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Abstract
Premature mortality is often a neglected component of overall deaths, and the most 
difficult to identify. However, it is important to estimate its prevalence. Following 
Pearson’s theory about mortality components, a definition of premature deaths and 
a parametric model to study its transformations are introduced. The model is a mix-
ture of three distributions: a Half Normal for the first part of the death curve and 
two Skew Normals to fit the remaining pieces. One advantage of the model is the 
possibility of obtaining an explicit equation to compute life expectancy at birth and 
to break it down into mortality components. We estimated the mixture model for 
Sweden, France, East Germany and Czech Republic. In addition, to the well-known 
reduction in infant deaths, and compression and shifting trend of adult mortality, we 
were able to study the trend of the central part of the distribution of deaths in detail. 
In general, a right shift of the modal age at death for young adults is observed; in 
some cases, it is also accompanied by an increase in the number of deaths at these 
ages: in particular for France, in the last twenty years, premature mortality increases.

Keywords Mortality model · Mixture distribution · Skew Normal distribution · 
Premature mortality · Life expectancy

1 Introduction

The general increase in life expectancy could lead to the conclusion that all people 
live longer. Vaupel et al. (2011) indeed showed that the longest life expectancies are 
observed in populations where lifespan variation is low. They also pointed out that 
the reduction in disparities is due to averting premature deaths. However, instead 

 * Lucia Zanotto 
 lucia.zanotto@unive.it

1 Department of Economics, Ca’ Foscari University of Venice, Venice, Italy
2 School of Demography, Australian National University, Canberra, Australia
3 Department of Statistical Sciences, University of Padua, Padua, Italy

http://orcid.org/0000-0003-1908-7276
http://orcid.org/0000-0001-6532-0089
http://orcid.org/0000-0002-1686-5477
http://crossmark.crossref.org/dialog/?doi=10.1007/s10680-019-09552-x&domain=pdf


 L. Zanotto et al.

1 3

of observing a greater compression of mortality around the modal age at death, an 
increase in the variability is observed in some industrialized countries (Lynch and 
Brown 2001; Rothenberg et  al. 1991). Moreover, premature mortality is strongly 
associated with health inequalities (Romeder and McWhinnie 1977), and lifespan 
disparity is higher and has been increasing faster among people with low educa-
tion level (Van Raalte et  al. 2011). The decrease in early mortality leads thus to 
greater longevity and greater equality between individuals, so the identification of 
the impact and the trend of premature deaths can be the first step to achieve the two 
goals.

What is premature mortality? How to recognize and measure it? The problem of 
identification of this component is tied to the difficulty of characterizing and sepa-
rating it from adult mortality. According to different authors, several definitions have 
been proposed. For Eurostat, the term indicates all the deaths occurring before age 
65, or the usual age at retirement (World Health Organization 2003). This defini-
tion can be useful and convenient because it leads to a clear separation between the 
two types of deaths. However, it cannot be employed to study premature mortality 
in the past or in countries where life expectancy at birth is less than (or close to) 65 
years. Furthermore, this definition of retirement age is currently being adjusted to an 
increasing life expectancy at birth.

Two measures of life disparities are related to premature mortality: Year Life 
Lost (Murray et al. 2012) and dispersion in age at death, or e† (Vaupel and Canudas-
Romo 2003). Both of them are based on life expectancy at birth, so they give a con-
cise measure of mortality inequalities, including information for all ages. Contrary, 
the approach here developed includes a full component solely on premature mor-
tality: the identification of its distribution starting from the deaths curve, its mean, 
mode, standard deviation, skewness and their relation with other elements of the 
deaths distribution can be studied. Our parameterization further facilitates the cal-
culation of the percentage of deaths due to premature mortality and the mean years 
lived for people dying prematurely.

There is a long tradition of authors publishing theories about mortality compo-
nents and the possibility of recognizing them using the distribution of deaths (Bar-
nett 1958; Benjamin 1959; Clarke 1950; Lexis 1879; Pearson 1897). The most 
famous approach was introduced by Lexis (1879), who divided the distribution 
into three parts: infant, premature and “normal” deaths. The first part starts at age 
0 and finishes where the minimum, between ages 10–12, is encountered (Ebeling 
2018). To determine the area of adult mortality, Lexis considered the shape of the 
death curve from the adult modal age to the last age at death and left-flipped it, in 
order to obtain a symmetrical section, which resembles a Gaussian normal distribu-
tion. These deaths under the Gaussian curve are referred to as normal deaths. Then, 
premature mortality designates the transition region between childhood and adult 
deaths. This identification of the adult modal age at death has been used to under-
stand the development of mortality across the twentieth century (Bongaarts 2005; 
Cheung et  al. 2005, 2009; Canudas-Romo 2008, 2010; Cheung and Robine 2007; 
Horiuchi et al. 2013; Kannisto 2000, 2001; Ouellette and Bourbeau 2011; Wilmoth 
and Horiuchi 1999; Wilmoth and Robine 2003). Pearson (1897) evaluated the prob-
lem from a statistical point of view: taking Lexis’ idea even further and considering 
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the distribution of deaths to be composed of five functions with different degrees of 
skewness. In particular, he distinguished between infancy and childhood mortality 
and proposed for the first a negative exponential curve, covering also the antenatal 
period, and for the second a highly skewed distribution. Pearson also differentiated 
Lexis’ transitional region between youth (accidental) and middle life (premature) 
deaths. For both of these, he drew a normal distribution with one mode around age 
25 and another around age 40. Finally, he identified old mortality like a skew dis-
tribution with skewness toward younger ages. Pearson justified his selection in two 
ways: (i) his theoretical argument was that the number of deaths at older ages must 
depend on the incidence of deaths at earlier ages, so it cannot be symmetrical, while 
(ii) the practical reason was that, without a skew curve, he was not able to obtain a 
satisfactory fit of the overall curve (Pearson 1897).

Even if the distribution of deaths by age is a good instrument to separate mortal-
ity components, generally, the models proposed in the literature based on death rates 
do not take into consideration premature mortality nor the accidental hump (Bennett 
1983; Gompertz 1825; Kannisto 1994; Makeham 1860; Siler 1979; Weibull 1939). 
Heligman and Pollard (1980), based on the work of Thiele (1871), inserted three 
parameters to capture accidental mortality, but this component does not include 
premature mortality. Indeed, accidental and premature mortality are not the same 
thing: the first indicates deaths occurring around early adult years, which are usu-
ally identified as the “accidental hump” in the death distribution. This excess of 
mortality is observable mainly in human male distributions (Remund et al. 2018), 
and it is connected with sexual maturity, which depends on testosterone production 
(Parkes 1976), that increases the risk-taking behaviors. However, this increment is 
also related to socioeconomic vulnerability, as explained by Remund (2018), who 
showed how the favorable social context can reduce the risk of dying during these 
ages. Goldstein (2011) showed that, since 1750, the peak of the accidental hump has 
shifted to early ages from age 22 to age 18. The evolution of this trend depends on 
both nutritional status and disease environment. External causes of deaths, as sui-
cide, homicide and accidents, are the main responsible of young adults deaths. Also 
the HIV/AIDS epidemic contributed to the peak in particular in the USA between 
1980s and 1990s. The role of traffic and other accidents has decreased in the last few 
years (Remund et al. 2018).

On the other hand, premature mortality is a more wider concept. It describes all 
the deaths which take place before the “natural” age of deaths, although there is 
no consensus on the age threshold distinguishing deaths of old-age and premature 
ones. In statistical terms, premature mortality designates all the youth and young 
adulthood deaths happening outside the adult mortality area except infant and child-
hood deaths. The leading cause of death before old-age is neoplasm (Mazzuco et al. 
2018b). According to a new classification of causes of death proposed by Cama-
rda et al. (2015), there exists a group of degenerative diseases due in particular to 
strong man-made component, implying that an important part of these deaths can 
be preventable. Indeed, in the literature, the link between mortality and life styles 
is well known: for example, on average, people with a higher socioeconomic sta-
tus live longer than others (Antonovsky 1967; Hattersley 1997; Huisman et  al. 
2004; Marmot and McDowall 1986; van Raalte et al. 2018). Another characteristic 



 L. Zanotto et al.

1 3

of premature mortality is that it produces life disparity: its complete postponement 
can reduce the entropy of the life table and increase the general life expectancy at 
birth. In other words, premature mortality designates all the youth and young adult-
hood deaths that occur outside the adult mortality area, which can be identified only 
by looking at the death curve. Although with drawbacks, the distribution of deaths 
has the advantage of being a density function, so it is possible to use a mixture of 
continuous probability distributions to approximate it. Strictly following Pearson’s 
approach, this corresponds to a model with no fewer than 13 parameters, with iden-
tification problems. The aim of this study is to work with a more parsimonious par-
ametric model, which has the capacity to fit the entire age schedule of mortality, 
including a specific flexible function to model at the same time accidental and pre-
mature mortality. Even if accidental and premature mortality are different in distri-
bution shape and position (and probably causes and mechanisms that generate their 
deaths), both produce early deaths, which are important to identify and detect on 
the whole to better understand the mortality evolution. The usefulness of this model 
to capture premature mortality is illustrated here by fitting the age distribution of 
deaths in several European countries.

The area of premature mortality partially overlaps the area of adult mortality, so 
that the two components seem to be a unique distribution. There is no visible break-
ing point or range of ages, which gives some indication of the position of this distri-
bution. However, based on parameter estimates of the proposed model, the evolution 
of mortality in the middle part of the distribution of deaths by age can be analyzed. 
Our model uses several distributions, accounting for each of the components of the 
mortality age-profile. For all these distributions, it is possible to compute in explicit 
form mean, variance and skewness. Furthermore, it is even possible to distinguish 
between adult and the young modal ages at death.

This study is organized as follows: in Sect. 2 the data employed for the illustra-
tions are described; Sect. 3 explains the method used to implement the model, and 
its advantages are discussed; in Sect. 4 results are shown; and Sect. 5 includes dis-
cussion and conclusion.

2  Data

To fit the model, we analyze period death and exposure counts by single age and 
year from the Human Mortality Database (HMD) (Barbieri et al. 2015). We focus, 
in particular, on male populations from Sweden, France, East Germany and the 
Czech Republic. These populations are chosen to summarize mortality trends we 
observe for other European countries from the north, south, center and east of the 
continent. The reasons behind the choice of working only with male populations are 
twofold: (i) greater propensity to observe accidental mortality in their distribution 
of deaths; and (ii) a predisposition of asymmetry in the last part of the curve. Both 
elements are more challenging in the male than in the female populations, and this 
motivates our choice. For all of these populations, life tables were computed follow-
ing standard procedures (Preston et al. 2001).
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3  Method

Historically, the death rates are the first choice to fit the age-patterns of mortality 
(Gompertz 1825; Makeham 1860; Weibull 1939; Siler 1979; Bennett 1983; Kan-
nisto 1994). Heligman and Pollard (1980) specified an eight parameters model 
for the odds ratio of probability of dying that can fit accidental mortality. More 
recently, parametric and nonparametric models have been used to fit the mortality 
curve. For example, the CoDe model, proposed by De Beer and Janssen (2016), 
has 10 unknown values and it was specifically developed to study the mortal-
ity compression in youth, adult and advanced ages, as well as describing the full 
age pattern. De Beer and Janssen (2014) also introduced an additional generaliza-
tion of the Heligman and Pollard model, which also includes 10 parameters. An 
additional work to mention corresponds to Basellini and Camarda (2016), who 
showed that the distribution of deaths can be employed to understand the trans-
formations of mortality, in particular shifting and compression of adult deaths.

Gompertz, Makeham, Thiele and Heligman–Pollard proposed mathematical 
functions which take into account premature mortality. However, this concept is 
different in each model. For Gompertz and Makeham, it is something fixed across 
ages: Gompertz used the parameter a to describe the initial size of mortality, and 
Makeham added a constant representing deaths occurring randomly with respect 
to age. Both Thiele and Heligman–Pollard considered as premature mortality 
only the accidental hump. In our model, premature mortality is the sum of acci-
dental mortality and the excess of deaths occurring before old-age. Moreover, it 
is modeled using a distribution, which is time and age variant.

The model used in this paper is inspired by Pearson’s idea on mortality com-
ponents that distinguish between adult deaths and premature ones, and which fits 
all the age-distribution of deaths. A simplified version was introduced by Maz-
zuco et al. (2018a) to analyze mortality and to discuss the statistical advantages 
of working with a parametric approach. In particular, the authors point out that to 
approximate the characteristic shape of the deaths, density functions are required, 
the maximum likelihood is directly applied, and no constraints on the parameters 
and the function need to be set up. Moreover, it is possible to reconstruct the 
entire life table with the obtained modeled distribution of deaths dx.

The model here used is a variation of the approach implemented by Mazzuco 
et al. (2018a), who proposed a mixture of one Half Normal and a Bimodal Skew 
Normal distribution (Elal-Olivero et al. 2009; Rocha et al. 2013) to fit the death 
curve. This method works in many contexts, and it is able to approximate sev-
eral mortality paths, including excess mortality at young ages, for example due 
to HIV. The model has some restrictions about the values that the coefficients 
regarding premature mortality can assume, since the Bimodal Skew Normal can 
be seen as a mixture of two functions with fixed values. To obtain a better flex-
ibility and study more specifically the evolution of the death curve in its mid-
dle part, these restrictions are eliminated and a mixture of three distributions is 
adopted (for more details, see “Appendix A”). Infant mortality and child mortal-
ity are summarized employing a Half Normal distribution, which is defined only 
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for values greater than 0. Moreover, it is possible to use its mode like a measure 
of infant mortality level. This distribution has the following probability density 
function:

where x is the age at death. Different from Mazzuco et al. (2018a), the � parameter 
is set to 1 and thus omitted here; furthermore, this value allows fitting infant mortal-
ity and the decline of the curve after infancy, avoiding identification issues.

A Skew Normal distribution (Azzalini 1985) is adopted for adult mortality. This 
class of distributions includes the normal one as a particular case, so it is possible to 
control if the adult distribution requires an asymmetrical function, in line with Pear-
son’s theory, or if a symmetrical one is sufficient. The distribution selected to model 
and combine the accidental and premature mortality follows the shape of the death 
curve in its middle part. Certainly modeling accidental and premature component 
separately would have been theoretically the best choice, but practically impossible: 
an additional distribution leads to more identification problems. Moreover, our tar-
get is to present a new model which can separate early deaths (accidental and pre-
mature together) from adult mortality, which is historically considered as the group 
of premature and senescent deaths together and then fitted with a single function. By 
subtracting the infant, child and adult components of the distribution of deaths, an 
asymmetrical shape of residuals is observed. Moreover, the new distribution should 
fit the accidental hump when it is reasonably visible, without losing the fit for pre-
mature mortality. For these reasons, another Skew Normal distribution is employed: 
its flexibility allows us to capture accidental mortality without losing premature 
deaths. Thus, the distribution is a compromise between the two symmetrical curves 
Pearson described. The idea of using an asymmetrical distribution to fit the middle 
part of the curve was already proposed by Kostaki (1992), who modified the Helig-
man–Pollard model in order to obtain better estimates. However, the author consid-
ered only the excess deaths due to the accidental hump, while in our approach both 
accidental and premature components are modeled together with a skew function. 
For accidental and premature mortality, and for adult mortality, we have the follow-
ing functions, respectively:

where �(⋅) is the standard normal probability distribution function, Φ(⋅) the stand-
ard normal cumulative distribution function, m indicates the formula for acciden-
tal and premature mortality, while M the one for adult component. Each distribu-
tion has three parameters, �m = (�m,�m, �m) and �M = (�M ,�M , �M) , where �(⋅) ∈ ℝ 
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corresponds to the location, �(⋅) ∈ ℝ
+ for the scale and �(⋅) ∈ ℝ for the skewness. If 

�(⋅) = 0 , a Standard Normal density function is obtained.
Combining Eqs. (1), (2) and (3) with the mixture (or weighting) parameters � 

and � , a model with eight coefficients is obtained (see Fig. 1): 

where � is the vector of 8 parameters, � is the first mixture parameter with value 
ranging in [0,  1], and � is the second mixture parameter which also varies in the 
interval [0, 1]. Equation (4) is a generalization of the model proposed by Mazzuco 
et al. (2018a), which permits identification of the premature mortality component, as 
shown in Sect. 4.2.

Mazzuco et al. (2018a) tested the goodness of fit of their model, by comparing 
it with Heligman and Pollard, and Siler models, since both are used to approxi-
mate the entire age schedule of mortality. Unlike the Siler, their model is able to 
capture extra mortality at young ages and it is more parsimonious than Helig-
man and Pollard, which often has the problem of overparameterization (Con-
gdon 1993). The existence of identification issues caused by the correlation of 
the coefficients present in particular between Siler and Heligman and Pollard’s 
parameters was also shown. Actually, the Binomial Skew Normal distribution is 
itself a mixture of two Skew Normals, with some restriction on the parameters 
values, so model (4) presented here is a generalization of the model of Mazzuco 
et al. (2018a). Thus, their results hold also for our method, except for the fact that 
the number of parameters increased and identification problems can be an issue 
during the estimation process. Ways to overcome this limitation are discussed in 
Sect. 3.3.

(4)f (x; �) = � ⋅ fI(x) + (1 − �) ⋅
[
�fm(x;�m) + (1 − �)fM(x; �M)

]
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Fig. 1  Stylized distribution of death (dotted line) and the three functions of the mixture model
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3.1  Demographic Interpretation of the Parameters

The first mixture parameter � is the intensity of infant mortality, and it is related 
to the probability of dying in the first year of life, 1q0 . Moreover, this value is also 
associated with the variance of the first part of the distribution of deaths, which 
explains how quickly child mortality decreases. Considering Eq. (1), its variance 
is:

which depends only on the parameter � . In Eq. (4), the second mixture coefficient 
is � , which indicates the importance of the premature mortality (with 0 for the case 
without premature mortality).

To better understand the role of the parameters of fm and fM functions, it is 
useful to rewrite the coefficients in terms of mean, variance and skewness. This 
type of mathematical calculation is called centered parametrizations, and it is 
also convenient in the estimation process, as explained in Sect. 3.3. The details of 
the re-parametrization are reported in “Appendix B”.

The three parameters of fm are: �m is the mean and it is associated with the 
position of the mode of accidental and premature mortality; �m is the variance of 
the distribution, so if its value is small the premature mortality is concentrated at 
few ages, while if its value is big, we obtain a very flat function (with premature 
deaths present in a wide age interval); if the third parameter �m is positive, we 
obtain a skewness on the right; otherwise, the skewness is on the left.

There are also three parameters for fM : �M , is the average of adult mortality 
and it is related to the main modal age at death; �M corresponds to how much 
the adult deaths are concentrated around the adult mode and it can be seen like 
a measure of adult mortality compression; �M is the parameter of skewness. The 
latter allows us to verify Pearson’s theory on the skewness of adult death dis-
tribution. A value significantly different from 0 means that adult deaths have a 
skew distribution. In particular, the parameter is expected to have negative val-
ues because, usually, the adult distribution of deaths shows an asymmetry toward 
young ages (left).

An important measure of longevity used to understand mortality changes is 
the old modal age at death (Bergeron-Boucher et al. 2015; Canudas-Romo 2008; 
Cheung et al. 2005; Horiuchi et al. 2013; Missov et al. 2015). Model (4) identifies 
three different modes: I related to infant mortality, m for accidental and premature 
component, and M the adult modal age at death. The Half Normal distribution, 
describing infancy and childhood mortality, always has its mode at age 0, while 
the others are related to the two Skew Normals, and numerical computation is 
required to identify them.

It is also possible to split the area under the distribution of deaths into three 
parts (see Fig. 1). Each area corresponds to the percentage of deaths in the infancy 
and childhood, accidental and premature, and adult mortality. For example, the 
infant and childhood mortality area ( AI ) can be measured with the integral:

(5)Var(�fI) = �2
(
1 −

2

�

)
,
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where Ω is the highest attained age at death. In fact, we can assume that the Half 
Normal distribution spreads its probability in all the intervals [0,Ω] . Similar calcula-
tions can be done for accidental and premature mortality area ( Am ) and adult mortal-
ity area ( AM ) (see Table 1).

3.2  Life Expectancy Decomposition

An attractive feature for a mortality model is the possibility to compute in explicit form 
the life expectancy at birth (Missov 2013; Missov and Lenart 2013; Vaupel and Missov 
2014). The mixture approach allows not only to compute e0 analytically, but also to 
decompose the contribution to life expectancy of the three different components: infant 
and childhood, accidental and premature, and adult mortality.

Indeed, life expectancy at birth, e0 , is the mean age of the distribution and it can be 
decomposed as:

corresponding to the each of the three means of the model functions multiplying 
their appropriate mixture parameters (more details concerning the calculation of 
Eq. 7 can be found in “Appendix C”).

The overall e0 is the sum of the single average ages at death of the three compo-
nents of mortality in the model, weighted by their mixture parameters � and � . Equation 
(7) needs to be interpreted as the mean years lived for those dying in the different age 
groups: eI is the average age at death by those dying during infancy and childhood, em 
the mean number of years lived by those dying in middle life, eM is the average years 
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Table 1  The areas for the 
different components of the 
deaths distributions

Mortality Area

Infant A
I
= �

Premature A
m
= �(1 − �)

Adult A
M
= (1 − �)(1 − �)
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duration for those dying in adulthood. As shown in the results section, in low-mortality 
populations, life expectancy at birth and the average age at death at adult ages are prac-
tically the same e0 ≈ eM.

3.3  Estimation of the Model Parameters

We use maximum likelihood to estimate the parameters of the mixture model. The 
data available are in aggregate form: we do not know the exact age of death for 
every individual, but the number of deaths in every age interval. The intervals are 
disjointed and mutually exclusive (individuals die only once) and space partitioned 
(they cover all the life span). Therefore, since we are modeling the probability of the 
number of deaths that occur in the age interval (x, x + 1) , the multinomial distribu-
tion is appropriate (Azzalini 2017). Thus, the likelihood function that follows is:

where Dx are the real death counts at age x and p(x;�) corresponds to the probability 
of dying in the interval x and x + 1 , which can be computed as the integral of the 
mixture model between two ages:

Maximizing Eq. (8), the parameter values are obtained. To guarantee more stable 
estimates for the coefficients, the centered parametrization is used, instead of the 
direct one. Indeed, because of the shape of the likelihood, a local maximum is often 
chosen instead of the global one (Azzalini and Capitanio 1999). The re-parametriza-
tion reported in “Appendix B” allows a more regular shape of Eq. (8) and also more 
suitable results. As an example, Fig. 2 shows the fitted model for Swedish data for 
two different years (1935 and 2011).

As seen in Fig. 2, in each year the estimated model is close to the real data points 
and it is smooth enough, so that it clearly shows the trend of the life table distribu-
tion of deaths. Considering all the estimated countries, the mixture function indi-
cates a good approximation in terms of errors: the sum of the absolute value of the 
differences between model estimates and input data returns a median error below 
0.05.

For the estimation of the coefficients the maximization of the likelihood func-
tion (8) is required. To reduce the risk to find a local maximum instead of the global 
one, we selected the algorithm DEoptim implemented in R, which is particular 
appropriate when there is the suspicion of local maxima (Mullen et al. 2011). The 
optimization algorithm, instead of using a single vector as starting point, it speci-
fies a matrix, in which each row represents a coefficient. The initial population is 
generated randomly within the lower and upper boundaries. The algorithm start-
ing from the different combination of parameters, estimates the likelihood. The one 
with higher values is then selected. To reduce the risk of failure, 1000 iterations are 

(8)L(�;Dx) =

Ω∏
x=0

p(x; �)Dx ,

(9)p(x; �) = ∫
x+1

x

f (t; �) dt.
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set for the parameter estimations each year. If the final estimation was not satisfac-
tory, we restarted the algorithm including more random combinations and iterations. 
Then, to maximize the likelihood nlminb was selected which leads to close results 
obtained with DEoptim, but it is more efficient (computation time is lower).

In “Appendix D”, as an example, a shred of the code is reported to estimate the 
parameters of the model for Sweden 2009. The functions to fit the mixture mode are 
also publicly available on GitHub.

To detect the range of the parameter values and study the errors due to the esti-
mation process, some simulations were performed. Four different patterns of death 
distribution were chosen (Sweden 1930, France 1944, 1990 and 2010). For each of 
them, the corresponding life tables were computed using the vectors of parameters 
estimated. 1000 sets of random values for the eight coefficients were generated using 
Uniform distributions with their support delimited by the range of parameters. The 
maximum likelihood was computed with nlminb algorithm inserting as starting 
point each random vector and considering the dx calculated previously. The esti-
mates obtained were compared with the original set of parameters. All these results 
are reported in Sect. 4.5.

To estimate the significance of the parameters, we need to compute their standard 
errors. Thought computationally intensive, bootstrap techniques (Efron 1979) allow 
to recreate the distribution of the coefficients and their values. In particular, it is 
interesting to study the role of the Skew Normal to fit premature mortality, in order 
to detect if its contribution to the model is really indispensable. To answer the ques-
tion, we can look at the significance of the mixture parameter � , which indicates the 
importance of this component in the overall mortality (if � is 0, the middle compo-
nent is automatically deleted, and the model can be reduced to a mixture of one Half 
Normal and only one Skew Normal). Bootstrap was applied to the same cases used 
for simulations. The results are reported and discussed in Sect. 4.4.
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4  Results

4.1  Infant, Child and Adult Mortality

As shown in Fig. 3, the trends of the coefficients of infant, child and adult mortality 
confirm the known tendencies. During the demographic transition, most developed 
countries experienced a reduction in infant mortality (Edwards and Tuljapurkar 
2005; Vaupel et al. 2011; Wilmoth and Horiuchi 1999). The incidence of deaths at 
age 0 decreases, as seen in the decrease over time in the estimated mixture param-
eter � . Figure 3 further shows that for all the populations in recent years, � is very 
close to 0, which means that infant mortality is very small.

During the first half of the twentieth century, in low-mortality countries, a com-
pression in a smaller age interval of the adult mortality distribution was observed 
(Cheung et al. 2005, 2008, 2009; Cheung and Robine 2007; Fries 1983; Kannisto 
2001; Wilmoth and Horiuchi 1999). After a period of strong compression, devel-
oped countries experienced a shift of the late modal age at death (Bongaarts 2005; 
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Canudas-Romo 2008; Cheung and Robine 2007; Kannisto 1996). This transition is 
observed also in the mixture model. As seen in Fig. 3, compression and shifting can 
be studied using the values of the variance �M , and the trend of the mode M (related 
to the value of the mean �M ), respectively. For Sweden and France, which have a 
longer time series, the compression of the adult distribution is seen by the reduc-
tion in �M . The other two populations present almost invariant values of �M , with 
a slight increment since 1980–1985. In Fig. 3, for all the populations, an increase 
in the mode M is reported. This means that the late modal age at death progres-
sively shifts to the right of the distribution of deaths. Thus, parameter estimates are 
consistent with the previous literature. It is interesting to note that the value of �M is 
quite stable in the observed period, with a peak occurring in 1950–1980. This means 
that the left asymmetry of the adult mortality is a stable feature of this component. 
The irregularities observable for France, for the coefficient � , the variance and the 
index of symmetry coincide with the years of the two world wars, and are also per-
ceived in the other model coefficients.

4.2  Premature Mortality

In Fig. 4, the coefficients of the premature mortality of the fm distribution are pre-
sented. For Sweden, France and East Germany, an increase is seen in the mode of 
premature deaths m, with a particular acceleration trend starting in the last 20 years 
of the twentieth century. The increment is particularly evident in France. Moreover, 
for these populations, the range of variation is very similar, except for the Czech 
Republic, which has a quite constant mode around age 25.

The parameter related to the skewness is �m . As seen in Fig. 4 in most of the cases, 
its values is positive, but close to 0 suggesting that the curve is almost symmetrical.

For the variance �m (see Fig. 4), the estimates are affected by identification prob-
lems. However, it is possible to seize different time trends. For Sweden and East 
Germany, the values are quite stable around 15–20, meaning that the shape of 
accidental and premature mortality is quite stable in the period, also considering 
that �M has the same pattern. Also France seems to follow this tendency except for 
1950–1980 and the years of the world wars, where an increase in mortality in the 
middle part of the distribution of deaths is registered. In the Czech Republic, �m , 
after a peak between 1950 and 1980, the term decreases because the distribution 
becomes more concentrated around the accidental mode.

Finally, in Fig.  4, we consider the trend of the mixture parameter � , which is 
related to the incidence of accidental and premature mortality in the overall distribu-
tion of deaths. Both in Sweden and France, the parameter decreases until 1990. In 
France, two peaks are observed in correspondence of the two world wars: in those 
years, the number of young deaths increases. For these two countries, the general 
declining trend of � is related to the disappearance of male accidental hump and the 
compression of adult mortality around the late mode at death. Recently, especially in 
France, an increase in � is registered, which means that premature mortality acquires 
relevance.
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4.3  Life Expectancy Components

The decomposition of e0 for all the considered populations is shown in Fig. 5. In 
the graphs, we can see the contribution of the three components of the model, for 
infant and child part eI , for accidental and premature mortality em and for adult 
deaths eM . In the Czech Republic and in Germany, the contribution of em is very 
small—almost negligible—in particular during the recent years. In Sweden and 
France, its contribution reduced between 1930 and 1950 (except in France dur-
ing the world war years), and then it became constant, without disappearing. In 
the last few years (1990–2011), the premature mortality component increased to 
capture the deaths occurring in the central part of the curve.
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4.4  Significance of the Parameters

To test the significance of the parameters, we selected five different cases: Swe-
den 1930, where infant mortality is high and also premature deaths are rele-
vant for young and young adults; France during the Second World War (1944), 
that shows an excess of deaths between age 18 and 40, France 1990 which has 
a very low value for the parameter of premature mortality, France 2010, that is 
the emblematic case of the upswing of mortality before senescent. The standard 
errors to perform the test are computed by bootstrap using 1000 samples, whose 
numerosity depends to the number of deaths registered each year of the consid-
ered periods. In each scenario, all the coefficients are statistically significant with 
a p value < 0.0001 (standard errors are reported in Table 2).
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Since the value of the mixture parameter � is always different from 0, the distri-
bution fm cannot be neglected. This means that even if the role of premature mor-
tality is small (as, for example, in France 1990), it has to be consider to obtain a 
satisfactory fit of the overall curve. Indeed, without this component, all the deaths 
of adolescents, young and young adults are not approximated by the model and, in 
particular, the left side of the adult hump is not fitted adequately.

4.5  Quality of the Estimates

The mixture model in (4) is a complex function, so the estimation of its parame-
ters can be problematic because of possible local maxima and identification issues. 
Simulations were performed to detect the errors that may occur considering several 
random vectors of starting points. We use parameter estimates for the three cases 
considered in Sect. 4.4 (Sweden 1930, and France 1944, 1990 and 2010) to obtain 
four age distributions of deaths. For each scenario, the rescaled bias between the 
real coefficients and the ones estimated using the 1000 casual starting points are 
calculated:

In Fig.  6, the results obtained are summarized considering the 25th and the 75th 
percentiles of the errors distribution of each parameter. The main problem of this 
model can be found in estimating fm and its mixture coefficient � : in several cases 
the median is not centered on the real value of the parameter and the distribution 
has heavy tails. The more problematic coefficient is �m , which has bigger ranges in 
each scenario. The Skew Normal employed for adult mortality, fM , and its related 
mixture parameter � are not particularly affected by the choice of the starting point: 
in most cases the bias distribution is concentrated around 0. Again the shape param-
eter �M turns out to be the most affected by identification problems, even though, in 
this case, these issues are only limited to France 1944. Regarding the fm parameters, 
it was observed that the overall shape of the mixture curve is quite stable (also in 
France 1944). In general, in some cases there might be identification and local max-
ima issues, given by the complexity of the function, so considering that a numeric 

REi =
𝜃 − 𝜃i

𝜃
.

Table 2  Standard errors 
computed by bootstrap 
techniques for the eight 
parameters of each scenario

Sweden 1930 France 1944 France 1990 France 2010

�
m

0.148 0.049 0.300 0.108
�
M

0.056 0.055 0.047 0.091
� 0.015 0.010 0.030 0.040
�
m

0.014 0.028 0.027 0.013
�
M

0.006 0.002 0.004 0.008
�
m

0.167 0.054 0.386 0.369
�
M

0.059 0.078 0.053 0.103
� 0.013 0.010 0.031 0.046
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optimization algorithm should be used to maximize the likelihood in Eq. (8), start-
ing values of parameters (especially of �,�m, �m, �m ) should be chosen carefully.

5  Discussion

A new parametric model to fit the life table distribution of deaths was proposed. 
This model is based on a mixture of a Half Normal distribution and two Skew Nor-
mal distributions. These functions were chosen to re-elaborate Pearson’s theory of 
mortality components. The Half Normal is used to fit infant and childhood mortal-
ity, one Skew Normal for accidental and premature mortality, and the second Skew 
Normal for adult mortality. The latter function allows adult mortality to be modeled 
with an asymmetrical distribution. The new model allows differentiation between 
premature and adult mortality. This differentiation is not often taken into account 
in the analysis of mortality, both because there is not clear definition of premature 
deaths and because the frequently used mortality models do not yield a separation 
between the two. In our alternative definition of accidental and premature mortality, 
instead of defining them as a consequence of the other two components (remain-
ing part of the infant and adult model fitting), in the newly introduced model they 
have their own distribution. In this way, they have an unambiguous definition. Tak-
ing advantage of this, the trend and the transformations of accidental and premature 
mortality during the last century were analyzed, discovering differences among the 
observed populations.

All parameters of the model have a demographic interpretation, and they can be 
studied to analyze the characteristics and the transformations of mortality compo-
nents. The results obtained for infant and childhood mortality show a reduction and 
a concentration of the incidence of deaths at age 0: the risk of dying after birth is 
very small, and the mortality during childhood has almost disappeared. For adult 
mortality, a general shift in the late mode to the right of the distribution was found. 
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Fig. 6  The 25th and 75th percentiles of bias distribution of each parameter considering four different sce-
narios. The ticker black line represents the median
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The conclusions about infant, childhood and adult mortality are consistent with what 
is already known about the trends of these components (Bongaarts 2005; Canudas-
Romo 2008; Cheung et al. 2005, 2008, 2009; Edwards and Tuljapurkar 2005; Fries 
1983; Kannisto 2001; Vaupel et al. 2011; Willets 2004; Yashin et al. 2001).

During the last century, the accidental hump disappeared for most of the coun-
tries, but the premature deaths across youth and the first part of adulthood continue 
to exist, even if with a small incidence (greater flattening of the deaths distribution 
in its middle part). It was observed that the populations undergoing a compression 
and then a shift in adult mortality show a right shift of premature mortality distribu-
tion toward older ages (ages 50–60). This means that accidental mortality has almost 
disappeared. However, for recent years, an increase in premature mortality due to 
deaths that occur near, but outside the adult distribution was observed. In fact, pre-
mature mortality has changed: in the past, it was identified with deaths around age 
40. Now premature mortality is shifting to the right of the distribution of deaths, 
following the shift seen in adult mortality. In countries such as France and Sweden, 
which underwent a strong compression and a shift in adult mortality, we observed 
the disappearance of accidental mortality and an increase in premature deaths. For 
the nations where the adult mortality did not undergo a compression, like the Czech 
Republic and East Germany, the incidence of premature mortality is very small and 
sometimes the accidental hump is still present. This consideration suggests that the 
trend in premature deaths is correlated with that of adult mortality. In particular, 
for countries which show an almost parallel shift in the survival curve (Lynch and 
Brown 2001; Horiuchi and Wilmoth 1997, 1998; Robine 2001; Yashin et al. 2001), 
an increase in the number of deaths that occur outside the adult distribution was 
found. This phenomenon is clearly visible for France, which presents—simulta-
neously with the shift in the survival curve—an increase in the number of deaths 
related to premature mortality. This is consistent with the rise of lifespan variance 
recognized and illustrated by Engelman et al. (2014).

Existing relations between external causes of death (suicide, homicide and acci-
dents) and premature mortality were further investigated, but no such relations were 
found. Perhaps the observed increment may be related to another disease (or a group 
of them) or to conditions associated with social and economic deprivation (lower 
education, unskilled occupation, etc.). For example, several authors have addressed 
the strong correlations existing between mortality and educational levels (Hattersley 
1997; Huisman et al. 2004; Dalstra et al. 2006; Marmot and McDowall 1986; Shkol-
nikov et al. 2011; Strand et al. 2010; Valkonen and Tapani 2001; Zarulli et al. 2013, 
2012) or health status for example, obesity (Olshansky et al. 2005). However, these 
are hypotheses of the reasons of the changes in premature mortality that need to be 
verified and further studied. A further possibility is that the premature mortality that 
is captured by our model is purely a statistical artifact of the residual part not cap-
tured by the infant, child and adult components. By estimating all the distributions at 
the same time, that possibility was greatly reduced. Further studying this possibility 
is beyond the scope of the current work. Premature mortality remains a puzzle for 
demographers, epidemiologists and other population health researchers.

In conclusion, in this article, a new mixture model for the distribution of deaths, 
and its relevance for studying accidental and premature mortality were shown. The 
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latter two components are not usually taken into account due to the complexity 
involved in recognizing and separating them from adult mortality. The newly intro-
duced method is useful to analyze contexts in which accidental and premature com-
ponents play a relevant role in mortality. However, the model is not limited to this 
use, and researchers could apply it to study other aspects of the age-patterns and 
trends in mortality.
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Appendix A

This model is inspired by the one proposed by Mazzuco et  al. (2018a), and it is 
based on a mixture three distributions in order to re-elaborate Pearson’s theory of 
mortality components. In Mazzuco et al. (2018a), a Bimodal Skew Normal distribu-
tion fits the second part of the death curve. This function is a mixture of two Skew 
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Fig. 7  Comparison between the mixture model here suggested (one Half Normal and two Skew Nor-
mals) and model introduced by Mazzuco et al. (2018a) (one Half Normal and a Bimodal Skew Normal)
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Normals distributions having the same values of shape, location and scale param-
eters. This implies that the shape of premature mortality is the same as that of the 
adult mortality, and the only difference is its position and weight which is modified 
by the mixture parameter � . An exemplification of this constraint is presented in 
Fig. 7. In Mazzuco et al. (2018a), the Skew Bimodal Normal (SBN) distribution was 
used because it provides a good fit with a relatively few number of parameters (only 
6). In this paper, we focused more on premature mortality, so we needed more flex-
ibility and interpretability of the coefficients. The generalization we proposed allows 
to better characterize the distribution of premature mortality and interpreter � as the 
importance of premature death, which was not possible with the SBN distribution.

Appendix B

As explained in Azzalini and Capitanio (1999), the maximization of the likeli-
hood function can be problematic when the direct parametrization, DR(�,�, �) is 
employed. In particular, when � = 0 , there is always an inflection in the profile log-
likelihood. Moreover, even when � is not close to 0, the shape of the likelihood is 
bimodal, so the global maximum is not easily identifiable. To reduce this issue, 
Azzalini proposed a different parametrization, which allows a more regular shape 
of the function. Instead of using �,� and � , the centered parameters are estimated, 
CP(�, �, �) , as the mean, variance and index of skewness, respectively. To go from 
CP(�, �, �) to DR(�,�, �) , the following equations are required

The inverse procedure is described in Arellano-Valle and Azzalini (2008). The cen-
tered parametrization is always used to estimate the parameters.

(10)

c = sgn (�)

�
2�

4 − �

�1∕3

�z =
c√

1 + c2

� = � −
��
1 − �2

z

c√
1 + c2

(11)
� =

�√
1 − �2

z

(12)� =
�z

√
�∕2�

1 −
��2

z

2

.
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Appendix C

Life expectancy at birth can be computed as the mean age at death using equation 
(4):

which can be split into the single means of the three distributions involved, multi-
plied by their mixture parameters. Since � = 1 , the mean of the Half Normal distri-
bution is given by:

while the expected value for the Skew Normal distribution is provided by Azzalini 
and Capitanio (1999):

Substituting Eqs. (14), (15) and (16) in Eq. (13), the decomposition of life expec-
tancy at birth is obtained (Eq. (7)).

(13)

e0 = ∫
Ω

0

x ⋅ f (x, �) dx

= ∫
Ω

0

x ⋅

{
� fI(x; 1) + (1 − �) ⋅

[
�fm(x; �m) + (1 − �)fM(x; �M)

]}
dx

= ∫
Ω

0

� xfI(x; 1) dx + ∫
Ω

0

(1 − �)� xfm(x; �m) dx

+ ∫
Ω

0

(1 − �)(1 − �) xfM(x; �M) dx

= � ∫
Ω

0

xfI(x; 1) dx + (1 − �)� ∫
Ω

0

xfm(x; �m) dx

+ (1 − �)(1 − �)∫
Ω

0

xfM(x; �M) dx,

(14)EI[X] = ∫
Ω

0

xfI(x; 1) dx =

√
2√
�
,

(15)Em[X] = ∫
Ω

0

xfm(x; �m) dx =

⎛⎜⎜⎜⎝
�m + �m

�m�
1 + �2

m

�
2

�

⎞⎟⎟⎟⎠
,

(16)EM[X] = ∫
Ω

0

xfM(x; �M) dx =

⎛⎜⎜⎜⎝
�M + �M

�M�
1 + �2

M

�
2

�

⎞⎟⎟⎟⎠
.
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Appendix D

The R code to obtain the probability density function and the likelihood of the mix-
ture model (4) is shown below.

> ### Mixture Density Function
>
> mix.cp <- function(x,sigma1,sigma2,aa,gamma1,gamma2,mu1,mu2,mm){
+
+ m <- (exp(mm)/(1+exp(mm)))
+ a <- (exp(aa)/(1+exp(aa)))
+
+ cc1 <- (sign(gamma1)*((2*abs(gamma1))/(4-pi))^(1/3))
+ muz1 <- (cc1/sqrt(1+cc1^2))
+ ll1 <- ((muz1*sqrt(pi/2))/(sqrt(1-((pi*(muz1)^2)/2))))
+ ww1 <- (sigma1/(sqrt(1-muz1^2)))
+ xx1 <- (mu1 - (sigma1/(sqrt(1-muz1^2)))*muz1)
+ cc2 <- (sign(gamma2)*((2*abs(gamma2))/(4-pi))^(1/3))
+ muz2 <- (cc2/sqrt(1+cc2^2))
+ ll2 <- ((muz2*sqrt(pi/2))/(sqrt(1-((pi*(muz2)^2)/2))))
+ ww2 <- (sigma2/(sqrt(1-muz2^2)))
+ xx2 <- (mu2 - (sigma2/(sqrt(1-muz2^2)))*muz2)
+
+ hn <- function(x){((sqrt(2)/(sqrt(pi)))*exp(-(x^2)/(2)))}
+ sn.m <- function(x){((2/ww1)*dnorm((x-xx1)/ww1)*pnorm(ll1*(x-xx1)/ww1))}
+ sn.M <- function(x){((2/ww2)*dnorm((x-xx2)/ww2)*pnorm(ll2*(x-xx2)/ww2))}
+ f <- m*hn(x)+(1-m)*(a*(sn.m(x))+(1-a)*(sn.M(x)))
+ return(f)
+ }

> ### Maximum Likelihood Estimates (centered parametrization)
>
> library(sn)
> mix.cp.mle<-function(dx,Age,Deaths,start=c(10,10,-5,0,-0.3,25,80,-4)){
+
+ numr<-NROW(dx)
+
+ loglik.m <- function(param){
+
+ sigma1<-param[1]
+ sigma2<-param[2]
+ aa<-param[3]
+ gamma1<-param[4]
+ gamma2<-param[5]
+ mu1<-param[6]
+ mu2<-param[7]
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+ mm<-param[8]
+
+ m <- (exp(mm)/(1+exp(mm)))
+ a <- (exp(aa)/(1+exp(aa)))
+
+ Fx <- (m*psn(x=c(Age), xi = 0, omega = 1, alpha = 125) +
+ a*(1-m)*psn(x = c(Age), dp = cp2dp(c(mu1, sigma1, gamma1), "SN")) +
+ (1-a)*(1-m)*psn(x = c(Age), dp = cp2dp(c(mu2, sigma2, gamma2), "SN")))
+ p <- diff(c(Fx,1))
+ D<-Deaths*dx
+
+ lnlk <- sum(D*log(p))
+
+ return(-lnlk)
+ }
+ low1 <- c(2,2,-10,-0.995,-0.995,18,30,-10)
+ upp1 <- c(30,30,1,0.995,0.995,60,90,1)
+ mle.est <- nlminb(start=start,objective=loglik.m,
+ control=list(iter.max=20000, abs.tol=0.0000001, trace = FALSE,
+ rel.tol=0.00001),
+ lower=low1,upper=upp1)
+
+ mix.cp.mle.est <- mle.est$par
+ mle.value <- -mle.est$objective
+ outlist <- list(coef=mix.cp.mle.est,
+ like.value=mle.value,
+ convergence=mle.est$convergence,
+ n.iter=mle.est$iterations)
+
+ return(outlist)
+ }

Here an example is reported to estimate the parameters of the mixture distribu-
tion for Sweden 2009. The data employed are the male life table with 1-year age and 
calendar time intervals, computed by the Human Mortality Database.
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> SWEtab <- read.table("SWE1x1t.txt",header = TRUE)
> SWE2010 <- SWEtab[which(SWEtab$Year==2010),]
> SWE2010est <- mix.cp.mle(SWE2010$dx/100000,

,)011:0(c=egA+

)00934=shtaeD+
> SWE2010est$coef

[1] 18.3577120 10.2197981 -3.0281946 0.1514778 -0.7464761
[6] 47.2506847 81.2854968 -5.8011668

> plot(c(0:110), SWE2010$dx/100000,
+ xlab = "Age", ylab = "Deaths",
+ xlim = c(0,120),
+ main = "Sweden 2010",
+ type = "p", pch = 16, cex = 0.8, col = "grey")
> curve(mix.cp(x,SWE2010est$coef[1],SWE2010est$coef[2],SWE2010est$coef[3],
+ SWE2010est$coef[4],SWE2010est$coef[5],SWE2010est$coef[6],
+ SWE2010est$coef[7],SWE2010est$coef[8]),
+ type = "l", col = "black", lwd=2, lty = 1, add=TRUE)
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