, λ)

)∣∣∣B (x0,
√
λk
)∣∣∣λbh,

which encodes the behavior of the Wiener type series in (1.2). Moreover, for l ∈ N we can

consider the compact sets Fl =

(
B̂
(
z0, λ

l
2

)
∩ {t ≤ t0}

)
r Ω, and the following H-Wiener

function for Ω at z0

Wρ =

∞∑
l=1

ρl(1− R̂Fl1 ), for ρ ∈]0, 1[,

which concerns the behavior of the H-balayage functions around z0. Let us also put, for
σ > 0,

wρ(σ) = inf
{
Wρ(z) : z ∈ Ω, d̂(z0, z) ≥ σ

}
.

Finally, we denote the oscillation of a function ϕ ∈ C(∂Ω,R) at a point z0 ∈ ∂Ω and scale
r as

ωϕ(z0, r) = sup
d̂(z,z0)≤r

|ϕ(z)− ϕ(z0)|.
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Proposition 4.1. Let z0 ∈ ∂Ω and λ ∈]0, 1[. For every 0 < a ≤ a0 and b > b0 there exist
positive constants C and ρ0 (only depending on a, b, λ) such that

(4.8)
∣∣HΩ

ϕ (z)− ϕ(z0)
∣∣ ≤ inf

σ>0

(
ωϕ(z0, σ) + C

ωϕ(z0, diamd̂(∂Ω))

wρ0(σ)
exp

(
− 1

C
Sba(λ; z0, z)

))
for every z ∈ Ω, and for all ϕ ∈ C(∂Ω,R).

Proof. Fix z0 ∈ ∂Ω, and ϕ ∈ C(∂Ω,R). We can proceed verbatim as in the proof of [31,
Theorem 5.2] and we can get

(4.9)
∣∣HΩ

ϕ (z)− ϕ(z0)
∣∣ ≤ inf

σ>0

(
ωϕ(z0, σ) + ωϕ(z0,diamd̂(∂Ω))

Wρ(z)

wρ(σ)

)
for all z ∈ Ω, and for any ρ ∈]0, 1[. We also notice that wρ(σ) has to be strictly positive by
arguing as in [31, inequality (5.6)]. Fix now λ, a and b as in the statement. The inequality
(4.8) then follows if we can prove the existence of C and ρ0 such that

Wρ0(z) ≤ C exp

(
− 1

C
Sba(λ; z0, z)

)
for every z ∈ S,

which is the analogous of [30, Theorem 1.2]. We recall here the main steps in the proof, and
we refer the reader to [30] for everything else. We denote

Dh
k (z0, λ) =

h⋃
j=1

Ωjk(z0, λ) for h, k ∈ N, and

Zba(λ; z0, z) =
∑

N3k≤ log d̂2(z0,z)
log λ

+∞∑
h=1

Ca
(
Dh
k (z0, λ)

)∣∣∣B (x0,
√
λk
)∣∣∣λbh.

Since Sba(λ; z0, z) and Zba(λ; z0, z) have equivalent behavior and Zba(λ1; z0, z) is equivalent to
Zba(λ2; z0, z) for λ1 6= λ2 by [30, Remark 4.1 and Remark 4.2], it is enough to prove that, if
λ > 0 is small enough (less than a structural λ0), then there exist C and ρ0 such that

Wρ0(z) ≤ C exp

(
− 1

C
Zba(λ; z0, z)

)
for every z ∈ S.

To this aim, the crucial part of the argument is to prove that there exists a positive constant
C1 such that

(4.10) 1− R̂Fl1 (z) ≤ exp (C1 · l) exp

(
− 1

C1
Zba(λ; z0, z)

)
∀z ∈ S, and for every l ∈ N :

this fact, together with the choice 0 < ρ < e−C1 , would imply

Wρ(z) =

+∞∑
l=1

ρl
(

1− R̂Fl1 (z)
)
≤ exp

(
− 1

C1
Zba(λ; z0, z)

)+∞∑
l=1

(
ρeC1

)l
and would complete the proof. The proof of (4.10) requires the estimate in [30, Lemma
3.4], which is the most delicate part. We can derive such result in the same exact way. We
just mention here that this estimate links the behavior of the H-balayage of a finite union of
compact sets Ki approaching z0 from below with the behavior at z0 of certain G-equilibrium
potentials of Ki. These equilibrium potentials are defined as the convolution of the Green
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function of subSection 2.2 related to the cylinder Cz0(M, r) defined in (2.8) with the measure
νi ∈M+(Ki) for which

νi(Ki) = sup

{
µ(Ki) : µ ∈M+(Ki), and

∫
G(z0,M, r; z, ζ)dµ(ζ) ≤ 1 ∀z ∈ S

}
.

The measure νi is a (so called) equilibrium measure of Ki related to the kernel G(z0,M, r; ·, ·)
(see, e.g., [18, 30]). The Gaussian bounds for the Green functions and the Hölder continuity
for the solutions to H (which in our case comes from the Harnack inequality in [8, Theorem
15.1]) are the main ingredients in order to get the correct dependence with respect to r,M
and, more in general, the proof of the desired estimate. �

The proof of part (i) in Theorem 1.1 easily follows from the last proposition. We have

just to observe that the hypothesis (1.2) says that Sba(λ; z0, z) → +∞ as d̂(z0, z) → 0+.
Thus, the right hand side of (4.9) can be made as small as we want for some σ > 0, for any
continuous function ϕ. Hence z0 has to be H-regular, and the proof is complete.

Let us now recall here for clarity the definition of d-cone condition (already appeared
with (2.5)).

Definition 4.2. We say that Ω satisfies the exterior d-cone condition at a point z0 =
(x0, t0) ∈ ∂Ω if there exist M0, r0, θ > 0 such that∣∣∣{x ∈ B(x0,M0r) : (x, t0 − r2) 6∈ Ω}| ≥ θ|B(x0,M0r)

∣∣∣ for every 0 < r ≤ r0.

Under this condition it is possible to give a further estimate of the H-Wiener function
Wρ0 , where ρ0 is the constant in Proposition 4.1.

Proposition 4.3. Assume Ω satisfies the exterior d-cone condition at z0 ∈ ∂Ω. Then there
exist c and α such that

Wρ0(z) ≤ c
(
d̂(z0, z)

)α
for every z ∈ S.

The proof can be done by arguing verbatim as in [30, Theorem 5.4], by using the integral
bound in [30, Theorem 1.3]. The last proposition, together with (4.9), says in particular that
the d-cone condition ensures the H-regularity of z0 (see also the recent results in [21, 22]
for cone-type criteria for some classes of hypoelliptic operators). We recall that, if Ω is a
cylinder of the type A×]t1, t2[, the d-cone condition is implied by the density condition (2.6)
for the set A ⊂ RN (see the results in [43, 41] for the boundary regularity of some stationary
operators under condition (2.6)).
To complete the proof of Corollary 1.2, we want also to deduce the hölder regularity of HΩ

ϕ

at z0 by assuming more control on the oscillation ωϕ(z0, r). This is again a consequence of
Proposition 4.3 and (4.9) (see [30, Theorem 1.4] and [31, Proposition 5.7] for more details).

Finally, we are just left with the proof of Corollary 1.3.

Proof of Corollary 1.3. Let E be the subset of ∂Ω as in the statement. For the case f ≡ 0,
we have proved with Theorem 1.1 that the choice u = HΩ

ϕ solves the problem, for any
continuous datum ϕ on ∂Ω.

On the other hand, let us consider the case of a function f ∈ CβX in a neighborhood Ω0 of

Ω. Let ψ ∈ C∞0 (Ω0) be a cut-off function such that ψ = 1 in Ω. Then f̃ = fψ ∈ CβX(RN+1).
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We set v(x, t) = −
∫
RN×[T0,t]

Γ(x, t; ζ) f̃(ζ) dζ, where T0 is a fixed time “below” Ω0. In this

way v ∈ C2
X(RN×]T0, T2[) and Hv = f̃ in RN×]T0, T2[ (see [8, Theorem 10.7]). It is now

sufficient to choose u = v +HΩ
ϕ−v. �
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