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Abstract

This paper investigates likelihood-based inference in meta-analysis of studies character-

ized by a small sample size. In such a situation, a reliable approach has to properly account

for the uncertainty associated to the estimation of the within-study variances, instead of

assuming them to be known, as it is practiced in applications. To this aim, the integrated

likelihood is suggested for inference on the mean effect of the meta-analysis. The method is

shown to provide more accurate results with respect to standard likelihood assuming known

within-study variances, while solving many of the computational problems related to vari-

ance components estimation. The proposed methodology is illustrated via simulation and

applied to meta-analysis studies in nutritional science and psychological medicine.

Key words: Frequentist inference; Integrated likelihood; Meta-analysis; Small sample in-

ference; Unrelated parameters.

Running title: Integrated likelihood in meta-analysis

1 Introduction

Meta-analysis is a diffuse approach to combine evidence from different studies about the

same issue of interest. The usage of meta-analysis pervades almost any area of research, such
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as, for example, biological sciences, medicine, epidemiology and, more recently, economics

and behavioral investigations (Roberts, 2005; Sutton & Higgins, 2008).

Meta-analysis is typically performed by specifying an appropriate random effects model,

with the random component associated to the different studies providing information about

the common issue of interest. Inference is then carried out by relying on the procedure

by DerSirmonian & Laird (1986), traditionally, or on more recent likelihood approaches

developed either from a frequentist or a Bayesian perspective (van Houwelingen et al., 2002).

The methods assume that the within-study variances are known and equal to the variance

associated to the estimate of the mean effect reported in each study (van Houwelingen et al.,

2002, Section 3). The justification is that the sample size of each study is large enough to

guarantee a good estimate of the true within-study variance, with little or no impact on the

inferential results. Actually, such an assumption can be justifiable in case of large studies,

as, for example, those carried out in medical or epidemiological investigations. Conversely,

inference performed on small sample studies can provide misleading results, if the uncertainty

related to variance estimation is not properly taken into account. This issue may be referred

to as small sample inference. Several authors pointed out the relevance of the problem, e.g.,

Hardy & Thompson (1996), Brockwell & Gordon (2001), Sidik & Jonkman (2007), with

the suspicion that consequences could affect the variance estimator of the mean effect and

related inferential procedures. Nevertheless, no solution to this problem has been provided

within the meta-analysis context, to the best of our knowledge.

A similar problem has been recently faced, instead, by Sharma & Mathew (2011) within

a different setting, namely, when inferential interest concerns the consensus mean in inter-

laboratory studies. Although Sharma & Mathew (2011) never directly refer to meta-analysis

and related terminology in their investigation, the framework they focus on can be considered

as analogous. For the purpose on investigation on the consensus mean inter-laboratory

studies, Sharma & Mathew (2011) take account of the measurements of different within-

studies laboratories and propose to improve on likelihood results by applying higher-order
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asymptotics via Skovgaard’s (1996) second-order likelihood ratio statistic. Nevertheless,

their approach may suffer from some computational problems, as illustrated in this paper,

requiring a lot of care for its application.

In this paper we consider the problem of small sample in meta-analysis and meta-

regression and propose to perform inference through integrated likelihood (Severini, 2000,

Section 8.4). Such an approach replaces the elimination of the nuisance parameters repre-

sented by the variance components through maximization with their elimination by integra-

tion. We show that this method provides a good accuracy of inferential results and, in the

meanwhile, it is free of numerical pitfalls.

The plan of the paper is as follows. Section 2 introduces two motivating examples from

real meta-analyses in nutritional science and psychological medicine. In Section 3, the model

of interest is presented, along with likelihood inferential methods. The integrated likelihood

approach for meta-analysis and meta-regression in case of small sample is illustrated in

Section 4. Results from simulation studies are summarized in Section 5, while results with

empirical examples are given in Section 6. The case of binary data, which requires a specific

treatment, is discussed in Section 7. Some final remarks conclude the paper.

2 Examples

This section introduces two motivating examples from meta-analysis studies in nutritional

science and psychological medicine, which will be used to illustrate the applicability of the

integrated likelihood approach.

2.1 Cocoa intake and blood pressure reduction

Increasing consumption of sources of polyphenols is recommended by physicians as coad-

jutant therapy to face hypertension and prevent cardiovascular risks. While the protec-

tive effects of polyphenols in fruits and vegetables is known, less attention is paid to other
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sources, such as, for example, cocoa and tea, although they represent a high proportion of

total polyphenol intake in Western countries. Taubert et al. (2007) perform a meta-analysis

of randomized controlled studies to evaluate blood pressure-lowering effects of cocoa and tea

intake. We focus on a portion of the data about the effectiveness on lowering diastolic blood

pressure after two-weeks of cocoa consumption treatment. Data refer to five studies, with

sample size ranging from 21 to 41. The estimate of the effect provided by each study is the

mean difference in diastolic blood pressure before and after the cocoa consumption treat-

ment. The forest plot of the data is reported in Figure 1, left panel. Information about the

estimated mean difference from each meta-analysis study and the associated 95% confidence

intervals is reported. The summary estimate obtained from the likelihood analysis is shown

as well.

Figure 1 here

2.2 Set-shifting ability in eating disorders

Deficits in executive functions have been associated to eating disorders in psychological

medicine. An important executive function is set-shifting, which is defined as the ability to

move back and forth between multiple tasks or mental sets. Roberts et al. (2007) perform

a meta-analysis to compare set-shifting ability in people with eating disorders and healthy

controls. The information provided by each study is the standardized difference in means

of the performance on set-shifting tasks between people with eating disorders and healthy

controls. We refer to the meta-analysis data examined by Roberts et al. (2007) about the trail

making test set-shifting task, provided within the R package metamisc (Debray, 2013). The

data refer to 14 studies with sample size ranging from 20 to 94 and include information about

the outcome from each study and the associated standard error. We extend the dataset by

including an indicator variable, distinguishing between the type of eating disorders, namely,

those referring to anorexia and those also including bulimia nervosa. The forest plot of

the data is reported in Figure 2, left panel. Information about the estimated standardized
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mean difference from each meta-analysis study and the associated 95% confidence intervals

is reported. The summary estimate obtained from the likelihood analysis is shown as well.

Figure 2 here

3 Likelihood inference

Consider a meta-analysis of n independent studies about a common effect β. Let Yi be

the summary measure of the effect β obtained from the i-th study, i = 1, . . . , n, such as, for

example, the mean difference. The classical model for meta-analysis is the random effects

model (DerSirmonian & Laird, 1986)

Yi = βi + εi, εi ∼ Normal(0, σ2
i ),

where βi is the random effects component associated to each study,

βi = β + ui, ui ∼ Normal(0, τ 2).

Variance components are the within-study variances σ2
i , i = 1, . . . , n, and the between-

study variance τ 2. Thus, marginally, Yi ∼ Normal(β, σ2
i + τ 2). The traditional approach

to meta-analysis is based on the assumption that each within-study variance σ2
i is known

and equal to the variance estimate reported in the i-th study. Such an assumption can

be justifiable when the sample size of each study included in the meta-analysis is large.

Otherwise, inference can provide misleading results, if the uncertainty related to the variance

estimation is not properly taken into account. Let S2
i denote the measure of the within-study

variance σ2
i obtained from study i having sample size ni, with S2

i following a scaled chi-square

distribution, S2
i (ni−1)/σ2

i ∼ χ2
ni−1. According to the specifications above, the log likelihood

function for the (n+ 2)-dimensional parameter vector θ = (β, τ, σ1, . . . , σn)T is

`(θ) =
n∑
i=1

{
−1

2
log(σ2

i + τ 2)− 1

2

(yi − β)2

σ2
i + τ 2

− ni − 1

2
logσ2

i −
(ni − 1)s2

i

2σ2
i

}
. (1)
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Inferential interest is usually focused on the mean effect β, while variance components are

considered as nuisance parameters. Accordingly, we can partition θ into θ = (β,λ)T , where

λ = (τ, σ1, . . . , σn)T . Let θ̂ = (β̂, λ̂)T denote the maximum likelihood estimate (MLE) of θ

and let λ̂β denote the constrained MLE of λ for a given value of β, so that θ̃ = (β, λ̂β)T .

Let `P(β) indicate the corresponding profile log likelihood for β, `P(β) = `(β, λ̂β). Given

the scalar parameter of interest, inference can be based on the signed profile log likelihood

ratio statistic

rP(β) = sgn(β̂ − β)

√
2
{
`P(β̂)− `P(β)

}
,

which is asymptotically distributed as a standard normal up to first-order error, under mild

regularity conditions (Severini, 2000, Section 4.4).

Despite the feasibility, a serious drawback of first-order asymptotic results is that they

can be inaccurate in case of small sample size or large dimension of the nuisance parameter

λ. To face the problem, it is preferable to resort to the theory of higher-order asymptotics

(Severini, 2000). Skovgaard (1996) proposes to base inference on a scalar component of

interest on statistic

r∗P(β) = rP(β) +
1

rP(β)
log

u(β)

rP(β)
, (2)

which is asymptotically standard normally distributed up to second-order error. The compo-

nent u(β) included in (2) is a function of the observed and the expected information matrices

and of covariances of likelihood quantities, evaluated at the MLE and the constrained MLE.

From a practical point of view, the computation of r∗P(β) is not involved, since it is compara-

ble to that of the expected information matrix. From a theoretical point of view, Skovgaard’s

statistic is well defined for a wide class of sufficiently regular parametric models and it is

invariant with respect to interest-respecting re-parameterizations. Guolo (2012) investigates

the applicability of Skovgaard’s statistic in meta-analysis and meta-regression problems, fol-

lowing the convention of assuming known within-study variances. The approach is shown to

be satisfactory in improving on the accuracy of standard first-order likelihood analysis when

the sample size n is small to moderate. The method is implemented in the R (R Core Team,
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2014) package metaLik (Guolo & Varin, 2012).

Sharma & Mathew (2011) examine the performance of Skovgaard’s statistic in inter-

laboratory studies where interest relies on the consensus mean, assuming unknown different

within-laboratory variances. The simulation studies performed highlight a better accuracy

of results based on r∗P with respect to its first-order counterpart. Nevertheless, Skovgaard’s

approach can suffer from several computational difficulties and numerical instabilities, as

Sharma & Mathew (2011) mention. We will return on this issue in Section 5.

Severini (2007) proposes the integrated likelihood approach to perform inference on an

interest scalar parameter, when the dimension of the nuisance component is large compared

to the sample size. The integrated likelihood eliminates the nuisance parameter by integra-

tion of the likelihood function with respect to a prior density, instead of by maximization.

With reference to the meta-analysis framework, let π(λ|β) denote a conditional prior density

for λ given β and let L(θ) = exp{`(θ)}. Thus, the integrated log likelihood function for β is

`Int(β) = log

∫
Λ

L(θ)π(λ|β)dλ,

where integration is with respect to vector λ, with λ ∈ Λ. Once the integrated log likelihood

is obtained, it can be used as a standard log likelihood function for inference. For example,

let β̄ be the estimate of β obtained from the maximization of `Int(β). Then, inference on β

can be performed via the signed integrated log likelihood ratio statistic (Severini, 2010)

rInt(β) = sgn(β̄ − β)
√

2
{
`Int(β̄)− `Int(β)

}
. (3)

Advantages of the integrated likelihood approach include better accuracy of the inferential

results if compared with those from rP as well as reduced numerical instabilities in case of

large dimension of the nuisance parameter (Severini, 2010). The main drawback is the spec-

ification of the prior distribution. Severini (2007) provides several suggestions about how to

choose the prior distribution in order to make the integrated likelihood share the frequen-

tist properties of a genuine likelihood function and be suitable for non-Bayesian inference.

Possible choices are discussed in Section 4.
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4 Integrated likelihood in meta-analysis

In our context, we assume that the between-study variance can be nil, whereas the within-

study variances are strictly positive. Thus, the parameter space for λ is Λ = [0,+∞) ×

(0,+∞)n. The integrated log likelihood for the case of interest has the following form

`Int(β) = log

∫ +∞

0

∫ +∞

0

· · ·
∫ +∞

0︸ ︷︷ ︸
n times

L(β, τ, σ1, . . . , σn)π(τ, σ1, . . . , σn|β)dσ1 · · · dσndτ. (4)

The evaluation of the integrated log likelihood in (4) requires to overcome two main obstacles.

The first one is the choice of the prior distribution for the nuisance parameter vector λ =

(τ, σ1, . . . , σn)T , conditionally on the parameter of interest β. The second obstacle pertains

to the computation of `Int(β).

For the choice of the prior distribution for the nuisance parameter vector λ, we can fol-

low the recommendations by Severini (2007, 2010). He advocates the use of an orthogonal

parameterization of the nuisance parameters and the consequent choice of priors for λ inde-

pendent of β. From a frequentist perspective, he shows that the best inferential results are

achieved when the model parameterization is expressed so that the nuisance parameter is

strongly unrelated to β. A nuisance parameter φ is strongly unrelated to β if

E{`λ(β,λ); β0,λ0}
∣∣
(β0,λ0)=(β̂,φ)

= 0,

where `λ is the score vector for λ and the expected value is computed before the evaluation

at (β0,λ0) = (β̂,φ). The function φ = φ(β,λ; β̂) defines a data-dependent parameteriza-

tion and φ is called the zero-score-expectation parameter. When such a parameterization is

employed, the resulting integrated likelihood is a high-order approximation to the modified

profile likelihood (Severini, 2000, Section 9.3), which achieves optimal elimination of the

nuisance parameters (Severini, 2007). With the zero-score-expectation parameterization the

choice of the prior for the nuisance parameter becomes inconsequential.

To derive the zero-score-expectation parameterization for the model corresponding to (1)

consider the derivatives of the log likelihood function with respect to the nuisance parameter
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vector λ = (τ, σ1, . . . , σn)T ,

`τ (β,λ) = τ

n∑
i=1

{
− 1

(σ2
i + τ 2)

+
(yi − β)2

(σ2
i + τ 2)2

}
,

`σi(β,λ) = σi

{
− 1

(σ2
i + τ 2)

+
(yi − β)2

(σ2
i + τ 2)2

− fi
σ2
i

+
fi s

2
i

σ4
i

}
, i = 1, . . . , n.

The evaluation of the expected value of the above expressions at the parameter value

(β0,λ0)T , setting β0 = β̂ and λ0 = φ, where φ = (ζ, δ1, . . . , δn)T is

E{`τ (β,λ); β0,λ0}
∣∣
(β0,λ0)=(β̂,φ)

= τ

n∑
i=1

{
(δ2
i − σ2

i ) + (ζ2 − τ 2) + (β̂ − β)2

(σ2
i + τ 2)2

}

and

E{`σi(β,λ); β0,λ0}
∣∣
(β0,λ0)=(β̂,φ)

= σi

{
(δ2
i − σ2

i ) + (ζ2 − τ 2) + (β̂ − β)2

(σ2
i + τ 2)2

+
fi (δ

2
i − σ2

i )

σ4
i

}
.

The zero-score-expectation parameterization is obtained by equating the above expressions

to 0 and then solving for (ζ, δ1, . . . , δn)T . Some simple algebra provides the solution

ζ =

√
τ 2 − (β̂ − β)2, (5)

δi = σi, i = 1, . . . , n.

It is not difficult to verify that for the meta-analysis problem we focus on, the nuisance

parameter vector (τ, σ1, . . . , σn)T is orthogonal to β, i.e., the corresponding βλ-block of

the expected Fisher information is nil. Moreover, parameters β and σi are also strongly

unrelated; indeed, σ̂2
i
.
= s2

i .

The behavior of a strongly unrelated nuisance parameter can be graphically summarized

along the lines of Severini (2007, Example 1). For the data of Example 2.1, Figure 3 displays

a plot of the scaled constrained estimates (τ̂β − τ̂)/SE(τ̂) and (ζ̂β − ζ̂)/SE(ζ̂) as a function

of β, with SE(·) denoting the standard error of the estimate. The much weaker dependence

of the latter estimates on β compared to the former is apparent.

Figure 3 here
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Once a strongly unrelated parameterization for the nuisance parameters is obtained, the

prior distributions for ζ and σ1, . . . , σn can be chosen with some liberty. A simple choice is

given by independent priors for all the components of φ, with π(ζ) ∝ 1 and π(σi) ∝ 1/σki ,

for fixed k. Such a choice, coupled with the algebraic form of the score function for β,

`β(β,λ), implies that the signed integrated log likelihood ratio statistic rInt(β) in (3) is

asymptotically standard normally distributed with high accuracy (Severini, 2010, Section

5). The latter property is shared also by the integrated likelihood computed using the

original parameterization, provided that similar priors, independent of β, are adopted.

Computation of `Int(β) is less demanding than it might seem at first sight. Indeed,

due to the assumption of independent meta-analysis information, L(β, τ, σ1, . . . , σn) in (4)

is the product of n similar terms, which can be readily recovered from formula (1). The

aforementioned choice of the prior distribution for φ with independent components implies

that the integral required for `Int(β) can be written as

`Int(β) = log

∫ +∞

0

{
n∏
i=1

gi(β, ζ)

}
π(ζ)dζ, (6)

where gi(β, ζ) =
∫ +∞

0
L(β, ζ, σi)π(σi)dσi and L(β, ζ, σi) is the likelihood term for the i-

th study. In other words, each of the n integrals gi(β, ζ) as well as the main integral in

(6) amount to one-dimensional integrals, that can be approximated via standard numerical

methods. In our study, the inner integrals for gi(β, ζ) in (6) is computed by adaptive Gauss-

Kronrod quadrature, using the C function Rdqags, which is the port to the R library of C

functions of the QUADPACK routine dqags (Piessens et al., 1983). The outer integral instead

is computed by a standard Gaussian quadrature. The resulting integrated log likelihood

is quite a smooth function of β in all the experiments performed and its maximization by

means of a derivative-free optimizer is usually not an issue.
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4.1 Meta-regression

Besides the inclusion of the between-study variance component τ 2, the heterogeneity

among studies may be partly explained by the inclusion of covariates at the study level.

The resulting model is the meta-regression model, specified as follows. Let xi denote the

vector of p covariates available at the aggregated meta-analysis level for each study, with

the first value equal to one. Thus, β is the associated p-dimensional vector of effects. The

meta-regression model extends the meta-analysis model as follows (Thompson & Higgins,

2002),

Yi ∼ N(xTi β, σ
2
i + τ 2),

and the associated log likelihood function for the parameter vector θ = (βT , τ, σ1, . . . , σn)T

is a simple modification of (1) by incorporating the study level covariates xi into the mean

of Yi. Consider β as the parameter of interest. The integrated log likelihood for β can

be obtained similarly to the meta-analysis case described in the previous section. Then,

inference on a single element of β can be performed by profiling the log likelihood function.

It is still possible to derive the re-parametrized model using the zero-score-expectation

parameter φ for the nuisance component λ. The approach is the same used for the meta-

analysis case and it gives rise to φ = (ζ, σ1, . . . , σn)T , where ζ is related to τ as follows,

ζ2 = τ 2 −
∑n

i=1(σ2
i + τ 2)−2(xTi β̂ − xTi β)2∑n

i=1(σ2
i + τ 2)−2

.

Differently from the meta-analysis case, an explicit expression of ζ in terms of τ cannot be

obtained apart from the special case of equal within-study variances. In this situation,

ζ =

√√√√τ 2 −
n∑
i=1

(xTi β̂ − xTi β)2,

an expression which is closely related to (5). More generally, instead, the unavailability of

a closed form for τ 2 makes the use of the zero-score-expectation parameterization in the

integrated likelihood complicated. A viable solution is to adopt an approximate zero-score-

expectation parameterization as if within-study variances were equal.
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5 Simulation studies

The performance of the integrated likelihood has been investigated via simulation. In

particular, the signed integrated log likelihood ratio statistic rInt is compared to the signed

profile log likelihood ratio statistic rP and to Skovgaard’s statistic r∗P, in terms of empirical

one-sided rejection rates and empirical coverages of confidence intervals at different nominal

levels.

Several specifications of the signed integrated log likelihood ratio are considered, namely,

• rInt, based on (4) expressed on the original parameterization, with π(τ) ∝ 1 and

π(σi) ∝ 1/σi;

• r̃Int, based on the re-parametrized model using the zero-score-expectation parameter

φ and a prior specification as given in Section 4, with k = 1;

• r̄Int, based on the re-parametrized model using the zero-score-expectation parameter

φ and a prior specification as given in Section 4, with k = 1, and β̂ in ζ replaced by

the maximizer of (4) expressed in the original parameterization.

The latter choice has the virtue of not requiring the MLE of β. This may be an advantage

for those data sets where the maximization of `(θ) is demanding, as, for example, in the

numerical problem considered in Vangel & Rukhin (1999), where the profile likelihood for

(β, τ)T exhibits some local maxima.

Several small-sample scenarios have been taken into account.

a) A meta-analysis of n = 3 studies, each of them with dimensions ni = 2, i = 1, 2, 3,

with parameters values set equal to (β, τ 2) = (2.0, 2.0). The values of the within-study

variances σ2
i , i = 1, 2, 3, are initially obtained as independent realizations of a Uniform

variable on [3.0, 10.0] and maintained fixed in the simulation.

b) A meta-analysis of n = 5 studies, of dimensions (2, 8, 3, 5, 2), with parameters values set

equal to (β, τ 2) = (1.0, 0.5). The values of the within-study variances σ2
i , i = 1, . . . , 5,
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are initially obtained as independent realizations of a Uniform variable on [1.0, 4.0] and

maintained fixed in the simulation.

c) A meta-analysis of n = 6 studies, of dimensions (2, 15, 2, 15, 2, 15), with parameters

values set equal to (β, τ 2) = (1.5, 1.0). The values of the within-study variances σ2
i ,

i = 1, . . . , 6, are initially obtained as independent realizations of a Uniform variable on

[1.0, 8.0] and maintained fixed in the simulation.

The simulation experiment has been repeated 10,000 times for each scenario.

The simulation studies evaluate the empirical one-sided rejection rates and the empirical

coverages of confidence intervals for the competing approaches according to different nominal

levels. Results are reported in Table 1 and in Table 2, respectively. Figure 4 reports the

histograms of the distribution of rP, r∗P and r̄Int, with reference to scenario a).

Table 1 and Table 2 here

Figure 4 here

The standard first-order statistic rP provides empirical one-sided rejection rates which are

far from the nominal levels, under all the examined scenarios, and more seriously in the case of

small sample size, as in the rather extreme scenario a) in Table 1. As a consequence, empirical

coverages of confidence intervals are substantially below the target level, see Table 2. An

improvement over first-order results is provided by Skovgaard’s statistic, although such an

amelioration is not satisfactory. Moreover, from a practical point of view, the evaluation of

r∗P suffers from numerical instabilities when estimating the variance components, especially

in case of small sample size for the meta-analysis studies, like in scenario a). Sharma &

Mathew (2011) apply Skovgaard’s statistic in inter-laboratory studies with unknown within-

laboratory variances, providing some R code for its computation. They suggest a practical

strategy to face the computational difficulties related to the evaluation of r∗P that may arise

in small samples. For example, the observed information matrix, when not positive definite,
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can be substituted with a positive quantity, e.g., the expected information matrix. Moreover,

as a supplementary practical measure, they replace r∗P by rP whenever the adjustment u(β)

in (2) fails to be positive. Such a careful computation ensures that the resulting statistic is

always well defined. At any rate, it should be noted that the r∗P statistic may be unstable

when the value under testing is close to β̂, thus requiring some further adjustments. See,

for example, the discussion in Fraser et al. (2003). Though r∗P represents a substantial

improvement over rP, its finite sample distribution is not standard normal for the chosen

settings. This is apparent from Figure 4.

The use of the integrated likelihood approach provides a substantial improvement of the

results accuracy with respect to rP and r∗P, under all the examined scenarios. Moreover, the

application of the approach does not imply any computational inconvenient, especially in case

of small sample sizes for the meta-analysis studies. Empirical rejection rates are close to the

target levels, with no appreciable difference among the specifications chosen for the integrated

likelihood, see Table 1. Correspondingly, empirical coverages of confidence intervals are close

to the nominal levels, see Table 2. The high accuracy of the standard normal approximation

provided by r̄Int for scenario a) emerges from Figure 4. Such a behavior is maintained also

by rInt and r̃Int.

Simulation studies for investigating the performance of the integrated likelihood approach

has been carried out under specifications of the prior distribution for the nuisance parameters

alternative to those chosen here. No appreciable differences in terms of accuracy of the

inferential results emerged.

The application of the signed profile log likelihood ratio statistic and of Skovgaard’s

statistic when the within-study variances are assumed to be known and equal to the values

reported by each study has been examined as well. Simulation results showed a severely

poor behavior of both the approaches.

Several other simulation studies have been performed in scenarios characterized by a

small number of studies n or a small study dimension ni. Generally speaking, when n or
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study dimension ni increases, then inferential conclusions can be more satisfactory, also when

relying on the signed profile log likelihood ratio statistic or on Skovgaard’s proposal. Increas-

ing the number of studies n, in fact, ensures inference on the between-study component τ 2

to be more precise, while increasing the study dimension ni allows a better estimation of the

within-study variance σ2
i . A summary of the main findings is as follows.

• Even for moderate size of study dimension, in settings with small n the signed profile

log likelihood ratio statistic may provide inaccurate results, especially for relatively

large values of the between-study variance τ 2. In such cases, Skovgaard’s statistic is

generally recommendable, as for larger study size the numerical problems associated

to its computation are only a marginal issue. Instead, in settings with relatively large

n and small study dimension ni, the signed profile log likelihood ratio statistic may

still need an adjustment and Skovgaard’s proposal may still be affected by numerical

problems.

• The signed integrated log likelihood ratio statistic generally provides satisfactory re-

sults. A conservative behavior may be experienced for very small n (say, n < 5), large

ni (say, ni around 10 or more) and relatively small τ 2 compared to the within-study

variances.

• No major differences were generally found among the various versions of the integrated

likelihood. However, the integrated likelihood exploiting the zero-score-expectation

parameterization can be slightly more accurate than versions based on the original

parameterization in some settings, such as, for example, a modification of scenario a)

with n = 20 rather than n = 3.

6 Real data analysis

This section illustrates the application of the integrated likelihood approach for the anal-

ysis of the datasets introduced in Section 2. The integrated likelihood analysis based on r̄Int
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is compared to first-order results provided by rP. Results from the application of rInt and

r̃Int are not reported since they are close to those from r̄Int.

6.1 Cocoa intake and blood pressure reduction

Likelihood analysis provides an estimate of the treatment effect equal to -2.799 (s.e.

1.009), which is found to be significant, given the P -value equal to 0.030 associated to rP.

The associated 95% confidence interval for the parameter is (−5.262,−0.397). The integrated

likelihood approach based on the zero-score-expectation parameterization suggests a non-

significant effect of cocoa consumption on lowering diastolic blood pressure, with the estimate

of the treatment effect equal to -2.805 (s.e. 1.270) and the P -value for the effectiveness of

the treatment equal to 0.071. The associated 95% confidence interval for the parameter is

(−6.027, 0.349). The profile log likelihood function and the integrated log likelihood function

are compared in Figure 1, right panel. Note that since the sample size of each study is not too

small, then the standard approach assuming known within-study variances provides results

very close to those reported above.

6.2 Set-shifting ability in eating disorders

Likelihood analysis provides an estimate of the parameter associated to the eating dis-

order indicator equal to -0.117 (s.e. 0.216), which is found to be not significant, given the

P -value equal to 0.619 associated to rP. The corresponding 95% confidence interval for the

parameter is (−0.566, 0.283). A similar conclusion is obtained by the integrated likelihood

approach based on the zero-score-expectation parameterization as if within-study variances

were equal. The method provides an estimate of the parameter associated to the eating

disorder indicator equal to -0.122 (s.e. 0.202) and the P -value equal to 0.561 associated to

r̄Int. The corresponding 95% confidence interval for the parameter is (−0.542, 0.235). The

profile log likelihood function and the integrated log likelihood function are compared in

Figure 2, right panel.
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7 Binary data

The case of binary data presents some features making the analysis rather different from

what presented in the previous sections for normally distributed data. The most common

situation is meta-analysis with summary estimates represented by the log odds ratio. In

this case, the within-study variance is a function of the response data yielding the summary

estimate. Both the assumption of a scaled chi-square distribution for the within-study vari-

ance estimate and the independence assumption between the summary estimate and the

within-study variance estimate are rather questionable.

Within this framework, the integrated likelihood approach can still supply useful results.

Instead of assuming a model for the estimated log odds ratio and the within-study variance

estimate as done for normal data, we consider a model for the original data consisting

in the number of successes for the treatment group and the control group. In particular,

following Liu & Pierce (1993), we define the following pair of independent observations for

the treatment group and the control group within the i-th study,

YT i ∼ Bin{nT i, logit−1(αi + βi)}, YCi ∼ Bin{nCi, logit−1(αi)}, (7)

where nT i and nCi are the sample sizes of the treatment group and the control group,

respectively, αi is a study-specific intercept and βi the effect of interest. The usual random

effects specification is maintained,

βi = β + ui, ui ∼ Normal(0, τ 2),

whereas the αis are treated as fixed nuisance parameters. Similarly to the normal case, the

whole parameter vector is (β, τ, α1, . . . , αn)T . Differently from the normal case, instead, it is

possible to remove the study-specific intercepts by conditioning on the study total number

of successes y·i = yT i + yCi. The resulting likelihood for study i given the random effect ui
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is the conditional likelihood (Breslow & Day, 1980)

LC(βi) =

(
nCi
yCi

)(
nT i
yT i

)
exp(yT i βi)∑

j∈Si

(
nCi
y·i − j

)(
nT i
j

)
exp(j βi)

,

where Si = {k : max(0, y·i − nCi) ≤ k ≤ min(nT i, y·i)}. The likelihood function for θ =

(β, τ)T is then

L(β, τ) =
n∏
i=1

∫ +∞

−∞
LC(β + ui)φ(ui; 0, τ)dui =

n∏
i=1

hi(β, τ), (8)

where φ(ui; 0, τ) is the probability density function of a Normal(0, τ 2) distribution and

hi(β, τ) =
∫ +∞
−∞ LC(β + ui)φ(ui; 0, τ)dui. The integrated log likelihood function is

`Int(β) = log

∫ +∞

0

{
n∏
i=1

hi(β, τ)

}
π(τ)dτ, (9)

where the prior independence between β and τ has been maintained. There is a close corre-

spondence between the integrated log likelihood (6) for the normal case and the integrated

log likelihood (9) for the binary case, since the latter can be obtained from the former by

replacing gi(β, ζ) with hi(β, τ). The correspondence can be exploited for implementation of

(9), paying attention to the approximation of hi(β, τ) in order to avoid numerical problems

when evaluating LC(βi). Following Liu & Pierce (1993), we found rather effective to approx-

imate the integral required for hi(β, τ) by the Laplace’s approximation; see Severini (2000,

Chapter 2) for a gentle treatment.

There is a noteworthy difference between the expressions (6) and (9), despite the close

mathematical similarity. Whereas the integration with respect to σi in (6) requires the

specification of a prior distribution, the distribution assumed for the random effects ui in (8)

can be considered as part of the model specification and the only prior distribution required

for obtaining the integrated log likelihood (9) is given by π(τ). Unfortunately, parameters

β and τ are not orthogonal, thus making the choice of the prior for τ not inconsequential.

Moreover, obtaining a strongly unrelated parameterization for τ by repeating the same steps
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illustrated in Section 3 involves rather complicated calculations, discouraging its application

for routine use. As a consequence, the specification of a prior distribution for τ has to be

based on some practical considerations, supported by numerical experiments. We suggest

here two possible specifications for the integrated log likelihood.

i) The first proposal specifies the prior distribution for τ as π(τ) ∝ 1/τ k, for fixed k.

An empirical evaluation indicates that k = 0.5 is an acceptable choice. Accordingly,

inference on β is performed by relying on the signed integrated log likelihood ratio

statistic rInt obtained from (9) with π(τ) ∝ 1/
√
τ .

ii) The second proposal considers that achieving a strongly unrelated parameterization is

quite involved. Nevertheless, an empirical evaluation of the re-parameterization

ζ =

√
τ 2 − (β̂ − β)2,

merely by analogy with (5) for the normal case, frequently provides a plot similar

to Figure 3. Empirical experiments suggest that ζ̂β is less dependent on β than τ̂β.

Therefore, inference on β can be based on r̃Int, employing ζ as nuisance parameter and

the prior π(ζ) ∝ 1/
√
ζ.

A small-scale simulation study has been carried out to evaluate the performance of the

two integrated log likelihood proposals. The simulation considers a scenario involving n = 6

studies, with sample sizes given by nT = (5, 7, 4, 10, 6, 15)T for the treatment group and

nC = (5, 8, 4, 10, 6, 15)T for the control group. The simulation experiment generates 10,000

data sets from model (7), with β = 1 and τ 2 assuming values in {0.05, 0.95}, representing

two different scenarios of effect heterogeneity. The study-specific intercepts are generated

as αi ∼ Normal(0, 0.25), independent of the random effect βi. Table 3 reports the empirical

coverages of confidence intervals at nominal levels 0.90, 0.95, 0.99, based on the signed profile

log likelihood ratio statistic and on the two integrated log likelihoods proposed above.

Table 3 here
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The profile log likelihood approach and the use of the two integrated log likelihoods provide

similar inferential results, none being really off-target. For the profile log likelihood this

is not unexpected, as there is a single nuisance parameter. All the solutions are slightly

conservative for small effect heterogeneity. For large effect heterogeneity, instead, the use of

the profile log likelihood results in empirical coverages of confidence intervals slightly below

the target level. The use of the integrated log likelihood provides a moderate correction,

especially with reference to r̃Int.

The computation of the conditional likelihood for large study size may be hampered by

numerical problems. In such case, following Liu & Pierce (1993), the conditional likelihood

LC(βi) could be replaced by the modified profile likelihood, with very small loss of accuracy,

if any. See also Lee et al. (2010).

8 Concluding remarks

This paper considers inference in meta-analysis with a small dimension of the studies. For

normally distributed measures of the effect of interest, the common assumption of known

within-study variances is questionable in small sample studies. The proposed integrated

likelihood approach allows to account for the uncertainty related to the estimation of the

within-study variances and eliminates the variance components via integration with respect

to a prior density. The methodology is shown to provide accurate inferential results and

it may be preferable to the likelihood analysis performed under the assumption of known

within-study variances. In the meanwhile, the method avoids the computational difficulties

affecting higher-order solutions when estimating the variance components. An attractive

feature of our proposal is that it can be implemented without any recourse to simulation

methods, thus yielding fully reproducible results.

The case of binary data has been examined as well. Within this framework, the inte-

grated likelihood approach is shown to maintain an interesting analogy with that under the

normal case. Despite the achievement of a prior density for the nuisance components is less
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immediate than in the normal case, as the within-study variances are a function of the re-

sponse data yielding the summary estimate, the integrated likelihood approach still provides

accurate inferential results.

From the methodological side, the problem studied in this paper is an instance of two-

index asymptotics (Sartori, 2003), meaning that the available sample information grow with

both the observations within each study and the number of studies. Although we did not

formally cast the study of the available methodology within the two-index setting, it seems

worth mentioning that recent results presented in De Bin (2012) substantiate the good

properties of the integrated likelihood using the zero-score-expectation parameterization for

general statistical models within two-index asymptotics. Findings in De Bin (2012) represent

further theoretical support for the results presented here.

Albeit the methodology discussed here is embedded in a frequentist approach, an exten-

sion to a full Bayesian formulation is possible. In this case, in fact, the integrated likelihood

can be thought of as a likelihood function which results in an effortless implementation, since

the prior distribution for the remaining parameter β would be only one-dimensional.
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Figure 1: Cocoa data. Left panel: forest plot. Right panel: profile log likelihood function

(solid line) and integrated log likelihood function (dashed line).
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Figure 2: Eating disorders data. Left panel: forest plot. Right panel: profile log likelihood

function (solid line) and integrated log likelihood function (dashed line).



27

-6 -5 -4 -3 -2 -1 0 1

-3
-2

-1
0

1
2

3

β

M
ax

im
um

 li
ke

lih
oo

d 
es

tim
at

e

Figure 3: Constrained estimators for Example 2.1. Plot of (τ̂β − τ̂)/SE(τ̂) (dashed line) and

(ζ̂β − ζ̂)/SE(ζ̂) (dotted line) against β.
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Figure 4: Histograms of the distribution of rP (left panel), r∗P (middle panel) and r̄Int (right

panel) for simulation scenario a), based on 10,000 replicates. The standard normal density

is superimposed (dashed line).
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Table 1: Empirical one-sided rejection rates for the signed profile log likelihood ratio statistic

rP, Skovgaard’s statistic r∗P, and different specifications of the signed integrated log likelihood

ratio statistic, rInt, r̃Int, and rInt, based on 10,000 replicates.

Rejection rates rP r∗P rInt r̃Int rInt

Scenario a)

Lower

0.010 0.121 0.018 0.003 0.002 0.002

0.025 0.168 0.023 0.013 0.012 0.012

0.050 0.213 0.029 0.039 0.039 0.037

0.100 0.270 0.054 0.099 0.106 0.102

Upper

0.900 0.734 0.947 0.906 0.899 0.903

0.950 0.792 0.970 0.963 0.963 0.964

0.975 0.837 0.975 0.987 0.989 0.989

0.990 0.884 0.981 0.997 0.998 0.998

Scenario b)

Lower

0.010 0.090 0.028 0.005 0.005 0.005

0.025 0.125 0.044 0.021 0.022 0.021

0.050 0.164 0.068 0.049 0.054 0.051

0.100 0.223 0.116 0.102 0.110 0.105

Upper

0.900 0.782 0.889 0.898 0.890 0.895

0.950 0.838 0.934 0.953 0.949 0.952

0.975 0.878 0.961 0.980 0.979 0.980

0.990 0.917 0.973 0.994 0.993 0.994

Scenario c)

Lower

0.010 0.080 0.028 0.008 0.008 0.008

0.025 0.116 0.043 0.022 0.024 0.023

0.050 0.151 0.066 0.049 0.052 0.050

0.100 0.209 0.111 0.102 0.105 0.101

Upper

0.900 0.789 0.879 0.891 0.887 0.890

0.950 0.844 0.927 0.946 0.942 0.945

0.975 0.883 0.951 0.975 0.972 0.975

0.990 0.915 0.968 0.991 0.991 0.991
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Table 2: Empirical coverages of confidence intervals at nominal levels 0.90, 0.95, 0.99, for

the signed profile log likelihood ratio statistic rP, Skovgaard’s statistic r∗P, and different

specifications of the signed integrated log likelihood ratio statistic, rInt, r̃Int, and rInt, based

on 10,000 replicates.

Level rP r∗P rInt r̃Int rInt

Scenario a)

0.90 0.579 0.941 0.924 0.925 0.927

0.95 0.670 0.953 0.974 0.977 0.977

0.99 0.816 0.966 0.998 0.999 0.999

Scenario b)

0.90 0.674 0.866 0.904 0.895 0.902

0.95 0.753 0.917 0.960 0.957 0.959

0.99 0.870 0.955 0.996 0.997 0.997

Scenario c)

0.90 0.693 0.861 0.896 0.889 0.895

0.95 0.767 0.907 0.953 0.948 0.952

0.99 0.875 0.952 0.993 0.993 0.993
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Table 3: Binary data: empirical coverages of confidence intervals at nominal levels 0.90, 0.95,

0.99, for the signed profile log likelihood ratio statistic rP and two different specifications of

the signed integrated log likelihood ratio statistic, rInt and r̃Int, based on 10,000 replicates.

Level rP rInt r̃Int

τ 2=0.05

0.90 0.917 0.935 0.917

0.95 0.966 0.976 0.970

0.99 0.996 0.997 0.998

τ 2=0.95

0.90 0.870 0.882 0.888

0.95 0.935 0.942 0.948

0.99 0.989 0.990 0.993
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